Quaternion Applications

Andrew J. Hanson

School of Informatics and Computing
Indiana University

Siggraph Asia 2012 Tutorial

_

I: (55 min) Introduction to Quaternions:

OUTLINE

What are they good for?

Understanding Rotation Sequences!

II a: (15 min) Quaternion Tubing:
Visualizing Framed Space Curves

2

...OUTLINE...

II b: (15 min) Quaternion Protein Maps:

Amino Acid Frame Sequences with Quaternions

II c: (20 min) Intro to Dual Quaternions:

Applications to Six-Degrees-of-Freedom

ω

Part I

Introduction to Quaternions:

...Twisting Belts and Rolling Balls...

Explaining Rotation Sequences with Quaternions

4

Where Did Quaternions Come From?

... from the discovery of Complex Numbers:

- z=x+iy Complex numbers = realization that $z^2+1=0$ cannot be solved unless you have an "imaginary" number with $i^2=-1$.
- Euler's formula: $e^{i\theta} = \cos\theta + i\sin\theta$ allows you to do most of 2D geometry.

Hamilton

The first to ask "If you can do 2D geometry with complex numbers, how might you do 3D geometry?" was William Rowan Hamilton, circa 1840.

Sir William Rowan Hamilton
4 August 1805 — 2 September 1865

•

Hamilton's epiphany: 16 October 1843

at the site of Hamilton's carving

"An electric circuit seemed to close; and a spark flashed forth ... Nor could I resist the impulse – unphilosophical as it may have been – to cut with a knife on a stone of Brougham Bridge, as we passed it, the fundamental formula with the symbols, i, j, k; namely,

$$i^2 = j^2 = k^2 = ijk = -1$$

which contains the Solution of the Problem..."

7

The plaque on Broome Bridge in Dublin, Ireland, commemorating the legendary location where Hamilton conceived of the idea of quaternions. (Photo taken July 2012).

...the author on Broome Bridge...

Yes, I have actually been there!

--

The Belt Trick

Quaternion Geometry in our daily lives

- Two people hold ends of a belt.
- Twist the belt either 360 degrees or 720 degrees.
- Rule: Move belt ends any way you like but do not change orientation of either end.
- Try to straighten out the belt.

10

360 Degree Belt

360 twist: stays twisted, can change DIRECTION!

⇉

720 Degree Belt

720 twist: CAN FLATTEN OUT WHOLE BELT!

The Beltless Trick

Quaternion Geometry is right in your hand!

 Hold a coffee cup (empty is a good idea) in the palm of your hand.

Put a ball on a flat table.
 Place hand flat on top of the ball

Rolling Ball Puzzle

3. Make circular rubbing motion, as though polish-

 Keeping the cup vertical, user your hand to twist the handle, first by 360 degrees (painful).

Ò

small clockwise circles

4. Watch a point on the equator of the ball.

ing the tabletop.

6. small counterclockwise circles →

equator goes counterclockwise

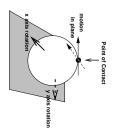
equator goes clockwise

4

- Now CONTINUE another 360 degrees, for a total of 720 degrees.
- Your arm is once again STRAIGHT.

3

Rolling Ball Scenario



5

Gimbal Lock

Gimbal Lock occurs when a mechanical or computer system experiences an anomaly due to an (x, y, z)-based orientation control sequence.

- Mechanical systems cannot avoid all possible gimbal lock situations.
- Computer orientation interpolation systems can avoid gimbal-lock-related glitches by using quaternion interpolation.

16

Mechanical Gimbal Lock: Using x, y, z axes to encode orientation gives singular situations.

Gimbal Lock — Apollo Systems

Red-painted area = Danger of real Gimbal Lock

2D Rotations

- 2D rotations ↔ *complex numbers*.
- Why? $e^{i\theta}(x+iy) = (x'+iy')$

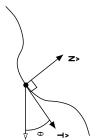
$$x' = x \cos \theta - y \sin \theta$$
$$y' = x \sin \theta + y \cos \theta$$

Complex numbers are a subspace of quaternions — so exploit 2D rotations to introduce us
 to quaternions and their geometric meaning.

19

Frames in 2D

The tangent and normal to 2D curve move continuously along the curve:



21

Frame Matrix in 2D

This motion is described at each point (or time) by the matrix:

$$R_2(\theta) = \left[\hat{\mathbf{T}} \hat{\mathbf{N}} \right]$$

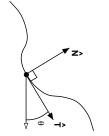
$$\left[\cos \theta - \sin \theta \right]$$

$$= \begin{bmatrix} \cos\theta - \sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

23

Frames in 2D

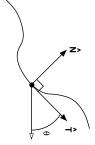
The tangent and normal to 2D curve move continuously along the curve:



20

Frames in 2D

The tangent and normal to 2D curve move continuously along the curve:



8

The Belt Trick Says:

There is a Problem...at least in 3D

How do you get $\cos\theta$ to know about 720 degrees?

The Belt Trick Says:

There is a Problem...at least in 3D

Let $a = \cos(\theta/2)$, $b = \sin(\theta/2)$,

A Fix for the Problem?

Half-Angle Transform:

(i.e., $\cos \theta = a^2 - b^2$, $\sin \theta = 2ab$),

and parameterize 2D rotations as:

 $R_2(a,b) = \begin{bmatrix} a^2 - b^2 & -2ab \\ 2ab & a^2 - b^2 \end{bmatrix}$.

How do you get $\cos \theta$ to know about 720 degrees?

Hmmmmm. $cos(\theta/2)$ knows about 720 degrees, right?

25

Frame Evolution in 2D

First use $\theta(t)$ coordinates: Examine the time-evolution of a 2D frame (on our way to 3D).

$$\begin{bmatrix} \hat{\mathbf{T}} \ \hat{\mathbf{N}} \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}.$$

Differentiate to find frame equations:

$$\hat{\mathbf{T}}(t) = +\kappa \hat{\mathbf{N}}$$

$$\hat{\mathbf{N}}(t) = -\kappa \hat{\mathbf{T}},$$

where $\kappa(t) = d\theta/dt$ is the curvature.

27

2D Quaternion Frames!

Rearranging terms, both \hat{T} and \hat{N} eqns reduce to

$$\begin{bmatrix} \dot{a} \\ \dot{b} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 0 & -\kappa \\ +\kappa & 0 \end{bmatrix} \cdot \begin{bmatrix} a \\ b \end{bmatrix}$$

This is the square root of frame equations.

which reduces back to $a^2 + b^2 = 1$.

26

 $(a^2 + b^2)^2 = 1$

where orthonormality implies

Frame Evolution in (a, b):

freedom. The basis (\hat{T},\hat{N}) is nasty — Four equations with Three constraints from orthonormality, but just One true degree of

Major Simplification occurs in (a,b) coordinates!!

$$\hat{\mathbf{T}} = 2 \begin{bmatrix} a\dot{a} - b\dot{b} \\ a\dot{b} + b\dot{a} \end{bmatrix} = 2 \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} \dot{a} \\ \dot{b} \end{bmatrix}$$

Frame Evolution in (a, b):

But this formula for $\hat{\mathbf{T}}$ is just $\kappa \hat{\mathbf{N}}$, where

$$\kappa \hat{\mathbf{N}} = \kappa \begin{bmatrix} -2ab \\ a^2 - b^2 \end{bmatrix} = \kappa \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} -b \\ a \end{bmatrix}$$

익

$$\kappa \hat{\mathbf{N}} = \kappa \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} \mathbf{0} & -\mathbf{1} \\ \mathbf{1} & \mathbf{0} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

29

2D Quaternions . . .

So one equation in the two "quaternion" variables (a,b) with the constraint $a^2+b^2=1$ contains *both* the frame equations

$$\hat{\mathbf{T}} = +\kappa \hat{\mathbf{N}}$$

$$\hat{\mathbf{N}} = -\kappa \hat{\mathbf{T}}$$

 \Rightarrow this is much better for computer implementation, etc.

34

Rotation with no matrices!

Due to an extremely deep reason in Clifford Algebras,

$$a + ib = e^{i\theta/2}$$

represents rotations "more nicely" than the matrices $R(\theta)$.

$$(a' + ib')(a + ib) = e^{i(\theta' + \theta)/2} = A + iB$$

where if we want the matrix, we write:

$$R(\theta')R(\theta) = R(\theta' + \theta) = \begin{bmatrix} A^2 - B^2 & -2AB \\ 2AB & A^2 - B^2 \end{bmatrix}$$

႘ၟ

Quaternion Frames

In 3D, repeat our trick: take square root of the frame, but now use *quaternions*:

- Write down the 3D frame.
- Write as double-valued quadratic form.
- Rewrite frame evolution equations linearly in the new variables.

ၾ

Rotation as Complex Multiplication

If we let $(a+ib)=\exp{(i\,\theta/2)}$ we see that rotation is complex multiplication!

"Quaternion Frames" in 2D are just complex numbers, with

Evolution Eqns = derivative of $\exp(i\theta/2)!$

32

The Algebra of 2D Rotations

The algebra corresponding to 2D rotations is easy: just complex multiplication!!

$$(a',b')*(a,b) \cong (a'+ib')(a+ib)$$

$$= a'a - b'b + i(a'b + ab')$$

$$\cong (a'a - b'b, a'b + ab')$$

$$= (A B)$$

2D Rotations are just complex multiplication, and take you around the unit circle!

...

The Geometry of 3D Rotations

We begin with a basic fact:

Euler theorem: *every* 3D frame can be written as a spinning by θ about a fixed axis $\hat{\mathbf{n}}$, the eigenvector of the rotation matrix:

æ

Quaternion Frames ...

The Matrix $R_3(\theta,\hat{\mathbf{n}})$ giving 3D rotation by θ about axis $\hat{\mathbf{n}}$ is :

$$\begin{bmatrix} c + (n_1)^2 (1-c) & n_1 n_2 (1-c) - s n_3 & n_3 n_1 (1-c) + s n_2 \\ n_1 n_2 (1-c) + s n_3 & c + (n_2)^2 (1-c) & n_3 n_2 (1-c) - s n_1 \\ n_1 n_3 (1-c) - s n_2 & n_2 n_3 (1-c) + s n_1 & c + (n_3)^2 (1-c) \end{bmatrix}$$

where $c = \cos \theta$, $s = \sin \theta$, and $\hat{\mathbf{n}} \cdot \hat{\mathbf{n}} = 1$.

37

Rotations and Quadratic Polynomials

Remember $(n_1)^2 + (n_2)^2 + (n_3)^2 = 1$ and $a^2 + b^2 = 1$; letting

$$q_0 = a = \cos(\theta/2)$$
 $\mathbf{q} = b\hat{\mathbf{n}} = \hat{\mathbf{n}}\sin(\theta/2)$

We find a matrix $R_3(q)$

$$\begin{bmatrix} q_0^2 + q_1^2 - q_2^2 - q_3^2 & 2q_1q_2 - 2q_0q_3 & 2q_1q_3 + 2q_0q_2 \\ 2q_1q_2 + 2q_0q_3 & q_0^2 - q_1^2 + q_2^2 - q_3^2 & 2q_2q_3 - 2q_0q_1 \\ 2q_1q_3 - 2q_0q_2 & 2q_2q_3 + 2q_0q_1 & q_0^2 - q_1^2 - q_2^2 + q_3^2 \end{bmatrix}$$

39

Quaternions and Rotations . . .

WHAT happens if you do TWO rotations?

EXAMINE the action of two rotations

$$R(q')R(q) = R(Q)$$

EXPRESS in quadratic forms in q and LOOK FOR an analog of complex multiplication:

4

Can we find a 720-degree form?

Remember 2D: $a^2+b^2=1$ then substitute $1-c=(a^2+b^2)-(a^2-b^2)=2b^2$ to find the remarkable expression for $\mathbf{R}(\theta,\hat{\mathbf{n}})$:

$$\begin{bmatrix} a^2 - b^2 + (n_1)^2 (2b^2) & 2b^2 n_1 n_2 - 2ab n_3 & 2b^2 n_3 n_1 + 2ab n_2 \\ 2b^2 n_1 n_2 + 2ab n_3 & a^2 - b^2 + (n_2)^2 (2b^2) & 2b^2 n_2 n_3 - 2ab n_1 \\ 2b^2 n_3 n_1 - 2ab n_2 & 2b^2 n_2 n_3 + 2ab n_1 & a^2 - b^2 + (n_3)^2 (2b^2) \end{bmatrix}$$

38

Quaternions and Rotations ...

HOW does $q = (q_0, \mathbf{q})$ represent rotations?

LOOK at

$${}^{?}_{R_3(\theta,\,\hat{\mathbf{n}})} = {}^{R_3(q_0,\,q_1,\,q_2,\,q_3)}$$

THEN we can verify that choosing

$$q(\theta, \hat{\mathbf{n}}) = (\cos \frac{\theta}{2}, \, \hat{\mathbf{n}} \sin \frac{\theta}{2})$$

makes the R_3 equation an *IDENTITY*.

6

Quaternions and Rotations ...

RESULT: the following multiplication rule

q'*q=Q yields **exactly** the correct 3×3 rotation matrix R(Q):

$$\begin{bmatrix} Q_0 = [q'*q]_0 \\ Q_1 = [q'*q]_1 \\ Q_2 = [q'*q]_2 \\ Q_3 = [q'*q]_3 \end{bmatrix} = \begin{bmatrix} q'_0q_0 - q'_1q_1 - q'_2q_2 - q'_3q_3 \\ q'_0q_1 + q'_1q_0 + q'_2q_3 - q'_3q_2 \\ q'_0q_2 + q'_2q_0 + q'_3q_1 - q'_1q_3 \\ q'_0q_3 + q'_3q_0 + q'_1q_2 - q'_2q_1 \end{bmatrix}$$

This is Quaternion Multiplication.

Algebra of Quaternions = 3D Rotations!

2D rotation matrices are represented by complex multiplication

is replaced by 4D quaternion multiplication:

 $q'*q = (q'_0q_0 - q'_1q_1 - q'_2q_2 - q'_3q_3,$

 $q'_0q_1 + q'_1q_0 + q'_2q_3 - q'_3q_2,$

 $q'_0q_2 + q'_2q_0 + q'_3q_1 - q'_1q_3,$ $q'_0q_3 + q'_3q_0 + q'_1q_2 - q'_2q_1)$

4

Therefore in 3D, the 2D complex multiplication

Algebraic 2D/3D Rotations

(a',b')*(a,b) = (a'a - b'b, a'b + ab')

3D rotation matrices are represented by quaternion multiplication

8

Algebra of Quaternions . . .

The equation is easier to remember by dividing it into a *scalar* piece q_0 and a *vector* piece \vec{q} :

$$q' * q = (q'_0 q_0 - \vec{\mathbf{q}'} \cdot \vec{\mathbf{q}},$$
$$q'_0 \vec{\mathbf{q}} + q_0 \vec{\mathbf{q}'} + \vec{\mathbf{q}'} \times \vec{\mathbf{q}})$$

8

We can now make a Quaternion Picture of each of our favorite tricks

- 360° Belt Trick in Quaternion Form. DEMO:
- 720° Belt Trick in Quaternion Form.
- Rolling Ball in Quaternion Form. DEMO:
- Gimbal Lock in Quaternion Form.

47

Now we can SEE quaternions!

Since $(q_0)^2 + \mathbf{q} \cdot \mathbf{q} = 1$ then

$$q_0 = \sqrt{1 - \mathbf{q} \cdot \mathbf{q}}$$

Plot just the 3D vector: $q = (q_x, q_y, q_z)$

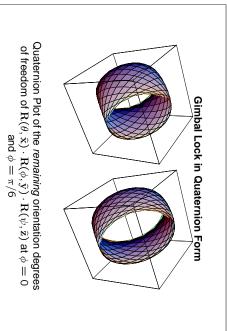
 q_0 is KNOWN! We can also use any other triple: the fourth component is *dependent*.

DEMO

46

360° Belt Trick in Quaternion Form

720° Belt Trick in Quaternion Form 49



5

52

Quaternion Interpolations

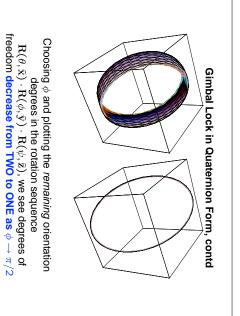
• Shoemake (Siggraph '85) proposed using quaternions instead of Euler angles to get smooth frame interpolations without Gimbal Lock:

tations represented on S^3 by quaternions BEST CHOICE: Animate objects and cameras using ro-

53

q vector-only plot. **Rolling Ball in Quaternion Form** (q_0,q_x,q_z) plot

50



Interpolating on Spheres

a constant angular velocity transition between two directions, General quaternion spherical interpolation employs the "SLERP,"

 \widehat{q}_1 and \widehat{q}_2 :

$$\begin{aligned} \hat{\mathbf{q}}_{12}(t) &= \mathsf{Slerp}(\hat{\mathbf{q}}_1, \hat{\mathbf{q}}_2, t) \\ &= \hat{\mathbf{q}}_1 \frac{\mathsf{sin}((1-t)\theta)}{\mathsf{sin}(\theta)} + \hat{\mathbf{q}}_2 \frac{\mathsf{sin}(t\theta)}{\mathsf{sin}(\theta)} \end{aligned}$$

where $\cos \theta$ $= \widehat{q}_1 \cdot \widehat{q}_2$

Plane Interpolations

In Euclidean space, these three basic cubic splines look like this:

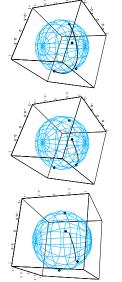
Catmull-Rom

Bezier

Uniform B

The differences are in the derivatives: Bezier has to start matching all over at every fourth point; Catmull-Rom matches the first derivative; and B-spline is the cadillac, matching all derivatives but *no control points*.

Spherical Interpolations



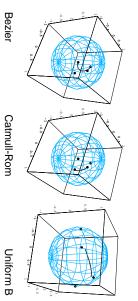
Bezier

Catmull-Rom

Uniform B

56

Quaternion Interpolations



57

Bezier

Catmull-Rom

Exp Form of Quaternion Rotations

In Hamilton's notation, we can generalize the 2D equation

$$a + ib = e^{i\theta/2}$$

Just set

$$q = (q_0, q_1, q_2, q_3)$$

= $q_0 + iq_1 + jq_2 + kq_3$

$$= q_0 + iq_1 + jq_2 + kq_3$$

$$= e^{(1\cdot \hat{\mathbf{n}}\theta/2)}$$

$$= e^{(1\cdot \hat{\mathbf{n}}\theta/2)}$$
 and $\vec{\mathbf{q}} = \hat{\mathbf{n}}\sin(\theta/2)$ and

with $q_0=\cos(\theta/2)$ and $\vec{q}=\hat{n}\sin(\theta/2)$ and I=(i,j,k), with $i^2=j^2=k^2=-1$, and i*j=k (cyclic),

Cute Quaternion Tricks!

Square Roots are cool...

A quaternion p is the **square root** of a quaternion q if

$$p*p=q\;.$$

A hint: remember that if $c = \cos \theta$, and $\gamma = \cos(\frac{\theta}{2})$, then

$$\gamma = \sqrt{\frac{1+c}{2}} = \frac{1+c}{\sqrt{2(1+c)}}$$

59

Cute Quaternion Tricks...

Suppose we now look at $1+q=(1+q_0,\mathbf{q})$. Then

$$(1+q)*(1+q) = ((1+q_0)^2 - \mathbf{q} \cdot \mathbf{q}, 2\mathbf{q}(1+q_0))$$

= 2(1+q₀)q

Dividing through by $2(1+q_0)$, we find the **square root:**

$$p = \sqrt{q} = \frac{1+q}{\sqrt{2(1+q_0)}}$$

Tricks, contd: Lining up â and

There is a simple quaternion form for this operation. Let A common rotation task is to line up two directions, $\mathbf{\hat{a}}$ and $\mathbf{\hat{b}}$

$$\hat{\mathbf{a}} \cdot \hat{\mathbf{b}} = \cos \theta = c$$
, $\hat{\mathbf{a}} \times \hat{\mathbf{b}} = \hat{\mathbf{n}} \sin \theta$

rotation from $\widehat{\mathbf{a}}$ to $\widehat{\mathbf{b}}$ using, again, the half-angle formula: where we assume $\sin \theta > 0$. Then we can compute the

$$R(\hat{\mathbf{a}}, \hat{\mathbf{b}}) = (\cos(\theta/2), \hat{\mathbf{n}} \sin(\theta/2))$$
$$= \left(\sqrt{\frac{1+c}{2}}, \hat{\mathbf{a}} \times \hat{\mathbf{b}} \sqrt{\frac{1}{2(1+c)}}\right)$$

where we also used $\sin \theta = 2\cos(\theta/2)\sin(\theta/2)$

63

Clifford Algebras

 All Rotations in any dimension are represented by two reflections using Clifford Algebra:

flection planes, $A \cdot A = B \cdot B = 1$. A and B define the perpendicular directions to two re-

 Create Rotation Matrix R and solve for the Quaternion, and you amazingly get THIS:

$$q(A, B) = (A \cdot B, A \times B)$$

బ

Clifford Algebra Quaternion Form ...

Why is this a quaternion form?

$$q \cdot q = (\mathbf{A} \cdot \mathbf{B})^2 + (\mathbf{A} \times \mathbf{B}) \cdot (\mathbf{A} \times \mathbf{B})$$

= $(\mathbf{A} \cdot \mathbf{A}) (\mathbf{B} \cdot \mathbf{B})$
= 1

If Quaternions are like the Square Roots of Rotations, then Clifford Algebras are like the Square Roots of Quaternions!

ස

Key to Quaternion Intuition

Fundamental Intuition: We know

$$q_0 = \cos(\theta/2), \ \vec{\mathbf{q}} = \hat{\mathbf{n}}\sin(\theta/2)$$

We also know that *any coordinate frame* M can be written as $M=R(\theta,\hat{\mathbf{n}}).$

Therefore

 $\vec{\mathbf{q}}$ tells us how much to rotate. $\vec{\mathbf{q}}$ points exactly along the axis we have to rotate around to go from identity I to M, and the length of

2

Summarize Quaternion Properties

- ullet Unit four-vector. Take q=obey constraint $q \cdot q =$ $(q_0, q_1, q_2, q_3) = (q_0, \vec{\mathbf{q}})$ to
- $q * p = (q_0 p_0 \vec{\mathbf{q}} \cdot \vec{\mathbf{p}}, q_0 \vec{\mathbf{p}} + p_0 \vec{\mathbf{q}} + \vec{\mathbf{q}} \times \vec{\mathbf{p}}),$ Multiplication rule. The quaternion product \boldsymbol{q} and \boldsymbol{p} is

or, alternatively,

$$\begin{bmatrix} [q*p]_0 \\ [q*p]_1 \\ [q*p]_1 \end{bmatrix} = \begin{bmatrix} q_0p_0 - q_1p_1 - q_2p_2 - q_3p_3 \\ q_0p_1 + q_1p_0 + q_2p_3 - q_3p_2 \\ q_0p_2 + q_2p_0 + q_3p_1 - q_1p_3 \\ q_0p_3 + q_3p_0 + q_1p_2 - q_2p_1 \end{bmatrix}$$

g

Quaternion Summary . . .

Rotation Correspondence. The unit quaternions q and q correspond to a single 3D rotation R_3 :

$$\begin{bmatrix} q_0^2+q_1^2-q_2^2-q_3^2 & 2q_1q_2-2q_0q_3 & 2q_1q_3+2q_0q_2 \\ 2q_1q_2+2q_0q_3 & q_0^2-q_1^2+q_2^2-q_3^2 & 2q_2q_3-2q_0q_1 \\ 2q_1q_3-2q_0q_2 & 2q_2q_3+2q_0q_1 & q_0^2-q_1^2-q_2^2+q_3^2 \end{bmatrix}$$

 $q=(\cos\frac{\theta}{2},\hat{\mathbf{n}}\sin\frac{\theta}{2})\;,$ with $\hat{\mathbf{n}}$ a unit 3-vector, $\hat{\mathbf{n}}\cdot\hat{\mathbf{n}}=1$. Then $R(\theta,\hat{\mathbf{n}})$ is usual 3D rotation by θ in the plane \perp to $\hat{\mathbf{n}}$.

		• Quaternions represent 3D frames • Quaternion multiplication represents 3D rotation • Quaternions are points on a hypersphere • Quaternions paths can be visualized with 3D display • Belt Trick, Rolling Ball, and Gimbal Lock can be understood as Quaternion Paths.