
Visualizing Quaternions

Part II

Quaternion Fields

Curves, Surfaces, and Volumes
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OUTLINE

• Quaternion Curves: generalize the Frenet Frame, opti-

mize in quaternion space

• Quaternion Surfaces: generalize Gauss map, optimize

in quaternion space

• Quaternion Volumes: visualize degrees of freedom of a

joint
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What are Frames used For?

• Move objects and object parts in an animated scene.

• Move the camera generating the rendered viewpoint of

the scene.

• Attach tubes and textures to thickened lines, oriented tex-

tures to surfaces.

• Compare shapes of similar curves.

• Collect orientation data of moving object (e.g., a joint)
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Motivating Problem: Framing Curves

❆
❆

❆
❆

❆❑

The (3,5) torus knot.

• Line drawing ≈ useless.

• Tubing based on parallel transport, not periodic.

• Closeup of the non-periodic mismatch.
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Motivating Problems: Curves

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆❆❑

Closeup of the non-periodic mismatch.
Can’t apply texture.
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Motivating Problems: Surfaces

A smooth 3D surface patch: two ways to get bottom frame.

No unique orthonormal frame is derivable from the parame-
terization.
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3D Curves: Frenet and PT Frames

Now give more details of 3D frames: Classic Moving Frame:


T′(t)
N′(t)
B′(t)


=




0 k1(t) k2(t)
−k1(t) 0 σ(t)
−k2(t) −σ(t) 0






T(t)
N(t)
B(t)


 .

Serret-Frenet frame: k2 = 0, k1 = κ(t) is the curvature,

and σ(t) = τ(t) is the classical torsion. LOCAL.

Parallel Transport frame (Bishop): σ = 0 to get minimal turn-

ing. NON-LOCAL = an INTEGRAL.
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3D curve frames, contd

Frenet frame is locally defined, e.g., by

B(t) =
x′(t) × x′′(t)

‖x′(t) × x′′(t)‖
but has problems on the “roof.”
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3D curve frames, contd

Bishop’s Parallel Transport frame is integrated over whole
curve, non-local, but no problems on “roof:”
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3D curve frames, contd

Geodesic Reference Frame is the frame found by tilting North
Pole of “canonical frame” along a great circle until it points in
desired direction (tangent for curves, normal for surfaces).
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Sample Curve Tubings and their Frames

Frenet Geodesic Reference Parallel Transport

Easily see PT has least “Twist,” but lacks
periodicity.
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3D Frames to Quaternion Frames

• Quaternion Correspondence. The unit quaternions
q and −q correspond to a single 3D rotation R3(q):



q20 + q21 − q22 − q23 2q1q2 − 2q0q3 2q1q3 + 2q0q2
2q1q2 + 2q0q3 q20 − q21 + q22 − q23 2q2q3 − 2q0q1
2q1q3 − 2q0q2 2q2q3 + 2q0q1 q20 − q21 − q22 + q23




• Rotation Correspondence.
q = (cos θ

2, n̂ sin θ
2), with n̂ a unit 3-vector, n̂ · n̂ = 1.

R(θ, n̂) is usual 3D rotation by θ in the plane perpendic-
ular to n̂.

• Extract quaternion: Either directly from sequence of
quaternion multiplications, or indirectly from R3(q).
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Quaternion Frame Evolution

Just as in 2D, let columns of R3(q) be a 9-part frame: (T,N,B).

Derivatives of the i-th column Ri in quaternion coordinates

have the form:

Ṙi = 2Wi · [q̇(t)]

e.g. W1 =




q0 q1 −q2 −q3
q3 q2 q1 q0
−q2 q3 −q0 q1




where i = 1,2,3 and rows form mutually orthonormal ba-
sis.
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Quaternion Frame Evolution . . .

When we simplify by eliminating Wi . . .

we find the square root of the 3D frame eqns!

Tait (1890) derived the quaternion equation that makes all 9

3D frame equations reduce to: q̇ = (1/2)q ∗ (0, k) or:




q̇0
q̇1
q̇2
q̇3



=

1

2




0 k2 −k1 −σ
−k2 0 σ −k1
k1 −σ 0 −k2
σ k1 k2 0



·




q0
q1
q2
q3
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Quaternion Frames . . .

Properties of Tait’s quaternion frame equations:

• Antisymmetry ⇒ q(t) · q̇(t) = 0 as required to keep

constant unit radius on 3-sphere.

• Nine equations and six constraints become four equa-

tions and one constraint, keeping quaternion on the 3-

sphere. ⇒ Good for computer implementation.

• MATHEMATICA code implementing this differential equa-

tion is provided.
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Quaternion Frames . . .

• Analogous treatment (given in Hanson Tech Note in Course

Notes) applies also to the Weingarten equations, allowing

a direct quaternion treatment of the classical differential

geometry of surfaces as well.
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Example of a Quaternion Frame Curve

Left Curve = torus knot tubed with Frenet frame; Right Curve
is projection from 4D of (twice around) quaternion Frenet
frames:
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see Notes: Hanson and Ma, “Quaternion Frame Approach to Streamline
Visualization,” IEEE Trans. on Visualiz. and Comp. Graphics, 1, No. 2,
pp. 164–174 (June, 1995).
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Minimizing Quaternion Length Solves Periodic
Tube

Quaternion space optimization of the non-periodic parallel
transport frame of the (3,5) torus knot.
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see Notes: “Constrained Optimal Framings of Curves and Surfaces using
Quaternion Gauss Maps,” Proceedings of Visualization ’98, pp. 375–382
(1998).
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Minimizing Quaternion Length Works

Result of Quaternion space optimization of the (3,5) torus
knot frame.

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆❆❑
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Return to Frames on Surface Patch

Remember: no unique way to disambiguate bot-
tom frame.
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Can also Optimize Quaternion Frames on
Patch:
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(a) (b) (c) (d)

Quaternion frames for (a) Geodesic Ref. (b) One edge Parallel Transport.
(c) Random. (d) Minimal area result.
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3D Frames for Patch

(a) (b) (c) (d)
Quaternion frames for (a) Geodesic Ref. (b) One edge Par-
allel Transport. (c) Random. (d) Minimal area result.
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Quaternion Volumes

Last possible orientation field = Volumes:

• Collections of oriented objects in a volume.

• 3 degree-of-freedom control monitoring

• 3 degree-of-freedom biological and robotic joints

⇒ all map to Quaternion Volumes
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Quaternion Volumes

Quaternion
Points

Lattice with Frames
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Joystick as Quaternion volume

SPIN

TILT

Motion of joystick maps to quaternion volume.
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Joystick as quaternion volume

“Solid cone” describes the joystick access space
as a quaternion volume
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Quaternion volumes: Shoulder data

Quaternion shoulder joint data before
correction for doubling.
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Quaternion volumes: Shoulder data

Shoulder data with neighbors forced to be in
same hemisphere of quaternion space as

their predecessors.
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Quaternion volumes: Shoulder data

(a) (b)

(a) A dense sample of shoulder orientation data in
quaternion space.

(b) Implicit surface model fitted to the data. (Herda
et al.)
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SUMMARY

• Quaternions nicely represent frame sequences.

• Curve frames ⇒ quaternion curves.

• Surface patch frames ⇒ quaternion surface patches.

• Minimizing quaternion length or area finds parallel

transport “minimal turning” set of frames.

• Volume sampled frames ⇒ quaternion volumes.

Use Quaternions for Global Picture of any
orientation sequence or collection!
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