
Quaternion Applications

Part II

Tubing, Bioinformatics, and Dual
Quaternions
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OUTLINE

• Quaternion Curves and Tubing: generalize the Frenet

Frame, make quaternion map of all tubings , optimize for

any tubing task.

• Quaternions in Bioinformatics: use quaternion frames

to create GLOBAL orientation descriptions and statistics

for any protein’s amino acid structure.

• Dual Quaternions: Introduction to a generalization of

quaternions that supports translation as well as rotation.
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Part II a: Tubing

What Do Quaternions Have to do with Tubing??

∗ Basic Idea: Every point on a curve can be as-
signed a frame – sort of like a roller-coaster car
running on a roller-coaster track.

∗ We FIX one direction , generally the tangent to
the curve.
∗ The remaining two directions define a swept-
out tube (which can have any cross-section you
like, typically a circle).
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What are Frames used For?

• Our application: Attach tubes and textures to thickened

lines.

• ...also... Move objects and object parts in an animated

scene.

• Move the camera generating the rendered viewpoint of

the scene.

• Compare shapes of similar curves.

• Collect orientation data of moving object (e.g., a joint),

etc. etc.
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Examine Framing of Curves
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The (3,5) torus knot.

• Line drawing ≈ useless.

• Tubing using parallel transport : nice, but not periodic.

• Closeup of the non-periodic mismatch.
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Example of Tubing Problems on Curves
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Closeup of the non-periodic mismatch.

Can’t apply texture.
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More Tubing Issues on Curves. . .

Tubings of the 2,3 torus knot based on Frenet-Serret, Geodesic Refer-
ence, and Parallel Transport frames. Issues: FS: singular, excess twist.
GR: singular point, PT: non-periodic.
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General Solution:
Invariant Quaternion Frames

REMARKS:

• Ambiguity of Frame. We have freedom to choose a “gauge,” i.e.,
any additional rotation around tangent vector, at any curve point.

• Circles in q space. “Gauge freedom” generates great circles in S3

quaternion space. Need 4π radians to get full quaternion circle.

• Gauge-invariant swept tube. Sweeping entire set of circles (≈ dual
to tangent vector) in q-space gives invariant picture of ALL frame
possibilities.

• Best paths in tube. Minimal length in S3 is PT frame! Other
choices include minimal acceleration, constant rotation, etc. . . .
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Geometric Construction of Space of Frames:

• R(θ, T̂) leaves T̂ invariant, but doesn’t have T̂ as Last

Column.

• Use Geodesic Reference to construct one instance of

such a frame: R(ẑ · T̂, ẑ × T̂).
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Geometric Construction of Space of Frames:

q(θ, T̂)∗q(ẑ·T̂, ẑ×T̂) generates the correct family of quater-
nion curves:

T

T
^

^^

^

x

z

z

10



Invariant Quaternion Frames . . .
Invariant frame for trefoil knot:

∗ Left: Red fan = tangents; Magenta arc = tangent map;
Green vectors = geodesic reference starting points.
∗ Right: Short segment of invariant space.
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Invariant Quaternion Frames . . .

The Whole Tubing Frame Space of the (2,3) Torus Knot!
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3D Curves: Frenet and PT Frames

Now give more details of 3D frames: Classic Moving Frame:








T′(t)
N′(t)
B′(t)









=









0 k1(t) k2(t)
−k1(t) 0 σ(t)
−k2(t) −σ(t) 0

















T(t)
N(t)
B(t)









.

Serret-Frenet frame: k2 = 0, k1 = κ(t) is the curvature,

and σ(t) = τ(t) is the classical torsion. LOCAL.

Parallel Transport frame (Bishop): σ = 0 to get minimal turn-

ing. NON-LOCAL = an INTEGRAL.
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3D curve frames, contd

Frenet frame is locally defined, e.g., by

B(t) =
x′(t) × x′′(t)

‖x′(t) × x′′(t)‖
but has problems on the “roof.”
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3D curve frames, contd

Bishop’s Parallel Transport frame is integrated over whole
curve, non-local, but no problems on “roof:”
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3D curve frames, contd

Geodesic Reference Frame is the frame found by tilting North
Pole of “canonical frame” along a great circle until it points in
desired direction (tangent for curves, normal for surfaces).

MAIN VALUE: A foolproof reference frame for sliding rings.
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Sample Curve Tubings and their Frames

Frenet Geodesic Reference Parallel Transport

Easily see PT has least “Twist,”but lacks periodicity.
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Conclusion: Quaternion Tubing

Observations:

• Tubing and Quaternion Frame Space. Any path of frames on this
space can be used to solve the tubing problem.

• Minimality. The PT frame appears to be unique frame with minimum
total rotation.

• Distributed Twist. A conventional compromise distributes a user-
desired boundary twist uniformly across vertex frames: This is best
done using uniform Quaternion distances between uniformly spa-
tially sampled frames.

• Hybrids. On closed curves, Frenet frame is periodic, PT is not. Add
fixed angular increment throughout to make PT periodic.

• Initial angular velocity. Can give the frame an arbitrary number
of twists using σ 6= 0. Minimal tangential acceleration version corre-
sponds to quaternion treatment by Barr, Currin, Gabriel, and Hughes
(Siggraph 92).

18



PART II b: Quaternion Protein Frames

• AMINO ACIDS in proteins are oriented structures.

• Exactly HOW they are oriented of great biological in-

terest. Usual Ramachandran-frame method is local.

Thus one cannot measure global orientation similar-

ities or statistics.

• Quaternions fix this — global similarities can

be displayed.
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Example: Quaternion Protein Frame Statistics

Quaternion maps for NMR data describing 10 different observed geome-
tries for the protein YvyC from Bacillus subtilis, 2HC5. (left) The collection
of alternative geometries. (right) Quaternion maps showing the orientation
space geometry spreads for each individual amino acid.
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Basic Background: Orientation Frames in
Bioinformatics

• Proteins are important. The entire machinery of life depends on
the geometry of proteins, which control the chemical reactions of
metabolism.

• Proteins are long chains of frames. Proteins consist of hundreds,
or even thousands, of amino acids with well-defined orientation frames
arranged in a sequence, but with very complicated 3D geometry.

• Traditional orientation tools describing proteins are pri mitive.
The Ramachandran plot relates amino acid n to amino acid n ± 1

— that’s it!

• Ramachandran statistics are impossible. With only local informa-
tion, you can’t compare distant active sites, or gather statistics on
non-rigid protein orientation distribution.
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New Progress: Quaternion Frames in
Proteomics

• The PDB has massive protein geometry data. We can mine that
data to construct precise, amino-acid-residue by amino-acid-residue,
orientation frame labels.

• Amino acid quaternion frames. It is straightforward to convert the
PDB geometry to quaternion frame sequences.

• Using our quaternion display tricks, global information about
residue alignment is directly visualizable.

• Our just-published JMGM paper applies quaternions to many
proteomics problems. For additional information, see A. Hanson
and S. Thakur, Journal of Molecular Graphics and Modelling, “Quater-
nion Maps of Global Protein Structure.” (Fall 2012).
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Basic Procedure

• Library of 20 amino acids. Proteins link these together with peptide
bonds: a C’–OH unit on one end sees an NH2–Cα on the other side,
and joins together as C’–NH–Cα, kicking off a water, H2O.

• Pick Three Atoms. Any three noncollinear atoms are sufficient to
define a quaternion frame, but some are more useful for specific pur-
poses than others.

• Compute Quaternion Frames for the whole protein.

• View frame sequence on the quaternion sphere. Global compar-
isons as well as local comparisons can be made with a sequence of
quaternion frames.

• Study the map. The map itself can be used to perform orientation
statistics and similarities unobtainable by other methods.
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Basis of an Amino Acid Orientation Frame

Amino acid geometry showing the computation of our default d is-
crete frame based on the direction from the C α to the neighboring C
and N atoms. The frame vectors X (red), Y (green), and Z (blue) are
superimposed on the basic amino acid unit structure.
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Amino Acid Orientation Frames for Neighbors

Drop shadow geometry for two adjacent residues. C-N peptide bond
is in orange tint. C α-frames are defined for distinct residues, alter-
native P-frame includes the linking peptide bond.
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Basis of the Amino Acid P-frame

The coordinates of the P-frame definition; the frame cen-
tered on the C carbon, and extending to the nitrogen on
the neighboring residue.
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Basic Geometric Structures:

• Alpha Helix. One of the most common structures is the

Alpha Helix, formed when sequences of residues relax

into a low-energy state that coils them into a spiral.

• Beta Sheet. Another common structure is essentially se-

quence of residues related to each other by 180-degree

flips, giving the geometric appearance of a “sheet” —

really a very flat ellipse.
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Model of an Alpha Helix

(a) A helix defined by the parametric equation

(r cos(t), r sin(t), pt) .

(b) A set of frames on the helical curve defined by the
Frenet-Serret equation. Note the relation of the identity
frame at bottom left to the first actual helix frame.

28



(a) (b)
Model of an Alpha Helix 29



Alpha Helix Quaternion Map

(a) (b)
The quaternion maps for a helix defined by the paramet-
ric equation (r cos(t), r sin(t), pt). (a) xyz map. (b) wyz
map. Red dot is the identity frame.
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Beta Sheet Model

(a) (b)
(a) A beta sheet modeled by the parametric equation

(cos(t), 0.1 sin(t), 0.5t)

(b) A set of Frenet-Serret frames at roughly the expected pla ces on
the equation of the curve. Note the relation of the identity f rame at
foreground to the first actual sampled frame.
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Beta Sheet Quaternion Map

(a) (b)
A beta sheet modeled by the parametric equation
(cos(t), 0.1 sin(t), 0.5t). (a) xyz map. (b) wyz map.
Red dot is identity frame.
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Example: Beta Sheet Quaternion Map

Protein structure of 2HC5 and a quaternion map of its
beta sheet structure. Neighboring frames are given match-
ing quaternion signs in this map.
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Example: Quaternion NMR Frame Statistics

Quaternion maps for NMR data describing 10 deformations of Y vyC.
(left) Spatial geometries. (right) Quaternion orientation space geom-
etry spreads for each amino acid residue.
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Example contd: NMR Frame Statistics

Isolating a selected section of the protein YvyC from Bacill us sub-
tilis, 2HC5. (left) The selected region. (right) Quaternio n maps show-
ing the orientation space geometry spreads for each individual amino
acid in this region.
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Example contd: NMR Frame Statistics

(a) (b)
Quaternion maps for NMR data describing 20 different geomet ries
for the protein obtained from 1D1R (YciH gene of E. Coli). (a) Alter-
native geometries. (b) Quaternion map clusters.
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Quaternion Protein Maps:
Summary and Conclusions

• Step I: Select a framing.

• Step II: Convert to quaternions.

• Step III: Enforce Continuity.

• Step IV: View the 4D map projected to 3D. The map

itself can be rotated in 4D to different viewpoints that ex-

pose selected properties of the similarity space.
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Part II c: Dual Quaternions

• Quaternions Describe Only 3D Rotations. A computer

graphics scene must place elements using both Rota-

tions and Translations.

• Worse: Quaternion “Vector” Is Wrong. The “vector”

(0,x) in R · x = q ⋆ (0,x) ⋆ q∗ is a 180-degree rota-

tion, not a vector (1989 paper by Altmann). (0,x) in pure

quaternions does not result from any sensible translation-

like transformation.

38



Dual Quaternions. . .

• Solution: Dual Quaternions Can Do 3D Translations.

Dual quaternions are a mathematical trick that effectively

creates an infinite-radius rotation , and that is exactly a

translation.

• Mathematical device: dual numbers . We already know

that quaternions use a “generalized complex number” with

i2 = j2 = k2 = ijk = −1: Dual numbers add another

copy of a quaternion multiplied by ǫ , where ǫ2 = 0.
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Dual Quaternions. . .

• Brief History. Dual quaternions (biquaternions) were first investi-
gated by Clifford (1873), and elaborated by Study (1891). Modern
treatments can be found, e.g., from the German school of Blaschke
(1960), and are used in theoretical mechanics (Bottema and Roth,
1979; McCarthy, 1990), and in robotics. See also See Dorst et al.,
Geometric Algebra for Computer Science for the connection between
dual quaternions and Clifford algebras.

• Resources for Graphics Applications. Kavan et al. (TOG, 2008)
have spurred the transfer of dual quaternion methods from robotics
to graphics for skinning problems, etc. (Appendix of Kavan et al. has
an excellent summary, but misses a couple of fine points that we will
look at below.)
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Approach to Adding in Translations

IDEA: Terminate the exponential series. This changes a

rotation into a translation.

Usual: i2 = −1: eiθ = 1 + iθ − 1

2
θ2 − 1

3!
iθ3 + · · ·

= cos θ + i sin θ

eiθeiφ = cos(θ + φ) + i sin(θ + φ)

Dual: ǫ2 = 0: eǫt = 1 + ǫt + 0

eǫxeǫt = 1 + ǫ(x + t) .

Like the θ → 0 limit of rotation. So the dual algebra
looks like small θ or large radius rotation, which is effectively
translation.
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. . . toward Dual Quaternions. . .

New look for 3D Vectors: The key to removing Alt-

mann’s objection is surprising:

• Replace the zero in (0,x) by a one.

• Then multiply the x by ǫ.

• This gives us a way to make a True Vector.

x = (1, 0) + ǫ(0,x)

≡ (1, ǫx) .

• Now we can make a vector from nothing using quater-

nion conjugation:

(1, ǫx) = (1, ǫx/2) ⋆ (1, ǫ0) ⋆ (1, ǫx/2) .
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Dual Quaternions. . .

• Dual translation features: We next pick a notation for

the dual quaternion for translation: Note that we need a

special conjugation: (q0,q)∗ = (q0,−q) combined with

dual conjugation a + ǫb = a − ǫb. Need both to give

needed plus sign in sandwiched translation.

• Dual translation τ(d): Our new tool (with half-vectors)

is the dual quaternion

τ(d) = (1, 0) + ǫ (0,
d

2
) ≡ (1, ǫ

d

2
)

• Translate x to x + d by conjugate multiplication:

τ(d) ⋆ (1, ǫx) ⋆ τ(d)∗ = (1, ǫ (x + d))
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Dual Quaternions Fix Hamilton

• Rotation done right! SAME answer, of course, but now

x is no longer confounded with 180o rotation:

(1, ǫR · x) = q ⋆ (1, ǫx) ⋆ q∗

• Full SE(3) frame now possible! We can perform a

complete OpenGL-style transformation, x′ = T · R · x =

R · x + d, as:

τ(d) ⋆ q ⋆ (1, ǫx) ⋆ (τ(d) ⋆ q)∗ = (1, ǫ(R · x + d))

• However, this is only half the story.
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Moving Centers with Dual Quaternions

Problem: what happened to (cos, n sin)? Don’t we want

to use that representation for the FULL frame?

• First step: T (r) ·R ·T−1(r). What happens to the fixed-

point rule?

τ(r) ⋆

(

cos
θ

2
,n sin

θ

2

)

⋆ τ(−r)

=

(

cos
θ

2
, (n + ǫ r × n) sin

θ

2

)

• So the fixed point r appears as a dual rotation axis

r × n , automatically in the plane perpendicular to n.
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Figure: Displacing Rotations

n

d (parallel)

origin

Plane with normal = n

c/2
c

d

r

n

r’ −same rotation for any added multiple of n

Fixed Point Rule of an arbitrary displacement: result is unchanged by
moving r in the n direction.

46



Moving Centers . . .

Problem: r ≡ r+tn: How do you move out of the n⊥ plane?

• Second step: dual angle. Now suppose r = 0, but

make angle dual: θ → θ + ǫλ.

• Dual trig formulas: We need cos(a + ǫ b) = cos a −
ǫ b sin a and sin(a+ǫ b) = sin a+ǫ b cos a, which follow

from the Taylor series expansion. Then

q(θ + ǫλ, n) =

(

cos
θ

2
− ǫ

λ

2
sin

θ

2
,

n(sin
θ

2
+ ǫ

λ

2
cos

θ

2
)

)
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Moving Centers . . .

• θ → 0 limit: Simplest case is vanishing θ, so

q(ǫλ, n) = (1, ǫ n
λ

2
)

• In other words, the dual angle is the displacement along n!

• Split displacement d into d⊥ and d‖ relative to n using λ = n · d,
so that:

d = d⊥ + d‖ = c + λn

and by definition c = d − λn and n are the Plucker coordinates
of the line through d parallel to n.
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Screw Motion: Chasles’ Theorem

Last step: find the rotation center r that makes the equa-
tions work:
• We can easily solve the equations

T(r) · R · T(−r) = T(d⊥ = c) · R
assuming r is perpendicular to n, so λ = n · d is the whole compo-
nent of d in the n direction.

• We find (remember c = d⊥ = d − λn):

r = 1
2c + 1

2n × c cot θ
2

unless θ = 0, in which case the action becomes a pure translation.
(This is part of Chasles’ Theorem .)
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Displacement via Screw Motion

origin

d

c/2

r

n
c

Rotation with
partial translation

Plane with normal = n

n

Rotation can produce Displacement. But you can’t use Fixed Point Rule
for arbitrary displacement. Must ADD SEPARATELY any motion along
the n direction.
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Full Frame with Unit Dual Quaternion

Finally, we can see how to decompose T (d) · R into a unit

dual trigonometric quaternion q̂. Note that ‖q̂ ⋆ p̂‖ = ‖q̂‖‖p̂‖,

so the unit property is preserved under any dual quaternion

multiplication.

General trig form for dual quaternion q̂ :

q̂(θ̂, n̂) = q0 + ǫqǫ

= (q0 + ǫqǫ, q0 + ǫqǫ)

=

(

cos
θ + ǫλ

2
, (n + ǫr × n) sin

θ + ǫλ

2

)
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Full Frame with Unit Dual Quaternion . . .

• Dual Quat Norm: Easy to show that our norm is

‖q̂‖2 = ‖q0‖2 + 2ǫq0 · qǫ .

• So a unit dual quaternion must have q0 · qǫ = 0. That is satisfied
by the trigonometric form because n · (r × n) = 0.

• Thus we can always parameterize T(d) ·R(θ, n) using the unit dual
quaternion

q̂
(

θ̂ = θ + ǫ(d · n), n̂ = n + ǫr × n
)

,

where r is the rotation center, computable from θ, n, and d as
r = 1

2c + 1
2n × c cot θ

2.
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Interpolating Dual Quaternions

• SLERP extends directly: Using power series if needed,

easily extend the usual quaternion interpolation formulas:

q̂(t) = cos t θ̂
2 + n̂ sin t θ̂

2

where, e.g., n̂ = n + ǫ r × n, θ̂ = θ + ǫd · n.

• WITH one small problem: The “rotation-induced” trans-

lation along c ⊥ n has a different speed from the transla-

tion along n (the λ = (d · n) part). PLUS the translation

is not straight (see Screw Motion Figure).

This is the cost of the dual trigonometric form.
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Useful Properties of Dual Quaternions. . .

• Exponential and Log: Using power series, one can extend the
usual quaternion exponential and log formulas:

exp(ŝθ̂) = cos θ̂
2 + ŝ sin θ̂

2

and so obviously log q̂ = ŝ θ̂.

• Inverse: The inverse of a dual object is defined only for a 6= 0:

(a + ǫ b)−1 = 1
a+ǫ b = 1

a − ǫ b
a2

as can be easily confirmed from (a+ǫ b)(c+ǫ d) = ac+ǫ (ad+bc)

• Square Root: A trick similar to the one we saw for quaternions works
for the square root of a dual quaternion (again, for a 6= 0):

√
a + ǫ b =

√
a + ǫ b

2
√

a
.

54



Applications: Blending and Interpolation
• Blending for Skinning: Dual quaternions permit an unusually smooth

combination of weighted skin vertices associated to two or more
skeletal elements in character animation. The most rigorous meth-
ods are essentially dual quaternion extensions of the spherical center-
of-mass methods of Buss and Fillmore (TOG, 2001). Faster, but less
accurate methods, use the concept of Phong shading, renormalizing
a linear combination of data sets (Kavan et al., TOG 2008).

• Interpolation: Blending is a static process, and needs to be done to
combine character body elements such as skin vertices at each mo-
ment. Interpolation for simulating moving object kinematics and con-
trolling camera motion can also be accomplished by extending stan-
dard quaternion interpolation techniques to dual quaternions, though
challenging issues such as how to control dual parameters and how
to match rotational and translational speeds in a single interpolation
introduce additional complexity and possible artifacts.
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FINAL TUTORAL SUMMARY

• Quaternions nicely represent frame sequences.
• TUBES: Curve frames ⇒ quaternion curves. Exploit

quaternion space of frames to design any type of frame.

• PROTEINS: Amino acid residue coordinates ⇒ quater-

nion frame maps. Apply to global comparisons and sta-

tistical distributions.

• DUAL QUATERNIONS: (From Clifford, 1873.) Extend

quaternion rotation algebra to include translations.

Applications include blending for skinning in figure

animation, robot arm motion planning, etc.

ftp://ftp.cs.indiana.edu/pub/hanson/Siggraph12QuatC ourse/
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