

(a) A beta sheet modeled by the parametric equation

$$
(\cos (t), 0.1 \sin (t), 0.5 t)
$$

(b) A set of Frenet-Serret frames at roughly the expecter
the equation of the curve. Note the relation of the id

Beta Sheet Quaternion Map

 $(\nmid+x) \ni+\tau={ }_{\nexists \ni}{ }^{\partial} x^{\ni}{ }^{\text {a }}$ rotation into a translation.

$$
\begin{aligned}
(\phi+\theta) \text { u!s } ?+(\phi+\theta) \text { sov } & =\phi_{\ell!}^{\partial} \theta ?^{\partial} \\
\theta \text { uाs } l+\theta \text { sov } & =
\end{aligned}
$$

$$
\theta \text { u!s! } ?+\theta \text { sos }=
$$

Approach to Adding in Translations

$$
\begin{aligned}
& (\phi+\theta) \mathrm{u}!\mathrm{s} ?+(\phi+\theta) \text { soo }={ }_{\phi 2}{ }^{2} \theta^{\partial}{ }^{2}
\end{aligned}
$$

$i^{2}=j^{2}=k^{2}=i j k=-1$: Dual numbers add another
copy of a quaternion multiplied by ϵ, where $\epsilon^{2}=0$. that quaternions use a "generalized complex number" with - Mathematical device: dual numbers. We already know creates an
translation and infinite-radius rotation, and that is exactly a

suo!urajeno iena
pose selected properties of the similarity space.

- Step III: Enforce Continuity. - Step II: Convert to quaternions.
- Step I: Select a framing

Summary and Conclusions
${ }^{37}$
\qquad

。
$(1, \epsilon \mathrm{X})=(1, \epsilon \mathrm{X} / 2) \star(1, \epsilon \mathbf{0}) \star(1, \epsilon \mathrm{X} / 2)$
 $\left(x \not{ }^{\prime} \mathrm{L}\right) \equiv$
 - Replace the zero in $(0, \mathrm{x})$ by a one.

- Then multiply the x by ϵ. :6u!suludns s! uo!̣və!̣qo sıuuem
 ‘sио!идәепо ıепа рлемоı •

FINAL TUTORAL SUMMARY

