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Quaternion Frame Approach to
Streamline Visualization

Andrew J. Hanson, Member, IEEE Computer Society, and Hui Ma

Abstract—Curves in space are difficult to perceive and analyze,
especially when they form dense sets as in typical 3D flow and
volume deformation applications. We propose a technique that
exposes essential properties of space curves by attaching an ap-
propriate moving coordinate frame to each point, reexpressing
that moving frame as a unit quaternion, and supporting interac-
tion with the resulting quaternion field. The original curves in
three-space are associated with piecewise continuous four-vector
quaternion fields, which map inte new curves lying in the unit
three-sphere in four-space. Since four-space clusters of curves
with similar moving frames occur independently of the curves’
original proximity in three-space, a powerful analysis tool results.
We treat two separate moving-frame formalisms, the Frenet
frame and the parallel-transport frame, and compare their
properties. We describe several flexible approaches for interact-
ing with and exploiting the properties of the four-dimensional
quaternion fields.

Index Terms—Quaternion, Frenet frame, orientation frame.

I. INTRODUCTION

E introduce techniques and tools for visualizing stream-

line data that are based on the differential geometry of
3D space curves. Intrinsic properties of space curves give rise
to scalar fields over the curves such as the curvature and tor-
ston. A moving coordinate frame on a curve is a tensor field
that is equivalent to a quaternion field; either may be under-
stood as the solution to a set of differential equations driven by
the intrinsic scalar fields.

Our fundamental thesis is that quaternion frame coordinates
are useful for exposing the similarities and differences of sets
of streamlines. Good analytic and visual measures for reveal-
ing similarities of curve shapes are rare. Because of the exis-
tence of a uniform distance measure in the quaternion space
that we use, orientation similarities in the evolution of flow
fields appear automatically-in meaningful spatial groups. Iden-
tification of these similarities is useful for applications such as
finding repeating patterns and related curve shapes, both on
single curves and within large collections of curves. Con-
versely, if a large set of nearly-identical curves contains a
small number of significant curves that differ from their neigh-
bors due to subtle changes in their frame orientations, our
method will distinguish them.

We study two distinct moving coordinate frames that may
be assigned to curves in three-space. One is the classic Frenet
frame, also called the Frenet-Serret frame (see, e.g., [9], [10]),
which is defined locally by the tangent, normal and binormal at
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each point of each curve; the other is the parallel-transport
frame (see, e.g., Bishop {4]), which retains the tangent vector,
but uses a nonlocal approach borrowed from the parallel-
transport methods of differential geometry to compute the
frame components in the plane perpendicular to the curve. All
such frames can be recast into quaternion frame coordinates.

Orientation spaces and their relationship to quaternions are
described in Altmann [2]; an interesting approach to the visu-
alization of the properties of quaternions was recently given by
Hart, Francis, and Kauffman [19]. Systematic approaches for
representing clusters of orientations in 3D spaces of angles
have been suggested, for example, by Alpern et al. [1]. Among
previous approaches to visualizing the geometry of space
curves, we note the work of Gray [7], [10] which exploits the
curvature and torsion scalar fields on a curve for visualization
purposes; this method extends naturally to higher-dimensional
manifolds with well-defined local curvature. We will give
some examples of the application of curvature and torsion
fields for completeness here, but will not pursue this approach
in detail.

The use of quaternion frames in a 4D display was proposed
as a visualization technique for stream manifold characteristics
in Hanson and Ma [17]. The current article is based on the
concepts of the latter work, and includes additional results on
the comparative properties of the Frenet and parallel-transport
frames, as well as further work on interactive methods.

II. THE DIFFERENTIAL GEOMETRY OF SPACE CURVES

Dense families of space curves can be generated by many
applications, ranging from time-dependent particle flow fields,
to static streamlines generated by infegrating a volume vector
field, to deformations of a solid coordinate grid. Our funda-
mental approach singles out space curves, although variations
could be used to treat individual point frames (see [1]), stream
surfaces (see [20]), and orientation differences (which are
themselves orientation fields) as well. Thus, we begin with the
properties of a curve X(¢) in 3D space parameterized by the
unnormalized arc length . If X(¢) is once-differentiable, then
the tangent vector at any point is

The standard arc-length differential is typically expressed as

2 () _ B0 EO) o
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In practice, we never have smooth curves in numerical ap-
plications, but only piecewise linear curves that are presumed
to be approximations to differentiable curves; thus we might
typically take, for a curve given by the set of points {X;},

T = ’Ei+1 —’:‘i ,
’ "Xi+1 _xi“
or any corresponding formula with additional sampling points
and desirable symmetries. We use a five-point formula to get a
smoother result; one could also produce finer intermediate
states by spline interpolation.

If the curve is locally straight, i.e., X”(£)=0 or T,,, =T,
then there is no locally-determinable coordinate frame compo-
nent in the plane normal to 'i‘; a nonlocal definition must be

used to decide on the remainder of the frame once Tis deter-
mined. Below, we formulate our two alternate coordinate
frames, one of which, the Frenet frame, is completely local,
but is indeterminable where the curve is locally straight, and
the other of which, the parallel transport frame, is defined
everywhere but depends on a numerical integration over the
whole curve.

A. Frenet Frames

The Frenet frame (see, e.g., [9], [10]) is defined as follows: If
X(t) is any thrice-differentiable space curve, its tangent, binor-
mal, and normal vectors at a point on the curve are given by

= x'(1)
T(t) = 2o
() =0
= X'(H)xX"(1)
Bl)=7————"7- 1
® (1) x X (1) M

N(@) =B@) xT(1).

We illustrate this standard frame configuration in Fig. 1.
When the second derivative vanishes on some interval, the
Frenet frame is temporarily undefined, as illustrated in Fig. 2.
Attempts to work around this problem involve various heuris-
tics (see, e.g., [5], [24]).

The Frenet frame obeys the following differential equation
in the parameter ¢,

() 0 x@® 0]|Tw
N |=v)|-x(@) 0  7(t)||N@) )
B'(¢) 0 -t(t) 0 ||B

where v(z) =|x’(¢)|| is the scalar magnitude of the curve de-
rivative, x(¢) is the scalar curvature, and 7(¢) is the torsion.
These quantities can in principle be calculated in terms of the
parameterized or numerical local values of X(¢) and its first
three derivatives as follows:

() = %) x %" (1)
Kol 5
)= (X'()xX"(1))- X" (¢)

LOLSHO R

Fig. 1. The triad of orthogonal axes forming the Frenet frame for a curve with
nonvanishing curvature.

Fig. 2. The triad of orthogonal axes forming the Frenet frame for a curve with
vanishing curvature on an interval; the frame is undefined on the interval.

If we are given a nonvanishing curvature and a torsion as
smooth functions of ¢, we can theoretically integrate the system
of equations to find the unique numerical values of the corre-
sponding space curve X(¢) (up to a rigid motion).

B. Parallel Transport Frames

Bishop [4] noted that, while the Frenet frame has the advan-
tage of consistent local computability at all points on a curve
except those with vanishing second derivative, there is another
natural frame, the parallel transport frame, that is well-defined
everywhere; the distinguishing feature of the parallel transport
frame is that it is essentially the solution to a differential equa-
tion, and thus depends on the initial conditions and is subject
to numerical error for long curves. Operational methods of
defining such frames have been noted (see, e.g., [5], [24]) but
the underlying mathematical basis was not elaborated.

Geometrically, the parallel transport frame derives its name
from the fact that it corresponds to the notion of moving a
vector around a curved manifold in such a way that it remains
as parallel to itself as possible. Its mathematical properties

follow from the observation that, while ’i‘(t) for a given curve
model is unique, we may choose any convenient arbitrary basis
(Nl(t), ﬁz(t)) for the remainder of the frame, so long as it is

in the plane perpendicular to T(r) at each point. If the deriva-
tives of (Nl(t), N2(t)) depend only on 'i‘(t) and not each
other, we can make Nl(t) and Nz(t) vary smoothly through-

out the path regardless of the curvature. We may, therefore,
choose the alternative frame equations
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illustrated in Fig. 3 for a curve with vanishing curvature on a
segment. One can show that [4]

k(0 = (k) +(ks)?)

- k.
o(t) = arctan( k )

1

_de()
7(t) ==

so that k; and k;, effectively correspond to a Cartesian coordi-
nate system for the polar coordinates x, 8 with 8 = I T(t)dt. A
fundamental ambiguity in the parallel transport frame com-
pared to the Frenet frame thus arises from the arbitrary choice

of an integration constant for 6, which disappears from 7 due
to the differentiation.

A numerical method for computing the parallel transport
frame with the desired properties is the following. Given a

frame at X;_;, compute two neighboring tangents 'i‘, and T,._l
and their unit vectors T, = T, /| T; ||; find the angle 6 = arccos
('i‘,- -’i‘,._]) between them and the perpendicular to the plane of
the tangents given by V= (’i‘,._1 x’i‘,. ); finally, rotate the frame

at X;_, by 8about V to get the frame at point X;.Either 3D

vector rotation or rotation by quaternion multiplication can be
used to effect the rotation.

Fig. 3. The parallel-transport curve frame for the curve of Fig. 2 [4]. This
frame, unlike the Frenet frame in Fig. 2, is continuous along the “roof peak”
where the curvature vanishes.

Just as for the Frenet frame, one can begin with a curve
X(¢t) and an initial frame, or a pair of functions (k(?), k()
and an initial frame, or a frame over the entire curve, and then
integrate where needed to compute the missing variables. It is
also worthwhile noting that (ki(f), k(7)) form a two-
dimensional Cartesian vector field at each point of the curve,
and thus allow a natural alternate characterization to Gray’s
(x, 7) curve properties [7], [10].

ITII. THEORY OF QUATERNION FRAMES

It is awkward to represent moving frames visually in high-
density data because a frame consists of three 3D vectors, or
nine components, yet it has only three independent degrees of
freedom. Some approaches to representing these degrees of
freedom in a three-dimensional space were suggested by Alp-
ern et al. [1]. We propose instead to systematically exploit the
representation of 3D orientation frames in four-dimensions
using equivalent unit quaternions that correspond, in turn, to
points on the three-sphere (see, e.g., [25]). A collection of
oriented frames such as those of a crystal lattice can thus be
represented by mapping their orientations to a point set in the
4D quaternion space. The moving frame of a 3D space curve
can be transformed into a path in quaternion space correspond-
ing pointwise to the 3D space curve.

The quaternion representation of rotations reexpressing a
moving frame of a 3D space curve is an elegant unit four-
vector field over the curve; the resulting quaternion frames can
be displayed as curves in their own right, or can be used in
combination with other methods to enrich the display of each
3D curve, e.g., by assigning a coded display color representing
a quaternion component.

Properties. A quaternion frame is a unit-length four-vector
q = (90, 91, G2, 93) = (g0, q) that corresponds to exactly one
3D coordinate frame and is characterized by the following
properties:

e Unit Norm. If we define the inner product of two qua-
ternions as

g P=qGoPot+rqipr+q@p2+4qip;,

then the components of a unit quaternion obey the
constraint

q-q9=(q0)" + (@)’ + (g + (@) =1, 5)
and therefore lie on §° , the three-sphere, which we will
typically represent as embedded in four-dimensional
Euclidean space R*.

® Multiplication Rule. The quaternion product of two qua-
ternions g and p, which we write as g * p, takes the form

lg*plo| |90P0—91P1—92P2 —93P3
[g * P}, _|[90P1 T 9%1Po+92P3 ~ 43P
(a*ply| |90P2+92P0 93P —91P3
[q*pl; 9oP3 +q93P0 + 41 P2 — 92 P

This rule is isomorphic to multiplication in the group
SU(2), the double covering of the ordinary 3D rotation
group SO(3). If two quaternions a and b are transformed
by multiplying them by the same quaternion g, their inner
product a - b transforms as

(q*a)-(g*b)=(a-b)(q-q)
and so is invariant if q is a unit quaternion.
® Mapping to 3D rotations. Every possible 3D rotation R
(a 3 x 3 orthogonal matrix) can be constructed from
either of two related quaternions, g = (4o, q1, g2, g3) Of —q
= (=90 —=q1> —42, —q3), using the quadratic relationship
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Q(+--) D (123) D*(312)
R=|D*(123) Q(-+-) D7(231) 6)
D™ (312) D*(231) Q(--+)

where Q(+ + +) = ¢ g 45 47 and D*(ijk) = 2q4;

2904k
e Rotation Correspondence. When we

= (cos%,ﬁsin %), into (6), where n-m=1 is a unit

substitute g

three-vector lying on the two-sphere S2,R(6,1) be-

comes the standard matrix for a rotation by 8 in the plane
perpendicular to n; the quadratic form ensures that the

two distinct unit quaternions g and —q in S 3 correspond
to the same SO(3) rotation.

A. Quaternion Frenet Frames

All 3D coordinate frames can be expressed in the form of
quaternions using (6). If we assume the columns of (6) are the

vectors ((T, N, ﬁ),respectively, one can show from (2) that
4’ (] takes the form (see [12])

90 0 -7 0 -x||q

gi|_v|t 0 x 0]]q

== A7 7
a4l 200 « 0 7||q, M

g k 0 -t 0]|qgs

This equation has the following key properties:

e The matrix on the right hand side is antisymmetric, so
that g(r) - ¢’(¥) = O by construction. Thus, all unit qua-
ternions remain unit quaternions as they evolve by this
equation.

e The number of equations has been reduced from nine
coupled equations with six orthonormality constraints
to four coupled equations incorporating a single con-
straint that keeps the solution vector confined to the
three-sphere.

We verify that the matrices

[ 9 4 9 "513-
A=l g3 g9 q 90
L=492 93 ~90 D ]
—”43 9@ 9 —CIOT
B=|qy -¢ 9 —q3
L 9 9 93 92 |
i 9 43 90 411T
C=\-a1 90 9B oD
L 9 ~h 492 93]

explicitly reproduce (2),
[Al'[q']=T" =vkN
[B1-[g'1=N’"=—vkT +viB
[C][¢'1=B’ =-viN,

where we have applied (7) to get the right-hand terms.

Just as the Frenet equations may be integrated to generate a
unique moving frame with its space curve for nonvanishing x(¢) ,
we may integrate the much simpler quaternion equations (7).

B. Quaternion Parallel Transport Frames

Similarly, a parallel-transport frame system given by (4)
with (Nl ,T, Nz) (in that order) corresponding to the columns
of (6) is completely equivalent to the following parallel-
transport quaternion frame equation for [¢'(£)]:

90 0 -k, 0 Kk 90
q vl ky 0 -k O q

H=2 : ®)
q; 21 0 ky 0 kg

q; —k 0 -k, O q3

where antisymmetry again guarantees that the quaternions
remain constrained to the unit three-sphere. The correspon-
dence to (4) is verified as follows:

[B)-q'1=T’ = vk,N, +vk,N,
[A)-[g’1=N} = —vk,T
[C)-[q']=Nj = —vk,T .

IV. ASSIGNING SMOOTH QUATERNION FRAMES

Given a particular curve, we are next faced with the task of
assigning quaternion values to whatever moving frame
sequence we have chosen.

A. Assigning Quaternions to Frenet Frames

The Frenet frame equations are pathological, for example,
when the curve is perfectly straight for some distance or when
the curvature vanishes momentarily. Thus, real numerical data
for space curves will frequently exhibit behaviors that make
the assignment of a smooth Frenet frame difficult, unstable, or
impossible. In addition, since any given 3 x 3 orthogonal ma-
trix corresponds to two quaternions that differ in sign, methods
of deriving a quaternion from a Frenet frame are intrinsically
ambiguous. Therefore, we prescribe the following procedure
for assigning smooth quaternion Frenet frames to points on a
space curve:

e Select a numerical approach to computing the tangent T
at a given curve point X; this typically depends on the
chosen curve model and the number of points one wishes
to sample.

o Compute the remaining numerical derivatives at a given
point and use those to compute the Frenet frame accord-
ing to (1). If any critical quantities vanish, tag the frame
as undefined (or as needing a heuristic fix).

e Check the dot product of the previous binormal B(z)
with the current value; if it is near zero, choose a correc-
tion procedure to handle this singular point. Among the
correction procedures we have considered are: 1) simply
jump discontinuously to the next frame to indicate the
presence of a point with very small curvature; 2) create
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an interpolating set of points and perform a geodesic in-
terpolation [25]; or 3) deform the curve slightly before
and after the singular point to “ease in” with a gradual
rotation of the frame or apply an interpolation heuristic
(see, e.g., [241). Creating a jump in the frame assignment
is our default choice, since it does not introduce any new
information.

e Apply a suitable algorithm such as that of Shoemake [25]
to compute a candidate for the quaternion corresponding
to the Frenet frame.

o If the 3 x 3 Frenet frame is smoothly changing, make one
last check on the 4D inner product of the quaternion
frame with its own previous value: If there is a sign
change, choose the opposite sign to keep the quaternion
smoothly changing (this will have no effect on the corre-
sponding 3 X 3 Frenet frame). If this inner product is near
zero instead of +1, you have detected a radical change in
the Frenet frame which should have been noticed in the
previous tests.

¢ If the space curves of the data are too coarsely sampled to
give the desired smoothness in the quaternion frames, but
are still close enough to give consistent qualitative behav-
ior, one may choose to smooth out the intervening frames
using the desired level of recursive slerping [23], [25] to
get smoothly splined intermediate quaternion frames.

In Fig. 4, we plot an example of a torus knot, a smooth
space curve with everywhere nonzero curvature, together with
its associated Frenet frames, its quaternion frame values, and
the path of its quaternion frame field projected from four-
space. Fig. S plots the same information, but this time for a
curve with a discontinuous frame that flips too quickly at a
zero-curvature point. This space curve has two planar parts
drawn as though on separate pages of a partly-open book and
meeting smoothly on the “crack” between pages. We see the
obvious jump in the Frenet and quaternion frame graphs at the
meeting point; if the two curves are joined by a long straight
line, the Frenet frame is ambiguous and is essentially
undefined in this segment. Rather than invent an interpolation,
we generally prefer to use the parallel transport method de-
scribed next.

B. Assigning Quaternions to Parallel Transport Frames

In order to determine the quaternion frames of an individual
curve using the parallel transport method, we follow a similar,
but distinct, procedure:

¢ Select a numerical approach to assigning a tangent at a
given curve point as usual.

e Assign an initial reference orientation to each curve in
the plane perpendicular to the initial tangent direction.
The entire set of frames will be displaced from the origin
in quaternion space by the corresponding value of this
initial orientation matrix, but the shape of the entire curve
will be the same regardless of the initial choice. This
choice is intrinsically ambiguous and application de-
pendent. However, one appealing strategy is to base the
initial frame on the first well-defined Frenet frame, and
then proceed from there using the parallel-transport

(b)

@

Fig. 4. (a) Projected image of a 3D (3, 5) torus knot. (b) Selected Frenet frame
components displayed along the knot. (c) The corresponding smooth qua-
ternion frame components. (d) The path of the quaternion frame components
in the three-sphere projected from four-space. Color scales indicate the Oth
component of the curve’s four-vector frame (upper left graph in (c)).

frame evolution; this guarantees that identical curves
have the same parallel-transport frames.
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Fig. 5. (a) Projected image of a pathological curve segment. (b) Selected Frenet frame components,
showing a sudden change of the normal. (c) The quaternion frame components, showing discontinu-
ity in values. (d) The discontinuous path of the quaternion frame components in the three-sphere.
Color scales indicate the Oth component of the curve’s four-vector frame (upper left graph in (c)).

e Compute the angle between successive tangents, and ro-
tate the frame by this angle in the plane of the two tan-
gents to get the next frame value.

o If the curve is straight, the algorithm automatically makes
no changes.

e Compute a candidate quaternion representation for the
frame, applying consistency conditions as needed.

Note that the initial reference orientation and all discrete rota-
tions can be represented directly in terms of quaternions, and
thus quaternion multiplication can be used directly to apply
frame rotations. Local consistency is then automatic.

An example is provided in Fig. 6, which shows the parallel
transport analog of Fig. 4 for a torus knot. Fig. 7 is the parallel
transport analog of the pathological case in Fig. 5, but this
time the frame is continuous when the curvature vanishes.

V. EXAMPLES

We next present some typical examples of streamline data
represented using the basic geometric properties we have
described. Each data set is rendered in the following alterna-
tive modes: 1) as a 3D Euclidean space picture, pseudocolored
by curvature value; 2) as a 3D Euclidean space picture, pseu-
docolored by torsion value; 3) as a four-vector quaternion Fre-
net frame field plotted in the three-sphere; and 4) as a four-

vector quaternion parallel transport frame field plotted in the
three-sphere.

e Fig. 8. A complicated set of streamlines derived from
twisting a solid elastic Euclidean space as part of the
process of tying a topological knot.

e Fig. 9. An AVS-generated streamline data set; the flow is
obstructed somewhere in the center, causing sudden
jumps of the streamlines in certain regions.

(d)

While our focus in this paper is specifically on the frames of
space curves, we remark that collections of frames of isolated
points, frames on stream surfaces [20], and volumetric frame
fields could also be represented using a similar mapping into
quaternion space.

VI. VISUALIZATION METHODS

Once we have calculated the quaternion frames, the curva-
ture, and the torsion for a point on the curve, we have a family
of tensor and scalar quantities that we may exploit to expose
the intrinsic properties of a single curve. Furthermore, and
probably of greater interest, we also have the ability to make
visual comparisons of the similarities and differences among
families of neighboring space curves.

The moving frame field of a set of streamlines is potentially
a rich source of detailed information about the data. However,
the nine-component frame is unsuitable for direct superposi-
tion on dense data due to the high clutter resulting when its
three orthogonal three-vectors are displayed; direct use of the
frame is only practical at very sparse intervals, which prevents
the viewer from grasping important structural details and
changes at a glance. Displays based on 3D angular coordinates
are potentially useful, but lack metric uniformity [1].

The four-vector quaternion frame is potentially a more in-
formative and flexible basis for frame visualizations; below,
we discuss several alternative approaches to the exploitation of
quaternion frames for data consisting of families of smooth
curves.

A. Direct Three-Sphere Plot of Quaternion Frame Fields

We now repeat the crucial observation: For each 3D space
curve, the moving quaternion frames define completely new
4D space curves lying on the unit three-sphere embedded in
4D Euclidean space.
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Fig. 6. (a) Projected image of a 3D (3, 5) torus knot. (b) Selected parallel-
transport frame components displayed along knot. (c) The corresponding smooth
quaternion frame components. (d) The path of the quaternion frame components
in the three-sphere projected from four-space. Color scales indicate the Oth com-
ponent of the curve’s four-vector frame (upper left graph in (c)).

© - @

Fig. 7. (a) Projected image of a pathological curve segment. (b) Selected
parallel transport frame components, showing smooth change of the normal.
(c) The quaternion frame components, showing continuity in values. (d) The
continuous path of the quaternion frame components in the three-sphere.
Color scales indicate the Oth component of the curve's four-vector frame
(upper left graph in (c)).

These curves can have entirely different geometry from the
original space curve, since distinct points on the curve corre-
spond to distinct orientations. Families of space curves with

exactly the same shape will map to the same quaternion curve,
while curves that fall away from their neighbors will stand out
distinctly in the three-sphere plot. Regions of vanishing curva-
ture will show up as discontinuous gaps in the otherwise con-
tinuous quaternion Frenet frame field curves, but will be well-
behaved in the quaternion parallel transport frame fields.
Straight 3D lines will of course map to single points in qua-
ternion space, which may require special attention in the display.

Figs. 4d and 5d present elementary examples of the three-
sphere plot for the Frenet frame, while Figs. 6d and 7d
illustrate the parallel transport frame. Figs. 8c, 8d, 9c, and 9d
present more realistic examples.

The quaternion frame curves displayed in these plots are 2D
projections of two overlaid 3D solid balls corresponding to the
“front” and “back” hemispheres of S*. The three-sphere is
projected from 4D to 3D along the Oth axis, so the “front” ball
has points with 0 < go < + 1, and the “back” ball has points
with —1 < go < 0. The g, values of the frame at each point can
be displayed as shades of gray or pseudocolor. In the default
view projected along the gg-axis, points that are projected from
4D to the 3D origin are in fact identity frames, since unit
length of g requires ¢ = (x1, 0, 0, 0) at these points. In Fig. 10,
we show a sequence of views of the same quaternion curves
from different 4D viewpoints using parallel projection; Fig. 11
shows the additional contrast in structure sizes resulting from a
4D perspective projection.

B. Scalar Geometric Fields

Gray [7], [10] has advocated the use of curvature and tor-
sion-based color mapping to emphasize the geometric proper-
ties of single curves such as the torus knot. Since this informa-
tion is trivial to obtain simultaneously with the Frenet frame,
we also offer the alternative of encoding the curvature and
torsion as scalar fields on a volumetric space populated either
sparsely or densely with streamlines; examples are shown in
Figs. 8a, 8b, 9a, and 9b.

C. Similarity Measures for Quaternion Frames

Quaternion frames carry with them a natural geometry that
may be exploited to compute meaningful similarity measures.
Rather than use the Euclidean distance in four-dimensional
Euclidean space R*, one may use the magnitude of the four-
vector scalar product of unit quaternions

d(g.p)=1q-pl=1qopo+qi p1+ @2 p2+ g3 p3l,
or the corresponding angle,

&g, p) = arccos (d(g, p)) ,

which is the angular difference between the two 4D unit vec-
tors and a natural measure of great-circle arc-length on S°.
Choosing this as a distance measure results in a quantity that is
invariant under 4D rotations, invariant under 3D rotations rep-
resented by quaternion multiplication, and is also insensitive to
the sign ambiguity in the quaternion representation for a given
frame. Thus it may be used as a quantitative measure of the
similarity of any two 3D frames. This is a natural way to com-
pare either successive frames on a singlc streamline or pairs of
frames on different streamlines.
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®

)

Fig. 8. (a) Deformed volume related to tying a knot, color coded by curvature.
(b) Deformed volume related to tying a knot, color coded by torsion. (c) The
corresponding quaternion field paths for the Frenet frames. (d) The corre-
sponding quaternion field paths for the parallel transport frames. The color
code is keyed to the value of the quaternion component go that is collapsed in
the projection from 4D to 3D.

@

Fig. 9. (a) Vector field streamlines, color coded by curvature. (b) Vector field
streamlines, color coded by torsion. (c) The corresponding quaternion field
paths for the Frenet frames. (d) The corresponding quaternion field paths for
the parallel transport frames. The color code is keyed to the value of the qua-
ternion component g that is collapsed in the projection from 4D to 3D. (AVS
demonstration data set.)

(&)

©

Fig.10. Successive frames in a 4D rotation of the parallel projected three-
sphere display of the quaternion fields for a set of streamline data.

©

Fig. 11. Successive frames in a 4D rotation of the polar projected three-sphere
display of the quaternion fields for a set of streamline data.
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D. Probing Quaternion Frames with 4D Light

We next explore techniques developed in other contexts for
dealing with 4D objects (see [14], {15], [16]). In our previous
work on 4D geometry and lighting, the critical element was the
observation that 4D light can be used as a probe of geometric
structure provided we can find a way (such as thickening
curves or surfaces until they become true three-manifolds) to
define a unique 4D normal vector that has a well-defined sca-
lar product with the 4D light; when that objective is achieved,
we can interactively employ a moving 4D light and a generali-
zation of the standard illumination equations to produce im-
ages that selectively expose new structural details.

Given a quaternion field, we may simply select a 4D unit
vector L to represent a “light direction” and employ a standard
lighting model such as I(f) = L - g(f) to select individual com-
ponents of the quaternion fields for display using pseudo-color
coding for the intensity.

Fig. 12 shows a streamline data set rendered by computing a
pseudo-color index at each point using the 4D lighting formula
and varying the directions of the four-vector L.

E. True 4D Illumination

The. quaternion curves in 4D may also be displayed in an
entirely different mode by thickening them to form three-
manifolds using the method of Hanson and Heng [15], [16]
and replacing g(¢) in the 4D lighting formula and its specular
analogs by the 4D normal vector for each volume element or
vertex. The massive expense of volume rendering the resulting
solid tubes comprising the 4D projection to 3D can be avoided
by extending the “bear-hair” algorithm to 4D curves [3], [14],
[21] and rendering the tubes in the limit of vanishing radius.

VII. INTERACTIVE INTERFACES

We next describe a variety of specific interactive techniques
that we have examined as tools for exploring quaternion fields.

A. 4D Light Orientation Control

Direct manipulation of 3D orientation using a 2D mouse is
typically handled using a rolling ball [11] or virtual sphere [6]
method to give the user a feeling of physical control. This
philosophy extends well to 4D orientation control (see [8],
[13]), giving a practical approach to interacting with the
visualization approaches of Sections VI.D and VLE.

A 3D unit vector has only two degrees of freedom, and so is
determined by picking a point within a unit circle to determine
the direction uniquely up to the sign of its view-direction com-
ponent. The analogous control system for 4D lighting is based
on a similar observation: since the 4D normal vector has only
three independent degrees of freedom, choosing an interior
point in a solid sphere determines the vector uniquely up to the
sign of its component in the unseen fourth dimension (the “4D
view-direction component”).

Fig. 12 shows an example with a series of snapshots of this
interactive interface at work. An additional information display
shows the components of the 4D light vector at any particular
moment.

o ®

Fig. 12. Color coding a streamline data set using an interactively moving 4D
“light” as a probe to isolate similar components of the quaternion fields asso-
ciated to each point of each curve.

B. 4D Viewing and Three-Sphere Projection Control

Actually displaying quaternion field data mapped to the
three-sphere requires us to choose a particular projection from
4D to 3D and a method for displaying the features of the
streamlines. In order to expose all possible relevant structures,
the user interface must allow the viewer to freely manipulate
the 4D projection parameters. This control is easily and inex-
pensively provided using the 4D rolling ball interface [8], [13].
A special version of our “MeshView” 4D viewing utility [22]
has been adapted to support real-time interaction with qua-
ternion frame structures. Figs. 10 and 11 show snapshots from
this interactive interface for 4D rotations using parallel and
polar 4D projections, respectively.

The simplest viewing strategy plots wide lines that may be
viewed in stereo or using motion parallax. A more expensive
viewing strategy requires projecting a line or solid from the 4D
quaternion space and reconstructing an ideal tube in real time
for each projected streamline. The parallel transport tech-
niques introduced in this paper are in fact extremely relevant
to this task, and may be applied to the tubing problem as well
(see, e.g., [5], [24], [18]).

C. 3D Rotations of Quaternion Displays

Using the 3D rolling ball interface, we can generate qua-
ternion representations of 3D rotations of the form g¢
= (cos%, ﬁsin%), and transform the entire quaternion display
by quaternion multiplication, i.e., by changing each point to

P’ = q * p. This effectively displaces the 3D identity frame in
quaternion space from (1, 0, 0, 0) to ¢g. This may be useful
when trying to compare curves whose properties differ by a
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rigid 3D rotation (a common occurrence in the parallel-
transport frame due to the arbitrariness of the initial condition).

Other refinements might include selecting and rotating sin-
gle streamlines in the quaternion field display to make interac-
tive comparisons with other streamlines differing only by rigid
rotations. One might also use automated tools to select
rotationally similar structures based on minimizing the 4D
scalar product between quaternion field points as a measure of
similarity.

D. Exploiting or Ignoring Double Points

The unique feature of quaternion representations of orienta-
tion frames is that they are doubled. If we have a single curve,
it does not matter which of the two points in § 3 is chosen as a
starting point, since the others follow by continuously integrat-
ing small transformations. A collection of points with a uni-
form orientation as an initial condition similarly will evolve in
tandem and normally requires only a single choice to see the
pattern.

However, it is possible for a frame to rotate a full 2z radians
back to its initial orientation, and be on the opposite side of
s3 , or for a collection of streamlines to have a wide range of
starting orientations that preclude a locally consistent method
for choosing a particular quaternion g over its “neighbor” —q.
We then have several alternatives:

e Include a reflected copy of every quaternion field in the
display. This doubles the data density, but ensures that no
two frame fields that are similar will appear diametrically
opposite; the metric properties of similar curves will be
easy to detect. In addition, 4D rotations will do no dam-
age to the continuity of fields that are rotated to the outer
surface and pass from the northern to the southern hyper-
hemisphere. If 4D depth is depicted by a color code, for
example, a point that rotates up to the surface of the dis-
played solid ball will smoothly pass to the surface and
then pass back towards the center while its color changes
from positive to negative depth coding.

e Keep only one copy, effectively replacing g by —q if it is
not in the default viewing hyperhemisphere. This has the
effect that each data point is unique, but that curve
frames very near diametrically opposite points on the S 2
surface of the solid ball representing the north hyper-
hemisphere will be close in orientation but far away in
the projection. In addition, when 4D rotations are ap-
plied, curves that reach the S 2 surface of the solid ball
will jump to the diametrically opposite surface instead of
passing smoothly “around” the edge to the southern hy-
perhemisphere.

E. Reciprocal Similarities and Differences

One of the most interesting properties of the quaternion
frame method is the appearance of clusters of similar frame
fields in the three-sphere display. Two reciprocal tools for
exploring these properties immediately suggest themselves. In
Fig. 13, we illustrate the effect of grabbing a cluster of stream-
lines that are spatially close in 3D space and then highlighting
their counterparts in the 4D quaternion field space, thus allow-

ing the separate study of their moving frame properties. This
technique distinguishes curves that are similar in 3D space but
have drastically different frame characteristics.

(@) ” (b

Fig. 13. (a) Selecting stream fields that are close in the original 3D data dis-
play and (b) echoing them in the 4D quaternion Frenet frame display. The
moving frames of these two curves are drastically different even though the
curves appear superficially similar in 3D. The unseen component of 4D
depth, with a range -1.0 to 1.0, is mapped to the color index.

Fig. 14, in contrast, shows the result of selecting a cluster of
curves with similar frame-field properties and then highlight-
ing the original streamlines back in the 3D space display. This
method assists in the location of similar curves that could not
be easily singled out in the original densely populated spatial
display. We are examining a variety of alternative approaches
to the design of such tools.

Fig. 14. (a) Selecting stream fields that are close in the 4D quaternion Frenet
frame display and (b) echoing them in the original 3D data display, thus
showing the locations of similar curves that could not be easily singled out in
the original 3D spatial display. The unseen component of 4D depth, with a
range -1.0 to 1.0 is mapped to the color index.

VIII. CONCLUSION

In this paper, we have introduced a visualization method for
distinguishing characteristic features of streamline-like volume
data by assigning to each streamline a quaternion frame field
derived from its moving Frenet or parallel-transport frame;
curvature and torsion scalar fields may be incorporated as
well. The quaternion frame is a four-vector field that is a
piecewise smoothly varying map from each original space
curve to a new curve in the three-sphere embedded in
four-dimensional Euclidean space. This four-vector field can
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be probed interactively using a variety of techniques, including
4D lighting, 4D view control, and interaction with selected
portions of the data in tandem 3D streamline and 4D
quaternion field displays.
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