Quaternion Applications

Andrew J. Hanson
School of Informatics and Computing
Indiana University

Siggraph Asia 2012 Tutorial



OUTLINE

I (55 min) Introduction to Quaternions:
What are they good for?

Understanding Rotation Sequences!

Il a: (15 min) Quaternion Tubing:

Visualizing Framed Space Curves



...OUTLINE...

Il b: (15 min) Quaternion Protein Maps:

Amino Acid Frame Seqguences with Quaternions

Il ¢: (20 min) Intro to Dual Quaternions:

Applications to Six-Degrees-of-Freedom



Part |

Introduction to Quaternions:

... Twisting Belts and Rolling Balls...

Explaining Rotation Sequences with Quaternions



Where Did Quaternions Come From?

... from the discovery of Complex Numbers:

oz =x+ 1y

Complex numbers = realization

that 22 + 1 = 0O cannot be solved unless you

have an “imaginary” number with i2 = —1.

e Euler’'s formula

e = cosf® +ising

allows you to do most of 2D geometry.



Hamilton

The first to ask “If you can do 2D geometry with complex numbers, how
might you do 3D geometry?” was William Rowan Hamilton, circa 1840.

Sir Willam Rowan Hamilton
4 August 1805 — 2 September 1865



Hamilton’s epiphany: 16 October 1843

“An electric circuit seemed to close; and a spark flashed
forth ... Nor could I resist the impulse — unphilosophi-
cal as it may have been —to cut with a knife on a stone
of Brougham Bridge, as we passed it, the fundamen-

tal formula with the symbols, 2, 7, k; namely,

.2 2 _ 2

1C = 3 = 1k = —1

which contains the Solution of the Problem...”



The plaque on Broome Bridge in Dublin, Ireland, commem-
orating the legendary location where Hamilton conceived of
the idea of quaternions. (Photo taken July 2012).



...the author on Broome Bridge...

Yes, | have
actually
been there!



The Belt Trick

Quaternion Geometry in our daily lives

e Two people hold ends of a belt.

e Twist the belt either 360 degrees or 720 de-

grees.

e Rule: Move belt ends any way you like but do

not change orientation of either end.

e Try to straighten out the belt.
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360 Degree Belt

360 twist: stays twisted, can change DIRECTION!
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/20 Degree Belt

720 twist: CAN FLATTEN OUT WHOLE BELT!
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The Beltless Trick

Quaternion Geometry is right in your hand!

e Hold a coffee cup (empty is a good idea) in the
palm of your hand.

e Keeping the cup vertical, user your hand to twist
the handle, first by 360 degrees (painful).

e Now CONTINUE another 360 degrees, for a to-
tal of 720 degrees.

e Your arm Is once again STRAIGHT!
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Rolling Ball Puzzle

. Put a ball on a flat table.
. Place hand flat on top of the ball
. Make circular rubbing motion, as though polish-

Ing the tabletop.
. Watch a point on the equator of the ball.
. small clockwise circles —

equator goes counterclockwise
. small counterclockwise circles —

equator goes clockwise
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Rolling Ball Scenario

Point of Contact

motion -
: -
in plane
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Gimbal Lock

Gimbal Lock occurs when a mechanical or com-
puter system experiences an anomaly due to an
(z,y, z)-based orientation control sequence.

e Mechanical systems cannot avoid all possible gim-
bal lock situations .

o Computer orientation interpolation systems can
avoid gimbal-lock-related glitches by using quater-
nion interpolation.
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FIGURE 2 FIGURE 4

FIGURE 5

Mechanical Gimbal Lock: Using =z, vy, z axes to encode orientation

gives singular situations. .



Gimbal Lock

"

Apollo Systems

k|

Red-painted area = Danger of real Gimbal Lock
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2D Rotations

e 2D rotations <« complex numbers.
o Why? e (z + iy) = (z' + iy/')

' = zcosfd —ysinb

y = xsinf 4+ ycosé

e Complex numbers are a subspace of quater-
nions — so exploit 2D rotations to introduce us

to quaternions and their geometric meaning.
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Frames in 2D

The tangent and normal to 2D curve move continuously along
the curve:

Z>

v ® >
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Frames in 2D

The tangent and normal to 2D curve move continuously along
the curve:

Z>
— >

D

%
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Frames in 2D

The tangent and normal to 2D curve move continuously along
the curve:

Z>
—>
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Frame Matrix in 2D

This motion is described at each point (or time) by the matrix:

R>(6) T N|

cosf —sind
sin@ cosé
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The Belt Trick Says:

There I1s a Problem...at least in 3D

How do you get cos 6 to know about 720 degrees?
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The Belt Trick Says:

There i1s a Problem...at least in 3D

How do you get cos 6 to know about 720 degrees?

Hmmmmm. cos(6/2) knows about 720 degrees, right?

25



Half-Angle Transform:

A Fix for the Problem?

Let a = cos(0/2), b =sin(0/2),
(i.e., cos O = a2 — b2, sin 6 = 2ab),
and parameterize 2D rotations as:

a?2 — b2 —2ab

Ro(a,b) = Sab a2 — b2

where orthonormality implies

(a® +b°)? =1

which reduces back to a2 + b2 = 1.
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Frame Evolution in 2D

Examine the time-evolution of a 2D frame (on our way to 3D).
First use 6(t¢) coordinates:

cosf —siné

[TN] — sinfé cosé

Differentiate to find frame equations:

T(#) = +xN

N(@#) = —«T),

where k(t) = df/dt is the curvature .
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Frame Evolutionin  (a,b):

The basis (T,N) is nasty — Four equations with Three

constraints from orthonormality, but just One true degree of

freedom.

Major Simplification occursin (a, b) coordinates!!

= aa — bb a —b||a
T_Q{ab—l—bd]_Q{b a ] b]
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Frame Evolution in (a, b):

But this formula for T is just kN, where

o —2ab | a —b || —b
N[ =DV

weafi 28 2]

or
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2D Quaternion Frames!

Rearranging terms, both T and N eqns reduce to

=3 o] s

This is the square root of frame equations.




2D Quaternions ...

So one equation in the two “quaternion” variables (a, b) with

the constraint a2+ b2 = 1 contains both the frame equations

.
~~ —~

T = 4+xkN

N = —xT
= this is much better for computer implementation, etc.
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Rotation as Complex Multiplication

If we let (a + ib) = exp (1 60/2) we see that

rotation is complex multiplication!

“Quaternion Frames” in 2D are just complex numbers, with

Evolution Eqns = derivative of exp (i 6/2)!
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Rotation with no matrices!

Due to an extremely deep reason in Clifford Algebras,
a -+ b = ew/Q
represents rotations “more nicely” than the matrices R(6).
(o' + i) (a +ib) = O FT/2 — A 4B

where If we want the matrix, we write:;

A2 - B2 _2AB

ROVRO)=R@ +0)=|"_" 7 577,
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The Algebra of 2D Rotations

The algebra corresponding to 2D rotations is easy: just com-

plex multiplication!!

12

(a',b) % (a,b) (a/' +ib)(a + ib)
a'a —b'b+i(a'b 4+ ab)
(a'a —b'b, a'b+ ab)

= (4, B)

12

2D Rotations are just complex multiplication , and take you
around the unit circle!
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Quaternion Frames

In 3D, repeat our trick: take square root of the frame, but now

use quaternions:

e Write down the 3D frame.
e Write as double-valued guadratic form.

e Rewrite frame evolution equations linearly

INn the new variables.
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The Geometry of 3D Rotations

We begin with a basic fact:

Euler theorem: every 3D frame can be written as a spinning

by 6 about a fixed axis n, the eigenvector of the rotation ma-
trix:

5>
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Quaternion Frames ...

The Matrix R3(6, 1) giving 3D rotation by 6 about axis 1 is :

c4+ (n1)2(1—=¢) nino(l —c¢) —sn3z nzni(l —c) + sno
nino(l —¢) 4+ sn3 c+ (n2)2(1 —¢) nano(l —c) — sny
nin3(l —c) —snp nonzg(l —c) +sny c+ (n3)2(1 — ¢) _

where ¢ = cosf, s =sinf,andn-n = 1.
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Can we find a 720-degree form?

Remember 2D: a2 4 b2 =1
then substitute 1 — ¢ = (a2 + b2) — (a? — b2) = 2b2
to find the remarkable expression for R(6,1n):

[ a2 — b2 + (nq1)2(2b2) 2b%nino — 2abns 2b%n3ni + 2abno
2b2nino + 2abng  a? — b2 4 (n2)?(2b2) 2b%non3 — 2abn
2b%n3ny — 2abno 2b%nonz + 2abny  a? — b + (n3)?(2b°)
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Rotations and Quadratic Polynomials

Remember (n1)2 4+ (n5)? + (n3)2 =1 and a? + b2 = 1;
letting

go = a = cos(f#/2) q=bn=nsin(6/2)

We find a matrix R3(q)

@B+a5—ad5—ad5 2q192 —29093 29193 + 29092

29192 + 29093 98 — 95 + @3 — 43 22qzq§ = 2;10@1 A
| 29193 — 29092 29293 + 29091 95 — 91 — 95 T 43
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Quaternions and Rotations ...

HOW does ¢ = (qpo, q) represent rotations?

LOOK at
?

R3(67 ﬁ) — R3(QO7 41,42, Q3)

THEN we can verify that choosing

0 0
6,n) = (CoOs—, nsin—
q(6,0) = (cos _, fisin )

makes the R3 equation an IDENTITY .
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Quaternions and Rotations ...

WHAT happens if you do TWO rotations?

EXAMINE the action of two rotations

R(¢)R(q) = R(Q)

EXPRESS in gquadratic forms in ¢ and LOOK FOR an analog
of complex multiplication:
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Quaternions and Rotations ...

RESULT: the following multiplication rule

g * ¢ = Q|yields exactly the correct 3 x 3 rotation
matrix R(Q):
Qo = |d' * dlg 4090 — 9191 — 4292 — 4343
Q1=1q"*ql1| _ |q0m1 + 9190 + 9243 — 9342
Q2 =ld"*dlp| |9092 + 9290 + @301 — 9143
Q3= 1[¢"*4dl3] |q0a3t+ d390 + d192 — 201

This is Quaternion Multiplication.
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Algebra of Quaternions
= 3D Rotations!

2D rotation matrices are represented

by complex multiplication

3D rotation matrices are represented

by quaternion multiplication
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Algebraic 2D/3D Rotations

Therefore in 3D, the 2D complex multiplication

(a/,b") % (a,b) = (a'a — /b, a'b+ ab)

IS replaced by 4D quaternion multiplication:

/ _ / / / /
¢ *q = (9090 — 9191 — 9292 — 9343,

4691 -

4692 -

- q190 -

- g5q0

4093 -

- g5q3 — 9592,

- 4591 — 4493,

- q390

/ /
- q192 — 9591)
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Algebra of Quaternions ...

The equation Is easier to remember by dividing it

Into a scalar piece qg and a vector piece q:

¢ *q = (q0q0 — d - q,
/] — 7

god+ qod +d X q)
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Now we can SEE quaternions!

Since (go)?+q-q=1 then

g0 =+vV1—q-q

Plot just the 3D vector: q = (qz, gy, qz)

go 1S KNOWNI! We can also use any other triple:

the fourth component is dependent.
DEMO
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We can now make a Quaternion Picture of each of our

favorite tricks

e 360° Belt Trick in Quaternion Form. DEMO:
e 720° Belt Trick in Quaternion Form.
¢ Rolling Ball in Quaternion Form.  DEMO:

e Gimbal Lock in Quaternion Form.
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360° Belt Trick in Quaternion Form

%l)’(rdﬂlll

AL
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—
//”[u.(ﬁ%n\h\
~—~_A>

720° Belt Trick in Quaternion Form
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Rolling Ball in Quaternion Form

>~

q vector-only plot.

(90, 9z, =) plot
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Gimbal Lock in Quaternion Form

Quaternion Plot of the remaining orientation degrees
of freedom of R(0,X) - R(¢,y) - R(¢,Z) at ¢ = 0O
and ¢ = /6
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Gimbal Lock in Quaternion Form, contd

Choosing ¢ and plotting the remaining orientation
degrees In the rotation sequence
R(6,%X)-R(o,y) - R(vy,z), we see degrees of
freedom decrease from TWO to ONE as ¢ — 7/2

52



Quaternion Interpolations

e Shoemake (Siggraph '85) proposed using quaternions in-
stead of Euler angles to get smooth frame interpolations

without Gimbal Lock :

BEST CHOICE: Animate objects and cameras using ro-

tations represented on S3 by quaternions
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Interpolating on Spheres

General quaternion spherical interpolation employs the “SLERP

a constant angular velocity transition between two directions,

q1 and go:

di12(t) = Slerp(qi,qo,t)
__sin((1—1)0) . _ sin(t0)
— T 5ne) T singe)

where cosf = q1 - q».
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Plane Interpolations

In Euclidean space, these three basic cubic splines look like
this:

=

= o N
[

= o N
[
o

‘e
-®
‘e
-®

0.5

Bezier Catmull-Rom Uniform B

The differences are in the derivatives: Bezier has to start
matching all over at every fourth point; Catmull-Rom matches
the first derivative; and B-spline is the cadillac, matching all
derivatives but no control points.
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Spherical Interpolations
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P =il hm ¢

A?ﬂﬂhnvf

Quaternion Interpolations

V";l”“v"/—

Uniform B

Rom

Catmull-

Bezier
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Exp Form of Quaternion Rotations

In Hamilton’s notation, we can generalize the 2D equation
a+ 1b = 675«9/2
Just set

qg = (g0, 91, 92, q3)

= qo +1q1 + Jg2 + kg3
_ (I00/2)

with gqo = cos(8/2) and d = nsin(6/2) and I = (i, j, k),
with i2 = j2 = k? = —1, and i * j = k (cyclic),
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Cute Quaternion Tricks!

Square Roots are cool..

A quaternion p is the square root of a quaternion q Iif

p*p—=—4q.

A hint: remember that if c = cos 6, and v = cos(%), then

| 14c 1+ c
TN - /2(1 +¢)
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Cute Quaternion Tricks...

Suppose we now lookat 1 4+ ¢ = (1 4+ ¢p,q). Then

1+ *(1+4q) = (1+9)°—a-aq, 2q(1+q))
= 2(14+q0)q

Dividing through by 2(1 + ¢qg), we find the | square root:

14g¢
V2(1 4+ qo)

P = \qg =
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Tricks, contd: Liningup a and b

A common rotation task is to line up two directions, a and b.
There is a simple quaternion form for this operation. Let

a-b=cosfd=c, axb=rnsind

where we assume sinfd > 0. Then we can compute the
rotation from a to b using, again, the half-angle formula:

R(a,b) = (cos(0/2), iisin(6/2))

l1+c¢ . - 1
(\ 2 ’aXbJ2(1+c)>

where we also used sin 9 = 2 cos(0/2) sin(6/2).
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Clifford Algebras

¢ All Rotations in any dimension are represented
by two reflections using Clifford Algebra:
A and B define the perpendicular directions to two re-
flection planes, A- A =B -B = 1.

e Create Rotation Matrix R and solve for the Quater-

nion, and you amazingly get THIS:

¢(A,B) = (A-B, A xB)
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Clifford Algebra Quaternion Form ...

Why is this a quaternion form?

¢g-¢q = (A-B)?+ (A xB) (A xB)
= (A-A)(B-B)
= 1

If Quaternions are like the Square Roots of Ro-
tations, then Clifford Algebras are like the Square
Roots of Quaternions!
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Key to Quaternion Intuition

Fundamental Intuition: We know

go = cos(6/2), q=nsin(0/2)

We also know that any coordinate frame M can be written
as M = R(0,n).

Therefore

q points exactly along the axis we have to rotate

around to go from identity I to M, and the length of

q tells us how much to rotate.
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Summarize Quaternion Properties

e Unit four-vector. Take ¢ = (q0,91,92,93) = (g0, q) t0
obey constraint g - ¢ = 1.

e Multiplication rule. The quaternion product g and p is

q*p = (qoro — 4 - P, qoP + rod + 4 X pP),
or, alternatively,

lg*plog| |agopo— q1p1 — q2p2 — q3P3
q*ply | _ | q0p1 + 910 + 92P3 — q3D2
q * P> qop2 + q2po + q3p1 — 41P3
3.

[q*p | qop3 + q3po + q1P2 — q2p1 |
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Quaternion Summary ...

e Rotation Correspondence. The unit quaternions ¢ and
—q correspond to a single 3D rotation R3:

q(2) +q7 — q3 — Q§ 22<J1q§ — 2<210<J3 ; 29193 + 29092
29192 + 29093 9§ — 97 + 95 — g5 22qzq§ — 29091
| 29193 — 29092 2¢2q3 + 29001 a5 — 95 — a3 + 43

If

= (cos 6 nsin 9)
q_ 27 2 y

with nn a unit 3-vector, n - n = 1. Then R(8,1n) is usual 3D
rotation by 6 in the plane L to n.
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SUMMARY

e Quaternions represent |3D frames

e Quaternion multiplication represents 3D rotation

e Quaternions are |points on a hypersphere

e Quaternions paths can be visualized with 3D display

e Belt Trick, Rolling Ball, and Gimbal Lock can be un-

derstood as Quaternion Paths.



