
Q
uaternion

A
pplications

P
artII

Tubing,B
ioinform

atics,and
D

ual
Q

uaternions

1

O
U

T
LIN

E

•
Q

uaternion
C

urves
and

Tubing:
generalize

the
Frenet

Fram
e,m

ake
quaternion

m
ap

of
alltubings

,optim
ize

for

any
tubing

task.

•
Q

uaternions
in

B
ioinform

atics:
use

quaternion
fram

es

to
create

G
LO

B
A

L
orientation

descriptions
and

statistics

for
any

protein’s
am

ino
acid

structure.

•
D

ual
Q

uaternions:
Introduction

to
a

generalization
of

quaternions
thatsupports

translation
as

w
ellas

rotation.

2

P
artIIa:

Tubing

W
hatD

o
Q

uaternions
H

ave
to

do
w

ith
Tubing??

∗
B

asic
Idea:

E
very

point
on

a
curve

can
be

as-
signed

a
fram

e
–

sort
of

like
a

roller-coaster
car

running
on

a
roller-coaster

track.

∗
W

e
F

IX
one

direction
,generally

the
tangentto

the
curve.

∗
T

he
rem

aining
tw

o
directions

define
a

sw
ept-

out
tube

(w
hich

can
have

any
cross-section

you
like,typically

a
circle).

3

W
hatare

F
ram

es
used

F
or?

•
O

ur
application:

A
ttach

tubes
and

textures
to

thickened

lines.

•
...also...

M
ove

objects
and

object
parts

in
an

anim
ated

scene.

•
M

ove
the

cam
era

generating
the

rendered
view

point
of

the
scene.

•
C

om
pare

shapes
ofsim

ilar
curves.

•
C

ollect
orientation

data
of

m
oving

object
(e.g.,

a
joint),

etc.
etc.

4

E
xam

ine
F

ram
ing

ofC
urves

A A A A AK

T
he

(3,5)
torus

knot.

•
Line

draw
ing

≈
useless.

•
Tubing

using
paralleltransport

:
nice,butnotperiodic.

•
C

loseup
ofthe

non-periodic
m

ism
atch.

5

E
xam

ple
ofTubing

P
roblem

s
on

C
urves

A A A A A A A A A A AK

C
loseup

ofthe
non-periodic

m
ism

atch.

C
an’tapply

texture.
6



M
ore

Tubing
Issues

on
C

urves...

Tubings
of

the
2,3

torus
knot

based
on

Frenet-S
erret,

G
eodesic

R
efer-

ence,
and

P
arallelTransport

fram
es.

Issues:
F

S
:

singular,
excess

tw
ist.

G
R

:singular
point,P

T
:non-periodic.

7

G
eneralS

olution:
InvariantQ

uaternion
F

ram
es

R
E

M
A

R
K

S
:

•
A

m
biguity

of
F

ram
e.

W
e

have
freedom

to
choose

a
“gauge,”

i.e.,
any

additionalrotation
around

tangentvector,at any
curve

point.

•
C

ircles
in

q
space.

“G
auge

freedom
”

generates
great

circles
in

S
3

quaternion
space.

N
eed

4
π

radians
to

getfullquaternion
circle.

•
G

auge-invariantsw
epttube.

S
w

eeping
entire

setofcircles
(≈

dual
to

tangent
vector)

in
q-space

gives
invariant

picture
of

A
LL

fram
e

possibilities.

•
B

est
paths

in
tube.

M
inim

al
length

in
S

3
is

P
T

fram
e!

O
ther

choices
include

m
inim

alacceleration,constantrotation,etc.
...8

G
eom

etric
C

onstruction
ofS

pace
ofF

ram
es:

•
R
(θ

,
T̂
)

leaves
T̂

invariant,
but

doesn’t
have

T̂
as

Last

C
olum

n.

•
U

se
G

eodesic
R

eference
to

construct
one

instance
of

such
a

fram
e:

R
(
ẑ
·
T̂

,
ẑ
×

T̂
).

9

G
eom

etric
C

onstruction
ofS

pace
ofFram

es:

q
(θ

,
T̂
)∗

q
(
ẑ·T̂

,
ẑ×

T̂
)

generates
the

correctfam
ily

ofquater-
nion

curves:

T

T ^

^
^

^

x

z

z

10

InvariantQ
uaternion

Fram
es

...
Invariantfram

e
for

trefoilknot:
∗

Left:
R

ed
fan

=
tangents;

M
agenta

arc
=

tangent
m

ap;
G

reen
vectors

=
geodesic

reference
starting

points.
∗

R
ight:

S
hortsegm

entofinvariantspace.

-
1

-
0
.
5

0
0
.
5

1
x

-
1

-
0
.
5

0

0
.
5

1

y

-
1

-
0
.
5 0

0
.
5 1

z

-
1

-
0
.
5

0
0
.
5

1
x

11

InvariantQ
uaternion

Fram
es

...

T
he

W
hole

Tubing
Fram

e
S

pace
ofthe

(2,3)
Torus

K
not!

12



3D
C

urves:
F

renetand
P

T
F

ram
es

N
ow

give
m

ore
details

of3D
fram

es:
C

lassic
M

oving
Fram

e:


T
′(t)

N
′(t)

B
′(t)



=



0
k
1
(t)

k
2
(t)

−
k
1
(t)

0
σ
(t)

−
k
2
(t)

−
σ
(t)

0





T
(t)

N
(t)

B
(t)



.

S
erret-Frenet

fram
e:

k
2

=
0

,
k
1

=
κ
(t)

is
the

curvature,

and
σ
(t)

=
τ
(t)

is
the

classicaltorsion.
LO

C
A

L.

P
arallelTransportfram

e
(B

ishop):
σ

=
0

to
getm

inim
alturn-

ing.
N

O
N

-LO
C

A
L

=
an

IN
T

E
G

R
A

L.
13

3D
curve

fram
es,contd

Frenetfram
e

is
locally

defined,e.g.,by

B
(t)

=
x ′(t)×

x ′′(t)
‖
x ′(t)×

x ′′(t)‖
buthas

problem
s

on
the

“roof.”

N

N B

T

T

B

B

N
B???

N
T

T

14

3D
curve

fram
es,contd

B
ishop’s

P
arallel

Transport
fram

e
is

integrated
over

w
hole

curve,
non-local,butno

problem
s

on
“roof:”

N
1

N
1 N

1
N

1

N
1

N
2

N
2

N
2

N
2

N
2

T

T

T

T

T

15

3D
curve

fram
es,contd

G
eodesic

R
eference

Fram
e

is
the

fram
e

found
by

tilting
N

orth
P

ole
of“canonicalfram

e”
along

a
greatcircle

untilitpoints
in

desired
direction

( tangentfor
curves,norm

alfor
surfaces).

M
A

IN
V

A
LU

E
:A

foolproofreference
fram

e
for

sliding
rings.

16

S
am

ple
C

urve
Tubings

and
their

Fram
es

Frenet
G

eodesic
R

eference
P

arallelTransport

E
asily

see
P

T
has

least“Tw
ist,”butlacks

periodicity.

17

C
onclusion:

Q
uaternion

Tubing

O
bservations:

•
Tubing

and
Q

uaternion
F

ram
e

S
pace.

A
ny

path
of

fram
es

on
this

space
can

be
used

to
solve

the
tubing

problem
.

•
M

inim
ality.

T
he

P
T

fram
e

appears
to

be
unique

fram
e

w
ith

m
inim

um
totalrotation .

•
D

istributed
Tw

ist.
A

conventional
com

prom
ise

distributes
a

user-
desired

boundary
tw

ist
uniform

ly
across

vertex
fram

es:
T

his
is

best
done

using
uniform

Q
uaternion

distances
betw

een
uniform

ly
spa-

tially
sam

pled
fram

es.

•
H

ybrids.
O

n
closed

curves,Frenetfram
e

is
periodic,P

T
is

not.
A

dd
fixed

angular
increm

entthroughoutto
m

ake
P

T
periodic.

•
Initial

angular
velocity.

C
an

give
the

fram
e

an
arbitrary

num
ber

oftw
ists

using
σ
6=

0
.

M
inim

altangentialacceleration
version

corre-
sponds

to
quaternion

treatm
entby

B
arr,C

urrin,G
abriel,and

H
ughes

(S
iggraph

92).

18



PA
R

T
IIb:

Q
uaternion

P
rotein

F
ram

es

•
A

M
IN

O
A

C
ID

S
in

proteins
are

oriented
structures.

•
E

xactly
H

O
W

they
are

oriented
ofgreatbiologicalin-

terest.
U

sualR
am

achandran-fram
e

m
ethod

is
local.

T
hus

one
cannotm

easure
globalorientation

sim
ilar-

ities
or

statistics.

•
Q

uaternions
fix

this
—

globalsim
ilarities

can

be
displayed.

19

E
xam

ple:
Q

uaternion
P

rotein
F

ram
e

S
tatistics

Q
uaternion

m
aps

for
N

M
R

data
describing

10
different

observed
geom

e-
tries

for
the

protein
Y

vyC
from

B
acillus

subtilis,2H
C

5.
(left)

T
he

collection
ofalternative

geom
etries.

(right)
Q

uaternion
m

aps
show

ing
the

orientation
space

geom
etry

spreads
for

each
individualam

ino
acid.

20

B
asic

B
ackground:

O
rientation

F
ram

es
in

B
ioinform

atics

•
P

roteins
are

im
portant.

T
he

entire
m

achinery
of

life
depends

on
the

geom
etry

of
proteins,

w
hich

control
the

chem
ical

reactions
of

m
etabolism

.

•
P

roteins
are

long
chains

offram
es.

P
roteins

consistofhundreds,
oreven

thousands,ofam
ino

acids
w

ith
w

ell-defined
orientation

fram
es

arranged
in

a
sequence,butw

ith
very

com
plicated

3D
geom

etry.

•
Traditional

orientation
tools

describing
proteins

are
pri

m
itive.

T
he

R
am

achandran
plotrelates

am
ino

acid
n

to
am

ino
acid

n
±

1

—
that’s

it!

•
R

am
achandran

statistics
are

im
possible.

W
ith

only
localinform

a-
tion,

you
can’t

com
pare

distant
active

sites,
or

gather
statistics

on
non-rigid

protein
orientation

distribution.

21

N
ew

P
rogress:

Q
uaternion

F
ram

es
in

P
roteom

ics

•
T

he
P

D
B

has
m

assive
protein

geom
etry

data.
W

e
can

m
ine

that
data

to
constructprecise,am

ino-acid-residue
by

am
ino-acid-residue,

orientation
fram

e
labels.

•
A

m
ino

acid
quaternion

fram
es.

It
is

straightforw
ard

to
convertthe

P
D

B
geom

etry
to

quaternion
fram

e
sequences.

•
U

sing
our

quaternion
display

tricks,
globalinform

ation
about

residue
alignm

entis
directly

visualizable.

•
O

ur
just-published

JM
G

M
paper

applies
quaternions

to
m

any
proteom

ics
problem

s.
F

or
additional

inform
ation,

see
A

.
H

anson
and

S
.T

hakur,JournalofM
olecularG

raphics
and

M
odelling

,“Q
uater-

nion
M

aps
ofG

lobalP
rotein

S
tructure.”

(Fall2012).

22

B
asic

P
rocedure

•
Library

of20
am

ino
acids.

P
roteins

link
these

togetherw
ith

peptide
bonds:

a
C

’–O
H

uniton
one

end
sees

an
N

H
2 –C

α
on

the
other

side,
and

joins
together

as
C

’–N
H

–C
α

,kicking
offa

w
ater,H

2 O
.

•
P

ick
T

hree
A

tom
s.

A
ny

three
noncollinear

atom
s

are
sufficient

to
define

a
quaternion

fram
e,butsom

e
are

m
ore

usefulfor
specific

pur-
poses

than
others.

•
C

om
pute

Q
uaternion

F
ram

es
for

the
w

hole
protein.

•
V

iew
fram

e
sequence

on
the

quaternion
sphere.

G
lobalcom

par-
isons

as
w

ellas
localcom

parisons
can

be
m

ade
w

ith
a

sequence
of

quaternion
fram

es.

•
S

tudy
the

m
ap.

T
he

m
ap

itself
can

be
used

to
perform

orientation
statistics

and
sim

ilarities
unobtainable

by
other

m
ethods.

23

B
asis

ofan
A

m
ino

A
cid

O
rientation

F
ram

e

A
m

ino
acid

geom
etry

show
ing

the
com

putation
of

our
default

d
is-

crete
fram

e
based

on
the

direction
from

the
C

α
to

the
neighboring

C
and

N
atom

s.
T

he
fram

e
vectors

X
(red),

Y
(green),and

Z
(blue)

are
superim

posed
on

the
basic

am
ino

acid
unitstructure.

24



A
m

ino
A

cid
O

rientation
F

ram
es

for
N

eighbors

D
rop

shadow
geom

etry
fortw

o
adjacentresidues.

C
-N

peptide
bond

is
in

orange
tint.

C
α -fram

es
are

defined
for

distinctresidues,
alter-

native
P

-fram
e

includes
the

linking
peptide

bond.
25

B
asis

ofthe
A

m
ino

A
cid

P
-fram

e

T
he

coordinates
ofthe

P
-fram

e
definition;the

fram
e

cen-
tered

on
the

C
carbon,and

extending
to

the
nitrogen

on
the

neighboring
residue.

26

B
asic

G
eom

etric
S

tructures:

•
A

lpha
H

elix.
O

ne
of

the
m

ost
com

m
on

structures
is

the

A
lpha

H
elix,

form
ed

w
hen

sequences
of

residues
relax

into
a

low
-energy

state
thatcoils

them
into

a
spiral.

•
B

eta
S

heet.
A

nother
com

m
on

structure
is

essentially
se-

quence
of

residues
related

to
each

other
by

180-degree

flips,giving
the

geom
etric

appearance
ofa

“sheet”
—

really
a

very
flatellipse.

27

M
odelofan

A
lpha

H
elix

(a)
A

helix
defined

by
the

param
etric

equation

(r
c
o
s(t),

r
sin

(t),
p
t)

.

(b)
A

set
of

fram
es

on
the

helical
curve

defined
by

the
F

renet-S
erret

equation.
N

ote
the

relation
of

the
identity

fram
e

atbottom
leftto

the
firstactualhelix

fram
e.

28

(a)
(b)

M
odelofan

A
lpha

H
elix

29

A
lpha

H
elix

Q
uaternion

M
ap

(a)
(b)

T
he

quaternion
m

aps
for

a
helix

defined
by

the
param

et-
ric

equation
(r

c
o
s(t),

r
sin

(t),
p
t).

(a)
x
y
z

m
ap.

(b)
w

y
z

m
ap.

R
ed

dotis
the

identity
fram

e.

30



B
eta

S
heetM

odel

(a)
(b)

(a)
A

beta
sheetm

odeled
by

the
param

etric
equation

(c
o
s(t),

0
.1

sin
(t),

0
.5

t)

(b)
A

setofF
renet-S

erretfram
es

atroughly
the

expected
pla

ces
on

the
equation

ofthe
curve.

N
ote

the
relation

ofthe
identity

f
ram

e
at

foreground
to

the
firstactualsam

pled
fram

e.

31

B
eta

S
heetQ

uaternion
M

ap

(a)
(b)

A
beta

sheetm
odeled

by
the

param
etric

equation
(c

o
s(t),

0
.1

sin
(t),

0
.5

t).
(a)

x
y
z

m
ap.

(b)
w

y
z

m
ap.

R
ed

dotis
identity

fram
e.

32

E
xam

ple:
B

eta
S

heetQ
uaternion

M
ap

P
rotein

structure
of

2H
C

5
and

a
quaternion

m
ap

of
its

beta
sheetstructure.

N
eighboring

fram
es

are
given

m
atch-

ing
quaternion

signs
in

this
m

ap.

33

E
xam

ple:
Q

uaternion
N

M
R

F
ram

e
S

tatistics

Q
uaternion

m
aps

forN
M

R
data

describing
10

deform
ations

ofY
vyC

.
(left)

S
patialgeom

etries.
(right)

Q
uaternion

orientation
space

geom
-

etry
spreads

for
each

am
ino

acid
residue.

34

E
xam

ple
contd:

N
M

R
Fram

e
S

tatistics

Isolating
a

selected
section

of
the

protein
Y

vyC
from

B
acill

us
sub-

tilis,2H
C

5.
(left)T

he
selected

region.
(right)Q

uaternio
n

m
aps

show
-

ing
the

orientation
space

geom
etry

spreads
foreach

individualam
ino

acid
in

this
region.

35

E
xam

ple
contd:

N
M

R
Fram

e
S

tatistics

(a)
(b)

Q
uaternion

m
aps

for
N

M
R

data
describing

20
different

geom
et

ries
for

the
protein

obtained
from

1D
1R

(Y
ciH

gene
ofE

.C
oli).

(a)
A

lter-
native

geom
etries.

(b)
Q

uaternion
m

ap
clusters.

36



Q
uaternion

P
rotein

M
aps:

S
um

m
ary

and
C

onclusions

•
S

tep
I:S

electa
fram

ing.

•
S

tep
II:C

onvertto
quaternions.

•
S

tep
III:E

nforce
C

ontinuity.

•
S

tep
IV

:
V

iew
the

4D
m

ap
projected

to
3D

.
T

he
m

ap

itself
can

be
rotated

in
4D

to
different

view
points

that
ex-

pose
selected

properties
ofthe

sim
ilarity

space.

37

P
artIIc:

D
ualQ

uaternions

•
Q

uaternions
D

escribe
O

nly
3D

R
otations.

A
com

puter

graphics
scene

m
ust

place
elem

ents
using

both
R

ota-

tions
and

Translations .

•
W

orse:
Q

uaternion
“V

ector”
Is

W
rong.

T
he

“vector”

(0
,
x
)

in
R

·
x

=
q

⋆
(0

,
x
)

⋆
q∗

is
a

180-degree
rota-

tion,nota
vector

(1989
paper

by
A

ltm
ann).

(0
,
x
)

in
pure

quaternions
does

notresultfrom
any

sensible
translation-

like
transform

ation.

38

D
ualQ

uaternions...

•
S

olution:
D

ual
Q

uaternions
C

an
D

o
3D

Translations.

D
ualquaternions

are
a

m
athem

aticaltrick
thateffectively

creates
an

infinite-radius
rotation

,
and

thatis
exactly

a

translation.

•
M

athem
aticaldevice:

dualnum
bers

.
W

e
already

know

thatquaternions
use

a
“generalized

com
plex

num
ber”w

ith

i 2
=

j
2

=
k
2

=
ijk

=
−
1

:
D

ualnum
bers

add
another

copy
ofa

quaternion
m

ultiplied
by

ǫ
,w

here
ǫ
2

=
0

.

39

D
ualQ

uaternions...

•
B

rief
H

istory.
D

ual
quaternions

(biquaternions)
w

ere
first

investi-
gated

by
C

lifford
(1873),

and
elaborated

by
S

tudy
(1891).

M
odern

treatm
ents

can
be

found,
e.g.,

from
the

G
erm

an
schoolof

B
laschke

(1960),
and

are
used

in
theoretical

m
echanics

(B
ottem

a
and

R
oth,

1979;
M

cC
arthy,

1990),
and

in
robotics.

S
ee

also
S

ee
D

orst
et

al.,
G

eom
etric

A
lgebra

forC
om

puterS
cience

forthe
connection

betw
een

dualquaternions
and

C
lifford

algebras.

•
R

esources
for

G
raphics

A
pplications.

K
avan

et
al.

(TO
G

,
2008)

have
spurred

the
transfer

of
dualquaternion

m
ethods

from
robotics

to
graphics

for
skinning

problem
s,etc.

(A
ppendix

ofK
avan

etal.
has

an
excellentsum

m
ary,butm

isses
a

couple
offine

points
thatw

e
w

ill
look

atbelow
.)
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A
pproach

to
A

dding
in

Translations

ID
E

A
:

Term
inate

the
exponential

series.
T

his
changes

a

rotation
into

a
translation.

U
sual:

i 2
=

−
1

:
e
iθ

=
1

+
iθ

−
12

θ
2
−

13
! iθ

3
+

···
=

c
o
s
θ
+

i
sin

θ

e
iθe

iφ
=

c
o
s(θ

+
φ
)
+

i
sin

(θ
+

φ
)

D
ual:

ǫ
2

=
0

:
e
ǫt

=
1

+
ǫt

+
0

e
ǫx

e
ǫt

=
1

+
ǫ(x

+
t)

.

Like
the

θ
→

0
lim

itofrotation.
S

o
the

dualalgebra
looks

like
sm

all
θ

or
large

radius
rotation,w

hich
is

effectively
translation.
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...tow
ard

D
ualQ

uaternions...

N
ew

look
for

3D
V

ectors:
T

he
key

to
rem

oving
A

lt-

m
ann’s

objection
is

surprising:

•
R

eplace
the

zero
in

(0
,
x
)

by
a

one.

•
T

hen
m

ultiply
the

x
by

ǫ.

•
T

his
gives

us
a

w
ay

to
m

ake
a

True
V

ector.

x
=

(1
,
0
)
+

ǫ(0
,
x
)

≡
(1

,ǫx
)

.

•
N

ow
w

e
can

m
ake

a
vector

from
nothing

using
quater-

nion
conjugation:

(1
,ǫx

)
=

(1
,ǫx

/
2
)

⋆
(1

,ǫ0
)

⋆
(1

,ǫx
/
2
)

.
42



D
ualQ

uaternions...

•
D

ual
translation

features:
W

e
next

pick
a

notation
for

the
dualquaternion

for
translation:

N
ote

that
w

e
need

a

specialconjugation:
(q

0
,
q
) ∗

=
(q

0
,−

q
)

com
bined

w
ith

dual
conjugation

a
+

ǫb
=

a
−

ǫb.
N

eed
both

to
give

needed
plus

sign
in

sandw
iched

translation.

•
D

ualtranslation
τ
(
d
):

O
ur

new
tool(w

ith
half-vectors)

is
the

dualquaternion

τ
(
d
)
=

(1
,
0
)
+

ǫ
(0

,
d2
)
≡

(1
,ǫ

d2
)

•
Translate

x
to

x
+

d
by

conjugate
m

ultiplication:

τ
(
d
)

⋆
(1

,ǫx
)

⋆
τ
(
d
) ∗

=
(1

,ǫ
(
x

+
d
))

43

D
ualQ

uaternions
F

ix
H

am
ilton

•
R

otation
done

right!
S

A
M

E
answ

er,
of

course,
but

now

x
is

no
longer

confounded
w

ith
180

o
rotation:

(1
,ǫR

·
x
)
=

q
⋆
(1

,ǫx
)

⋆
q ∗

•
F

ull
S
E
(3

)
fram

e
now

possible!
W

e
can

perform
a

com
plete

O
penG

L-style
transform

ation,
x ′

=
T
·
R

·
x

=

R
·
x

+
d

,as:

τ
(
d
)

⋆
q

⋆
(1

,ǫx
)

⋆
(τ

(
d
)

⋆
q
) ∗

=
(1

,ǫ(R
·
x

+
d
))

•
H

ow
ever,this

is
only

halfthe
story.
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M
oving

C
enters

w
ith

D
ualQ

uaternions

P
roblem

:
w

hat
happened

to
(c

o
s,

n
sin

)?
D

on’t
w

e
w

ant

to
use

thatrepresentation
for

the
F

U
LL

fram
e?

•
F

irststep:
T
(r

)·R
·T

−
1
(r

).
W

hathappens
to

the
fixed-

pointrule ?

τ
(
r)

⋆

(

c
o
s

θ2
,
n
sin

θ2

)

⋆
τ
(−

r)

=

(

c
o
s

θ2
,(

n
+

ǫ
r×

n
)
sin

θ2

)

•
S

o
the

fixed
point

r
appears

as
a

dualrotation
axis

r×
n

,autom
atically

in
the

plane
perpendicular

to
n

.45

F
igure:

D
isplacing

R
otations

n

d
(parallel)

origin

P
lane w

ith norm
al =

 
n

c/2
c

d

r

n r’−
sam

e rotation for any added m
ultiple of 

n

F
ixed

P
ointR

ule
ofan

arbitrary
displacem

ent:
resultis

unchanged
by

m
oving

r
in

the
n

direction.
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M
oving

C
enters

...

P
roblem

:
r
≡

r
+

tn
:

H
ow

do
you

m
ove

outofthe
n
⊥

plane?

•
S

econd
step:

dual
angle.

N
ow

suppose
r

=
0

,
but

m
ake

angle
dual:

θ
→

θ
+

ǫλ
.

•
D

ualtrig
form

ulas:
W

e
need

c
o
s(a

+
ǫ
b)

=
c
o
s
a
−

ǫ
b
sin

a
and

sin
(a

+
ǫ
b)

=
sin

a
+

ǫ
b
c
o
s
a,w

hich
follow

from
the

Taylor
series

expansion.
T

hen

q
(θ

+
ǫλ

,
n
)

=

(

c
o
s

θ2
−

ǫ λ2
sin

θ2
,

n
(sin

θ2
+

ǫ λ2
c
o
s

θ2
)

)
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M
oving

C
enters

...

•
θ
→

0
lim

it:
S

im
plestcase

is
vanishing

θ,so

q
(ǫλ

,
n
)
=

(1
,
ǫ
n

λ2
)

•
In

other
w

ords, the
dualangle

is
the

displacem
entalong

n
!

•
S

plitdisplacem
ent

d
into

d
⊥

and
d
‖

relative
to

n
using

λ
=

n
·
d

,
so

that:

d
=

d
⊥

+
d
‖
=

c
+

λ
n

and
by

definition
c
=

d
−

λ
n

and
n

are
the

P
lucker

coordinates
ofthe

line
through

d
parallelto

n
.
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S
crew

M
otion:

C
hasles’T

heorem

Last
step:

find
the

rotation
center

r
that

m
akes

the
equa-

tions
w

ork:
•

W
e

can
easily

solve
the

equations

T
(
r)·

R
·
T
(−

r)
=

T
(
d
⊥

=
c
)·

R

assum
ing

r
is

perpendicular
to

n
,so

λ
=

n
·
d

is
the

w
hole

com
po-

nentof
d

in
the

n
direction.

•
W

e
find

(rem
em

ber
c
=

d
⊥

=
d
−

λ
n

):

r
=

12
c
+

12
n
×

c
c
o
t

θ2

unless
θ

=
0

,
in

w
hich

case
the

action
becom

es
a

pure
translation.

(T
his

is
partofC

hasles’T
heorem

.)
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D
isplacem

entvia
S

crew
M

otion

origin

d

c/2

r

n
c

R
otation w

ith
partial translation

P
lane w

ith norm
al =

 n

n

R
otation

can
produce

D
isplacem

ent.
B

utyou
can’tuse

F
ixed

P
ointR

ule
for

arbitrary
displacem

ent.
M

ust
A

D
D

S
E

PA
R

AT
E

LY
any

m
otion

along
the

n
direction.
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F
ullF

ram
e

w
ith

U
nitD

ualQ
uaternion

F
inally,

w
e

can
see

how
to

decom
pose

T
(
d
)
·
R

into
a

unit

dualtrigonom
etric

quaternion
q̂ .

N
ote

that‖
q̂

⋆
p̂‖

=
‖
q̂‖‖

p̂‖,
so

the
unit

property
is

preserved
under

any
dualquaternion

m
ultiplication.

G
eneraltrig

form
for

dualquaternion
q̂

:

q̂
(θ̂

,
n̂
)

=
q
0
+

ǫq
ǫ

=
(q

0
+

ǫq
ǫ ,

q
0
+

ǫq
ǫ )

=

(

c
o
s

θ
+

ǫλ

2
,(

n
+

ǫr×
n
)
sin

θ
+

ǫλ

2

)
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F
ullFram

e
w

ith
U

nitD
ualQ

uaternion
...

•
D

ualQ
uatN

orm
:

E
asy

to
show

thatour
norm

is

‖
q̂‖

2
=

‖
q
0 ‖

2
+

2
ǫq

0
·
q
ǫ
.

•
S

o
a

unitdualquaternion
m

usthave
q
0
·
q
ǫ
=

0
.

T
hatis

satisfied
by

the
trigonom

etric
form

because
n
·
(
r×

n
)
=

0
.

•
T

hus
w

e
can

alw
ays

param
eterize

T
(
d
)·R

(θ
,
n
)

using
the

unitdual
quaternion

q̂
(

θ̂
=

θ
+

ǫ(
d
·
n
),

n̂
=

n
+

ǫr×
n
)

,

w
here

r
is

the
rotation

center,com
putable

from
θ,

n
,and

d
as

r
=

12
c
+

12
n
×

c
c
o
t

θ2
.
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Interpolating
D

ualQ
uaternions

•
S

LE
R

P
extends

directly:
U

sing
pow

er
series

ifneeded,

easily
extend

the
usualquaternion

interpolation
form

ulas:

q̂
(t)

=
c
o
s
t

θ̂2
+

n̂
sin

t
θ̂2

w
here,e.g.,

n̂
=

n
+

ǫ
r×

n
,

θ̂
=

θ
+

ǫ
d
·
n

.

•
W

IT
H

one
sm

allproblem
:

T
he

“rotation-induced”
trans-

lation
along

c
⊥

n
has

a
differentspeed

from
the

transla-

tion
along

n
(the

λ
=

(
d
·
n
)

part).
P

LU
S

the
translation

is
notstraight(see

S
crew

M
otion

F
igure).

T
his

is
the

costofthe
dualtrigonom

etric
form

.

53

U
sefulP

roperties
ofD

ualQ
uaternions...

•
E

xponential
and

Log:
U

sing
pow

er
series,

one
can

extend
the

usualquaternion
exponentialand

log
form

ulas:

e
x
p
(ŝθ̂

)
=

c
o
s

θ̂2
+

ŝ
sin

θ̂2

and
so

obviously
lo

g
q̂
=

ŝ
θ̂.

•
Inverse:

T
he

inverse
ofa

dualobjectis
defined

only
for

a
6=

0
:

( a
+

ǫ
b) −

1
=

1
a
+

ǫ
b
=

1a
−

ǫ
ba
2

as
can

be
easily

confirm
ed

from
(a

+
ǫ
b)(c

+
ǫ
d
)
=

a
c
+

ǫ
(a

d
+

bc)

•
S

quare
R

oot:
A

trick
sim

ilarto
the

one
w

e
saw

forquaternions
w

orks
for

the
square

rootofa
dualquaternion

(again,for
a
6=

0
):

√
a
+

ǫ
b
=

√
a
+

ǫ
b

2 √
a .
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A
pplications:

B
lending

and
Interpolation

•
B

lending
forS

kinning:
D

ualquaternions
perm

itan
unusually

sm
ooth

com
bination

of
w

eighted
skin

vertices
associated

to
tw

o
or

m
ore

skeletalelem
ents

in
character

anim
ation.

T
he

m
ost

rigorous
m

eth-
ods

are
essentially

dualquaternion
extensions

ofthe
sphericalcenter-

of-m
ass

m
ethods

ofB
uss

and
F

illm
ore

(TO
G

,2001).
Faster,butless

accurate
m

ethods,use
the

conceptofP
hong

shading,renorm
alizing

a
linear

com
bination

ofdata
sets

(K
avan

etal.,TO
G

2008).

•
Interpolation:

B
lending

is
a

static
process,and

needs
to

be
done

to
com

bine
character

body
elem

ents
such

as
skin

vertices
ateach

m
o-

m
ent.

Interpolation
for

sim
ulating

m
oving

objectkinem
atics

and
con-

trolling
cam

era
m

otion
can

also
be

accom
plished

by
extending

stan-
dard

quaternion
interpolation

techniques
to

dualquaternions,though
challenging

issues
such

as
how

to
controldualparam

eters
and

how
to

m
atch

rotationaland
translationalspeeds

in
a

single
interpolation

introduce
additionalcom

plexity
and

possible
artifacts.
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F
IN

A
L

T
U

TO
R

A
L

S
U

M
M

A
R

Y

•
Q

uaternions
nicely

representfram
e

sequences.
•

T
U

B
E

S
:

C
urve

fram
es

⇒
quaternion

curves.
E

xploit

quaternion
space

offram
es

to
design

any
type

offram
e.

•
P

R
O

T
E

IN
S

:A
m

ino
acid

residue
coordinates

⇒
quater-

nion
fram

e
m

aps.
A

pply
to

globalcom
parisons

and
sta-

tisticaldistributions.

•
D

U
A

L
Q

U
AT

E
R

N
IO

N
S

:
(F

rom
C

lifford,
1873.)

E
xtend

quaternion
rotation

algebra
to

include
translations.

A
pplications

include
blending

for
skinning

in
figure

anim
ation,robotarm

m
otion

planning,etc.

ftp://ftp.cs.indiana.edu/pub/hanson/S
iggraph12Q

uatC
ourse/56


