
Visualizing Quaternions

Andrew J. Hanson
Computer Science Department

Indiana University

Siggraph 2005 Tutorial

1



OUTLINE

I: (45min) Twisting Belts, Rolling Balls,
and Locking Gimbals:
Explaining Rotation Sequences with Quaternions

II: (45 min) Quaternion Fields:
Curves, Surfaces, and Volumes

2



Part I

Twisting Belts, Rolling Balls, and
Locking Gimbals

Explaining Rotation Sequences with Quaternions

3



Where Did Quaternions Come From?

. . . from the discovery of Complex Numbers:

• z = x+ iy Complex numbers = realization

that z2 + 1 = 0 cannot be solved unless you

have an “imaginary” number with i2 = −1.

• Euler’s formula: eiθ = cos θ+ i sin θ

allows you to do most of 2D geometry.

4



Hamilton
The first to ask “If you can do 2D geometry with complex numbers, how
might you do 3D geometry?” was William Rowan Hamilton, circa 1840.

Sir William Rowan Hamilton
4 August 1805 — 2 September 1865

5



Hamilton’s epiphany: 16 October 1843

“An electric circuit seemed to close; and a spark flashed

forth . . . Nor could I resist the impulse – unphilosophi-

cal as it may have been – to cut with a knife on a stone

of Brougham Bridge, as we passed it, the fundamen-

tal formula with the symbols, i, j, k; namely,

i2 = j2 = k2 = ijk = −1

which contains the Solution of the Problem...”

6



...at the site of Hamilton’s carving

The plaque on Broome Bridge in Dublin, Ireland, commem-
orating the legendary location where Hamilton conceived of
the idea of quaternions. (Hamilton apparently misspelled it
as “Brougham Bridge” in his letter.)

7



The Belt Trick
Quaternion Geometry in our daily lives

• Two people hold ends of a belt.

• Twist the belt either 360 degrees or 720 de-

grees.

• Rule: Move belt ends any way you like but do

not change orientation of either end.

• Try to straighten out the belt.

8



360 Degree Belt

360 twist: stays twisted, can change DIRECTION!
9



720 Degree Belt

720 twist: CAN FLATTEN OUT WHOLE BELT!
10



Rolling Ball Puzzle

1. Put a ball on a flat table.
2. Place hand flat on top of the ball
3. Make circular rubbing motion, as though polish-

ing the tabletop.
4. Watch a point on the equator of the ball.
5. small clockwise circles → equator goes coun-

terclockwise
6. small counterclockwise circles → equator goes

clockwise

11



Rolling Ball Scenario
Point of Contact

y axis rotation

x axis rotation

motion
in plane

12



Gimbal Lock

Gimbal Lock occurs when a mechanical or com-
puter system experiences an anomaly due to an
(x, y, z)-based orientation control sequence.

• Mechanical systems cannot avoid all possible gim-
bal lock situations .

• Computer orientation interpolation systems can
avoid gimbal-lock-related glitches by using quater-
nion interpolation.

13



Gimbal Lock — Apollo Systems

Red-painted area = Danger of real Gimbal Lock

14



Mechanical Gimbal Lock: Using x, y, z axes to encode orientation
gives singular situations.

15



2D Rotations

• 2D rotations ↔ complex numbers.

• Why? eiθ (x+ iy) =
(

x′ + iy′
)

x′ = x cos θ − y sin θ

y′ = x sin θ+ y cos θ

• Complex numbers are a subspace of quater-

nions — so exploit 2D rotations to introduce us

to quaternions and their geometric meaning.

16



Frames in 2D

The tangent and normal to 2D curve move continuously along
the curve:

θ

T̂

N̂

17



Frames in 2D

The tangent and normal to 2D curve move continuously along
the curve:

θ

N̂
T̂

18



Frames in 2D

The tangent and normal to 2D curve move continuously along
the curve:

θ

N̂ T̂

19



Frame Matrix in 2D

This motion is described at each point (or time) by the matrix:

R2(θ) =
[

T̂ N̂
]

=





cos θ − sin θ
sin θ cos θ



 .

20



The Belt Trick Says:

There is a Problem...at least in 3D

How do you get cos θ to know about 720 degrees?

21



The Belt Trick Says:

There is a Problem...at least in 3D

How do you get cos θ to know about 720 degrees?

Hmmmmm. cos(θ/2) knows about 720 degrees, right?

22



Half-Angle Transform:

A Fix for the Problem?

Let a = cos(θ/2), b = sin(θ/2),

(i.e., cos θ = a2 − b2, sin θ = 2ab),

and parameterize 2D rotations as:

R2(a, b) =





a2 − b2 −2ab

2ab a2 − b2



 .

where orthonormality implies

(a2 + b2)2 = 1

which reduces back to a2 + b2 = 1.
23



Frame Evolution in 2D

Examine time-evolution of 2D frame (on our way to 3D): First

in θ(t) coordinates:

[

T̂ N̂
]

=





cos θ − sin θ
sin θ cos θ



 .

Differentiate to find frame equations:

˙̂T(t) = +κN̂

˙̂N(t) = −κT̂ ,

where κ(t) = dθ/dt is the curvature.
24



Frame Evolution in (a, b):

The basis (T̂, N̂) is nasty — Four equations with Three

constraints from orthonormality, but just One true degree of

freedom.

Major Simplification occurs in (a, b) coordinates!!

˙̂T = 2





aȧ− bḃ
aḃ+ bȧ



 = 2





a −b
b a









ȧ
ḃ





25



Frame Evolution in (a, b):

But this formula for ˙̂T is just κN̂, where

κN̂ = κ





−2ab

a2 − b2



 = κ





a −b
b a









−b
a





or

κN̂ = κ





a −b
b a









0 −1
1 0









a
b





26



2D Quaternion Frames!

Rearranging terms, both ˙̂T and ˙̂N eqns reduce to




ȧ
ḃ



 =
1

2





0 −κ
+κ 0



 ·




a
b





This is the square root of frame equations.

27



2D Quaternions . . .

So one equation in the two “quaternion” variables (a, b) with

the constraint a2+b2 = 1 contains both the frame equations

˙̂T = +κN̂

˙̂N = −κT̂
⇒ this is much better for computer implementation, etc.

28



Rotation as Complex Multiplication

If we let (a+ ib) = exp (i θ/2) we see that

rotation is complex multiplication!

“Quaternion Frames” in 2D are just complex numbers, with

Evolution Eqns = derivative of exp (i θ/2)!

29



Rotation with no matrices!

Due to an extremely deep reason in Clifford Algebras,

a+ ib = eiθ/2

represents rotations “more nicely” than the matrices R(θ).

(a′ + ib′)(a+ ib) = ei(θ
′+θ)/2 = A+ iB

where if we want the matrix, we write:

R(θ′)R(θ)=R(θ′ + θ)=





A2 −B2 −2AB

2AB A2 −B2





30



The Algebra of 2D Rotations

The algebra corresponding to 2D rotations is easy: just com-

plex multiplication!!

(a′, b′) ∗ (a, b) ∼= (a′ + ib′)(a+ ib)

= a′a− b′b+ i(a′b+ ab′)

∼= (a′a− b′b, a′b+ ab′)

= (A, B)

2D Rotations are just complex multiplication, and take you
around the unit circle!

31



Quaternion Frames

In 3D, repeat our trick: take square root of the frame, but now

use quaternions:

• Write down the 3D frame.

• Write as double-valued quadratic form.

• Rewrite frame evolution equations linearly

in the new variables.

32



The Geometry of 3D Rotations

We begin with a basic fact:

Euler theorem: every 3D frame can be written as a spinning
by θ about a fixed axis n̂, the eigenvector of the rotation ma-
trix:

n̂

θ

33



Quaternion Frames . . .

The Matrix R3(θ, n̂) giving 3D rotation by θ about axis n̂ is :










c+ (n1)
2(1 − c) n1n2(1 − c) − sn3 n3n1(1 − c) + sn2

n1n2(1 − c) + sn3 c+ (n2)
2(1 − c) n3n2(1 − c) − sn1

n1n3(1 − c) − sn2 n2n3(1 − c) + sn1 c+ (n3)
2(1 − c)











where c = cos θ, s = sin θ, and n̂ · n̂ = 1.

34



Can we find a 720-degree form?

Remember 2D: a2 + b2 = 1
then substitute 1 − c = (a2 + b2) − (a2 − b2) = 2b2

to find the remarkable expression for R(θ, n̂):







a2 − b2 + (n1)
2(2b2) 2b2n1n2 − 2abn3 2b2n3n1 + 2abn2

2b2n1n2 + 2abn3 a2 − b2 + (n2)
2(2b2) 2b2n2n3 − 2abn1

2b2n3n1 − 2abn2 2b2n2n3 + 2abn1 a2 − b2 + (n3)
2(2b2)







35



Rotations and Quadratic Polynomials

Remember (n1)
2 + (n2)

2 + (n3)
2 = 1 and a2 + b2 = 1;

letting

q0 = a = cos(θ/2) q = bn̂ = n̂ sin(θ/2)

We find a matrix R3(q)










q20 + q21 − q22 − q23 2q1q2 − 2q0q3 2q1q3 + 2q0q2
2q1q2 + 2q0q3 q20 − q21 + q22 − q23 2q2q3 − 2q0q1
2q1q3 − 2q0q2 2q2q3 + 2q0q1 q20 − q21 − q22 + q23











36



Quaternions and Rotations . . .

HOW does q = (q0, q) represent rotations?

LOOK at

R3(θ, n̂)
?
= R3(q0, q1, q2, q3)

THEN we can verify that choosing

q(θ, n̂) = (cos
θ

2
, n̂ sin

θ

2
)

makes the R3 equation an IDENTITY .

37



Quaternions and Rotations . . .

WHAT happens if you do TWO rotations?

EXAMINE the action of two rotations

R(q′)R(q) = R(Q)

EXPRESS in quadratic forms in q and LOOK FOR an analog
of complex multiplication:

38



Quaternions and Rotations . . .

RESULT: the following multiplication rule

q′ ∗ q = Q yields exactly the correct 3×3 rotation

matrix R(Q):






















Q0 =
[

q′ ∗ q
]

0
Q1 =

[

q′ ∗ q
]

1
Q2 =

[

q′ ∗ q
]

2
Q3 =

[

q′ ∗ q
]

3























=























q′0q0 − q′1q1 − q′2q2 − q′3q3
q′0q1 + q′1q0 + q′2q3 − q′3q2
q′0q2 + q′2q0 + q′3q1 − q′1q3
q′0q3 + q′3q0 + q′1q2 − q′2q1























This is Quaternion Multiplication.

39



Algebra of Quaternions
= 3D Rotations!

2D rotation matrices are represented

by complex multiplication

3D rotation matrices are represented

by quaternion multiplication

40



Algebraic 2D/3D Rotations

Therefore in 3D, the 2D complex multiplication

(a′, b′) ∗ (a, b) = (a′a− b′b, a′b+ ab′)

is replaced by 4D quaternion multiplication:

q′ ∗ q = (q′0q0 − q′1q1 − q′2q2 − q′3q3,

q′0q1 + q′1q0 + q′2q3 − q′3q2,

q′0q2 + q′2q0 + q′3q1 − q′1q3,

q′0q3 + q′3q0 + q′1q2 − q′2q1)

41



Algebra of Quaternions . . .

The is easier to remember by dividing it into the

scalar piece q0 and the vector piece ~q:

q′ ∗ q = (q′0q0 − ~q′ ·~q,

q′0~q + q0
~q′ + ~q′ ×~q)

42



Now we can SEE quaternions!

Since (q0)
2 + q · q = 1 then

q0 =
√

1 − q · q

Plot just the 3D vector: q = (qx, qy, qz)

q0 is KNOWN! Can also use any other triple: the
fourth component is dependent.

DEMO

43



360◦ Belt Trick in Quaternion Form

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1

-1
-0.5

0
0.5

1

44



720◦ Belt Trick in Quaternion Form

-1

-0.5

0

0.5

1

-1
-0.5

0
0.5

1

-1

-0.5

0
0.5

1
-1

-0.5

0

0.5

1

45



Rolling Ball in Quaternion Form

-1-0.500.51

qx

-1
-0.5
0
0.5
1

qy

-1

-0.5

0

0.5

1

qz

-1-0.500.51

qx

-1
-0.5
0
0.5
1

qy

-1-0.500.51

q0

-1
-0.5

0

0.5

1

qx

-1

-0.5

0

0.5

1

qz

-1-0.500.51

q0

-1
-0.5

0

0.5

1

qx

q vector-only plot. (q0, qx, qz) plot

46



Gimbal Lock in Quaternion Form

Quaternion Plot of the remaining orientation degrees
of freedom of R(θ, x̂) · R(φ, ŷ) · R(ψ, ẑ) at φ = 0

and φ = π/6

47



Gimbal Lock in Quaternion Form, contd

Choosing φ and plotting the remaining orientation
degrees in the rotation sequence

R(θ, x̂) · R(φ, ŷ) · R(ψ, ẑ), we see degrees of
freedom decrease from TWO to ONE as φ→ π/2

48



Quaternion Interpolations

• Shoemake (Siggraph ’85) proposed using quaternions in-

stead of Euler angles to get smooth frame interpolations

without Gimbal Lock:

BEST CHOICE: Animate objects and cameras using ro-

tations represented on S3 by quaternions

49



Interpolating on Spheres

General quaternion spherical interpolation employs the “SLERP,”

a constant angular velocity transition between two directions,

q̂1 and q̂2:

q̂12(t) = Slerp(q̂1, q̂2, t)

= q̂1
sin((1 − t)θ)

sin(θ)
+ q̂2

sin(tθ)

sin(θ)

where cos θ = q̂1 · q̂2.

50



Plane Interpolations

In Euclidean space, these three basic cubic splines look like
this:

-1 -0.5 0.5 1

-1

-0.5

0.5

1

1.5

2

-1 -0.5 0.5 1

-1

-0.5

0.5

1

1.5

2

-1 -0.5 0.5 1

-1

-0.5

0.5

1

1.5

2

Bezier Catmull-Rom Uniform B

The differences are in the derivatives: Bezier has to start
matching all over at every fourth point; Catmull-Rom matches
the first derivative; and B-spline is the cadillac, matching all
derivatives but no control points.

51



Spherical Interpolations

-1
-0.5

0

0.5

1

-1

-0.5

0

0.5
1

-1

-0.5

0

0.5

1

-1
-0.5

0

0.5

1

-1

-0.5

0

0.5
1

-1
-0.5

0

0.5

1

-1

-0.5

0

0.5
1

-1

-0.5

0

0.5

1

-1
-0.5

0

0.5

1

-1

-0.5

0

0.5
1

-1
-0.5

0
0.5

1
-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1
-0.5

0
0.5

1

Bezier Catmull-Rom Uniform B

52



Quaternion Interpolations

-1
-0.5

0

0.5

1

-1

-0.5

0

0.5
1

-1

-0.5

0

0.5

1

-1
-0.5

0

0.5

1

-1

-0.5

0

0.5
1

-1
-0.5

0

0.5

1

-1

-0.5

0

0.5
1

-1

-0.5

0

0.5

1

-1
-0.5

0

0.5

1

-1

-0.5

0

0.5
1

-1
-0.5

0
0.5

1
-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1
-0.5

0
0.5

1

Bezier Catmull-Rom Uniform B

53



Exp Form of Quaternion Rotations

In Hamilton’s notation, we can generalize the 2D equation

a+ ib = eiθ/2

Just set

q = (q0, q1, q2, q3)

= q0 + iq1 + jq2 + kq3

= e(I·n̂θ/2)

with q0 = cos(θ/2) and ~q = n̂ sin(θ/2) and I = (i, j,k),
with i2 = j2 = k2 = −1, and i ∗ j = k (cyclic),

54



Key to Quaternion Intuition

Fundamental Intuition: We know

q0 = cos(θ/2), ~q = n̂ sin(θ/2)

We also know that any coordinate frame M can be written
as M = R(θ, n̂).

Therefore

~q points exactly along the axis we have to rotate

around to go from identity I to M , and the length of

~q tells us how much to rotate.

55



Summarize Quaternion Properties

• Unit four-vector. Take q = (q0, q1, q2, q3) = (q0, ~q) to

obey constraint q · q = 1.

• Multiplication rule. The quaternion product q and p is

q ∗ p = (q0p0 − ~q · ~p, q0~p + p0~q + ~q × ~p),

or, alternatively,














[q ∗ p]0
[q ∗ p]1
[q ∗ p]2
[q ∗ p]3















=















q0p0 − q1p1 − q2p2 − q3p3
q0p1 + q1p0 + q2p3 − q3p2
q0p2 + q2p0 + q3p1 − q1p3
q0p3 + q3p0 + q1p2 − q2p1















56



Quaternion Summary . . .

• Rotation Correspondence. The unit quaternions q and

−q correspond to a single 3D rotation R3:











q20 + q21 − q22 − q23 2q1q2 − 2q0q3 2q1q3 + 2q0q2
2q1q2 + 2q0q3 q20 − q21 + q22 − q23 2q2q3 − 2q0q1
2q1q3 − 2q0q2 2q2q3 + 2q0q1 q20 − q21 − q22 + q23











If

q = (cos
θ

2
, n̂ sin

θ

2
) ,

with n̂ a unit 3-vector, n̂ · n̂ = 1. Then R(θ, n̂) is usual 3D
rotation by θ in the plane ⊥ to n̂.

57



SUMMARY

• Quaternions represent 3D frames

• Quaternion multiplication represents 3D rotation

• Quaternions are ]fboxpoints on a hypersphere

• Quaternions paths can be visualized with 3D display

• Belt Trick, Rolling Ball, and Gimbal Lock can be un-

derstood as Quaternion Paths.

58


