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Abstract

Cook and Dwork recently described an algorithm for computing the Boolean
OR of N bits on 2 PRAM in less than the “obvious” lower bound of log, N steps
[CD]. Their algorithm makes use of an interesting technique of communicating in-
formation by not writing as well as by writing. We show that this technique can be
used to speed up communication in many circumstances. In particular, arbitrary
N-ary functions (over finite domains) can be computed in about 0.720log, N +
2.336 + O(e™N) steps on a PRAM (which is just two more step than Cook and
Dwork use for computing Boolean OR).

The lower bound given by Cook and Dwork for computing OR-like functions
on a PRAM is about 0.442log, N + 0.121 + O(e~). We provide a simpler proof
and an improved bound of about 0.526log, N + 0.526 + O(e™"). We also give a
tight upper and lower bound of two steps for computing functions on the much
more powerful WRAM model.

Another problem of interest in the PRAC model of computation is broadcasting
a single data value from one cell to N. We provide a provably optimal algorithm for
broadeasting a binary value in approximately 0.526log, N + 0.180 + O(e~) steps.

1 Introduction

Two fundamental problems in parallel systems of computation are the centralization
of information which is disbursed among the components and the broadcast of informa-
tion from a single point to many. Cook and Dwork [CD] showed that the analysis of these
problems is more subtle than might first be expected. In particular, the “obvious” lower
bound of logs N steps to compute the Boolean OR of N bits in distinct memory cells in a
PRAM can be beaten. Their technique takes advantage of the fact that, on a synchronous
machine, information can be transferred by not writing (which we call non-writing) as
well as by writing. The main thrust of this paper is to examine the implications of this

technique for other problems and models.

The next section of the paper defines the shared memory machine model of compu-

tation, which is equivalent to the model used by Cook and Dwork, and the two problems
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which we will investigate: the collection and broadcasting of information. Section three
presents upper and lower bounds for the collection of information for WRAM and PRAM
models, and optimal upper and lower bounds for the broadcast problem for the PRAC

model. The final section summarizes our work and suggests future directions.

2 The SMM Model

We define a shared memory machine or SMM as a collection of processors which
operate synchronously in parallel and communicate only through a common global ran-
dom memory. In one step, each process reads at most one memory cell, does some local
computing, and then writes into at most one memory cell. The information known to a
processor is included in its state, and the information contained in a cell is given by its
value. We will denote processes by p and ¢, perhaps subscripted, and memory cells by

m; for positive integers 1.

We will discuss three different models of SMM’s which differ in the kinds of concurrent
access allowed to memory cells. A WRAM is a SMM which allows concurrent reads and
concurrent writes. We follow Shiloach and Vishkin [SV] in requiring that if concurrent
writes to a single cell occur, all writing processes must write the same value; however,
we note that our lower bound also applies to less restrictive concurrent write models. A
PRAM [FW] is a SMM which allows concurrent reads, but only exclusive writes. A PRAC
[LPV] is a SMM which allows only exclusive reads and writes of cells in one step.

We will use the variable ¢ to refer to the steps of a computation. Initially, ¢ = 0,
every process is in a distinguished initial state, and all but a finite number of memory cells
have the special value A\. The non-\ values of memory are called the snput of the program
which the system executes. The transition from ¢ to t + 1, (referred to as t = ¢+ 1) is
broken into a read part and a write part. Note that the states of processors change only
in the read part, and the values of memory cells change only in the write part. Thus
when we say that “at step ¢ + 1 process p writes into cell m;”, we mean that process p

writes into cell m; in the write part of transition { — ¢ 4 1.

We will analyze the complexity of two problems called the collection problem and the
broadcast problem. The collection problem involves computing a value which depends on
the values in the input, while the broadcast problem involves the copying of information

from one cell to many.
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The collection problem essentially involves the computation of a function of the input.
The difficulty of collecting enough information to compute the function may depend
strongly on the function being computed; some functions are trivial to compute. To
obtain non-trivial lower bounds, we define a (slightly) restricted class called sensitive
functions to which our lower bound for the PRAM model applies and a more restricted

class called dependent functions to which our lower bound for the WRAM model applies.

Let f be an N-ary function. A SMM is said to compute f in T steps if for all x =
(zy, T2,...,zN) In the domain of f, the computation beginning at ¢ = 0 with m; = z;
for 1 <4 < N and m; = X for ¢ > N, the computation terminates with m; = f(x) at
§ =T,

For any x and y, define §(x,y) = {z: forall¢, 1 < 1 < N, z;e{z;, y;}}. We say that
f is normal if for every x and y in the domain of f, §(x,y) is a subset of the domain of
f. A normal function has the property that the values of the elements of the vectors in
its domain do not depend on one another. From now on we will assume that all functions

that we will be dealing with are normal.

We say that f is sensitive at x relative to y if for all 4, 1 < i < N, f(x) #
f(z1, 22, ..., Ti1, Yi, Tit1, - - -, EN). For example, the Boolean OR function for N bits
is sensitive at (0,0,...,0) relative to (1,1,...,1). Also, f is dependent for x and y
if for every zeS(x,y) and for every 1 < 1 < N, f(21,2,..., Zi—1, %Ti, Zit1,- -, ZN) 7
f(21,20, -, 2i-1, Y, %41, - - -, 2N)- We also say a that a function is sensitive or depen-
dent if it is sensitive or dependent, respectively, for some x and y. Note that the parity

function is dependent, but the Boolean OR function is not.

A SMM is said to solve the broadcast problem for N cells in T steps if, beginning at
t = 0 with m; = b (for some b 3£ \) and m; = X for all ¢ > 1, every cell m; = b
for 1 < j < N for all times ¢ > T. The complexity of this problem (for some models)

depends on the range of values which b may take on.

3 Upper and Lower Bounds
It is obvious that the WRAM is the most powerful of the models defined in the

previous section, since it subsumes the others. In fact, in the WRAM model, only two
steps are necessary to compute any function with finite domain, as shown by the next

theorem. The (reasonably obvious) algorithm used in the proof will also be useful in the
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proof of Theorem 3. We also note that this algorithm is tight for general functions since

any dependent function with N > 2 cannot be computed in less than two steps.

Theorem 1: Any N-ary function with finite domain can be computed in two steps on
a WRAM.

Proof: Let b be an integer large enough so that we can code each element of each vector
in the domain of f with the values 0,1, ...,5. Let x be any input, and let V be its value

coded as a base b number.

In the first step, for each ¢ and 7, 1 < i < N, 0 < 5 < bV, process pi; reads
memory cell m;. If the value read is not equal to the i digit of § (considered as a base b
number), then p; ; writes a 1 into cell mpy;41; otherwise p; ; does not write. Thus, the

only cell in {mp41,MmN42,..., Mypy } Which has value X is my 14y

In the second step, process p; ; reads memory cell my414; for 0 < j < bN — 1. The
unique process (p; N+1+v) Which reads \ then determines x and writes the value of f(x)

into my. 4

It may be objected that the algorithm in the above proof uses an exponential number
of processes. However, the following result shows that an exponential number of processes

are required, in general, if we wish to compute the answer in two steps.

Theorem 2: Let f be any N-ary function, N > 2, such that for any x and y in the
domain of f with x £y, f(x) # f(y). Any WRAM which computes f in two steps must

use at least 2V ~2 processes.

Proof: We may assume without loss of generality that f is a function of binary inputs.
By assumption, every one of the 2N possible inputs must leave a distinct result in m; at
the end of two steps. On the first step, each process learns the value of at most one bit
of the input. Any process which reads a cell written by another process in the first step
can learn about at most one other bit of the input. But, since N > 2, such a process
cannot know the entire input and hence cannot invariably write the correct value into

cell m, on the write part of step 2.

Any process which reads a cell on the second step which was not written on the first

step can be in one of at most four states at the second step and must behave in one of
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2N=2 processes, there are less than 2V possible

four ways. But since there are less than
values written into m; on the second step. This is insufficient because f has 2N possible

results. —

Cook and Dwork [CD] give an algorithm for computing the Boolean OR of N bits
in ¢ylogy N + ca + O(e~N) steps, where ¢; = 1/log,[(3 + v/5)/2] = 0.720 and c; =
logs[(5 — v/5)/2]/ log:[(3 + v/5)/2] A< 0.336. We use their algorithm as a subroutine and
the coding technique of Theorem 1 to get the following result.

Theorem 3: Let f be any dependent N-ary function with finite domain, N > 1. Then

f can be computed in 2+ ¢; logy N +¢2 + O(e'N) steps, where ¢; and ¢o are given above.

Proof: Let x, b and V be as in the proof of Theorem 1. The algorithm consists of a
preliminary step similar to the algorithm in Theorem 1, bN copies of Cook and Dwork’s

algorithm run in parallel, and a final clean-up step to write the answer into m;.

In the preliminary step, process p; ; reads memory cell m; for 1 <1 < Nand0<j <
bN —1. If the value read is not equal to the i* digit of j (considered as a base b number),
then p;; writes a 1 Into My (;—1)6N 4145 This is similar to the algorithm in Theorem 1

except that it clearly avoids multiple writes to the same cell.

The main part of the algorithm consists of bV independent computations. For each
j, 0 < § < bV —1, we use Cook and Dwork’s algorithm to compute the Boolean OR
of memory cells my,, my,, .. ., Mg, into cell my,, where ks = N + (1 — 16N + 5 +1 for
1 < i< N. (We take )\ as equivalent to 0.) At the end of this part of the algorithm,

there is exactly one cell in mpy41, ..., my4pv Which has a value of A.

In the final step of the algorithm, process p; ; reads memory cell my 4145 for 0 < 7 <
b — 1. The single process (p; nN+1+v) Which reads value X\ then determines x and writes

f(x) into m;. -

Once again, we have been very extravagant with processors. An interesting area for
further research is to characterize functions by the number of processors that they require
in order to be computed quickly in this model. We believe that the semigroups may be
a fruitful area for further work; Chandra, Fortune and Lipton have investigated the

complexity of computing semigroup products on circuits with unbounded fan-in [CFL].
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Cook and Dwork [CD] proved that no sensitive N-ary function can be computed
in less than approximately 0.442log, N + 0.121 + O(e™") by a PRAM. The following
result improves this bound and gives a simpler proof. Note that the gap (now about
0.194log, N) between the upper and lower bounds is still not closed. We feel that it can

be narrowed further.

Theorem 4: Let f be any sensitive IN-ary function. The a PRAM requires at least
c3logy N + ¢4 + O(e™N) steps, where c3 = 1/logy(2 + v/3) /= 0.526 and ¢4 = c3.

Before attacking the proof we will need some definitions, (essentially due to Cook
and Dwork) and two lemmas. In the following, we refer to a function f which is sensitive

to x relative to y and to a computation with input x. We also use the notation x(z) =

(31:x2: e B Y Tig 1, - :BN)‘

Definition: An index ¢ affects process p or a memory cell my at time £ if the state of p

or the value in cell my, respectively, at the end of step ¢ is different for inputs x and x(z).

Let Affectsp(p,t) and Affectsps(my, t) be the sets of indices which affect p and my,

respectively, at time ¢.

Definition: Index ¢ causes process p to write into cell my at step ¢ iff p writes into my

in the transition £ — 1 — ¢ with input x(z) and p does not write into my with input x.

If an index causes a process to write a cell, we can deduce something about the original
value of the corresponding memory cell when a write does not occur. We let the set of
indices which cause p to write my at step ¢ be denoted by Causes(p, mg, t). The union of
Causes(p, my, t) for all p and a given my, and t is given by Causes(my,t). Observe that
we may be able to deduce information about indices other than those in the causing set.
For example, some process may write only under the condition that {wo of the elements
of x are changed, and these are not necessarily part of the causing set. Nevertheless, the

definition as stated is sufficient to prove our results.

Definition: A process p dominates a process g with respect to cell my at step ¢ iff
Causes(g, mg, t) C Affectsp(p, t).

That is, one process dominates another iff it is affected by all the indices which cause
the other process to write. We now give two lemmas which will allow us to prove the

theorem.



Communication by Non-writing in Synchronous Parallel Machines 7

Lemma 1: For any PRAM which satisfies Theorem 4, any cell my, any time ¢ > 0,

and any processes p and g, either p dominates ¢ or ¢ dominates p with respect to my.

Proof: If p = g, it is clear from the definitions that Causes(p, mg,t) C Affectp(p,t),

(otherwise a process would have distinct behavior from the same state). Suppose p # gq.

Let 1, be an index in Causes(p, my,t) — Affectsp(g,?) and let i, be an index in
Causes(q, mg,t) — Affectsp(p,t). But then both p and g will write my from x(i,)(z),

which is not allowed in an exclusive write model. -

Lemma 2: For all processors p, memory cells m; and times ¢, |Affectsp(p, t)] < P; and
|Affectsp(my, t)| < Ci, where Py and C; are given by the following recurrence.
(1) Pp=0
(2) Co=1
B) Py1=F+0C
(4) Ciy1=0Ci+ 2Py -1

Proof: By induction on ¢. The base case for ¢ = 0 is clear.

For the induction step, a processor p can be affected by an index ¢ at step £+ 1 only if
it was affected at step ¢ or if it read a cell my which was affected by ¢ at step ¢. Therefore,
by the induction hypothesis and (3), |Affectsp(p,t + 1)| < Pi + C; = Peyy.

If some process p writes cell my at step ¢ + 1, then the only indices which affect my
at t+ 1 are those which affect p at ¢+ 1, so |Affectsp(mp, t +1)| < Piy1 < Ci+ 2Py —1
since P, is non-decreasing and P; = 1. We therefore only need to consider the case where

no process writes into my, in step ¢ + 1.

Suppose that no process writes into my in step ¢ + 1. Then the only indices that
can affect my, at step ¢ + 1 are those which affected my at step ¢ and those which are in
Causes(my,t + 1). By the induction hypothesis therefore, |Affectsy (mg, t+1)] < Ci +
| Causes(my, t + 1)|. We will demonstrate that |Causes(my,t+1)| < 2Pi41 — 1, which

gives the lemma.

Suppose that |Causes(my,t+1)] > 2Pi4;. Let r = |Causes(my,t+ 1)| and let
Causes(my, t + 1) = {uy, u2,...,u,}. Note that for each u; there is a unique process g;

such that g; is caused to write cell my at step ¢ by index u;. Let G be a directed graph
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with r nodes labels with uy, u,...,%,, and let and edge (u;, u;) be in G iff process ¢;
dominates g;. Note that if (u;, 4;) is an edge in G, then u; must affect ¢;. By Lemma 1,
G must have at least r + r(r — 1)/2 = r(r + 1)/2 edges. But then some node, u;, must
have at least [(r + 1)/2] > P4 incoming edges. By our construction, this implies that
|Affectsp(g;, mg, t + 1)| > Pi41, contrary to assumption. a

Proof of Theorem 4: Solving the recurrence equations in Lemma 2 gives
Co= Y2+ VA + J2— V3

Since f is sensitive at x we must have {1,2,..., N} C Affectsps(my, T). Therefore, any
PRAM algorithm computing f in T steps must have N < |Affectsp,(1,T)] < Cr =
12 +/38)T + }(2 — /3)T. Solving this equation for T in terms of N gives us the formula

required by the theorem. =

We now turn to a somewhat symmetric problem, the broadcasting of a single datum
to N memory cells. This problem is trivial if we allow concurrent reads (it can be done

in a single step); we will therefore examine only PRACs.

There is an straightforward algorithm (without using non-writing) for broadcasting
an item of information to N cells in about 0.720 log, N +0.336+O(e~"V) steps (it happens
to have the same recurrence as the Cook and Dwork Boolean OR algorithm). However,

if the value is binary and non-writing is used, we can do much better.

Theorem 5: The problem of broadcasting a binary value to N cells can be solved in
cslogy N + ¢ + O(e™™) steps on an PRAC, where ¢5 = 1/logy(2 + v/3) = 0.526 and

c6 = 1 — logy[(3 + 1/3)/6]/ log,(2 + v/3) == 0.180.

Proof sketch: The basic idea of the algorithm is that on the write phase, each process
which knows the broadcast value writes into one of two previously unaffected cells. If
the value is 0, then 0 is written into the one cell, otherwise a 1 is written into the other
cell. On the next read phase, a new process is activated for each affected cell (whether
written or not written), and the new processes can deduce the broadcast value. This
gives a significant speed up over the obvious algorithm which only activates processes by

having them read cells which have actually been written into.
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In order to achieve optimality, we must use one more trick. On the first step, we use
N — 3 processors (which do not yet know the broadcast value) to write into all the cells
that are not involved in the first step of the algorithm. These processors write 0 into the
odd indexed cells and 1 into the even indexed cells, excluding m; and the two cells which
are affected by the process reading m, in the first step. This saves at most one step, but

is necessary if we are to match the lower bound. |

The upper bound is tight, as shown by the next theorem.

Theorem 6: Any algorithm solving the problem of broadcasting a binary value to IV
cells must take at least c5 logs N + cg + O(e~N) steps, where ¢5 and cg are the same as in

Theorem 5.

Proof sketch: The proof technique is similar to that used in Theorem 4. We give a
recurrence which limits the number of cells which can be affected by the first cell after ¢
steps. Since all of the first N cells must be affected at the conclusion of the algorithm,
solving this recurrence gives us the result. Some care must be taken to show that this

bound is an exact match for the upper bound. =

4 Summary

We have shown that the non-writing technique can be used to improve over the
obvious algorithms for various problems and models of parallel computation. Whenever
optimal algorithms are sought for synchronous computation, this technique should be

carefully considered.

The technique of non-writing can also be applied to limited connection machines such
as those discussed by Siegel [S] and Galil and Paul [GP]. In this model each processor has
some local memory and is connected to other processors by an interconnection network
that is either fixed for all N or limited to some sparse number of connections. By using
non-writing on this model, the problem of broadcasting data to IV processors can be solved
in logsz N steps. This bound is non-trivial and can be shown to be optimal for limited
connection machines in which each processor can only write to one other processor at

a step. A result similar to that of Theorem 4 can be derived for limited connection
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machines but a non-writing technique has not been able to supply an upper bound that

beats the obvious log, IV.

One interesting area for future investigation is the characterization of functions by

the amount of processing power that they require to be computed quickly. For example,

the Boolean OR function can be computed quickly on a PRAC with only a linear number

of processors, while an arbitrary function apparently requires an exponential number.

What can be said about functions more complex than OR?
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