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GRAND PLAN

I: Introduction: Hanson, 50 min

II: Visualization Methods: Hanson, 40 min

< 15 minute Break >

III: Light: Weiskopf, 30 min

IV: Rendering: Weiskopf, 30 min

V: Interaction Techniques: Weiskopf, 30 min

VI: Conclusion and Questions: 15 min
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I: Introduction to Special Relativity

� Motivation

� 2D Euclidean vs Minkowski: Build Relativity con-

cepts from 2D Graphics concepts.

� Spacetime Points and the Twin Paradox.

� Relativistic Objects and Cameras: What hap-

pens to graphics modeling near the speed of light.
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II: Visualization Methods in 3D and 4D

� 2 Space + 1 Time: Transformations.

� Rolling the Relativistic Ball :

Thomas Precession

� Aberration of Light:

� Object Viewing: Occlusion, IBR, and the Ter-

rell Cube

� 4D = 3 space + 1 time:
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III: Light

� Directions in Relativity

� Frequency Transformations

� Relativistic Radiance Transforms

� Bending Light with General Relativity
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IV: Rendering

� From the Z buffer to the T buffer

� Special Relativistic Ray Tracing

� Texture and Relativistic IBR

� Gravitational Lensing
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V: Interaction Techniques

VI: Conclusion
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Visualizing Relativity

Part I: Introduction
to Special Relativity

Andrew J. Hanson

Indiana University
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I: Introduction to Special Relativity

� Motivation

� 2D Euclidean vs Minkowski: Build Relativity con-

cepts from 2D Graphics concepts.

� Spacetime Points and the Twin Paradox.

� Relativistic Objects and Cameras: What hap-

pens to graphics modeling near the speed of light.
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Motivation

WHY ARE YOU HERE? Let’s guess:

) You know about Graphics

) You know about Visualization

) You DO NOT know much about Relativity.

� You WOULD LIKE to know how these three things
are CONNECTED. . .
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Motivation, contd.

What is Graphics?

� Graphics: is the art of simulating the physics

of the interaction of material and light.
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Motivation, contd.

What is Visualization?

� Visualization: is the art of creating insights into

non-self-explanatory data and geometry using

graphics.
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Motivation, contd.

What is Relativity?

� Relativity: is the mathematics describing the

interaction of material and light UNDER EXTREME

PHYSICAL CONDITIONS.

Therefore, this course is the logical extension of

everything graphicists and visualizers already do!
13

Euclidean Transformations

We begin with what we all know — 2D Rotations.

r
θ

r

x’

x

y = r sin φ
r

φ

x = r cos φ

x0 = x cos � � y sin �

y0 = x sin �+ y cos �
14

Euclidean Transformations, contd.

Explicit 2D rotations are realized by a 2D matrix

R(�) =

2
64 cos � � sin �

sin � cos �

3
75

where
R(�)

2
64 1 0

0 1

3
75R(�)t =

2
64 1 0

0 1

3
75

because (cos �)2+ (sin �)2 = 1
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Euclidean Transformations, contd.

Main feature: The Radius is unchanged under

[x0] = R(�) � [x]:

r =
r
x2+ y2 =

r
x02+ y02

In other words, Euclidean distances do not vary
under the action of rotations.
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Euclidean Transformations, contd.

Similarly, the Euclidean Inner Product is unchanged

under [x0] = R(�) � [x], [~x0] = R(�) � [~x]

x � ~x = x
0 � ~x0 = [ x y ]

2
64 1 0

0 1

2
64
2
64 ~x
~y

3
75

= x~x+ y~y = r~r cos(�� ~�)

In other words, Euclidean angles do not vary un-
der the action of rotations.
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Euclidean Transformations, contd.

Properties we know and love:

� Rotations have a fixed point at origin.

� Rotations leave segment lengths and inner

products unchanged.

� Rotations are orthogonal ) RI Rt = I

� NOTE: The PROJECTIONS may change, yet we

“know” the segment length is constant.
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Lorentz Transformations

Special Relativity is just “Rotations with hyperboloids

instead of circles.”

Euclidean Rotations ) Lorentz Transformations.

Let x be a space interval and t be a time interval:

x0 = x cosh �+ t sinh �

t0 = x sinh �+ t cosh �

19

Lorentz Transformations, contd.

When we apply this transform to a vector from the

origin to a point (x; t), the new point (x0; t0) lies on

a hyperboloid instead of a circle!
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Lorentz Transformations, contd.

Explicit 1-space + 1-time Lorentz transformations

are realized by a 2D “boost” matrix

B(�) =

2
64 cosh � sinh �

sinh � cosh �

3
75 :

where

B(�)

2
64 1 0

0 �1

3
75B(�)t =

2
64 1 0

0 �1

3
75

B(�) preserves the length of proper time due to
(cosh �)2 � (sinh �)2 = 1
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Lorentz Transformations, contd.

Compare Euclidean and Lorentz functions:

cos � =
1

2

�
ei� + e�i�

�
sin � =

1

2i

�
ei� � e�i�

�

cos2+ sin2 = 1

cosh � =
1

2

�
e� + e��

�
sinh � =

1

2

�
e� � e��

�

cosh2 � sinh2 = 1

where the MINUS SIGN is all-important!
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Lorentz Transformations, contd.

Main feature of Lorentz-transformed vectors is very

close to rotations: Instead of the Radius, depend-

ing on sign inside root,
� THE PROPER TIME is unchanged.

� =
r
t2 � x2 =

r
t02 � x02

� Alternatively, THE PROPER DISTANCE is unchanged.

� =
r
x2 � t2 =

r
x02 � t02
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Lorentz Transformations, contd.

� . . . and instead of the Euclidean dot product, the

THE MINKOWSKI SPACE INNER PRODUCT

x � ~x = [ x t ]

2
64 1 0

0 �1

3
75
2
64 ~x
~t

3
75 = x~x� t~t

IS UNCHANGED.
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Lorentz Transformations, contd.

Now let’s visualize a typical invariant:

�2 = t2 � x2 = t02 � x02

describes a hyperbola , x = 0) t = �:

x 6= 0 ) t =
r
�2+ x2

x

τ
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Lorentz Transformations, contd.

An alternative view showing geometry of proper

time, emphasizing interval property.

2

dx

dt

d

dt
2

dt  =          +  dx
2

τ

2
=  dt  -  dxd τ

d τ

2 2
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Lorentz Transformations, contd.

What are cosh � and sinh � anyway?

Suppose t0 = 1:0 and x0 = 0:

dx = x0 cosh �+ t0 sinh � = sinh �

dt = x0 sinh �+ t0 cosh � = cosh �:
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Lorentz Transformations, contd.

Thus (dx=dt) = sinh �= cosh � is the inverse slope
of the interval (0:0; d�) after the transformation:

dt

τ

(dx, dt)

τ(0,d   )

τ

dx

d
d
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Lorentz Transformations, contd.

We identify this slope as the

velocity = v = sinh �
cosh � = tanh �

Simple algebra and cosh2� sinh2 = 1 give us:

cosh � =
1:0q

1:0� v2

sinh � =
vq

1:0� v2
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Lorentz Transformations and velocity of light

OOps! Where did the velocity of light go?

Simple answer: we set it to unity to make (x; t)

plots work!

Better answer: Replace v ) v=c whenever you

need it.

What happens as c)1 ?? This is ORDINARY

GALILEAN SPACETIME, where NO mixing of space

and time can occur!
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Lorentz Transformations and velocity of light

Check Galilean limit: as c)1

cosh � =
1:0r

1:0� (v=c)2
) 1

sinh � =
v=cr

1:0� (v=c)2
) 0

So we get B(�)) identity matrix and the effects
of the Lorentz transform disappear!
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Lorentz Transformations, contd

Note: Euclidean intervals do not care if you start
with (x; y) = (r; 0) or (x; y) = (0; r) before
you rotate: ) r is always positive.

r

r
r

r

(x,y) = (r,0)

(x,y) = (0,r)
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Lorentz Transformations, contd

Relativistic intervals do care :

(x; t) = (0; �), t2 � x2 > 0 = Timelike interval
(x; t) = (�; �), t2 � x2 � 0 = Lightlike interval
(x; t) = (�; 0), t2 � x2 < 0 = Spacelike interval

Furthermore, these distinctions are invariant

under the Lorentz transform!

x0 = x cosh �+ t sinh � t0 = x sinh �+ t cosh �
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Lorentz Transformations for timelike intervals

Define a timelike interval , with x = 0:0 and t =

1:0 , and transform:

x0 = x cosh �+ t sinh � t0 = x sinh �+ t cosh �

x0 = sinh � t0 = cosh �

-2 -1 1 2
Space

0.5

1

1.5

2

Time

-2 -1 1 2
Space

0.5

1

1.5

2

Time

-2 -1 1 2
Space

0.5

1

1.5

2

Time

-2 -1 1 2
Space

0.5

1

1.5

2

Time

v = 0:0 v = 0:1 v = 0:5 v = 0:9

34

Lorentz Transformations for time-like intervals

Let t = 1:0; x = 0:0 as before, but let velocity

be negative:

x0 = x cosh � � t sinh � t0 = �x sinh �+ t cosh �

x0 = � sinh � t0 = cosh �
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Lorentz Transformations: different velocity signs

You already know this difference:

Euclidean: angle > 0 means object interval is rotated
Euclidean: angle < 0 means viewer is rotated
Lorentz: velocity > 0 means object interval is boosted
Lorentz: velocity < 0 means viewer is boosted
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Lorentz Transformations for lightlike intervals

Define a lightlike interval,

with x = 1:0 and t = 1:0,

and observe that x2 � t2 = x02 � t02 � 0:

x0 = cosh �+ sinh � t0 = sinh �+ cosh �
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Lorentz Transformations for spacelike intervals

Define a spacelike interval:
with (x = 1:0; t = 0) ) x2 � t2 > 0
so x0 = cosh �; t0 = sinh �.
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Lorentz Transformations: fixed points

Every graphicist knows that x0 = R � x has a

fixed point at x = 0.

Relativity is the same: translate to t = 0:0 and

x = 0:0 before transforming:

x0 = x0+ (x� x0) cosh �+ (t� t0) sinh �

t0 = t0+ (x� x0) sinh �+ (t� t0) cosh �
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Lorentz Transformations: fixed points

Transform with Lorentz Fixed Point at x0 = (x0; t0):

2
4 x0

t0

3
5 = T (+x0;+t0) �B(�) � T (�x0;�t0) �

2
4 x
t

3
5

t0

x0

x axis

t axis
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Lorentz Transformations: whole plane

Every point in the (x; t) plane Lorentz transforms
to one light cone or the other along a hyperboloid
as v ! �1:
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Lorentz Transformations: world lines

Every timelike line in the (x; t) plane Lorentz trans-
forms to a slanted line as v ! 1:
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What is a Minkowski frame?

Let x̂0; t̂0 be the basis vectors of a Minkowski-

space frame:

� Space-Like: x̂0 = (1;0) whose length is

x̂0 � x̂0 = 1.

� Time-Like: t̂0 = (0;1) whose length is

t̂0 � t̂0 = �1.
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What is a Minkowski frame?

Compare a Euclidean frame to a Minkowski frame:

θ

The Euclidean axes stay at right angles under rota-
tions. What happens to the Minkowski axes under
Lorentz transforms??
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How do the frame axes transform?

The usual Three Othonormality Conditions are

preserved in any coord system.

� Space-Like: x̂0 = (1;0) has unit length:

x̂0 � x̂0 = 1.

� Time-Like: t̂0 = (0;1) has unit length:

t̂0 � t̂0 = �1.

� Orthogonality: x̂0 = (1;0) and t̂0 = (0;1)

have vanishing inner product: t̂0 � x̂0 = 0.
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Frame axis transforms, contd

The picture seems to show axes coming together,
but orthonormality is automatically preserved :

Boost )
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Lorentz Frame Axes

If we did not know about cosh2 � � sinh2 � = 1,

we might represent the frame differently, e.g., as:

�
x̂0 t̂0

�
=

2
64 A B

B A

3
75 :

where the constraint A2�B2 = 1 guarantees or-
thonormality in the the Minkowski space; the columns
are orthogonal, and of length +1 and -1, respec-
tively.
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Lorentz Frame axes, contd

As for 2D rotations, we can define a double-valued

parameterization (a; b) of the frame:

�
x̂0 t̂0

�
=

2
64 A B

B A

3
75 =

2
64 a

2+ b2 2ab

2ab a2+ b2

3
75 :

where A2�B2 = 1 IF a2� b2 = 1, and (a; b) is
precisely the same frame as (�a; �b).

These are hyperbolic half angle formulas,
a = cosh(�=2), b = sinh(�=2)!
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1+1 “Quaternion” Frames!

Differentiating both _̂x0 and _̂t0, our eqns reduce to
2
4 _a
_b

3
5 = 1

2

2
4 0 �
� 0

3
5 �

2
4 a
b

3
5

This is the square root of Lorentz frame equations.

(Quaternion frame equations have

2
4 0 ��
� 0

3
5.)
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Lorentz Transformations, summarized.

Properties we will know and love:

� Boosts have fixed point at origin.

� Boosts leave proper times, proper lengths, and Minkowski

inner products unchanged.

� Boosts are orthogonal on a negative signature iden-

tity matrix ) B

2
4 1 0
0 �1

3
5Bt =

2
4 1 0
0 �1

3
5

� As in Euclidean space: The PROJECTED PARTS OF A

VECTOR may change, yet we know the inner product lengths

are CONSTANT.
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What is an object?

In Relativity, a point object is a world line .

� Standing still at one point: world line still ticks

away: Equation ) (� = const; t).

� Moving curve x(t) must obey jdx=dtj < 1.

� Communication can only occur using light or

slower media.

� So all possibility of image data is restricted es-

sentially to rays with paths having jdx=dtj = 1.

51

Point Objects . . .

What do point objects look like in spacetime?

dx
/dt

 =
 1

t

x

x = 
x(t)

δ

dx/dt = -1

Relativistic equations have space and time com-
ponents, so think of a static point as the paramet-
ric line (�; t).

52

Twin Paradox

A world line represents an object, e.g., a person,
evolving in time, possibly moving through space.

x(t) paths corresponding
proper times
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Twin Paradox, contd.

Consider two twins , one living on path P1, the

other on path P2. Their ages in any frame are

the proper lengths of their world lines:

Age 1 = T1 =
Z
P1

d�

Age 2 = T2 =
Z
P2

d�
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Twin Paradox, contd.

Graphical picture of twin ages: go to rest frame of
each leg of journey to visualize true proper time:

P2P1

a2

b2

rest frame

T2 = a2 + b2

T1

of 1st leg
rest frame

of 2nd leg
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Time Dilation of Point Clocks

Since the point (0; �) is transformed to x = � sinh �,

t = � cosh �, we can solve for � , yielding x = vt,

so the invariant proper time can be written:

� =
r
t2 � x2 = t

r
1� v2

Since the measured time t = �=
q
1� v2 > � ,

this is Time Dilation .
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Time Dilation, contd.

Now visualize change in apparent tick rate of mov-
ing clock , as well as how you would measure it :

τ
t

x = v t

Camera timeline
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Lorentz Contraction of Spacelike
Intervals

For spacelike intervals, the situation is trickier. Let

x1(t) = (0; t)

x2(t) = (�; t)

be the ends of a line segment.

58

Lorentz Contraction, contd.

Under a Lorentz transform, the origin stays fixed,

but

x02(t) = (X(t); T (t))

= (� cosh �+ t sinh �; � sinh �+ t cosh �)

becomes a curve with the old (�;0) pushed far up

the hyperboloid to

X(0) = � cosh � T (0) = � sinh �

for large v = sinh �= cosh �.
59

Lorentz Contraction, contd.

We must take the line (X(t); T (t) and extrapo-

late backwards to T (t) = 0 to find the new inter-

val as seen by the observer. Solving

T (t) = � sinh �+ t cosh � = 0

for t = t0, we find

t0 = �� sinh �= cosh �
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Lorentz Contraction, contd.

Thus t0 is negative and we must have a length reduction .

The numbers come out to be:

X(t0) = � cosh �+ t0 sinh �

= � cosh � � �
sinh2 �

cosh �

=
�

cosh �

�
cosh2 � � sinh2 �

�

=
�

cosh �
= �

q
1� v2

Therefore the observed interval X(t0)�origin = �
q
1� v2

is Lorentz Contracted in the moving frame relative to the
rest frame interval �.
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Lorentz Contraction, contd.

We may visualize the Lorentz contraction as a back-
wards sliding of the intercept of the Lorentz trans-
formed worldline, X(t0) = �= cosh � = �

q
1� v2:

X(t) = A    +  B t

δ

,  tδ

δ

X(t0) =    /A

Endpoint timeline

T(t0) = 0 intercept

T(t) = B    +  A tδ
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What is a solid object?

In 2D relativity, a solid object is a line segment .

� Each end tracks timelike world line.

� Segment itself is spacelike interval.

� Simultaneity is tricky; after Lorentz transform,

observer time cuts a skewed slice.

63

What is an object, contd

Watch the points — spacelike and unable to com-
municate sideways — as they each evolve on a
timelike worldline.

time

Object with spatial extent

t0

t1

t0’
Object with spatial extent

after Lorentz transform

time

Observer Time

t1’

After Lorentz transform, Simultaneity is modified.
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What is an observation?

Observation of object is only possible via lightlike
rays striking CAMERA.
These rays must strike observing camera’s world
line at SAME TIME!

t1

t0

Object with spatial extent

time

65

What is an observation, contd.

Since emitted rays must arrive simultaneously at

camera on forward light cone to create a snapshot,

we have an alternate method:

Shoot a light cone of rays backwards from camera

All relativistic pictures then come from time-reversed
ray tracing:

66



What is an observation, contd

Object with spatial extent

at earlier times

Camera world line

seen by camera rays

t0

time

t1
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Summary So Far:

� cos to cosh and sin to sinh make rotations

change to Lorentz transformations.

� Invariants are inner products with minus sign.

� Slope = tan to Velocity = tanh: helps visu-

alize the meaning of the Lorentz parameters.

� Objects: spacelike intervals, endpoints track

timelike worldlines, emitting lightlike signals.

� Cameras: construct images by back-tracing light

rays to intersect object worldlines.
68
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for Special Relativity in 3D and 4D
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Part II: Visualization Methods
for Special Relativity in 3D and 4D

� 2 Space + 1 Time: Transformations.

� Rolling the Relativistic Ball :

Thomas Precession

� Aberration of Light

� Object Viewing: Occlusion, IBR, Terrell

� 4D = 3 space + 1 time

74

From 2D (1+1) to 3D (2+1)

We need at least two space dimensions to make

interesting pictures. In 2 space + 1 time:

� Objects are polygons (at one time)

� Polygon vertices sweep out proper-time lines.

� Whole spacetime object is tube-like.

� Cameras see cones intersecting these tubes.

=) First, revisit transforms:
75

2 + 1 Spacetime Boost Matrices

What happens to good old

2
4 cosh sinh
sinh cosh

3
5 in 2+1?

B(v) =
2
6664
1+ vx2(cosh � � 1) vxvy(cosh � � 1) vx sinh �

vxvy(cosh � � 1) 1 + vy2(cosh � � 1) vy sinh �
vx sinh � vy sinh � cosh �

3
7775

Note: v̂ � v̂ = vxvx + vyvy = 1 and we define velocity as
v = v̂ tanh � (units: velocity of light = 1), and detB = 1.

76

Pursue 3D space analogy:

Interesting things happen when you perform

sequences of rotations in Euclidean 3D space:

R(�; x̂)R(�; ŷ)�R(�; ŷ)R(�; x̂) =

(�2+O(�3))

2
666664

0 �1 0

1 0 0

0 0 0

3
777775

This generates an infinitesimal Z-axis rotation!
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3D space analogy:

Sequences of rotations in Euclidean 3D space

counter-rotate:

R(+y)

R(+x)

y

x

Euclidean:

z
R(-y)

R(-x)

   -> Counterclockwise spin
  Clockwise Circuit

This is the Rolling Ball effect.
78



2 + 1 spacetime: properties

Very Interesting things happen when you perform

sequences of Boosts in 2 space + 1 time:

B(x̂)B(ŷ)�B(ŷ)B(x̂) = (�2+O(�3))

2
666664

0 1 0

�1 0 0

0 0 0

3
777775

This is an infinitesimal negative Z-axis rotation!
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2 + 1 spacetime: Thomas Precession

This observed Spatial Rotation is the origin of

Thomas precession: in 3D:

  Clockwise Circuit
Minkowski:

y

x

   -> Clockwise spin

B(-y)

B(+x)

B(+y)
B(-x)

z

This is a Relativistic Rolling Ball Effect.
80

Thomas Precession, contd.

Thomas Precession is the exact analog of the Eu-

clidean 3D “Rolling Ball” effect.

This relativistic effect modifies magnetic coupling

of atomic electrons in accelerated circular motion

by causing an angular velocity

! = �(cosh � � 1)
v � _v

v2
� �

1

2
v � _v

to be applied to the rest frame of an orbiting elec-
tron.
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. . . recall 3D Euclidean Quaternion Frames . . .

� Quaternion Correspondence. The unit quaternions q

and �q correspond to a single 3D rotation R3(q):2
6664
q2
0
+ q2

1
� q2

2
� q2

3
2q1q2 � 2q0q3 2q1q3+2q0q2

2q1q2+2q0q3 q2
0
� q2

1
+ q2

2
� q2

3
2q2q3 � 2q0q1

2q1q3 � 2q0q2 2q2q3+2q0q1 q2
0
� q2

1
� q2

2
+ q2

3

3
7775

� Rotation Correspondence.

If q = (cos �
2
; n̂ sin �

2
), with n̂ a unit 3-vector, n̂ � n̂ =

1 , then R(�; n̂) is usual 3D rotation by � in the plane

perpendicular to n̂.
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2 + 1 spacetime quaternion-like form

In 2 space + 1 time, we can construct exactly the same type

of quadratic form for the boost :

B(v) =

2
6664
h2
0
+ h2x � h2y 2hxhy 2h0hx
2hxhy h2

0
+ h2y � h2x 2h0hy

2h0hx 2h0hy h2
0
+ h2x + h2y

3
7775 :

If h = (h0; hx; hy) = (cosh �=2; v̂ sinh �=2)

with v = sinh �= cosh � and jv̂j = 1, then this is exactly the
standard 2+1 Lorentz transformation!
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2 + 1 spacetime quaternion-like form

Caveat: Because of the Thomas Precession, even though
h = (cosh �=2; v̂ sinh �=2) generates B(v), the full group
of 2+1 transformations is not quite there, and the algebra is
incomplete.

No time for details here, but the full treatment is straightfor-
ward using Clifford Algebra to generate Spin(2;1).
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Features of Light in 2+1 Spacetime

Lorentz transforming a light ray can change its di-

rection. Let

x0 = x cosh �+ t sinh � t0 = x sinh �+ t cosh �

Thus even if x < 0,

x0 > 0 if t sinh � > x cosh �!
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Light in 2+1, contd

Let � describe an isotropic distribution of light-like

vectors with (x; y; t) = (cos �; sin �; 1), and Boost

with v̂ in x direction:

x0 = cos � cosh �+ sinh �

y0 = sin �

t0 = cos � sinh �+ cosh �

Slice t in observer frame, so observed tan�0 = y0=x0.
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Light Aberration: summary

Aberration Formulas we know and love:

After boosting to v = sinh = cosh in units of c = 1,

the isotropic light ray distribution

(x; y; t) = (cos �; sin �; 1) deforms to:

sin �0 =
sin �

(1 + v cos �) cosh �

cos �0 =
v+ cos �

1+ v cos �

tan �0 =
sin �

(v+ cos �) cosh �
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Light in 2+1, contd

Observations on relativistic light distortion:

� tan �0 / 1= cosh � =
q
1� v2.

� So, as v = sinh = cosh! 1 . . .

� . . . the aberration of light (resembling a search-

light ) swings all the rays to the forward direc-

tion!
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Visualizing aberration: light cones

Looking down on boosted spacetime cones repre-
senting symmetric Light Ray distributions:

v = 0:5c v = 0:75c v = 0:9c v = 0:95c
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Visualizing aberration: circular distrib.

Looking down on boosted 2D symmetric Light Ray
distributions:

v = 0:0c v = 0:20c v = 0:50c

v = 0:90c v = 0:95c v = 0:99c 90



Seeing 2+1 Spacetime

� Points: Still World Lines tracing Proper Time

� Objects: Segments (slabs) ) Polygons (tubes)

� Light: Diagonals ) Cones

� Images/Cameras: Trace inverse Cones

� Transformations: Completely new features, anal-

ogous to 3D rotations
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2 + 1 Spacetime Image Construction

At one instant, camera receives back-traced light
from a single inverted cone in 2+1 spacetime:
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0 1

TIME advances UP to zero at the apex, the cam-
era focal point.
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2 + 1 Spacetime Object Viewing

How front and back of polygon side emit light to-
wards camera:

Now vary velocity . . .
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2 + 1 spacetime object viewing

When velocity is 0.90 times the speed of light, light
escapes from back side in a almost a full circle:
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2 + 1 Spacetime Object Viewing

How is light from a moving slab distributed to the
camera?

Light cone is invariant but world-sheet of a polygon
tilts: visibility of front and back sides varies drasti-
cally with velocity.
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2 + 1 Spacetime Object Viewing

How face’s light distribution changes with velocity:

v = 0:50 v = 0:75 v = 0:90 v = 0:99
The front side is visible only under more and more
restricted conditions.
The back side becomes visible from practically
EVERYWHERE as v ! 1!
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2 + 1 spacetime object viewing

Simple model: square in 2+1 spacetime: with one side re-
moved so we can see inside:

-2-1012
x

-2
-1
0

1
2

y
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0

1

2

time

012

-2
-1
0

1
y

Here, velocity v = 0:50 times the speed of light.
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2 + 1 spacetime object viewing

Simple model: square in 2+1 spacetime: with one side re-
moved so we can see inside:

-505

x

-4-2024
y

-5

0

5

t

Velocities: 0.00, 0.50, 0.90, 0.99 times the speed of light.
Note Lorentz Contraction.

98

2 + 1 spacetime object viewing

Looking down from the camera’s spacetime viewpoint:

-505

x
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y
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Velocities: 0.00, 0.50, 0.90, 0.99 times the speed of light.
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2 + 1 spacetime object viewing

Add a stationary camera: at each time step, the camera sees
what the cone intersects:
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t

Velocities: 0.00, 0.50, 0.90, 0.99 times the speed of light.
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2 + 1 spacetime object viewing

Stationary camera, looking down on the camera’s spacetime
viewpoint:
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Velocities: 0.00, 0.50, 0.90, 0.99 times the speed of light.
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Occlusion in Relativistic Scenes

Study occlusion using polygons aligned with cam-
era rays:
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Observe: Once an occlusion edge, ALWAYS an
occlusion edge!
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2 + 1 occlusion, contd

Even at extreme velocities, occluding edges per-
sist, so boosts will never add face material to a
static scene.
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Velocity: 0.50, 0.75, 0.90 times the speed of light.

103

Static Scenes and Image-Based Rendering

As long as a scene is STATIC, you can take the light

distribution in any frame, and use that to make a

relativistically distorted scene.

THIS IS THE BASIS OF RELATIVISTIC IMAGE-BASED

RENDERING! (See later in Weiskopf lectures).

� The angles and frequencies may change, but the
geometric transformations conspire to keep all in-
visible polygon faces perpetually invisible.
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2 + 1 Moving Scenes and the Terrell Effect

In moving scenes , the delay of light rays reach-

ing us from a rapidly moving object causes bizarre

effects

Only the back side of a cube moving towards us

at v � 1 is seen under normal conditions.
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Moving Scenes and the Terrell Effect
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Tube: camera world line.
Disk: 1 light velocity would make FRONT visible.
Cones: finite light velocity shows only BACK.
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2 + 1 Moving Scenes and the Terrell Effect

This effect went virtually unnoticed until Terrell (1959)

pointed it out. Intuitively, it arises as follows:

� As v ) 1, aberration reduces the visibility of

front edge to a single ray .

� Simultaneously, back edge becomes visible at

some time to any camera in the world.
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2 + 1 Moving Scenes and the Terrell Effect
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Front only visible along single ray for finite light ve-
locity.

Would be visible everywhere in a half-plane with
infinitelight velocity!
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3 Space + 1 Time: The Real World!

Goal so far: build intuition in 1+1 and 2+1 dimen-

sions of spacetime. Now do 3 Space and 1 Time:

� Transformations: SIX Parameters: 3 boosts

(v), 3 Euler angles (�; n̂). Most significant fea-

tures occurred already in 2+1.

� Aberration: Same form, spun about boost axis.
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3 Space + 1 Time: The Real World!

� Imaging: Still the light cone, but now harder to

draw; think of as a growing sphere surrounding

light source.

� IBR, Terrell effect, etc: All just about the same

as in 2 space + 1 time, only objects are like

swept spheres instead of tubes = swept cir-

cles.
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3 + 1 spacetime Full Boost

In real-world spacetime, a Lorentz transform with

velocity v = v̂(sinh �= cosh �) becomes:

B(v) =

2
6666666664

1+ v2x C vxvy C vxvz C vx sinh �

vxvy C 1+ v2y C vyvzC vy sinh �

vxvz C vyvz C 1+ v2z C vz sinh �

vx sinh � vy sinh � vz sinh � cosh �

3
7777777775

where C = (cosh � � 1). Here det[B] = 1 and
B(v) leaves the matrix diag(1; 1; 1; �1) invari-
ant.
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3 + 1 spacetime quaternion-like form

Defining Dx = h2
0
+h2x�h2y �h2z, cyclic, 4D boosts acquire

a quaternion-like form:

B(v) =
2
666664

Dx 2hxhy 2hxhz 2h0hx
2hxhy Dy 2hyhz 2h0hy
2hxhz 2hyhz Dz 2h0hz
2h0hx 2h0hy 2h0hz h2

0
+ h2x + h2y + h2z

3
777775

where h = (h0; hx; hy; hz) = (cosh �=2; v̂ sinh �=2) with
jv̂j = 1 generates a standard Lorentz transformation!
Note: det[B] = (cosh2� sinh2)4 � 1.
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3 + 1 spacetime quaternion-like form

Caveat: Even though h = (cosh �=2; v̂ sinh �=2) gener-

atesB(v), this is also incomplete, since rotations (e.g., Thomas

precession) must be merged in with boosts in the full theory

of 3+1 spacetime.

Footnote: The full group SO(3;1) has a quadratic form cor-
responding to its “double covering group.” This group is di-
rectly derivable from Clifford algebra methods, and is written
Spin(3;1). It corresponds to the six parameter group of
complex 2 � 2 matrices SL(2;C), and eventually leads to
the Dirac Equation for the relativistic spin 1/2 electron.
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Seeing 3+1 Spacetime

3D spatial light ray distributions for a symmetric
source are very similar to the 2D spatial distribu-
tions:
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v = 0:5c v = 0:90c v = 0:99c
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Seeing 3+1 Spacetime

Alternative Visualization: Solid sphere plot of 3D
space light ray distributions for symmetric source:
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v = 0:5c v = 0:90c v = 0:99c
Texture Maps on these distorted spheres provide
an implementation of Relativistic IBR .

115

Summary of 3+1 effects:

� B(v) is an orthogonal 4 � 4 matrix, mostly cosh’s and

sinh’s as usual!

� Quaternion-like forms exist, rigorously corresponding to

the representations and algebra of SL(2;C).

� Occlusion invariance and light aberration allow relativistic

IBR to be implemented.

� Objects are made up of vertices tracing world lines, linked

into edges, polygons, and polyhedra.

� Camera images can be formed by tracing light rays back-

ward in time on negative light cone until they hit scene

objects.
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Intuition Overview

� Orthogonal Matrices: Did you understand that cos; sin

matrices leave dot products unchanged?

If so, NOW you understand that cosh; sinh matrices

leave proper-time dot products unchanged!

� Rigidity: Did you understand that 3D rotations change

2D length of projected components, yet radius is con-

stant?

If so, NOW you understand that Lorentz matrices change

(x; t) coordinate components, yet proper-lengths are un-

changed!
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Intuition Overview, contd.

� Non-Commuting Matrices: Did you understand that x; y

3D rotation matrices generate extra z-spin?

If so, NOW you understand that circular Lorentz transfor-

mations generate Thomas Precession.

� Relativistic IBR Theorem: Did you understand that oc-

clusion of light rays by polygons is relativistically invariant

due to invariance of dot product?

If so, NOW you understand how relativistic IBR is possi-

ble with real world image sources.
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Transition:

� Algebraic thinking was the focus of the course so far,

learning to understand behavior of light, geometry, and

matter under relativistic conditions.

� Rendering Virtual Relativistic Reality will be demon-

strated in the final part of the course.

� Together, the two techniques combine to let you SEE and

UNDERSTAND how Relativity works.

Time for a 15 minute break!
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