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Abstract

The average time required for simple search rearrangement backtracking is
compared with that for ordinary backtracking when each algorithm is used to find all
solutions for random conjunctive normal form predicates. The sets of random predicates
are characterized by v: the number of variables, {(v): the number of clauses, and p(v): the
probability that a literal appears in clause. For large v if vp(v) < In 2 both backtracking
methods require exponential time if and only if the average number of solutions per
problem is exponential. Any backtracking which finds all solutions to problems has this
limitation. For vp(v) > In2 , there is a difficult region where the average number of
solutions per problem is exponentially small, but backtracking requires an exponentially
large time. The difficult region for search rearrangement backtracking is only slightly
smaller than the difficult region for ordinary backtracking. It is conjectured that search
rearrangement backtracking is exponentially faster than ordinary backtracking for nearly
all of the difficult region. It is proved that there is no major advantage in using search
rearrangement backtracking outside of the difficult region.

1 Introduction

Backtracking is 2 method of solving problems by assigning values to variables,
one variable at a time. After each variable is set, an intermediate test is done to determine
whether there is any hope of a solution. So long as there is a hope, additional variables
are assigned values. If there is no hope, the next value is tried for the most recently set
variable and testing continues. In this way all possible assignments of values to variables
are considered implicitly. The versions of backtracking considered in this paper search for
all solutions to a problem, so the search continues even after the first solution is found.
By using intermediate tests backtracking can solve problems much more rapidly than
they can be solved by explicit enumeration.

Ordinary backtracking uses a fixed order for selecting variables. Each time it is
necessary to assign a value to an unset variable, the first unset variable is selected. Bitner
and Reingold [1] studied a backtracking method that uses a dynamic search order. In their
algorithm, which I call simple search rearrangement backiracking, when it is necessary to
select a variable, all unset variables have each of their values tested. The variable with
the fewest values that pass the test is selected. Both measurements [1, 3] and analytical
studies [5] show that this method of dynamically selecting variables can greatly improve
the speed of backtracking.

In this paper the average performance of simple search rearrangement back-
tracking is compared with ordinary backtracking for the same wide range of conditions
that were used in [6,7,8]. The problem set is random conjunctive normal form predicates,
characterized by v: the number of variables, {(v): the number of clauses, and p(v): the
probability that a literal appears in a clause. The results of [6,7,8] are summarized in Fig.
1. For each possible asymptotic function for p(v) , there is a critical asymptotic function
t(v) that separates polynominal time from exponential time. For most of the region shown
in Fig. 1, backtracking does as well as one could hope; it requires exponential time if
and only if the average number of solutions per problem is exponential. The shaded part
of Fig. 1, however, shows the difficult region, where the average number of solutions per
problem is exponentially small but the time required by backtracking is exponentially
large.
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Fig. 2 shows an enlargement of the most interesting part of Fig. 1, where
limy_oo vp(v) and lim,—o t(v)/v are constant. It also shows the results of this paper.
In Fig. 2 the difficult region for ordinary backtracking is between the curves marked
Level 0 and Solutions. (The names Level 0 and Level I are terms from [9] used to
indicate how extensive a search is used to select the next variable.) The performance
of search rearrangement backtracking is shown by the shaded region (only limits on the
performance are obtained). The difficult region of search rearrangement backtracking is
between the curve marked Solutions and a curve somewhere inside the shaded region.

This paper contains three results. First, there is a significant class of problems
where search rearrangement backtracking uses polynomial average time while ordinary
backtracking uses exponential average time. Second, for most of the difficult region for
ordinary backtracking, search rearrangement backtracking also takes exponential time;
search rearrangement converts only a small fraction of the region from exponential to
polynomial time. Third, for most places outside of the difficult region there is no reason
to use search rearrangement backtracking (indeed, because it uses more time per node,
one should avoid using it). The difficult region, however, contains the problems most
often solved by backtracking.

The paper also has an important conjecture. The lower limit analysis shows that
search rearrangement backtracking may save exponential time throughout the difficult
region (even though the resulting time may still be exponential). Unfortunately the upper
limit analysis gives a result that is slightly too large for proving the conjecture.

9 The Statistical Model

To do backtracking one needs a problem, which is a predicate P defined over a
set of variables S = {z;}) <i<v, Where each z; has finitely many possible values. Also
one must have some intermediate predicate P4 defined over sets A C S . It is convenient
to require that Ps = P. The intermediate predicate must have the value true for any
assignment of values to the variables in A that can be extended to a solution of P. Thus
P = false indicates that there is no hope of extending the partial setting of the variables
in A to a solution. An intermediate predicate is powerful if it is false for most other
assignments of values. Powerful intermediate predicates that can be calculated efficiently
eliminate false starts quickly, making backtracking feasible for large problems.

For this study the predicate P is a conjunctive normal form formula. For each
A C S, P4 is the conjunction of those clauses from P that use only variables from
A. The existence of this simple natural set of intermediate predicates is the primary
reason for using conjunctive normal form predicates for investigating the performance of
backtracking algorithms.

Random predicates are defined the same way as in [6]. The set S contains v
variables. Each variable can be assigned the value true or false. For each variable there are
two literals: the variable and its negation. A random clause is formed by independently
selecting each of the 2v literals with probability p(v). A random predicate, P, is formed
by independently selecting ¢(v) random clauses. Clauses that contain no literals are false
while predicates that contain no clauses are frue. This model is the same as the model
used in [6]. A similar model is used in [4], but there clauses that contain both a variable
and its negation are never formed.

The probability, with the present model, that a clause contains both a variable
and its negation is 1 — (1 — p(v)?)?, which is small compared to one if and only if vp(v)?
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is small. The tautological clauses that contain both a variable and its negation do not
effect the operation of backtracking algorithms. Including them only inflates the count of
how many clauses the predicate contains, but a backtrack algorithm (unlike some other
kinds of searching algorithms) will generate the same search tree whether or not these
clauses are included. The inflation is small when vp(v)? is small. (Also it has been shown
that including [8] or not including [4] such clauses has little effect on the average time of
the pure literal rule algorithm so long as p(v) € 1.)

In [2, 5] a model is used where p(v) is omitted and instead random clauses with
exactly s literals per clause are formed. The value s = vp(v) is appropriate to use when
comparing the model in [2] with the current model. The present model may produce
less realistic problem sets, but it leads to easier analyses, and more algorithms have been
analyzed using it. The advantages are important for this study.

The simple search rearrangement algorithm is as follows [5]. Let S’ be the set
of variables whose value is “undefined” (the unset variables) and S the set of variables
with defined values. Let w range over the predicate variables. We denote the value of
predicate variable w by Value[w]. The set S” is maintained as a stack.

Simple Search Rearrangement
Step 1. [Initialize]: Set S” to empty and S’ to S.

Step 2. [Solution?]: If S’ is not empty, go to Step 3. Otherwise, the current values in
Value constitute a solution. Go to Step 6.

Step 3. [Find best variable]: For each variable w in S’ do the rest of this step. (The
order in which the variables are tested is immaterial for our purposes.) For both
Value|w] « false and Vaiue[w] + true, compute Psuy(yw) . If the result is false
in both cases, exit the loop, and go to Step 6. If it is false in one and {rue in the
other, remember the value of w that gives frue, exit the loop, and go to Step 5.
If the result is true in both cases, continue with testing the next value of w.

Step 4. [Binary node|: Let w be the smallest element of $’. Set S” «— S”[J{w} and
S' — §' — {w}. Set Value|w] < false, mark w as binary, and go to Step 2.

Step 5. [Unary node]:  Set Value[w] to the unique value that makes Pswyqw) true. (This
value is remembered from Step 3). Set §” « S” [ J{w} and §' « §'— {w}. Mark
w as unary, and go to Step 2.

Step 6. [Next value]: If S” is empty, stop. Otherwise, set w « top(S”). If w is marked
as binary and Valuelw| = false, set Value|w| « true and go to Step 2.

Step 7. [Backtrack]: Set S" « §" — {w}, §' + S"|J{w}, and go to Step 6.

By way of example, Figure 3 shows the backtrack tree that results when the
simple search rearrangement algorithm is run on a particular predicate.

3 Basic Formulas

In this paper the average number of binary nodes in a backtrack tree is calcu-
lated. Ordinary backtracking (when used on problems with binary variables) produces
trees where all nodes have degree zero or two, so the total tree size is one plus twice the
number of binary nodes. Search rearrangement backtracking produces trees with nodes
of degrees zero, one, and two, so the total number of nodes is no more than one plus v
times the number of binary nodes. For ordinary backtracking the number of intermediate
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predicate evaluations is equal to the number of nodes. For search rearrangement back-
tracking with binary variables the number of evaluations is no more than 2v times the
number of nodes. Thus the number of evaluations is no more than 2v plus 2v° times the
number of binary nodes.

In this paper I assume that running time is equal to the number of predicate
evaluations. It might be more realistic to assume that running time is equal to the number
of predicate evaluations times the predicate size. On the other hand there are clever
methods of repeated predicate evaluation (see [3] for example) that are faster than this.
Also it is 2 common practice in theoretical computer science to compute running time as
a function of problem size. The average problem size, (1 + 2vp(v))t(v), can be used to
indicate the effect of converting the number of binary nodes as a function of the number
of variables (which is what is calculated) to the actual running time as a function of the
problem size. Qualitatively the effect is unimportant when t(v) is polynomial, but the
average actual running time is always a polynomial function of the average problem size
when t(v) is exponential.

To calculate the average number of binary nodes, consider each node in a
complete binary tree of height v, and for each node compute the probability that the
corresponding node occurs on the backtrack tree for a random predicate. The method of
derivation combines those used in [6] and in [5]. The following abbreviations will be used:

p for p(v),
t for t(v), and

lim for lim .
P—=00

The function z(v) is ezponential when z(v) = exp(6(v)), i.e. for some positive constants
¢; and ¢; one has exp{c;v) < z(v) < exp(czv) for all v > vy where vp is some positive
constant. Likewise z(v) is polynomial when z(v) < v" for some n and all v > v, for some
vg. In all cases exponential and polynomial are used to imply exponential or polynomial
with respect to v.

The probability that a clause is false after g variables are set is (1— p)**~9. The
probability, when g variables are set, that setting one more variable will cause a clause
to become false is

Q=(1-pf" " = (1- p)*" T =p(1 - pf* . (1)

Notice that Q is the probability that a variable is forced to not have a particular value. If
pe is the probability that a clause is false then (1— pc}f is the probability that a predicate
with ¢ clauses is not false.

For ordinary backtracking the average number of binary nodes is

N= Y 21— (- (2)

o<qg<v

(A similar formula is given in [6] for the total number of nodes, here the nodes of degree
zero are not counted.) The average number of solutions (regardless of the method) is

s=2"1— (1- p)"]" (3)

For search rearrangement backtracking no simple exact formula is known for
the number of binary nodes. (The exact formula in [5] has exp(8(v)) terms.) To produce
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a formula like (2) one needs the probability that when the first g variables are set, variable
g+ 1 does not have its value forced. One needs to consider both how the first ¢ variables
can directly force variable ¢+ 1 and how they can indirectly force it by first forcing other
variables. A lower limit on the number of binary nodes is obtained by ignoring indirect
forcing. This gives the lower limit for search rearrangement of

L= Y 21— (1= pf"" - 2v= g)q]" (4)

0Zg<v

Two upper limits are needed. First, the intermediate predicate can not be false
at a binary node, so formula (2) is also an upper limit on the number of binary nodes for
search rearrangement backtracking. The second upper limit is based on the fact that at a
binary node the predicate is not false and no unset variables are forced. A simple formula
is obtained by ignoring the requirement that variables can not spontaneously force each
other; forcing can be done only by variables that already have values. This upper limit
on the number of binary nodes for search rearrangement backtracking is

- a4 v- D\ g 20=q _ 9fy — ;
v= ¥ 2 ( . )[1 (1— )7 = 2(v - 9], (5)

U—l)

where the factor v allows for the number of ways to select the binary node and ( =

allows for the number of ways to select which ¢ variables have values,

4 Analysis: Preliminaries

This paper is primarily concerned with when the running time of a backtracking
algorithm is polynomial or exponential. The sums in (2), (4), and (5) are all sums of v
positive terms. Therefore each sum differs from its maximum term by a factor that is
no larger than v. This factor has no effect on whether the running time is polynomial or
exponential. T use n, I, and u for the logarithm of a term from (2), (4), and (5) respectively.
Also I use s for the logarithm of 5. So

n=gln2+ thn[1- (1- p)**~7] (6)
s=vin2+ thl- (1- p)’] (7)
l=gn2+ th[1— (1- p+ 2(v— gp)(1— p)**" "] ()

wu=gln2+ Inv+ (v— 1/2)In(v— 1)— (¢g+ 1/2)Ing— (v— g— 1/2)In(v — ¢— 1)
+ th(l— (1= p+ 2(v— g)p)(1— p)**~ "'+ 6(1) (9)

This paper is primarily concerned with how these four functions behave for large v and
small p. For discussing such limits it is useful to define

a = v(= In(1— p)) = pr(1 + O(p)) (10)

and
z = g(- In(1 - p)) = pg(1+ O(p)). (11)

Also
(L= p)""™" = (1- p)*" ™7 (1+ O(p)) = exp(— 22 + z). (12)
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The definitions use — In(1 — p) rather than p so that various exponential functions can
be expressed exactly.

To analyze the behavior of the number of solutions for large v, rewrite (7) as
5
§=]n2+ ;ln[l— exp(— a)]. (13)

For constant ¢ with s/v > € > 0 the average number of solutions is exponential while for
constant k with s/v < (Inv*)/v the average is polynomial. The critical value of ¢ that
separates an exponential average number of solutions from a polynomial average is given
by setting s/v = ¢ to obtain
- __IH_Q___.._‘_.___._, (14)
v — In[l — exp(—a)]
and taking the limit as e goes to zero. (Technically the time is exponential for any fixed
¢ > 0 while it is polynominal if ¢(v) < n(In#)/v for some fixed n and large v, but for
this paper it will be suitable and much simplier to use the limit as € goes to zero to define
critical values.) This is plotted in Fig. 2 (with € = 0) as the curve marked Solutions. For
large a one can write (14) as

%* = (In 2 — €)exp(a)[l + Ofexp(— a))]. (15)

The behavior of n is analyzed in [6]. To maximize n one needs to consider (6)
with ¢ = 0, ¢ = v — 1, and the value of ¢ such that dn/dg = 0. However ¢ = 0 never
results in exponential time (n(g=0) < 0). For a < In 2 the critical value of ¢ is obtained
by setting 4 = v — 1. Since

N{g=v—1) = 3[1 + O(p)) (16)

one can use the result for s in this case. For a > In 2 the critical value of ¢ is obtained
by setting g to the first root of dn/dg = 0. The critical value for ¢ is

ty  d(In2— ¢)

2= 40 17
= 2= 904 o) (17)
where d is the largest root of
In(1+ d)+ dln (1 + é) = Zu: (18)
This is plotted in Fig. 2 as the curve marked Level 0. For large a one can write
d = exp(2a)+ O(1) (19)
and
t In2— i
_vi = %exp(%)+ 0(-(1-)+ O(p) (20)
Finally for ¢ > In2 and for
L. In(—g—)exp[(l + aa), where @ is any number such that 0 < a < 1,  (21)
v a

the maximum value of n is
ny = (In 2)(1 — a)v+ O(1). (22)

These results will be compared with the corresponding results for search rearrangement
backtracking.
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5 Analysis: Lower Limit for Search Rearrangement Backtracking

The lower limit on the number of binary nodes for search rearrangement back-
tracking will be considered first. Note that

z(q'=v—l) = n(q=v—1](1 + O(P)}! (23)

and if [ is maximized by setting ¢ = v — 1 then n is also maximized by setting ¢ =
p — 1. Thus whenever [ is maximized by setting ¢ = v — 1, search rearrangement
backtracking is no better than ordinary backtracking. (This argument ignores some low
degree polynomial factors (up to degree v?).) Likewise whenever the maximum value of
n is zero or less, the running time for each algorithm is determined primarily by the time
required to process the root node of the backtrack tree; so search rearrangement also does
not lead to any significant improvement in this case,

The lower limit will first be used to identify values of pv and t/v where (in
the limit of large v) search rearrangement definitely does not lead to any significant
improvement in running time. Then it will be used to identify values where search
rearrangement might lead to improvement.

To maximize [ first compute

Aoy =2 (1= p o+ 2Av— )= In(1— p))J1 — p)*" 777"
dq 1- (1-p+ 2v— )1~ pPPr—o-?

(24)

Notice that the bottom of the fraction is between zero and one (for 0 < p < 1,0 < ¢ <
v) because it is a probability. The factor in square brackets is negative when

1 1 1 1 2
v— g < :_m_gﬁ-l.E:Q_p(l_e(p”’ (25)
so for
v < 2—1;0(1— 8(p%)) (26)

the top is negative for all g¢. Thus for limpv < 1/2, dl/dg > 0 and [ is maximized by
setting ¢ = v — 1. For larger values of pv, one also has dl/dg > 0 provided t is small
enough. One can show that for ¢ > 1/2, one has di/dg > 0 for all ¢ provided

be &%?)(..!.:.Ml)ﬁxg(ﬂ(l O 5 0-273?:3(&). (27)

o

For large a one has dl/dg > 0 for all ¢ provided

L *n_%jaiﬂﬂ + O(i)+ o(p)). (28)

<

Also note that
1< n, (29)

so if nfv < € then /v < e

The results of the previous paragraph imply that, except in the shaded region
of Fig. 1, search rearrangement backtracking is no better than ordinary backtracking.
Eq.(26) implies that it is no better for pv < 1/2, eq. (28) implies that it is no better
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when t/v < (0.273/a)exp(a), and eq. (29) implies that it is no better for ¢/v such that
ng < 0. Thus the only place where there is any hope for improvement from using search
rearrangement is the region in Fig. 2 that is to the left of Level 0 and to the right of
Solution (Except that for moderate a search rearrangement might also do better slightly
to the right of the Solution curve; the coefficient in (27) is below In 2.)

Although most of [pv, /7] space has been eliminated as a place where one should
use search rearrangement, the remaining region contains the problems most like those that
are normally solved by backtracking. I will now consider the lower limit in more detail.

The maximum value of [ is obtained by setting ¢ so that either ¢ = 0,9 =v— 1,
or dl/dqg = 0. The g = 0 case results in [ < 0, so it never leads to exponential time. If
pv and pt are large enough then dl/dg is negative for small g, infinite for ¢ =~ v — 1/p
and positive for larger ¢. The maximum of I occurs for g = 0 or ¢ = v — 1. A more
interesting case occurs when pv is large enough and pt is only moderately large. Then
dl/dq is positive for small g, but it becomes zero for moderate g, because (1 — p)??=9~!
in the top of (24) increases rapidly with ¢g. For ¢ = v — 1/p, dl/dq is infinite. For larger
g it is initially negative but it increases. The first zero of dl/dg corresponds to a local
maximum for [ while the second one (if any) corresponds to a minimum. The global
maximum occurs either at the first root of dl/dg or at ¢ = v — 1. By setting dl/dg to
zero one obtains

1

e By e L o B DB
s = 2v g 77 w1 Lk (v — gelp

tl=2p+ (1— p+ 2(v— — In(1 -

4 U=2p+ (1= p+ 2(v— go)p)(= In( Pl (30)
In 2

Although (30) contains g« on both sides, one can obtain a useful approximation by ignoring
the g4's on the right (except for two special cases: 1) gy =~ v when pv is large and pt is
small and 2) g4 & v — 1/p when pt and p?tv are large). I will come back to (30) later.

First however let us consider the critical value of ¢ that results in the maximum
value of I/v equaling ¢ > 0. Notice that eq. (8), the definition of [, is a linear function of
t. The two values of g that might maximize ! (for the critical ) are the first root of dl/dq
and v — 1. For each value of ¢q one can calculate the corresponding value of £ that results
in I(t, g)/v = €. The larger of the two values of ¢ results in maxo<q<v l(t, ¢)/v = € (the
global maximum is €) and gives the critical value. For g = v— 1, [ = s(1+ O(p)) so the
value of ¢ that results in [,—,—y)/v = € is given by (15).

To find the values of ¢ and ¢ that result in dl/dg = 0 and If/v = ¢, one can
postpone the difficulties associated with the transcendental nature of (24) by solving
dl/dq = 0 for t to obtain

poe — 2)1= (1= p+ 2v = gp)(1 = pJ="7] o
* [— 2p + (1 —p+ 2(1’ - q)'p)(— ln(]_ o p])}{l - p)2'u—q—1 b

Plugging this value of ¢ into (8) gives

I+ = (In 2){q +

[L—(1—p+ 2v— qp)(1 = pf*~"'|ln[1~ (1~ p+ 2(v— g)p)(1— p)z"‘q“ll}
[—2p+ (1— p+ 2(v = g)p)(— in(1 = p))(1— p)**—7! '

(32)
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In the limit of large v and small p, one can rewrite (31) and (32) as

b _ [1— (14 2(a— z))exp(—2a+ z)|
v (o) a[— 1+ 2(a — z)]exp(—2¢ + z) (33)
and
e W2l ,1+20-17)
v a | ~14 2a- z)) 2
where
¥
and
y=(1+ 2(e— z))exp(— 22+ z). (36)

The relative error in these approximations is (1+ O(p)) provided [— 1+ 2(a— z)exp(— 22+
z)] > ¢ > 0 for some constant €. For ¢ > 1/2 and 0 < z < q, f is roughly constant
(0.478 < f < 1). The value of z that results in lx/v = ¢ is given by

5 1
A Pt L4 df— L gamn, (7)
2 2 2
Using
a f € 1
s P d o €. 0 38
st 27273 )
and
c=af+%+a€'~*;§“ )

the root of interest is given by
Ty ="b— Vb — ¢ (40)

To obtain t4, the candidate for the critical value of ¢ associated with dl/dg = 0 do the
following. Set ¢ = 0 and assign a value for a. Guess a value for z. Compute [ with (35)
and (36). Use (38), (39), and (40) to obtain a new value for z. Iterate until the limiting
value of z is obtained with adequate accuracy. Then use (33) to compute ty/v. The
upper boundary for pv > 4.575 of the Level I region in Fig. 2 is a plot of this t4/v. For
pv < 4.574, g = v— 1 gives the global maximum, so there the Level ! region is bounded
by the Solutions curve. For large a, one can find ty/v without iteration:

J =1+ Ofaexp(~a)) (41)

1

Te=1— €— 9(—), (42)

a

E: = —212—; exp(2a — E)(l + D(i)) (43)

Notice that for large a, the critical ¢4 for [ is much larger than ty for s (eq. (15)), but ¢4 for
n (eq. (20)) is larger than t« for [ by only the factor 2ea. So at best search rearrangement

and
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backtracking has only a moderate effect on reducing the size of the region that contains
problems where the number of solutions is exponentially small but where backtracking
methods require exponential time.

Finally notice that for large v, large pv, small p, and t/v given by eq. (21), that
the solution to eq. (30) is given by

so z: _ {1 e _lzl_{a?_?_)_ N O(alz)]un 2). (45)

Comparing (45) with (22) shows that for the region defined by eq. (21) (the shaded part
of Fig. 1) search rearrangement backtracking may be able to save an exponential amount
of time, but the coefficient of the exponent, (In a)/a, decreases rapidly with a.

6 Analysis: Upper Limit for Search Rearrangement Backtracking

Now it is time to investigate the upper limit to show that search rearrangement
backtracking actually does work better than ordinary backtracking for at least part of
the difficult region. The derivative of eq. (9) gives

due _ f2v—9¢-1)y 1 1

i ( q ) 29" 2= q- 1)

- H=2e (b oo Ao gl Wl —plid = g5
1— (1= p+ 2(v— gp)l — pp2o—o! )

Due to the ©(1) term in eq. (9) this is not necessarily an accurate value for du/dg, but
it is surely satisfactory for maximizing (9) (to within 6(1)). Although (46) is much more

complex than (24), for most values of p, ¢, v its qualitative behavior is similar except at
g=0and g = v — 1. Proceeding as before, one has

["‘[?@'?"f*'}]“ &+ 2—‘—(v_q_1)][1— (1= p+ 2(v— gp)(1 ~ p)>*~*7]
by = [=2p+ (1= p+ 2(v— g)p)(— In(1— p))|(1 — p)?v—o-! 7

and
_ 9(*’_—@:&} 1 [:v?(?..— g= _11] [__,v_:_l__]
u*-—qln{ p +21n 5= + vin T
2(v—g—
48
[-2p+ (1= p+ 2(v = g)p)(— In(1— p))}(1 — p)*r—e-? (1)
where y =1— (1 — p+ 2(v— g)p)(1— p)**~79"'. For large v and small p one has
, {ln [2(‘:—1)]}[1 — (1+ 2(a— z))exp(— 2a + z)|
¥ i s = T (49)

v -1+ 2a— z)exp(—2a+ z)
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and

9 o
_“_i‘_=fln[u]+ ln[__a_ ]
v a I a— T

ln{aa:—x—)][l — (1+ 2(e— z))exp(—2a+ z)]In[l— (1 + 2(a — z))exp(— 2a + z)]

+_‘ ey = -

a[— 1+ 2(a— z)]exp(—2e + z)

Using (35) for f, one can write

]_ f{ln{Q(az— z)}} L+ 20a=2) o

—1+ 20a—z)

The value of z that results in u4/v = € is given by

zi+[1/2—f-a-ag—e):c*+%+ af + a—g—agg—%+ ae=0, (52)
where
l —_a
Ing = n[azi—. (53)
l“[2(aa—.t}]
Using
a ag [ 1 €
Bt oy D dhes Daped
2t 2T e T a2 )
2 £ € (54)
c=af+ ag— a“g+ -2~+ e

the root of interest is given by
ze=b— Vb2 — ¢ (55)

One can find z, by iterating the relevant equations. For a < 3.7, however, the iteration
has an oscillating divergence, which can be avoided by setting z to the average of the old
z and the predicted z. The resulting critical value for t4/v is plotted in Fig. 2 as the
lower boundary (for @ > 2.6) of the Level 1 region. For ¢ < 2.5 the Level 0 boundary,
which is also an upper limit on the performance of search rearrangement backtracking,
provides a more accurate limit.

For large a , one has (using eq. (41))

o= a1+ o(2)) (56)
Ty = {1++n(2a) - EHI + O(Z)} (57)

%*= In(2a) sxp(on= c)[l + O(ln a)]’ (58)

2ea® a

and




Tx
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The upper limit for the critical value of ty/v for search rearrangement backtracking (eq.
(58)) is larger than the lower limit (eq. (43)) by only a factor of Ina. It is smaller than
the critical value for ordinary backtracking (eq. (20)) by a factor of (2ealn2)/Ina. It is
larger than the critical value for solutions (eq. (15)) by a factor of &33&?—21 exp(a) . Thus
search rearrangement backtracking can solve a lot more problems in polynomial time,
but the improvement eliminates only a small portion of the difficult region.

Finally the value of ¢ that results in du/dg = 0 is

— 2v—1

t=2p+ (1= p+ 2(v— gu)p)(= In(1 = p))] |
]n[E.(.f!.:FfT‘..]]_ fordks il

q Zgx T 2(v—gs—1)

1
- —————In|1~- 2ov —
R p+ 20v— g¥Jp+

(59)

For large v, large pv, small p, and t/v given by (21), the solution to (59) is given by

o e

Unfortunately (61) is larger than (22) for fixed o and large a, so u is not an accurate
enough approximation to determine whether search rearrangement backtracking saves
time over most of the difficult region.

50

7 Conclusions

Empirical studies [1] have shown that simple search rearrangement backtracking
can save a huge amount of time, compared to ordinary backtracking. In this study
the performance of each type of backtracking is compared using random problem sets.
Considering that the forms of backtracking being studied find all solutions to their
problems, their average performance is almost as good as one could hope: they take
exponential time if the average number of solutions per problem is exponential and they
usually take polynomial time if the average number of solutions is polynomial. There is,
however, a difficult region, marked by shading in Fig. 1 and between the Solutfion and
Level 0 curves in Fig. 2, where ordinary backtracking requires exponential time even
though the average number of solutions per problem is exponentially small.

Outside of the difficult region there is no advantage to using simple search
rearrangement backtracking. Some problems are so easy that both methods are quick,
others are so hard that both methods are slow. The problems normally solved by
backtracking, however, are similar to the typical problems from the difficult region, so
the performance of the algorithms in the difficult region is particularly important.

The difficult region for simple search rearrangement backtracking is smaller than
that for ordinary backtracking by a moderately large factor (pv), so the algorithm is of
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considerable practical importance. The difficult region for each algorithm extends from
t/v = exp(pv) to t/v =~ exp(2pv) so a reduction by a polynomial factor such as pv does
little to eliminate the region.

The lower limit analysis suggests that simple search rearrangement backtracking
may save exponential time throughout the difficult region. Other studies (such as [5]
suggest that the lower limit is much closer to the true performance than the upper limit.
There are better upper limits available (see [5]), and these should be analyzed by anyone
wishing to prove that there is an exponential saving throughout the difficult region.
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Figure 1. The recent results from analyses of the average time required by various
search algorithms (when solving CNF satisfiability problems) are shown. For each analysis
the significant portion of the contour that separates polynomial average time from worse
time is shown. The contour is marked with hash marks if it is the result of an upper
bound analysis. The result of an exact analysis might be anywhere on the hashed side of
the line. The vertical axis is for various functions for p(v), the probability that a literal
appears in a clause. Small functions (as v goes to infinity) are at the bottom while large
functions are at the top. The horizontal axis is for various functions for #(v), the number
of clauses, with small functions at the left. Fach line in the figure is labelled with the
associated algorithm. Problem sets that are in the region marked hard (which extends
to both sides of the dashed line and which is bounded by the innermost of the contours
surrounding the word Hard) appear to require exponential average time with current
algorithms. Since most of the boundaries of the hard region result from upper bound
analyses, some later analysis might shrink the region. Problem sets outside of the hard
region are definitely easy; some algorithm is known that requires polynomial average time.
The lower backtracking curve and the upper dashed curve separate problems which on
the average have a polynomial number of solutions (those to the lower right of the line)
from those that have an exponential number of solutions.

The shaded region indicates a difficult region where backtracking requires ex-
ponential time even though the average number of solutions per problem is exponentially
small. Everywhere else in the hard region the average number of solutions is exponentially
large. The difficult region is shown in more detail in Figure 2.
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Figure 2. A graph giving more details on the performance of backtracking algorithms.
The vertical axis is pv, the average number of literals per clause. The horizontal axis
is ¢/v, the number of clauses per variable. The curve marked Solutions separates the
region where the average number of solutions per problem is exponential from where it is
polynomial. The curve marked Level 0 separates the region where the average running
time of ordinary backtracking is exponential from where it is polynomial. The analysis
for simple search rearrangement backtracking produces only limits on its performance.
The shaded region marked Level I separates the region where the average running time
of simple search rearrangement backtracking is exponential from where it is polynomial.
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Figure 3. The backtrack tree produced by the search rearrangement backtracking for
the predicate ANBACAD where A=aV ¢, B=-aVeVd C=-aVbVeV
= d, D == bV ¢~- d. Each node where the predicate is false is labelled with a term that
is false. Under each node, the variable that is introduced into the search at that point is
given. In each case, the false branch is to the left. The tree has eight binary nodes, two
unary nodes, two zero-degree nodes, and seven solution nodes.
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