How to Search Efficiently
by
Cynthia A. Brown and Paul Walton Purdom, Jr.
Computer Science Department
Indiana University

Bloomington, Indiana 47405

TECHNICAL REPORT No. 105

How To SEARCH EFFICIENTLY
CYNTHIA A, BrRowN AND PauL WaLTon PurpoMm, JR.

MarcH 1981

This material is based upon work supported by the National
Science Foundation under Grant NSF MCS 7906110

How to Search Efficiently
by
Cynthia A, Brown

and

Parl VWalton Purdom, Jr.

Abstract: The only technique available for solving many important
problems is searching. Since searching can be extremely costly, it is
important to identify features tkhat improve the efficiency of search
algorithms. Ve compute the efficiency of simplie backtracking,
Coldberg's simplification of the Putnam-Davis procedure, the combinaticn
of simple backtracking with Goldberg’s method, anéd search rearrangemert
backtracking over two sets of random problems. A correct analysis c¢f
Goldberg's method shows that it requires exponential average time. Tie
performances of the algorithms are compared and features that lead to

efficient algorithms are identified.

This research was supported in part by the National Science

Foundation under grant number }NCS 7906110.

1. Introduction

Some problems can be solved by direct caziculatior in an efficient,
straightforward way, but for many important classes of problems the best
known method is a controlled search for solutions. Suck searches,
vnfortunately, can consume extremely (ezponentially) large amounts of
time, Efforts to study and improve search methods are therefore cf

considerable practical importa=nce.

By carefully analyzing a particular set of problems it may be
possible to find problem—specific information that can be used to contrci
the search. This can be an excellent approach; in some cases it has led
to algorithms that avoid searching altogether. Often, however, after all
problem—specific information has been used, excessive search time is
still reguired.

Another approach to the problem is to study general search
algorithms and to identify features that lead to an efficient searcl.
The twe approaches are complementary; the best algorithm for a
particular problem is often obtained by combining problem—specific
techniques with the best general search method.

Here we report the initial results of a systematic study of search
methods. All methods have about the same worst case time (exponentially
large). Also, technigues that lead t¢ an improvement in average
performance often result in a minor degradation of worst—case behavios,
so a study of worst—case behavior can be misleadi;g. The average time
performance of these algorithms can be much better than the worst—case
performance. For these reazsons we have concentrated on average
performance. Some of the methods we study lead to an exponential

improvement in average seazrch time,

Ail the search algorithms we study are special versions of a

[

generalized searching method., Py specifing the details of tkhe
generalized method in various ways we obtain simple backtracking, search
rearrangement backtrackiang [1,13], Goldberg's simplified Putnan—-Davis
procedure [7], Goldberg’s modification combined with simple backtrackinj,
the full Putnam-Davis procedure [4], and many other interestisrg
algorithms. Ve present the results of analyzing the first four of these
algerithms. OCur analysis shows that Goldberg’s algorithm requires
exponential time (contrary to kis claim), that ordinary backtracking is
much more efficient than Goldberg's algorithm, and that search
rearrangement backtracking can be much more efficient than ordinazy
backtracking.

Ve hope toc analyze the full Putnam-Davis procedure. The points that
remain te be analyzed are the effect of stopping the search when the
first solutioen is found and the effect of the pure literal rule,
Stopping at tkhe first solution is c¢learly important for problem sets thst
have many soclutions. Careful analysis is needeé-to determine the
importance of the pure literal rule.

In the next section we describe the generalized search procedure ard
some of its variations. In Section 3 we give the model problem sets used
in our average—time aznalyses. In Section 4 we present our results and

discuss their signficance, and in Section 5 we consider some open

problems.

V53

2. Search Procedures

Searching is used to solve problems that can be expressed in the

form
P = N Ry, sveiV) (L
1¢idm ~ 2i1 & - F
where each Ri, 14i{m , is z relation (a function whose value is true cr
false) over a small number of wvariables, and the variables v _ are

a;
ik
taken from a2 set {vi | 1<ign} of variables, each of which is restricted

to a finite set of values. A solution of the problem is an assignment cf
values to the variables that makes all of the relatioms true.

Any problem in the class NP can be expressed as a predicate in the
form of Eq.(1). Many ezamples of such problems are given in [5]. We
illestrate the encoding of problems in this form with the game cf
generalized instant insanity [14]. The game is played with m cubes.
BEach face of each cube is painted with some color., The object of the
game is to form a stack of n cubes with eachk cube oriented so that each
face of the stack consists of cube faces that have distinct colors. Each
cube has twenty-four possible orientatioms. Since the order of the cubes
in the stack is irrelevant, the problem is eqguivalent to the predicate

A ﬁij(oi,oj) (2)
iLi, j<m
i#j
whers 0 is the orientation of cube k and Eij(oi,oj) is true if and
only if, wher cube i bhas orientatiocn o and cube j has

1

orientation °j’

the pair of cubes forms a legal stack of height two
(all faces of the stack are made up of distinct colors).
The wmost obvious method of searching for solutions to a predicate in

this form is to try all combinations of values of the variables. This

sort of exhaustive search is prohibitively slow for large problems.
¥ g

Fortunately, the special form of EHq. 1 ©permits three types cf
improvements., First, since each relation is defined over a small subsct
of the variables, a relation may become false as soon as all of its
variables have been assigned values. In this case no extension of tle
current partial assignment of values to6 variables can be a soiuntion.
Such extensions need not be investigated. This is the idea behird
backtracking.

A second improvement consists of looking for variables that should
be assigned values early in tkhe search. It is particularly kelpful to
find 2 variable 211 of whose values make 2 clause false (under tkte
current partial assignment), or which has only one value whick does nct
make a clause false. This is the basic idez of search rearrangemert
backtracking [1,13], and of the uvnit clause rule in the Putnam-Davis
procedure [4],

A third approach involves looking for the valunes of a variable that
are most likely to lead to a solution. In some cases there is a value
that makes all relations which depend on the variable true. Ian that case
only that ome value of the varisble requires comsideration. This is tie
basis of the pure literal rule in the Putnam-Davis procedure.

These ideas khave been used extemsively to improve the average
running time of search algoriihms, although they can make the worsi—case
time somewhat worse. We are studying algorithms that use various
combinations of the ideas. Since there are many possible search
algorithms we first give a2 common gemeral procedure and then present the
details that distinguish the various methods. The procedure uses a stack

to keep track of which variables have been set.

Generalized Search Procedure

1. [Initialize.] Set eack variable to undefined. Set Stack to
empty.

2. [Select variable.,] Select as the current variable a variable
that needs to be testeé. If there is no such variable, ge¢ to
Step 5. Push the current variable onte Stack and mark all of
its values as untested,

3. [Select vaiue.] For the current variable select an untested
value that requires testing, If there is no suck value, go to
Step 6. OQOtherwise set the variable to that value and mark the

value as tested.

I

. [Test.] If some clause of the predicate is false under the
present partial assignment of valuwes to variables, go to Step I,
If all solutions are desired, go to Step 2.

5. [Solution.] The current assiganment of values to variables is a
solution (any remaining unassigned variables may take on any cf
their values). If only one solution is édesired, stor.
If all solutions are desired, go to step 3.

6. [Back up.] ©Set the current variable to undefined, Pop Staci.

The new current variable is at the top of 8Stack. If Stack is
empty, stop. Otherwise go to Step 3.

Hany search zlgorithms simplify the predicate as they search. Fcr
example, in the Putnam-Davis procedure clauses that become true are
dropped. The dropped clauses are restored when the algorithm backs up.

The algorithms that we have analyzed search for all solutions; they
never stop at Step 5. Iz the future, mnless otherwise stated, we will
assume that Step § always goes to Step 3. For these algorithms the order

in wkich vailues are tested at Ster 3 is immaterial, since zll values nmust

eventually be tested.

y

Simple backtracking is obtained from the generazlized search
procedure by selecting the variables in a fized order at Step 2 and tle
values in a fixed order at Step 3., Every variable and every value
requires testing. In search rearrangement backtracking [1] a simple test
is used to select 2 variable 2t Step 2. Each value of each variable is
tested (using the same test used in Step 4), and the variable for which
the fewest values pass the test is selected. Llore sopkisticazted seazch
rearrangement algorithms [13] test combinations of values.

In the Putnam-Davis procedure variables are selected by examining
the predicate directly rather than by testing the values of variables.
This method of selection is more powerful, but it is also more difficult
to program and requires more knowledge of the internal structure of tie
clauses.

The original Putnam-Davis procedure was designed for predicates in
conjunctive normal form. To describe a more general procedure we first
give some (nonstandard) definitioms. A relation B is a unit ¢lause i7,
under the current partial assignment of valves to variables, there is en
unset variable v such that R is false for every valus but one of 7.

We call v the associated variable of the unit clause. A variabie v

is relevant if there is a relation B whose value under the current

partial assignment depends on v, A variable v is associated with a

pure literal if under the current partial assignment there is some valuve

x of v such that when v is assigned value x every R that depends
on v is truwe. The value 3x is called 2 safe valne.
The generalized Putnam-Davis procedunre is our gemeral search

procedure with the following modifications. In Step 2, if possible,

o |

select & variable associated witk a unit clause. Otherwise, if possible,
select a variable associated with a pure literal, Only one safe value is
tested. If there are no variables associated with pure literals or wanit
clauses, then select any relevant variable, If there are no relevant
variables, go to Step 5. The Putnam-Pavis procedure stops when the first
solution is found.

Goldberg [7] comsidered a2n extremely simplified version of ths
Putnam—-Davis procedure, He did =not advocate its use, but nmerely
developed it to obtain an upper bound on the performance of the original
procedure. In his versiom variables are selected in fized order at Step
2, as long as some variable is relevant (the selecteé variable is not
necessarily relevant)., All values are tested at Step 3, and no tests are
done at Step 4 (i.e., the test gives the result true) unless all relevant
variables have been assigned values., The procedure searches for all
solutions, The procedure is like backtracking except that it backs up
when all the R; are true instead of when ome of them is false. €Goldberg
claimed that his algorithm ran in polynomial time. Unfortumately there
is an error in his analysis [12], and his algorithm is inefficient. His

approachk to the amalysis, however, is gquite interesting.

3. Random Problens

To do an average time analysis it is necessary to select a set of
representative problems and a probability distribution over the set. For
backtracking it is not obvious what a "'typical' problem is. In this
paper we consider two types of ramndom problem sets. Dotk are instances
of conjunciive normal form predicates: that is, cach relation is a
disjuanction (logical or) of a set of literals, where 2 literal is e

variable or its negation. The variables can have the values true and

o

false., TFor each type of problem set we give a method of forming & randonm
clavse; a random predicate is then the conjunction of ¢ randon clauses
selected independently (thus, a random predicate may happen to contain
two copies of the same clause).

In the first method of comstructing random clauses each clause has
s literazls for some fixed s. The s 1literals are independently
selected from the 2v possible literals, This method was used in our
earlier analyses of backtracking algorithms [2,11].

In the second method cach iiteral has probablity p of being in the
clause for some fixed p. This method was used by Goldberg [7]. The two

models are roughly equivalent wken the parameters are set so that

<

b=

We follow the original papers in computing "running time" in the
two models., In our model we assume that the "running time™ is egual
to the number of binary nodes in the search tree. he actual running
time increases more rapidly (by a factor of approximately v [3]) but
this error is unimportant compared to the expomnential differences in the
average running times of the various search algorithns,

in Goldberg’'s model we assume that the time to process 2 node is
egual to avt , where 2a is a comstant, v is the nunber of unset
variables, amd t is the number of terms that are still being

considered. Both unary and binary nodes are counted.

4. Results
Table 1 summarizes the exact resuvlts for the average "running tine”
of various search algorithms. A sketch of the znalyses that led to these

results is giver in Appendix 1. [ost of the exact results are not in

closed form, so it is difficult to understand their significance. 4n
asymptotic amalysis makes these results easier to interpret. To obtain
an interesting asymptotic amalysis, however, careful consideration must
be given to kow s, p, and t should vary as v increases. Ve believe
that keeping s fixzed, letting p = a/v for fized a2, and letting t =
bv for fixed b gives results similar to those for many interesting
realistic problems. This keeps the individual terms sma2ll while letting
the number of terms increase with v. Ve also consider t = v% fcr
fizxed a>1. The first choice for t produces problems where the number
of comstraints increases proportionately to the number of variables. Tle
second choice produces problems where the number of constraints inecreascs
more rapidly.

The first step in most of the analyses is to determine whick level
in the backtrack tree (value of i) has the most nodes in it. Tte
approximate value of i for each case is given in Table 2. The level
with the most nodes is always between zerc and v. When the entry in
Table 2 is less than zero the true value is zero and when the entry is
greater than v the true value is v. The following amalyses are wvalid
only for wvalues of the parameters that cause the eantry in Table 2 to have
a valve between zerc and wv.

Table 3 gives the approzimate value of the logarithm of the average
"running time’” for each algorithm. Sketches of the derivations are
given in Appendix 3. The two models generate problems with the same
number of solutions when a = (ln 2) s. Usuwally the form of the answezrs
is the same for the two models, but Coldberg's model generates problers
that are much easier to solve by backtracking wher t = v% (for 1<als!.
The results show that Goldberg's modification of the Putnam-Davis

procecure is not helpful when p 2> 0. A little thought suggests that

10

Colcberg's method is less helpful than stopping the search when the first
solution is found, because both approaches need z solution before they
can save any time. Comparing the results for simple backtracking with
those for search rearrangement on ounr model with t = v% shows thet
search rearrangement saves about as much time as reducing the size of tle
clauses by one literal, This exponential improvement indicates that
search rearrangement can be much more effective than simple backtrackingz,

Further analysis is needed to determine how search rearrangement behaves

for t = bv.

(%3}

Table 4 shows the results of setting s =3, a =3 1ln 2 ~ 2.08, ard
b = (1n 2) (ln (1-27%))™1 ~ 5,19 in the formulas from Table 3. These
values for the parameters lead to an interesting set of difficult
problems where the typical problem has about one solution regardless c¢f
the size of the probiem, as is often the case for realistic difficult

problems. The values in the table demonstirate clearly the expomenticl

improvement that can result from using simple backtracking,

5. Open Problems

The most straightforward direction for future work is completion cf
the amalysis of search rearrangement backtracking., The blank entries in
Table 3 for level one backtracking cam be filled in by completing
calculations similar to those which led to the first entry., The multi-
level backtracking algorithms appear to be even more efficient for large
problems [3], but analyzing their performance is difficult.

Backtracking algorithms are easy to use: once the general search
algorithm has been coded the user need only provide the routine to test

partial solutious. Hethods like the Putnam-Davis procedure that

manipulate the predicate require more programming effort, but they may
alsc be much more powerful. Analyses are needed to determine whether
this is the case.

The Putnam-Davis procedure can be viewed 2s a combination of 1)

acktracking, 2) unit clause selection (one level search rearrangement),

3) noticing when there are no terms (the Goldberg rule), 4) pure literal
selection, and 5) stopping at the first solutiom, The techniqgues of
[11,12] and of this paper are adequate to analyze an algorithm with the
first three parts. To analyze the first four parts appears to be much
more difficult. OQOur preliminary attempts suggest that the pure literal
rule is not very important (for much tkhe same reasoms that tke Goldberg
rule is not), but without a precise analysis it is hard to be sure,
Stopping at the first solution is only important with problems that have
many solutions; for them it is very important. Analysis of the effect of
this rule is difficult bLecazuse solutions tend to occur in clusters.

There may be algorithms that are both simpler to analyze and more
poverful tham the Putnam—Davis procedure. One weakness of the Putnam-—
Davis procedure is that it does not have any guidance concerning which
variable to select in cases where the pure literal rule and the unit
clause rule do not apply. A good technigume is to select a2 variable from
the shortest remaing clause. Other interesting techniques for modifying
backtracking have been proposed [6,8,9,10].

Another area where progress is possible is in the use of rules to
manipulate the predicate, Subsumption can be combined with the Putmnam-
Davis procedure. Substitution (the key to the powerful Gaussian

elimination method for solving eguations) can also be used.

6. Conclusions

Hfany of the techmiques useé in this paper were developed in earlizr
work [2,7,11]. Eack of the original papers analyzes one algorithm on onze
model. "Here we apply the techniques to a variety of algorithms and
models to determine how important various features are to efficient
searching., A large number of ideas have been suggested for improving the
efficiency of searching, If they were all combined the result would be a
large, complex program, containing many parts that made little or 1o
contribution to its efficiency. nalysis of average running time is 2

powerZul technigue for determining the value of proposed improvements.

15

Appendix 1

Brief derivations for the results in Table 1 are given here. The
referenced papers give a2 fuller exzplanation of the technigues.
1. Number of solutions, our model: See [2].

2. Number of solutions, Goldberg's model: Follow the method of [2] using

[

probzbilities instead of counts. Use E_=

» F_(i) = (1-p)2¥V"%, azq
i =

QE-F,(i),t) = (B-F_(i))".

3. Bimple backtracking, our model: See [2].

4. Simple backtracking, Goldberg's model: Follow [2] as in part 2 abovs.
Introduce the factor a{v-i)t to allow for the time to process a node.
5. Goldberg Putnam-Davis, our model: Follow [2] using probabilities,

s

e - " . = - =l £ T TN 3 = BE-F i t
with up—l, 18(1) 1 (2 f?} » and Q(E Fs{1),t) {E zs(¥E,

6. Goldberg Putnam—-Davis, Goldberg's model: See [12].

g 3
7. Simple backtracking with Goldbers Putnam-Davis, ouvr model: Tie
probability that no term on level i has every literal false is

it
(1-(35)) . The probability that all terms are true or level i is

i S t . 3

(1-(1 - 5;)) . Since we never have both conditions at once, the
probability that a2 node on level i requires expanding is

. S & : .8 t
(1—(%;))y - (i-(1 - fg)) . Pzcceed as in [2].

[ea]

. Simple backtracking with Goldterg Putnam~Davis, Goldberg’'s model:

Following [12], let A(t,v) be the running time. Then

A0e,v) = ave + 2(1-(1-p)*%) ¢) (Dt *7 ACe-i,v-1) (3)
i
Pefine the generating function
: = % A Z_ 4
G (z) = 2 A{t,v)t! (4)

t20

Heltiplying (3) by zt/:1 ana summing over 2z leads to

14

2
G (2) = avze? + 20(17(12)" N0z ¢ ((1-(1-5)2") (1-p) 2) (5)
with GO(Z) = 0.

Solving gives

e . 2
G, (z) = avze? +)i 2la(v—i)ﬂie(1"(1"?) Ve 6)
iidv
with H, = TT (1-(1-p)20v=3)y (1-py &, 1y s
1£j<1

Expanding G,(2z) in a power series leads to the amswer in Table 1.
A simpler approximate analysis can be obtained by ignoring the tine
required to process predicates that contain z false term. This approach

F -

gives

Ale,v) = avt(1-(1-p)2N) ¢ + 2 5 (hpla-p T Ate-i,v-1) (8)

E
i
The equation for the generating function is

G (2) = av(l—(i—p)zv)zetl“(lug)zv)z + 26P% G4 ((1-p)2n) (9)
The solutiom for A(t,v) is

A(t,v) = at) [201-p)11 (v=) (1-(2-p) 2V) 71 (10)

0Ligv

This approzimation is used for our later work. he resulting error is
insignificant.
9. Level one backtrackiang, our model: See [11].
16. Level one backtracking, Goldberé's model: Modify the analysis in
[11] in a way simiiar to that used above to.analyze simple backtrackizg
with Goldberg’'s model,
Appendizx 2

Brief derivations of thke results in Table 2 are given., The main

steps in finding the level with the mazimum term are to take the

logarithm of the term being summed over, take its derivative with respect
to i, set the derivative to zero, arnd solve for i,

i. Simple backtracking, our model:

. s
ilm2+tin (3-(35D) =0 (11)
i
s—1
This gives [2] i ~ 2v(2¥1Z. 2, (12)

2. Bimple backtracking, Goldberg's model:

()2v—i+1 T
o s 1 2 1"'13 0 P -
in 2 v—1i * £ Tv—1i+1 =0 (13)
1 — (d=p)
with p = alv, we get
v BB L
2 o, B (2 2 i 0. & v 1_.1 2)) (1i4d)

3. Goldberg Putnam-Davis procedure, our model:

s
i=j ; ; ; .
Z?i) ¥ is an increasing function.

For igv, 2%[1-(1- (@1 -
4. Goldberg Putnam—Bavis procedure, Goldberg's model:

The result is implied by the entry in Table 3, which was ocbtained
directly.

5. Bimple backtracking with CGoldberg Putnam—Davis procedure, our nodel:

. - : -1 : s t-1
s st(1-(iL)) (izi}s +st-- £5°57 a- L%
n =

2vi(1 - (&2hH 5 - P I - %51))1
The solution is approximately the same as with simple backtracking.
6. Simple backtracking with Goldterg Putnam-Davis procedure, Goldberg's

model: . . g
1 20-p)*! 1n (-p) _ (1-p)? In (@-p) | _(1-p)?7"? 1n (dp)

0 =1n 2 - roflls 2 - 5 = t & -
Vi (1-p)%t - 1-p)2Y a-p)i - (1-p)2Y 1 - (1-p)2v-i

(16)

The solution is approximately the same as with simple backtracking.

7. Search rearrangement backtraking, our model: See [11].

16

Appendix 3

4 brief description of the method of calculatiorn for the entries in
Table 3 is given. Eee [11] for the search rearrangement analysis. Tae
entry for the Goldberg Putnam—Davis algorithm with Goldberg's model is
co.mputed in [12]. The ’'less than 1n v'' entries are obtained by
ssmming v items, each of which is no bigger than 1,

In all otker cases the logarithm of the "running time"” is
1n (biggest term) + O(ln v) since it is tke sum of v terms, all of
which are between O and (biggest term). The value of i from Table 2 s
plugged into the summand for the corresponding entry ian Table 1, Then ©p
is replaced with a/v and t is replaced with bv or % The lim.t

as v =<« is computed. Ve use power series for Im (1+x/v),

lim (1-1/v)® = ¢7°, and L'Nospital’s rule as neceded.
Ve

17

i Case i Cur liodel Goldterg's lodel
Solutions 2V (1 - F(v))t
; .S & r— 3
F(i) = (A % F(i) = (1 - p)27 1
3
Simple R(0) + ;2% R(i) (1 - F(i-1)t
Backtracking 1iilv :
(Level 0) (i) =1 R{i) = a(v-i)t
" K =3 PO afq_y Vil .
Goldberg L3¢ " =~ 57011 [2(1-p)] - 2{i-p) + (Cp-1)v
. . v at % i
Putnam—Pavis| 1{ikv (2p-1)2 5
. T ynt 21,5t | p kteum 5 |
Simple 24 227 Q= a1y — L] =~ {1 — 8} | atjv + 2 Tooel |
Backtracking 1digv ISisv(l = (1=p)77) i
with Coldberg where i
P i) i —_ 3 .E
utnam—Davis u, = 5 (1_(1_p)2(v j))(l_p)li
1<53¢4 |
Search See [11]. Modify the results in [11]. E
Rearrangement :
Backtracking :
(Level 1) | :
i i
Table 1, Exzact formulas for the number of solutions and for the "running time " of

varions searching algorithms for two models of random problems.

18

] E B
Algorithm E Our liodel ‘ Golcdberg's llocel
i i -
: S R i
. in. 2,51 1 |
Simple Backtracking 2 (;L:—) v 0
et 1
!
1 |
in2 S1 | 1 i ab
—— - = &
2 (b(s—l)) v ! (2 In (1 + 75 2))?
N . ; |
Goléberg Putnam—PDavis v | v
{
| v v |
| 4
1 s—G | H
in 3. 5-T s=1 | i
Simple Backtracking 2 (;:IH- v 0
with
2 i 1
Goldberg Putnam—Davis | 1 2 s—1 | 1 ab
di — = —n +
2 (b(s—l)) ESNT @=gln @+, 3007
§
s=g=1
| Searchk Rearrangenent Ol %)
| {
|
Table 2. The approzimate level in the backtrack tree that makes the
largest contribution to the ruvaning time as v 2>« , with s comstant,
p =alv, anéd t=v* (upper box) or t = bv (iower TGbox). Geplace

values by the closer of ©

the range 0 to v.

and v ,

19

when the table entry is outside c¢f

Table 3

f i
Case ; Our lodel Goldberg's Ilodel !
L a
Sclutions E v% 1n (1-27%) % 1a (1—6—3) ;
E(in 2+0b1n(1-27%) vi (In2 +b 1n (1-¢ 3)) v
s s—¢ !
; s=1 's=1
{ Sinple | (s—l)(gwéﬁ—a) v iess than In v when t = v®
i .
i ' i s g
. Backtracking (2(§(§ﬂ1§} 1in 2 + [2 102 — ;E—% in (1 + Eﬁbz)'
! s
! -1
] i -
E fb in (1- (%Tlgi%)) v - b in (1 + 1202)] v
{ { |
| Goldberg i v in 2 i v In 2
| i
! Putnam—PDavis | v In 2 v In 2
a |
s s—g
s—1 s—1
| Simple (s-l)(g—%ghg) v less than In v when ¢t = VG.
_; - =]
. 2 in 2.s- l in 3 ab
p -] + n — g i n 1 + s it
| Backtracking (Z(b(1)) i 2 E2 3n:2 = Ia (g 2)
s
with Goldberg
b 10 (1R AR2)" ") # - b ia (1 + 22y
?utnam—ﬁavisi
{ j g
{ , i {
earc | i
Bl =5l |
{Rearrangement | Bl 572)
i i
| B facktrackiﬁg% i
i (Level 1) 5
] 1
Table 3. The approximate value of the logarithm (base e) of the
number of solutions and ’''rumning time'', The leading term in an
asymptotic expansion is given.

20

Table 4

Case g Our llodel Goldberg's liodel g
Solutions E ~ 0)
Simple Backtracking | 0.247 v % 0.456 v
i i
; Goldberg Putnam—Davis | 0.693 v ' 0.683 v
; Simple Dacktracking | 0.247 v 0.456 v
Swith Goldberg Putman—ﬁavisg

==

Table 4. The approzimate value of the logarithm of the ''rumning
time’ for large v when s =3, p=(3 1a2)/v ~ 2.08/v,

t=(la2)Un (1 -2"5) 1y

e
tn
L]
(=]
o
<
L]

21

References

lt

D

ic6.

James R. DBitner and Edward M. Reingold, Backtrack Programmirg
Technigues, Comm., ACH 18 (1975) pp. 651-655.

Cynthia A. Brown and Paul Valton Purdom, Jr., An Average Time Analysis

of Backtracking, SIAM J. Comp., to appear.

Cynthia A, Brown and Paul Walton Purdom, Jr., An Empiriecal Compariscm

of Backtracking Algorithms, Indianz University Computer Science

Department Technical Report No. 1060 (1981).

ffartin Pavis and Hilary Putnam, A Computing Procedure for

Quantification Theory, J. ACH 7 (1960), pp. 201-215.

lfichael R. Garey and David S. Johnscn, Computers and Intractability,

V. U, Freeman (1579).

Jobkn Gaschnig, Performance [easure and Analysis of Certain Search

Algorithms, Ph.D., Thesis, Carnegie-lellon University (1979).

Allen Goldberg, Average Case Complexity of the Satisfiasbility Probler,

Proceedings of the Fourth Workshop on Automated Deduction (1979), po.
1-6.
Robert li. Haralick, Larry S. Davis, Azriel Rosenfeld, arnd David L.

Hilgram, Redpoction Operations for Comstraint Satisfaction, Informatica

Sciences 14 (1978), pp. 199-2169,

‘Robert M, Haralick and Linda G. Shapiro, The Consistent Labelling

Problem: Part I, IEEE Transactions on Pattern Analysis and Machine

Intelligence 1 (1979), pp. 199-219, and The Consistent Lzbelling

Problem: Part 11, IEEE Transactions on Pattern Analysis and Machine

Intelligence 2 (1980), pp. 193-203.

Alan K. Hackworth, Consistency in Networks of Belations, Artificial

Intelligence & (1977), pp. 99-118.

: o

12.

13,

Paul Walton Purdom, Jr. and Cyathia A. Brown, An Analysis of

Dacktracking With Search Rearrangement, Indiana University Computer

Science Department Technical Beport No. 82 (1980C).

Paul Walton Purdom, Jz, and Cynthia A, Bro

#

n, The Goldberg Putnan-—

Davis Procedure Takes Hxponential Average Time, Indiana University

Computer Science Department Technical Report HNo. 101 (1981),
Paul Walton Purdom, Jr., Cynthia A. Brown and Edward L. Robertson,

Backtracking with HMultiple-Level Search Rearransement, ACIA

Informatica 15 (1981), pp. 99-113,

Edward Ilobertson and Ian Hunro, NP Completeness, Puzzles and Games,

Gtilitas Hath, 13 (1978), pp. 99-116.

o]
W

