A Case Study of a Combinator-Based Compiler

for a Language with Blocks and Recursive Functions

Marek J. Lao

Computer Science Department
Indiana University
Lindley Hall 101
Bloomington, IN 47405

TECHNICAL REPORT NO. 150
A Case Study of a Combinator-Based Compiler

for a Language with Blocks and Recursive Functions

by
Marek J. Lao

QOctober, 1983

Research reported herein was supported in part by a Fulbright Fellowship and by the
National Science Foundation under grant numbers MCS 79-04183 and MCS 83-03325.

1. Introduction 1

1 Introduction

This paper presents a target machine and a compiler developed by transforming
the denotational semantics of a language. The method has been originally used by Wand
in [4]. It consists of the following steps:

— elimination of A-variables from the semantic equations through the introduc-
tion of special-purpose combinators,

— since the combinators have some associative properties, a combinator tree
can be rotated into an almost linear form,

— distributive properties of the combinators make it possible to distribute the
symbol table information into instructions, the resulting code becomes more
linear and resembles a code for a conventional machine,

— after some representation decisions, a target machine to interpret the code
is built.

The method has been used for an applicative language ([4]) and a simple block-
structured language ([3]). The source language chosen for this paper is a block-structured
language with recursive functions. We are not concerned with syntactic issues, therefore
an abstract syntax resembling the one of parse trees has been chosen for the purpose of
this paper.

Qur main concern is the parameter passing and storage management. We discuss
parameters called by function, variable, value and result. These modes can be easily
extended by introducing the inout mode from Ada. Adding the call-by-name mechanism
will require some additional work.

A sample program studied thoroughly in this paper is the following one:

(block
(fun t (i)
(value result)
(if (zero? i)
(block
(assign result 1)
(assign j 0))
(assign result
(times i (f (minusl i) j)))))
(block (var i)

(assign i 1)
(assign i (f i i))
(print i)))

In the declaration of the function:
— fis the name of the function,
- ¢ and j are the names of local variables for parameters,

— wvalue and result are the modes for passing these parameters, notice that
the value assigned to i as a result parameter is overwritten in the assignment

statement,

— result is a standard variable storing the result of the function call.

The language is presented in Section 2. Sections 3 and 4 introduce the com-
binators to linearize the code and discuss their basic properties. Section 5 shows the
static scoping and a way to bind identifiers at compile time. Then in Section 6 we present
the first target machine, which is a version of a stack-display machine. We modify the
compiler in Section 7 to produce somewhat more conventional code for a machine which
uses Dijkstra’s display mechanism ([1]).

2 Source language

The language we have chosen for this paper is presented in Tables 1-5. Due
to its complexity, we owe the reader some explanations. First of all, we assume that
nonterminals with indices have exactly the same syntax and meaning as those without.
(Ident), (Const) and empty have the usual syntax and meaning. Operation symbols, i.e.
(Binop), (Unop), {Binpred) and {Unpred), also remain unspecified throughout the paper.
The main reason for introducing operation symbols to the language instead of pre-declared
functions is to show the possibility of “optimized” code generation for parameter passing.
The mechanism is different from the one used for applications because parameters of
operations are always passed by (expressed) values.

{Program) ::== {Block)
{Block) := (block (Dec){Stmt-lst})
(Dee) == (Var-dec) | {Fun-dec) | empty
(Var-dec) := (var{Ident),...(ldent),) (n 21)
(Fun-dec) := (fun{Ident) ({Ident),...(Ident)) {Mode-list-body)) (n 2> 0)
{Mode-list-body) ::= ({Mode-list))(Stmi-list)

{Mode-list) ::= (In-mode){ Mode-list) | (Out-mode){ Mode-list) | empty
{In-mode) ::=var | value | fun

{Out-mode) ::= result

(Stmt-list) == (Stmt}{Stmt-list) | empty

(Stmt) == (ekip) | (assign(Lks){Ezp)) | (if{ Boolezp){Stmt}) {Stmt),) |
(while {Boolezp)(Stmt}) | (read{Lks)) | (print(Ezp)) | (Block)
(Lhe} === {Ident)
(Ezp) ::= {Lhs) | (Rezp)
(Rezp) == {Const) | ({Binop) Esp), (Evp)) | ((Unop)(Exp)) | (Fun)dpar-fiat))
{Fun) ::= (Ident)
(Apar-list) ;= (Apar){Apar-list) | empty
{Apar) ::= (Ident) | (Rezp)
{Boolezp) ::== ((Binpred)(Ezp),{Ezp),) | ({(Unpred){Ezp})

Table 1. Syntax of the source language

We concentrate on semantic questions. Therefore we do not check whether
identifiers in a list are distinct; we assume that they are. For the same reason, we do not
check whether the number of formal parameters and the number of modes for passing
them are equal. Both these problems may be solved, for instance, by using a two-level
grammar (as for Algol 68). Thus the questions are of a syntactic nature, and these features
may be checked by a parser for our language. The syntax of declarations does not contain
any type specification; we assume that all variables and functions are of the basic type,
type integer.

2. Source language .

In order to simplify semantic equations, we distinguish different occurrences of
identifiers. An identifier used in an expression or actual parameter may mean:

~ an expression (value),
— a variable passed to a function,
— a function passed to another function.

Since all these occurrences imply different actions to be done, it is reasonable to introduce
different categories in the syntax already. Therefore we have three nonterminals, i.e.
(Rezp), (Ezp) and (Apar), describing expressions. An identifier used in (Ezp) always
means a value stored in a variable, while an identifier used in (Apar) may mean not only
a value or a variable but also a function. The precise meaning in the latter case cannot
be determined during compilation because formal functions, which do not specify their
parameters, are allowed (see discussion in Sec. 8).

For the same reason, we introduce {Mode-list-body). The action for a parameter
is carried out before ({In-mode) parameter) or after ({Out-mode) parameter) evaluating
the function body (cf. [2]). Therefore semantic equations for parameter passing must
consider the function body as well.

Basic domains

Mazgs messages

B truth values (§)

N integers — basic values

E =N expressed values (v}

A = E*X Mage answers

L locations ({)

D = L+F denoted values

D = D+ ‘undeclared’

Vv = E+D storable values (v)

V= V4 ‘unused’+ ‘uninilialized’

Fn = Ee—=V"—=K (n > 0)

F = Fog+Fi+Fg+--- function values (f)

Eny = (Ident) = D environments (p)

§ =EBEXEPX|[L-V] states (o)
Continuations

K = S—A command continuations (&)

Enven = Env— L™ — K declaration continuations (x) (n = 0)

Ee = E—=K expression continuations

Be = B—K boolean expression continuations

Le = L—+K L-value continuations

Fe = F— K F-value continuations

Ve = V=K V-value continuations

De = DK D-value continuations

Pen = V"—=K parameter passing continuations

A product of P" is meant to be curried, ie. P* = X=P— -+ = P= X

Table £. Semantic domains

The first component of state S corresponds to the state of the input tape; the
second, to the state of the output tape. The function L — V describes the state of the
memory. The domain F',, consists of all n-parameter functions; V" in its definition is a
vector of parameters. Parameters passed to a function are temporarily stored under the
locations of local variables. So L™ in the definition of M¢, is a vector of the locations

where the parameters have been stored and where their values (modified accordingly to
the modes) are to be stored lateron. L and Vin the definition of the meaning functions
for modes denote the location of the local variable and the value of the passed parameter
respectively. Notice that the location is marked ‘uninitialized’ before the appriopriate
action for (In-mode) or the function body is evaluated; it is especially important for
(Out-mode) parameters.

In all semantic equations, we have assumed a standardized form of semantic
functions which takes the environment as am argument. This makes it shorter and
easier to change the semantic equations into a combinatorial form (compare with [3] 14]).
Therefore the functions giving the meaning of constants, operators and modes require the
environment. Their actions do not depend on its value, though.

P :{Program) —+ S — A
Be:{Block) — Env — K — K

Dp :{Dec) = Env — Envea = K (n 2 0)
§¢: (Stmt-list) — Env — K — K

:(Stmt) = Env -~ K— K
:{Ezp) — Env — Ec = K

:{Const) — Env — Ec = K

:(Lhs) — Env — Le —+ K

: {Boolezp) — Env— Be = K

: (Fun) — Env — Fe = K

ME, : (Mode-list-body} — Env — L" - K (n 2 0)
Al : (Apar-list) — Env — Pen = K (n 2 0)
A :{Apar) = Env— Ve - K

M;pn : {In-mode) — Env - K —+ L= Vo K
Moyt : (Out-mode) — Env = K—+ L= V=K
Op : {Binop) = Env — Ec —+ E—+ E— K

Ou :{Unop) = Env— Ec =+ E— K

Opp : {Binpred) — Env — Be = E— E— K
Oup : {Unpred) — Env — Be + E— K

Ym0 »

Table 3. Meaning functions

The basic kind of a block is a declaration of variables and a list of state-
ments to be evaluated in the new environment containing these variables. We have
decided that after the evaluation of the statement list in 2 block, the locations of its
variables are released. Therefore the continuation for the statements is of the form
release-block, p'ly. .. Ik and the declaration continuation requires the vector of the new
locations. This shows us that a stack-wise implementation of the memory is possible.

As we have already noticed, the meaning of actual parameters must be deter-
mined by the applied function and, in the general case, it requires run-time checking. In
order to have only one copy of the code that checks the correctness of actual parameters,
we have decided to introduce a two-step application. The first step (A and A¢) evaluates
actual parameters to expressed values, if the parameter is (Rezp), and to denoted values
for identifiers. The next step (M€) checks the correctness between actual parameters
and the specification within the applied function. During this step dereferencing of the
passed values is carried out if necessary. Thus the action for a var parameter (L-pass)
stores the location of the passed variable in the local variable, for a fun parameter F-pass
stores the F-value in the local variable. For a value parameter (E-pass), the local vari-
able is initialized with the value of the expression; if a variable has been passed, it is

2. Source language

Programs
Plp] = \oo.BEffplinit-env init-cont o
Statements

Selempty] = \px.&

Sefs of] = Mpr.5[e] (S Elef] =)

(skip)] = \pr.k

(assign id e)] = px.L[id] (Al R [e] o storepl))

[(if & a1 82)] = \px.B[6]p(NB.8 — Sles]lox, S[ee]ox)
(while b 8)] = \px.fiz (\6.B[t]o(NB.6 — S[e]p?, &)
(read id)] = \px.L[id] f{(\.do-readp{store pxl))
(print e)] = Apr.R[[e] o(Av.do-printprv)

[block] = Be[block]

“y

e e T I I]

Expressions
R[id] = Mpn.L[id]p(fetchon)
Rle] = cle]
RU(E er e2)] == Aen.RIes]a{rAvi.R[ee]p(Ave.0y[Blonvive))
2L o)l = Apn-RIAp00.0u[Slorv)
R[(id a1...an)] = Npn.F[id] p{checknp(NS. Aln[a1. .. enlp(Avs.. . vn.fvi.. . va)))
Bl(=< er e2)] = Aen.R[e1]o(Mvi.Reelp(Ave.Opp[<Tomvive))
8[(7 e)] = Npn.R[e] o(\v.0 up [l p71v)
7[id} = X pn.lookup[[idlp(\v.v € F — qu, terminate[“not a function applied”])
L[id] = \py.lookupid] f(Av.v € L — v, terminate[“not a variable])

Actual parameters

Ato[empty] = Xpn.n
Atnfe af] = Npn . Ala] A \v. ALy 1 [al]o(nv))
ALid] = lookup[[id]
ﬂ[e] = R[]
Blocks
Bef(block ¢)] = S¢fs]]
Bef(block (var id;...idn) s)] = Apx.Dn[[(var idy...idn)Jp(Mols.. . In.SE s/
(release-block, gl ... ln k)
B¢[(block (fun &) o)] = hpx.Dof[(fun o)Jo(re'.S¢]sl] /%)
Variable declaration
Dall(var ids...idn)] = Npxo.let(l1,...1n) = newyo, and o' = adjoin,ols...In
in x(plls fidi]... [Infidn])s. . lno’
Function declaration
Dof(fun id (ids...idy) (my...mn) 8] = Npx.x(fiz (Z2-[(57)]id])
where [is:
f=N\p'nvi...vnodet(lo,l1,...1n) = newny 10, and p" = ¢'[lp fresult][ls fids]. .. [In[idn],
and of = adjoin-init, , ;ololy. .. In ‘uninitialized'vy.. . vn
in MEnQ(my...mn) ol o1y . In(fetchg!(release-fun, 4 ; p"lols. . . lan)lo)o’

Parameter passing
M, [(empty) of] = S]]

M [[(im ml) sl] = Npl1...lnko.Min[imJp(Mln— 1 [(m)) sfple.. . lax)is(osls)
(01,02, 05| uninitialized’/l;])
Men[(om ml) off = Nply.. . dnwo. Mby_ 1 [(ml) sl Jplso...In(Mout[om]pxls(osls))
{o1,0¢2, 08| ‘uninitialized’fl;])
Others
Clle} = conetfc] 04[] = binop[B] 04[6] = unop[S]
03pl <] = binpred[<] Oup[[f] = unpred[f] M;[var] = L-paes
Mip[value] = E-pass Min[fun] = F-pass Mout[result] = I-pass

Table 4. Semantic equations

terminate[m] = Ao.(og || m)

init-eny == \id. ‘undeclared’

init-cont = terminate[“normal termination”]

new, == Ao.some distinct (I1,...{n) such that (o5l;) = ‘unused’

adjoin, = \oly...ln 01,00, 03| uninitialized’fl]. .. [‘uninstialized’fl,])

adjoin-init, = \oly...lnvs...vn{01,00,08[v1fl1]...[vnfln])

release, = \oly...lp{01,00,05 unused’f1;].. . [‘unused’fl,])

release-block, = Aply...lnxo.x(releasenoly. .. 1)

release-fun, = Apl;.. Innvo.qu(releasencly.. . ln)

store == \prlvo.x{oy, 02,05[v/l})

do-read = \pno.o; = nil — terminate[“eof encountered”]o, n(first o1){rest o4, 02,05)
do-print = \prvo.x{oy,02 || v,08)

Jeteh == \pnlo.{osl) = ‘uninitialized’ — terminate] “unininitialized variable”]e, n(osi)o
checkn = \pnf.f € Fn — nf, terminate[“wrong number of parameters”]

find{id] = \pn.n(p id)

deref? = \prjvo.v € L — nlogv)o, nuo

L-pass = hprlv.v € L — storepxly, terminate “not a variable passed”]

E-pass = \prlv.dereffp(A\v'.v' € E — storepxly’, terminate[“not an expression passed”])v
F-pass = \pxlv.v € DF — storeprly, terminate[“not a function passed”]

Epass = \prlv.v € L — fetchp{storeprv)l, terminate[“not 2 variable passed for result”]
lookup[id] = \pn.find[id] {\do.d = ‘undeclared’ — terminate[“undeclared identifier”Jo,

d € F — gdo, — regular function

(csd) € F— n(osd)o, — fun parameter
(0sd) €L — nlos d)o, — wvar parameter
ndo)

Table 5. Auxiliary functions

dereferenced. For a result parameter (/-pass), the value assigned to the local variable (/)
is stored under the passed location (v). The last action has to be done after evaluating the
body; so I-pass’es are put on “the stack of continuations”. Due to the order of parameters,
the result parameters are assigned values from the right-hand side to the left. In our
solution, the checking of the kind of a result parameter is done after evaluating the
function body. Both the order of passing result parameters and the time of checking
their kind can be easily changed.

Finally, let us discuss the equation for a function declaration. A function
declaration itself changes the environment for the block and the function body only. The
F.value in this new environment is quite complex. First of all, a function transfers its
parameters to the locations of local variables (adjoin-init). Then the parameter passing
and evaluating the function body (M¢) are to be done; I, .../, passed to M{ denote the
locations of the local variables. The continuation for M{ consists of:

— fetching the value of the function call; every function possesses a (pre-
declared) variable with the standard identifier result; the value assigned to
this variable at the end of the evaluation of the function body becomes the
value of the application‘ y

— releasing the locations of local variables (release-fun).

2
This idea comes from Loglan, a programming language designed and implemented at the Institute of
Informatics, the University of Warsaw, Poland

3. Combinatorial semantic equations 7

Now we present two examples to be discussed in the paper.
Example 1

The following program will illustrate static scoping and the implementation of
a loop:

(block (var i j)

(block (var i)
(assign i 1)
(while (positive? i)

(assign i (minusl i)))

(mesign j i))

(assign i j)

(print i))

The answer is, of course, the value of ¢ from the outer block. The operators of
positive? and minusl have the natural semantics.

Example 2

The following program contains a recursive function to compute the factorial of
its first parameter. The other parameter is to illustrate the result mode.

(block
(fan 1 (iJ)
(value result)
(if (zero? i)
(block
(assign result 1)
(assign j 0))
(assign result
(times i (f (minusl i) j)))))
(block (var i)
(assign i 1)
(assign i (f i 1))
(print i))

The answer should be 1, i.e. the value of the factorial , despite the fact that ¢
occurs as a result parameter and is assigned the value of 0 as well.

3 Combinatorial semantic equations

Now we rewrite the semantic equations eliminating A-variables. The additional
auxiliary functions are shown in Table 6. The equations are modified by the introduction
of special-purpose combinators:

~ a family of sequencing combinators (cf. [4])
Dala, B) = Mpzozy...Za.0p(Bpzoz1. .. Z0)

refurn = ApK.&
test fg = \prf.8 — [pr, gor
wloop [= Mpx-fiz (fox)
wheal f = \pfB.8 — fpb, &
tabley == init-env
exty idn...idy = Aply... ln.p[ls Jidg]. .. [In/idn]
block, fenv = Ihro.let(ly,...ln) = new,0 and ¢’ = adjoin,ol;...1,
in f(envly...la)ls. .. lnko’
ezt-fun idf == Xp.fiz (\g'.p[(f ')/ éd])
funetion, fenv=Anvy...vno.let(lp,l1,...ln) = newno
and o' = adjoin-init, ; ;ololy... I, ‘uninitialized’vy. .. v,
in f(tﬂl.' lah...‘n}tl.‘.‘nl‘oh...l“qiod’
pass, [= \pag8i...6n0.fpay...ene0(03)01, 00, 0| uninitialized’fao])
apply, = Apnfvg...va.fovp...vn

Table 6. Additional auxiliary functions

~ a family of binding combinators (cf. [4],[5])
By(a,) = \a;...ap.a(Ba;...ap)

- a family of generalized D’s (“post” combinators)

Pmal(a,) = Mpa1...0mZoZ1... Zn.apay...2m(BpZoTy. .. Tn)

— a transferring combinator
(@) = Apnv.ap(nv)

The D and B combinators have been presented and discussed by Wand in [4], [5].
In the original version, D was always used with a continuation in place of z, . Here we
use this combinator in a little different way; we know that one of the z's is a continuation.
It does not, however, change any of the properties of D discussed in [4].

The P combinators generalize D’s in the sense that some of their parameters
are bound to the first argument while the rest to the second. These combinators are
extensively used in the equations for parameter passing. While the combinator tree is
rotated, however, the combinators become of the form of Py, which is equivalent to D,,.
Here also one of the z's is a continuation. In our applications, a’s are the locations of
formal parameters passed to the function body (a); #’s are the parameters for passing
results to the calling module as well as releasing locations, that is 8 corresponds to the
action to be done after evaluating the function body, I-pass, fetch, release-fun.

The T combinator, due to Wand, transfers a value passed as a parameter onto
the stack for continuation. Similarly to P, it disappears while the combinator tree is being
linearized.

Now using the combinators and auxiliary functions we are able to rewrite the
semantic equations without A-variables. The results are shown in Table 7. Notice that
checking whether an identifier has been declared can be done during compilation. It is
also possible to determine the kind of an identifier at the same time. Therefore, the
equations for L[[id], F[id] and A[id] are reduced to lookup[id].

3. Combinatorial semantic equations g

Selempty] = refurn
Sefel 8] = Dy(5[s], Sef+1])
S{(ekip)] = return
S[(assign id e)] = Do(L[id], D1(R[c], store))
SH(if b a5 a2)] = Da(B[b], test 5[‘1] SHeeD)
(while b)] = wloop D; (B[], wtest Do(S [e], return))
(read id)] = Do(L[id], Dy(do-read, store))
(print e)] = Dgy(R[e], do-print)
block] = Be[block]
id) = Do(L [id], Jetch
c] = conatfc]
(D e1 ¢2)] = Do(R[e1], D1(R[ee], binop[B]))
(&] = Do (2], wnoslE])
[(id az...an)] = Do(7[id], Do(checkn, D1{Aln[as. .. an], apply,))
[(< €1 ee)] = Do(R[es], D1(R[ee], binpred[<]))
B(7 e)) = Do(R[e], unpred]f])
([id] = lookup[id]
F[id] = lookup[[id]
Alo[empty] = return
Atn[a of] = Do(A[d], T(ALn—1[a]))
Alid] = lookup[[id]
Afe] = R[]
Be[(block #)] = Stfs]
8e](block (var idy...idn) #)] = B1(blockn Da(SE[sl], release-blockn), eatn idn. .. idy)
Be[(block (fun id(id;...idn) (ml) aly) sle)] = B1(S¢[sle]), e2t-Jun id f)
where [is:
f = Bi(funetion, Ppnpe(ME[(m]) sl1], Dnys(feteh, release-fun, . ;)), eztnps ida. .. id; result)
ML [(empty) of] = S¢[of]
My [(im mi) of] = pass, (Dn—1(Min[im], Mn— 1 [(md) o))
M [(om ml) of] = pass, (Pn_1 2(Mln— 1 [(ml) o], Mouc[om]))

WM e e s e GG »

Table 7. Combinatorial form of semantic equations

Since the modification of the equations is generally not difficult, we present the
required transformations for only a few of them.

The equation for a block declaring variables may be modified as follows:

B¢[(block (var id,...id,) sl)]

= Apk.Dp[(var id;...id,)]p(A'ly. .. ln.Da(SEs]], relcase-blocky)p'l;. . . lnK)
= Apko.let (l1,...ln) = newno and ¢’ = adjoin,oly...1,

in Dy (S€[sl], release-blocka)(ply /idy]. .. [ln/idn])ls.. . lnko’
= Mp.|Nenvko let (Iy,...l,) = new,o and o’ = adjoin,aly...1,

in D, (S¢]s], release-block,)(env ly... ln)h. . . lnkd'] (e2tnidy. .. idnp)

= Ap.block,D (S ¢[[s]], release-block,)(ezty idy...1d1p)
= By, (block, Dn(S€[s], release-blocky,)), exty idy...1d;)

The transformations required for a function declaration are more complicated
and are defined below:

Do[(fun id (id;...1d,) (ml) sl)] = Npx.x((ezt-fun idf)p)
where f is:

[=N nvi...va0.det (lg,ly,...1n) = newpyy0 and p" = J'|lo[result][ly fidy].. . [ln [idy]
and o' = adjoin-init, , ololy. ..l ‘uninitialized’v,. .. v,
in Mép[[(ml) sfp"ly. . . Ln(fetchp” (release-fun, oy p"loly . . . lnn)lo)o’

10

lookup) fetch

lookup 1

fetch do-primt

lookup 1 D

&
const 1 store

lockup i toich

unpred
positive?

logkup 1 fatch

ugop wmionusl

lookup i fetch

Figure 1. Example 1 - the “naive” code

= \dnv1...vp0.let (lo,l1,...ln) = newpy 10 and o' = p'|lo[result]{ly [idy].. . [ln[idn]
and o' = adjoin-init, 0olohy. .. Iy ‘uniniticlized'v, ... v,
in M€ J(ml) sf]p"l. . La(Dn(fetch, release-fun, 1y)" boly. . Annilo)d’
= Nnvy...vp0.let (o, 1y, ... ln) = newnya0 and p" = ¢'lo [result][ly [idy]. .. [In [idy]
and o’ = adjoin-init, ololy.. . ln ‘uninitialized’vy... vy,
in Py pg2(ME[(m) s, Doy (fetch, release-fun, 4,))
p"ll. S l,. Ioh o 137}100’
that is
=g function, Pnas2(ME[(m]) s, Dns1(fetch, release-fung,)
(BItn+1 T, AR td; result.p')
= By (function, Pnnt+2(ME[(ml) 8], Data(fetch, release-fungy,),
eZtp4y idy. .. idy result)
And then combining these results together with the definition of a block, we have:
Be[(block (fun id (idy...ids) (ml) sh) sb)]
= \pk.S €][slo] ((ext-fun id By (function,...)p)x
= B, (S {[sk], ezt-fun id By(function,...))

3. Combinatorial semantic equations

11

B

o \‘?abh
o
e returs
(o]
o return

axty 1
block,

(o) 1uu-b1o=k, o)
; ()
1°°“Pc:n“ x store (o) axty j 1 result
() ()
G reun (o) 0

0 do-priat 0 fetch release -t\ms

lookup 1 fetch E-pags @
(o) I-pass

checky return
® e
lockup i °
G et serr

lookup i fetch

tura
e . loockup result o
o store
(o]
0 leokup i fotch o o)
binop tizmes
lockup result o o o
P o return lookup I

comst 1 ““:“u? ; o ey o
const O atore o
©

o unop minusl o

lockup 1 fetch o

lookup] e

returs

Figure 2. Example 2 — the “naive” code

The modifications of the equations for parameter passing are straightforward:

Me, [(im ml) f]
= Noly.. . lnko Min[im]o(M&n—1[(m!) sflolz. .. lnk)li(os 1)
(01,02, 03| ‘uninitialized’[1;])
= Npl1.. . lnko . Dpy (Min[[im], Mln—1[(mi) sf])pl2. .. lnkli(0s 1)
(01,02, 03] ‘uninitialized’/1,])
= pass, Dn_1(Min[im], Mln_y[(mi) &)

and

12

Me, [(om ml) &l
= Nply.. . luka. Mbp_1 [(ml) sljplz. .. ln(Mowe[om]prly (03 1))
(01,02, 03] ‘uninitialized'[1,)
= Aply.. 1nk0.Poy 2(Mla_1[(ml) 8], Mose[om])ols.. . lnkly (05 Iy)
(01,02, o3| ‘uninitialized’f1])
= pass, Pn—y2(Ma_1[(ml) s, Moxeflom])

The last transformation to be presented is the equation for computing actual
parameters:

Aly[a alfl= Npn.A[e] p(Av.Alr—1 [a] p(n v))
= Do(Alla], Apnv.Aln—y [l p{n v))
— Do(#[d], T(Atn—s [o])

Now we may derive the first version of code — a “naive” code represented as a tree
in which the internal nodes are labelled with B's, D’s, T's, P’s and some of the auxiliary
functions. The leaves are labelled with actions, i.e. auxiliary functions like lookup[id],
fetch, extn idy,...1d;, and so on. We may omit almost all the indices since they can easily
be computed from the information contained in the leaves. We keep indices only with
such operations as block,, function,, pass,, check, and apply,.

The combinator trees are not linear yet. Therefore they are mot acceptable
for designing a target machine. Figure 1 shows the “naive” code for the program from
Example 1; Figure 2 — for the program from Example 2.

4 Code rotation

We can rotate the “naive” code into an almost linear form using the following
properties of the combinators:

Property 1. Right-associativity of D's (cf. [4])
Dk(Dp(C!, 18)! ‘T) — Dk+p(ar Dk(ﬂ) ‘T))

Property 2. Elimination of P’s
an(-Pnr(ay ﬂ); 'T) = Pn,m+r(a,- Dm[ﬂ; 'T))

Proof:

Pn m(Pnr(a, ﬂ), 'y]ph . !nxo:‘:l e T Tmtle - Tmgr

= Pn,((.'!, ﬁ)ph i In('ypzozi o zm)zm.H. o Tmgr

= aply... Lo(Bo(1pZ0%1. . . Zm)Zmi1. - - Tmss)

= aply... ln(Dm(B,7)PT0%1. .. ZmTms1- - - Tmir)

= ,,,m.l.,[a, Dm{ﬁ, "}‘))Pll i Inzo:ﬂg. e TmTmle - Tmtr B

4. Code rotation 18

Property 3. Sequencing P's and D's

P, m(Dn+r(a: ﬂ): 'T) = Dn-l-.m-f-r[ay an[ﬂ; 7))

Proof:

Pn m(Dn+r{a: -B}r ’T)pil see lnxo-ﬁ e ImIml- - Tmtr

= Dpyrla, B)oly.. la(1020%1.. . Zm)Tmi1. - Tintr

= ap(Bpli... ln(7PT0Z1.. . Zm)Tme1- - Tmtr)
ap(Pam(B,7)Ph. . - lnZ0T1. . ZmTma1- - - Tmtr)

= Dn+m+r(a; P, m(,ﬁ) 'T))ptl N O 7 ImIm+4+1..-Tmtr B

Figure 8. Elimination of T combinators

Property 4. Elimination of T"s (due to Wand)
Di(T(a), B) = Dr41(a, B)

Proof':
Dk(T{a}, 49)4930-‘31- < TrTh41
= Ma)p(BrzroT1. .. Tk)Tr+1

= ap(Bpzozy. .. TkZk+1)
= Diti1(, B)pzoz1. .. TeZrsa B

Notice that Property 4 makes it possible to eliminate all of T's since they occur
only in trees of the form shown in Fig. 3.

Property 5. Elimination of return (cf. [3])

Dy(return,v) = 7

14

stors nlcut-hloek‘

Figure 4. Example 1 - code after rotation

Property 8. Reducing indices at P's

an(P333n+p a, ﬁ] — pass,,+m+,P,,_1_m(a, 16)

Proof:

Prnml(pass, ., o, B)pli.. . lnZ0Z1. .. ZmTms1- - - TmtrC

= pass, ;. (a)pl. .. la(BoZ071. .. L) Bt s Tmeke

= apls...l.(BpZ0Z1. .. Tm)Tme1- - - Tmarli (03l {01, 02, 03[‘uninitialized’f1)

= ,.._1,,,,(05, ﬁ)plg e i,.:cozl R R o O B R zm+,ll(03 !1)(01 , T2, 03[‘uninitiafized’ﬂl])
= pass, ymyrPro1,m(@ B)ol1.. . lnToT1.. . ZmTm41-- - Tm4r0 [

Since the value of n at P, i3 equal to the number of pass’es following this
P, then after pulling a P through all of D’'s and pass’es, the P becomes of the form
Pom = Do (by Properties 2, 3 and 6). Therefore it is possible to eliminate all P's from
the code.

4. Code rotation 15

do-print relesse-block,

release-fun;

Figure 5. Example 2 — code after rotation

We may also sequence conditional statements with the rest of the code. We
need, however, to introduce a new auxiliary function (cf. [6]):

testy fg = NpzoZ1...TkB.8 — [pToT1...Tk,9pPT0T).. . Tk

Notice that we could define testr by means of fest and the T combinator. In that case,
however, T"s would remain after rotation. Now we have:

Property 7. Sequencing test’s and the rest of the code (cf. [6])

Dy (test aB,y) = testy (Dk(a,v),Di(B,7))

Of course, to avoid duplicating the code for 7, we represent the code after
rotation as a dag instead of a tree (we may use the same code for both branches). We do
not sequence the code of a while loop. This problem is discussed thoroughly in [6].

18

rot[D [D « B] 4] = rot[D a[D 8 1] by Property 1
rot|D [test o 3] 7] = [test rof[D & 4] rot[D g 4]] by Property 7
rot|D return 8] = rotf by Property 5
rot[D [T &]] = rot|D a f] by Property 4

rot|D o f] = [D rota rotf]

rot[D [P o B] 4] = rot|D rot|P o B] 7]
rot[B o f] = [B rota rotf]

rot[wloop a] == [wloop rota]

rot[wtest o] = [wtest rotal

rot[blockn o] = [blockn rota]

rot[ezt-fun id o] = [ezt-fun id rota]

rot[P [P o B] 7] = rot[P o rot[D £ 1] by Property 2

rot[P[D o f] 4] =rot[D a [P B 4]] by Property 3

rot[P [pass o] B] = [pass rot[P o f]] by Property 8

rofa = o for the rest (instructions)

Table 8. Structural definition of rotf

Now we are able to define the function rof to rotate the “naive” code into
an almost linear tree (dag). The definition is shown in Table 8. The rotated trees for
Example 1 and Example 2 are of the form from Figures 4 and 5 respectively.

There are two rules that introduce double rotation of the code. This fact causes
some problems like rotation of a tree which has been already rotated (corresponding rules
are not shown in Table 8). One of these rules may be easily substituted by rot[P [P a 8] 7] =
rot|P a|D B 7]]. The new definition is equivalent to the old one since P becomes D at the
end of rotation, and then we can rotate the result accordingly to Property 1. There is
no such substitution for the rule rot[D [P a §] 7] = rot|D rot|P e f] 4]°. Therefore the
code must still be rotated twice. It is possible, however, to restrict the double rotation to
the code for parameter passing, and eliminate the P combinators before rotating the rest
of the code.

5 Static scoping

In the same way as it has been done in [4], we may distribute the symbol table
information to instructions. The combinator S is used to sequence instructions after this
process:

Spale, B) = Na1...0pKZ) ... T0.001...ap(f8;. .. apkT) . .. zp)
The a's correspond to the locations of variables visible in the environment, the z’s create

a local register file for evaluating expressions.

The symbol table information has been originally distributed by means of the
B combinator. Here, however, we need to introduce a generalization of B to obtain the
same goal:

Apij(a, B) = Nay...apby... bicy...cj.aBay...apby.. . bicr...cj)er...cibr. . Bicr. .. ¢;

All the M-variables create a new display of locations; therefore they all are passed to
the function defining the environment (8). The j top-most variables (c’s) are locations of
parameters to be passed. So they are passed as arguments to a, which probably contains

.We had not realized this difficulty until we were implementing this method in Scheme

5. Static scoping AT

testyr f g=Nay...apk2y... 2 f.f — fa1...0pK21...2k,001... CpRE1. .. 2
wloop, f == \ai...apxfiz(far...epx)
wtesty f = Nay...aprbf.f — fay...epb,x
blockpn f = Na;s...aprodet(l1,...1n) = newno and ¢’ = adjoin,ol;...1In
infag...aply.. . lawo’
Junction,, f=1\ej...apnzvs...vn0.kt (lo,1,..-In) = newny 0
and o’ = adjoin-init, 4 0lpls... 1, ‘uninitichzed’vy.. v,
in fag...aplols...lnnlo
applyp, = Naz...epnfvi...vnfnfvs...vn
Pt mnm = Maj...0pl1...lmKZ ... 2n0.fa5. . apls. . ImKZy... 20l (0s]))
(01,02, 05| uninitialized’f1,])
release-blockppnn = Nag...8pl1... Inko.k(releasenoly...15)

release-fun, o == Nag...aply. .. lanvo.qu(releasenoly.. . ly)

Table 9. Auxiliaries for distributing the symbol table information

some of the pass instructions. The b's and ¢’s together correspond to the newly created
locations and they are passed to a as arguments for one of the relesse instructions. Notice
that Apoo is equal to By.

Now we formulate some useful properties of these combinators:
Property 8. Associativity of B's (cf. [5])

By(Bi(a, £),7) = By(e, By(8,7))

Property 9. Distribution law for B (cf. [5])

By(Dm(a, B),7) = Spm(Bs(e,7), Bp(8,7))

Property 10. Distribution law for A

Apii(Dmairzi(@, 8),7) = Sptiti,m(Bpsirila,7), Apis(B,7))

Proof':

A,,,-J-(Dm+¢+25(a, ﬁ), ”)’)(11. .a prl i b;cl. + - CjTpTy...Tm
= Dpyivej(@ B)(1a1...apby.. . bicy...ci)er...ciby.. . bicyr. .. cjZ0 %1 . Tm
= a(y8e1...apb1...bic1...¢5)
(B(vay-..aphy...bicr...ci)er. .. ciby.. . biey...CiToZy. .. Zm)
== B,,.,.H.,-(a, ’]’)01 oy a,,bl. T B.—cl - L‘J‘[Ap.'j(ﬁ, "]’)(11 bl ﬂpb],. b b,—c; «en C3T0ZTY. . .\":m)
= S,,+,-+5.m(B‘,+.»+,-(a, ')‘),A!“‘j(ﬁ, 'r))a; e apbl e 5{'31- <. C5TpZ1...Tm B

Before we reformulate the instructions, notice that, by the above properties, the
only instructions that are bound to the symbol table information by the A combinator
instead of B, are fest, release-block, release-fun and pass. And even more, fest and release’s
are bound by means of Ap;o (see the reformulation of pass below).

18

Ap:‘o(‘"‘k f g, f) = t“'tp-fl',lk ApiO{f! f} Apio{!: f}
Apiolrelease-block;, r) = release-blocky ;; ;
Apiolrelease-fun;, 1) == release-fun, . ;
Apij(paste;pipnsT) = P838p ipi 0 i Apivrj—1(f,7)
Bp(wloop f,7) = wloop, By(f, 1)

Bp(wtest f,7) = wtesty Bp(f,7)

By(blocky f,1) = blockpn Apnolf,7)

Bp(function’,, [, 1) = function,, Ap1n(f,1)
Bp(apply' ,, 1) = apply,,

Table 10. Distributing the symbol table information

Let us define the environment-creating functions first:

table, id 7 = \ay...ap.(\id'. id' = id — ap,70y...ap—; id’
fun-table, id f 7 = Xe;. ..a,‘(}sid'. id' = id— fa)...a5,701...0p id')

By means of these functions, we have:

B(exty tdy...idy, 7) = tableyyn idn. .. (tablepyy idy 7). ..
By(ezt-fun id f,7) = fiz (' .fun-table, id By(/,) 1)

We use the definitions of the environment-creating functions to define the value of lookup

only. And because of the static scoping, we may define other functions that give us the
same answer and do not require the environment to be passed during run-time. These
are:

selecy j = Nay...apn.na;
mk-funy ; f = Xay...apn.n(fa1...45)

Now we may define the value of lookup[[id] with the symbol table information 7, given
as a term defining 7, in the following way.

Let j = max{k | 7 = ...(tablex id...)... or 7 = ...(fun-table, id f...)...}
Then:

—if 7 = ...(tablej d...)... and r;é...(fun-tabie_f id...)... and, in addition,
id describes a regular variable, value or result parameter, then

By(lookup[[id], 7)e;...apn = n(ra;...0, id) = na;
= selecyj 1...a50
s0
By(lookup[[id], 7) = selec, j

5. Static scoping 19

Figure 6. Example 1 - code after distribution

— if 7 iz defined as in the previous case, but id describes a fun or var parameter,
then

Spn(Bpllookup[id], 7), @)a;. .. apkz;... 200
= lookup[id](ra1...ap)(aa;...apK2;...25)0
= (@ay...apKZ1...2p)(03 05)0
= fetch(ray...ap)(@gy...apKZTy. .. Ta)ajo
= Spalfetchy, a)ai...apK2). .. 2000
= selecy jay...ap(Spn(fetchy, a)ay...apkzy ... Tp)o
= Spn(selecy 7, Spn(fetchy, @))ar...aprz1. .. Za0
So in this case
Spn(Bgl(lookup[id],), @) = Spna(selecy 7, Spnlfetch,, a))

~ if 7 =...(fun-table; id f...)..., i.e. id denotes a regular function, then

By(lookup[id], 7)ay...apn = n(ra1...apid) = n(fa,...0a)
= mk-fun,; fa1...ap7
80
By(lookup[[id], 7) = mk-fun,; f

20

B. (f unctien,

Figure 7. Example 2 — code after distribution

Now we may reformulate the basic instructions such as store, feich, const,
do-print, L-pass etc. The distribution of the symbol table information reaches these
instructions as By(..., 7). Since they ignore the information passed by 7, we may redefine
all of them in the following way:

By(store,7) = store, forall r's

The other auxiliaries are also straightforward. Their new definitions are shown in Table 9.

By these definitions we obtain the properties of the distribution collected in Table 10. For
the purpose of an easier implementation of a target machine (see Section 6), we introduce
an additional parameter to a function call. This parameter is ignored by the function;
it is, however, removed from the stack for computing an expression. So we redefine the
auxiliaries from the previous sections:

funetion', f env= Anz.function, f envy
apply’n = Npnfvr...vn.f0fvy.. v,

6. Simple display machine 21

and then we have the additional properties in Table 10.

Now we can define the function distr to distribute the symbol table informa-
tion to the instructions, according to the presented rules. The definition is simple and
therefore it is omitted. Then the compiler for the language is a function compilep] =
distr|B rot|D Be[[p] return] tableo]. Figures 6 and 7 show the codes for Example 1 and 2
after the distribution.

6 Simple display machine

The machine that interpretes the code generated by the compiler consists of:

the instruction sequence to be interpreted; let us denote the set of all instruc-
tions by Ins,

I

the display, i.e. the locations of variables in the environment,

the continuation register; let us denote all continuations by K,

— the local register file for evaluating expressions.

The values stored in the local register file are:

— storable values when they result from evaluating expressions and actual
parameters,

— truth values as results of evaluating boolean expressions,
— instruction sequences for implementing loops (another solution is presented
in [6]).

So the local register file is built of elements from W= V+ B+ Ins. It is of the form of
We.

The instructions and the instruction sequences to be interpreted are of the
following functionality:

Insgp =L 2K —+ W'—S— A

So Ins = |J Insyn. Then, if Rep, denotes the machine representations of elements from
the domain «, and Rep,, denote the representations of Ins;,, we may define the target
machine — a function that interpretes instructions (cf. [5]):

Myn : Rep,, = Rep} — Repgz — Reply —» S— A

Let us denote by retpt,,fa1...8,KZ1... 20 = Bay...a;KZ;... 24, i.e. the con-
tinuation to execute 8 with the given arguments. The interpretation of a program starts
as Moo init-cont 09, where B is the instruction sequence of the program and og is the
initial state.

Table 11 presents the interpretation of basic instructions. Here we show some of
the more complicated. The “” operation is the abstraction function from representations
to “real” values (cf. [5]).

22

Mpn|S store alag...apKkz;... Zno
= Mpn-g08y1...CpKZ ... Tn—20" o = (07,02,03]2n/2n_1])
Mpn[S do-read alay...eprz;... 200

= Mpns1QG1...8pKZ1...TnTn410" Zn41 = firstog, o' = (restoy, 00, 03)

Mpnl|S do-print ales...aprz1... 200
= Mpn—yQ81...GpKT1...2n—10" o' = (01,02 || 2n,03)
Mpn[S feteh clay...aprzs...2n0 = Mpnaay...apR2 ... 2a—1(03 2n)o
M, [S [consts] olay...apxzy... 200 = Mpn410a;1...0pK2 ... 2000
Mpn[S [selecj] alas...aprZ1...2n0 = Mpnaty...6p82Z ... 2080
Mpn[S [binop@®)] alay...8pk21...2n0 = Mpn—10G1...8pKZ1... Tn—220
Mpn[8 |unopS)] alas...6przy... 200 == Mpna8y...6pKZ1... 20120
MpnlS [binpred <] aljas...apK21...200 = Mpn—1081...8pKZ1... Zn—p20
MpnlS [unpredf] alas...6pKZy... 200 = Mpna6y...CpR2Z .. . Zn—120
Mporeturn az...ap(relpty, aG1...6pKZ1...2n)0 = Mpn a1...8pKZ1...2n0
My o return inii-cont o = init-cont ¢ = og || “normal termination”
Mprn|SL-passalay...apr2y... 200
oz || “not a variable passed” ifz, gL
Mpp—gaay...aprzy...2n—20' o =(01,08,08]2n/2n—1]
Mpn[S E-pass alay...apKZs... 200
oz || “not an ezpression passed” fzp, €F
o {{01,09' eslznfzn-1])

==
Mpu_gaa;.. .a,xz;...xu_go‘ {VI;U’E‘ 08[(53 3n}f¢n—1]}
Mpn[S F-pass alay...aprz1...2n0

og || “not @ function passed” if z, @F

Mpn—gQ6y...0pKZ1... 2n—20" o' = (04,0¢,03|znf2zn—1])
Mpn|S I-pass olay...apr2;... 200
ez || “not a variable passed for result” if zn L

Table 11. Evaluation of instructions

My ,|S [blockn a]Bla;... QpKT1...Tn0
= block, m&dy ... 8p(B8y. .. 8yREy. .. Bp)0
= &&...8p8p41. - - Gppm(Bir... BpkEy. .. 2s)0’
= MpymoQQy...0p8p41-..Cppm(retply o fa1. .. apKZ) ... 2,)0"
where: (ap41, ... Cppm) = newno, 0 = adjoin,0ap41...8p4m

Mpn[testn—y @ flay...a;KZ)... 200

= testpn_1 &Pd1... 8p%)... 200
» {aal. colgk¥y gy if ¥, = true
~ | B81...8,k%) .. . Xp_yo if £, == false
_ My _1cay...0pK2). . . Zn10 if z, = true
T \Mpn—-1801...0pK2).. . Tp1 0 if z, = false

My o[S [wloop a] Blay...apk2y... 200
= Mpo[wloop a]ay...ap(retpt,, Boy...apKZ)...Z0)0

Mpn—-poa;...apKzy.. .Zp_go’ o' =(01,0¢,03[(05 zn—1)/2nl)

z2=0P2n—1%n
z=Ozn
z=<= Zpn—1Zn
z=fz,

ifanE
if-t,,GL

6. Simple display machine 23

Myo|wloop aay...apko
= Gd... 8pk[wloop alo
= M, aa;...ayk[wloop a]

Mpo|wtest alay. .. ap(retpt, ,Ba1...apKZ1. .. Ta)0z0
Mpocay...ap(retptyofa, ... ap(retpt, ,fa1...8p%1...20))0 il = true
MynBay...apKT)... 220 if z = false

Mpyio release-block; ay...aply. .. li(retpt,, @a;...apKT)...Z0)0
= Mpp a0y...85KZ1...Zp
where o’ = (01, 02,03] ‘unused’fl,]...[‘unused’/li])

Myyi, release-fun; ay...aph.. Li(reipty, . aby.. . bpKZ1...2a)Ta410
o Mm,n-[—l ﬂ,'bl. - bm"c-"‘"l- o TaTagl
where o’ = (01, 02, 03| ‘unused’/l;].. . [‘unused’/l;])

Notice that release-fun is the only instruction that changes all the elements in the display.
Notice also that the memory may be arranged as a stack. The release instructions release
the top-most elements in the display, that is those elements, which have been created after
all other elements in the display. The locations stored in refpt continuations have been
also created before the locations being released (see interpretation of block and apply).

Mpin,mlpass, alay...aply...lnkZ)... Zm0
= pa3ssyyp m,n Q1. ..aph...z,,fc:bl....‘l:mo
= &d&;... ﬂpzl. i Inki?l. . .fmzl(ﬂ's Il)(7"r
== Afp+n_m+2 ady. .. ﬂpfl. ¥ .l,;.*c:cl ity .Imll(as 11}0”
where o’ = (01, 02, 03[‘uninitialized’[1;])

The only decision that still has to be made is the representation of a function
value. We will let it be of the following form: (func!ionp,, @, ay,...0p). A function value
is created while mk-fun is interpreted. Such a value is stored in the local register file and
in local variables for fun parameters. The interpretation is as follows:

M, | S|mk-fun; (function; ,)] Blas...apk21... 200
= mk-fun,; (function; .)d...8,(B81... 8pk%1.. 20)0
= My nt1801... 0,62, ... Za{function; ,, &, a1,...05)0

My oS checkm aay...apkZ1. .. Zo1{function;, B, by, ... bj)o
__Jos || “wrong number of arguments” ifr#m
= | MpnQay...apKZ).. . To—y{function;, B,b;,...bj)o

24

Mp nt14m|S epplyy, eay...apKzy. .. zo{function;,, B,by,...05)v1... om0
= app!ypmdl...&p(retpt“ éél...&,k.‘tl...tn)(junctiz;njm B,b1,... 00, . o
= (function,, B,by,...b;)(retpty, &8y...8pKE,.. 8,){function..)0y...0mo
= Mj,m+1{function;, B)b;...bj(retpt,, ag,...apkz1... 2,){function... }vy...v;m0

My a1 {function, ,, a)a,...apk{function...)v;...v,0
— éﬂ«l e éﬁ&.pq.l. . dp+n+1 R:&,,.,.lo’
= i‘fp.pn.}.l'; Qdy...8p0p41. . a,_,.,;“xa,.no’
where (Gp1, - - - Gppnt1) = NEWn4 O
and o' = adjoin-init, ,0ap4)...Gppns1 ‘uninitialized'v;... vy,

Appendix A shows the interpretation of the code for Example 1, Appendix B
for Example 2.

7 Standard display machine

We would like to obtain the standard display machine, discussed by Dijkstra
in [1], as a result of our transformations. In the standard machine, locations of variables
from a block or a function form 2 sequence of consecutive memory cells. The memory is
ordered and there exists a function, suce, that for a given location returns the following
one. Then a location of a variable can be expressed as a pair: the base, which is the
location of the memory block, and the offset, the number of succ’s to be performed on
the base in order to get the location corresponding to the variable. The display vector is
shorter than that presented in the previous sections; it consists only of the bases of all
visible blocks.

To be able to get the standard machine by transforming semantic equations for
the language, we must already change the equations and introduce the block structure of
the memory. It seems strange at first that this “representation” decision must be made
when the language is being designed. It is, however, quite natural for languages with
class objects, coroutines (Simula 67, Loglan), or pointers to dynamically created records
(Pascal). Such languages introduce the notion of objects in their semantics already.
Fortunately, this change does not require redefining the entire semantics of our language.
The necessary changes are shown in Table 12. Notice the difference in indices of M{ from
Section 2 and C¢ here. The index of M¢ previously indicated the number of parameters
still to be passed. The index of C¢ denotes the (consecutive) number of the parameter
being passed, so it indicates the offset of this parameter in the memory block created for
the function.

Table 13 shows the new combinatorial forms of the changed semantic equations.
We need to replace P combinators by new ones; let us call them NP and define as:

NP.(a,B) = Mplkz:1...zq.pl(Bplkz;. .. 24)

They have the following properties:

7. Standard display machine 25

Continuations

Venve = Env — L — K variable declaration continuations
Fenve = Env — K function declaration continuations

Meaning functions

Dy : {Var-dec) — Env — Venve — K
Dy : (Fun-dec) — Env — Fenve — K
Cly : { Mode-list-body) — Env — L — K

Equations

Bef(block (var id;. .. idn) sh] = \pr.Do[(var id;. .. idn)]o(NPLS E[sl] ¢ (release-blockn ’x))
Bef(block (fun @))] = \px.D[(fun &)Js(\7.5t[s]7'x)
Dy(var ids...1dn)] = Npxo.let | = newno and o’ = adjoin, ol
and p' = p[Ifid;[(eucel)fide]. .. [(euee™ 1 I)fidn—1]
in xolo’
D, [(fun id (ids. . idn) (ml) oD] = Noxx(z (\P-l(7)/ id)
where [is:
f=\p'nzvs...vn0.letl = newn 410 and o' = g'[[result][(succl)/ids].. . [(suce™ I)/idn]
and o’ = adjoin-init, , ;o ‘uninitialized’v;...vn
in CLy [(md) el]o"{(fetech g (release-fun, , ; 'In)l)o’
Cln[(empty) of] = body SE[sf]
Cen[(im ml) of] = Xplxo.let I' = succ™l
in Min[imlo(Clas 1 [(md) sl ple)(0s U){o1, 02, 08| ‘uninitialized’[l'])
Cen(om mi) of] = plro.let I == quec™(
in Clny1 [(ml)] pl(Mouefomlort (o5l o, 00, og|‘uninitialized’{I'])

Auxiliaries
bodyf = Nol./p
newnc = some [such that (gsl), (0 (sucel)),...(og(succ"11)) are ‘unused’
adjoin,, ol = (01,00, 05| ‘uninitialized’/l]| ‘wrinitiakized’f(succl)]. .. | ‘uninitialized’[{suce™ 1 1)]}
adjoin-init, olvy... vy = (01,02,05(vs fl]...[vn/(succ”11)])
release-blockn = \plxo.x{01, 02,05 ‘unused’fl]. .. [‘wnused’/(succ™~* 1)])
release-fun,, = \plnvo.nv{os,oe, os[" d’ft) [d’f(succ™ 1 1))

Table 12. Standard display — modified semantics

Property 11.

(1)
(2)
(3)
(4)

NP, (NP (a,8),7) = NPnssle, NPy(B,7))
NPy(Ds(a,B),7) = Dusr(e, NPu(B,7))
NP, (passy,, @, B) = pass,, NPz(a,B)
NP, (body @,) = Dny(a,B)

In the previous sections we have standardized the equations to take the environ-

ment as a parameter even when it has not been necessary. We could do almost the same
now and add the base of the current block to all semantic functions. Then we would not
need D combinators at all. We do not, however, demand this standardization; notice that
after rotating, NP combinators do not occur in combinator trees (by Property 11(4j).

To distribute the symbol table information to instructions, we need still another

modification of B combinators. The new combinators are simpler than A’s and may be
defined as:

NAy(a,) = \ay...a5.0(Bay...ap)ap

26

Auxiliaries
pass, . f = Aplez;...2mo.let i == guce™!
in folrzy...zml (0301, 02, 02| uninitialized’[I'])
blockn fenv = \io.letl = new,o and o’ = adjoin, ol

in f(envl)lco’

eztn idn...5dy = Apl.p[lfids].. . [(suce™ =2 1) /idn]

Junction,, fenv=>rnzv;...vn0.letl = newn 410 and o' = adjoin-init, , , ol ‘uniniticlized’v;. .. v,
in f(envl)inld’

Equations
Be[(block (var idy...id,) a))] = B1(blockn D1(Sefsl], release-blocky,), ety idp. . .id;)
Be[(block (fun id (idy...idn) (ml) sly) alp)] = B(S{[sle], ezt-funidf)
where f is:
[= Bj(function, NP1 (Cl;[(ml) sls], Dy(fetch, release-fun, . ;)), eztn s 1 §dn. .. id; result)
Cln [(empty) of] = body Sesl]
Cln [(!'mmﬂ '4 = pasiy nDl(Min l"ml! Ctn%l [(”d} ‘tl)
Cen[(om mi) of] = pasey , NPn(Clnss[(ml) ol], Moue[om])

Table 18. Standard display — combinatorial equations

Auxiliaries
tablep id i1 == Nay...apid" .id' = id — succiap, 1a;... apid
new-frame, 1= A\a;...ap id'.ray...ap_zid
By(ezty idn...9dg, 1) = table, idyn — 1...(tablep id; O(new-frame, 7))...
selecy(f,) = Nay1...ap.succ’a;
Pasiy;my [= Na1... 0pKZ1.. . ZmO.
let | = gucc™ ap, Comband o' = (01,0¢,03|'uninitialized’fl])
infa;...ap82;1... 2ml(og)0’
blockpn f = \ay...aprcletl = newpo and o' = adjoin,ol
in fag...aplro’
Junction,,, [= \ay...epnzvi...vn0
let | = newn 40 and o' = adjoin-init, , ol ‘uninitialized'vy...vn
in fay...apinle’
releasen o = M.{01, 02, 03[‘unused’[l]. .. [‘unused’f(suce™ 1 1)])
release-blockpn = \ay... apro.a(releasenoap)
release-fun,, = Nay... apnuo.qu(releasencap)

Distribution
let 7= ..(table; idi...)... or 1 =...(fun-table; id f...)...
if id denotes a variable without dereferencing
Spn(Bp(lookup[id},), B) = Spn(selecp(7, 1), B)
if id denotes a var or fun parameter
Spn(Bp(lookupid]), 7), B) = Spn(selecp(7,), Spnlfetch, 8))
if sd denotes a regular function
Spn(lookup[sd],), B) = Spn(mk-fun,; f,B)
NAp(testy fg,1) = testyx NAp(S,7) NAp(g,7)
N Ap(release-block;, 7) = release-block, ;
NAp(release-fun,;,7) = release-fun,;
NAp(pass,, , 7,7) = passymn NAp(S,7)
Bp(blockn f,1) = blockpn NAp(f,7)
Bp(function,, f,1)= function,, NAp(f,7)

Table 14. Standard display - distribution

8. Final remarks 27

that is NA copies the last parameter which is the base of the current block. NA com-
binators have the following property:

Property 12.

NAP(Dm-I-I(a: B), 1) = Spm(By(e, B), NA,,(,B, 7))

The new environment-creating functions and the values of the auxiliaries applied
to NA are shown in Table 14. The pair (i,) in the new version of selec means the base
(¢) and the offset (j) of the variable. The transformations are simpler for the standard
display, and, as we have already said, they would be even simpler if our equations were
in the new standardized form. We think that the machine architecture as well as the
interpreting function of M are trivial to define. Therefore we will not define them here.

8 Final remarks

Further modifications may be done in order to obtain a target-machine code
that resembles a conventional assembly-language program. One of these modifications
has been presented by Wand in [6]. He has introduced a binding operator label that
makes it possible to implement loops in the standard way, i.e. not storing continuations
in the stack (or local register file). This operator is statically scoped and it is a subject
for rotation, that is it has the following property ([6]):

rot(Dy(while-loop(z, y), 2)) = labeld. rot(Di(z, testi (Di(y, 6), 2)))

We can prove that we still are able to distribute the symbol table information to this
code, and by introducing pointers, we can eliminate the variable 4 entirely ([6]).

After this modification, our code is not linear; it is also not a dag. To be able
to store the code in a linear memory, we should introduce “jumps”. They may be of the
form similar to reipt, that is:

conty 8 = ApKzy...TE.0pKTy... Tk

Notice that because the label operator is closed and the value produced by evaluating the
loop condition is absorbed by test, the first occurrence of § is of the same functionality
as that bound by cont. So the number of parameters passed to § remains the same. The
cont combinator may be useful for conditionals as well.

Another modification, also suggested by Wand, is introduction of “complex”
combinators that eliminate S. We may define them in the following way:

STOREpn g= Spﬂ(stfBﬂ, ﬁ)

These combinators together with cont produce a code of a “linear” form. The exceptions
are fest and block. A “linear” representation of test, af is easy; one may store this
instruction as (TEST,» @) B, where « is a pointer of the same form as this used by cont.
Of course, the cont combinator may be also used at the end of the S sequence.

28

To linearize blocks we may introduce a combinator of the following form:
backyn @ B = X\ay...8pKZ). .. Zn.00y...8p(001...0p1KZ}...24)
and then show that
backyn Spm(a,)7 = Spnsmla, backyn B 7)

Since for the solutions presented so far the local register file is empty when a release-block
instruction is being evaluated, we may also have:

RELEASE-BLOCKpn¢ @ = X@y...0pKT1...Z200.001...8p—1KZ1...Zn)
(01,02, 03| ‘unused’[ag). .. [‘unused’/(succ™" ap)])

and then:
backy, (release-blocky; o) = RELEASE-BLOCK,n; a

By these properties we may define:
BLOCKpai 0= \a1...0pKZ)...200.08)...8y8p41KT). .. Tn0
where a,41 = new;o and ¢’ = adjoin;capy; and
Syn(blocky; @, B) = BLOCKpni(backpy1n @ B)

In this way we eventually obtain a linear code of the desired form. Notice that we do
not need the retpt combinator to enter a block anymore.

Still another question concerns when checking of parameters passed to a function
takes place. It is, however, connected with the language design, not the method discussed
here. If the formal function had its parameters specified, then it could be possible to carry
out all the checking of L-pass, E-pass and [-pass during compilation. F-pass, however,
would contain a complex checker of function specifications or the formal functions would
have to be restricted in some way. That is:

— the current solution specifies (fun f(¢ g) (var fun)...) and applications of
g need a run-time checking of the number of parameters as well as the kind
of parameters passed,

— when specifying g in the same way as f, i.e. (fun f (i g) (var fun(var
fun (value))) ...) we avoid the need of any run-time checking; in this case,
however, it is impossible to specify a function that may be applied to itself
(infinite chain of fun specifications),

— specification of g does not define the second-level function’s parameters (as in
Loglan), i.e. (fun f(i g) (var fun(var fun))...) where the fun parameter
of g does not contain any specification of its parameters; then the run-time
checking is needed for F-pass only.

These solutions would result in different codes generated by the compiler. For languages
which are not strongly-typed (Simula 67, Loglan) L-pass, E-pass, I-pass and F-pass may
serve as the type checker for applications, and in the general case must be carried out
when the program is being executed.

References 28

References

[1]

(2]
(3]

[5]
6]

Dijkstra, E-W. “Recursive Programming”, Numerische Mathematik 2,1960
also in Programming Systems and Languages, S.Rosen (Ed.), McGraw-Hill, New
York, 1967

Gordon, M.J.C. “The Denotational Description of Programming Languages”,
Springer—Verlag, New York, 1979

Li-Mei Wu, C-616 Project, Indiana University, 1982 (manuscript)

Wand, M. “Semantics-Directed Machine Architecture”, Conf. Rec. 9th ACM
Symp. on Principles of Programming Languages (1982), 234-241

Wand, M. “Deriving Target Code as a Representation of Continuation Semantics”
ACM Trans. on Prog. Lang. and Systems, 4, 3, July, 1982, 496-517

Wand, M. “Loops in Combinator-Based Compilers” Conf. Rec. 10th ACM Symp.
on Principles of Prog. Lang. (1983), 190-196

30

Appendix A. Interpretation of Example 1

Let oo be the initial state. Since we are not to read and the print statement

occurs only at the and of the program, we show the changes of the third component of
the state only. The locations are bold-typed integers. The labels used are the labels from
Figure 6. We also label continuations.

Mool @o: S|blocks az| return])init-contao

—

b1

T T T EERE"

b idddd

1

I D

L

Myo(az: [S[block Ba] as])12ky : (retptyq return init-cont)oy
where 0y : 1 — ‘uninitialized’, 8 — ‘uninitialized’
Maso(B2: [S [selec 3] Bs])123ky : retptyy as 12k,)0s
where g5 : 1 — ‘uninitialized’, 2 — ‘uninitialized’, 3 — ‘uniniticlized’
M3 (Bs: [S [cons 1] Bs])123k2 30
Mao(Bs: [S store §5])123k, 3102
M3o(Bs: |S [wloop 2] Be])123k203
where ¢3; 1 — ‘uninitialized’, 2 — ‘uninitiglized,3 — 1
Mao(y1: [wloop 72])123ks : (retptso Bs 123k2)os
Mg (7v2: [S [selec 3] 73])1238k371 03
Mao(vs: [S fetch 74])123Kk371 303
Mso(v4: [S |unpred positive?] 75]))123ks7: 1o
M3o(7s: [wiest 16])123k37; trueos
Mso(7e: [S [selec 3] 77])1238ky : (retptso 11 123ks)os
Mg (77: [S [selec 3] 75]) 123k, 303
Ms2(vs: [S fetch 715]) 123K, 3303
Ms2(ve: [S unop minusl] 710])123k4310s
Mg2(v10: [S store 711])123k43003
Mso(v11: return)123ky : (retptso 71 123k3)0,
where g4 : 1 — ‘uninitielized’, 2 — ‘uninitialized’,3 — 0
Mso(71: [wloop 72])123ks04
Mg (y2: |S [selec 3] 13])123k37104
Msa(vs: |S fetch 74])123k37: 304
Msg(va: |S |unpred positive?] v5])123k37; 004
Mgo(vs: [wtest v6]) 123Ky : (retptsy Ps 123Kz} falseoy
Mso(fe: | S |selec 2] B7])123k204
Mg, (Br: |S |selec 3] Bs])123k204
Msz(ﬁgl Sfﬁfcfl ﬂgl)123rcg 20.1
Maz(ﬁg: S store 5101}123!62 200’4
M o(Bro: release-block,)123k, : (retptyo a3 12k,)05
where o5 : 1 — ‘uninitielized’, 2 — 0,3 — 0
Mao(ea: [S [selec 1] a4])12k,06
where g : 1 — ‘uninitialized’, 2 — 0,3 — ‘unused’
My (cy: [S[selec 2] a5])12k, 1og
Mgg[as'. Sfﬂtch aB])lz.vcl 120'0
Mzz(agi S store 0:71)12!61 1004
Mzo(a';: 5[88!88 ll a3|)12N1O’7
where o7 : 1 20,2 =0
Mgl(as: Sfetch ag])12x1 1oz
Moy (c: [S do-print a10])12x, 007
Mao(cio: release-blocky)12k : (retpty, return init-cont)or
do-print prints O into the second component of the state
Moo (return)init-contog
where 0g : 1 — ‘unused’, 2 — ‘unused’

Appendix A. Interpretation of Example 1

a1

— init-contog produces the answer: 0 “normal termination”

32

Appendix B. Interpretation of Example 2

This example skows how functions and function calls are interpreted. As in
Appendix A, we show only the changes of the third component of ¢. Since we have
to distinguish the values from different components of V, we denote locations as bold-
typed integers — it may be implemented by using tag bits for values in V. The labels for
instruction sequences come from Figure 7; oy is the initial state.

Moo(ao: |S [blocky as] return]) init-contoo
— Mio(az: [S[selec 1] as])1ky : (retpty o returninit-cont)oy
where ¢; : 1 — ‘uninitialized’
Myi(as: [S[const 1] ad])lki 1oy
M (a4 [S store ag]) 1k, 110y
Mio(as: [S[selec 1] ag))lky02
whereop : 1 — 1
M, (cg: [S|mk-funy Bo] az]) 1k, 1og
M;g({}[?: Scheckz Ctg]]l!ﬂl lf . (functionoz ﬂ])O'z
M o{ag: [S[selec 1] ag))lk;, 1f0
M 3(eq: [S[selec 1] ayo])lk; 1 10,
M}_q(@.’loi [S apply2 011]]1.&1 lflll'.'.fg
Mos(Bo: functiony, Br)ka @ (retptyon11k11)f 110,
M3y (b1 [pass, B2])234K2205
where ¢3 : 1 — 1, 2 — ‘uninitialized,3 - 1,4 — 1
Mgs(B2: [S E-pass Ps])234k,2310,
where 04 : 1 — 1, 2 — ‘uninitialized’, 3 — ‘uninitialized’, 4 — 1
Mg,l(ﬂgi [pasal ,84])234?62205
where a5 : 1 — 1, 2 — ‘uninitialized |3 > 1,4 — 1
Mss(ﬁ.;: [S [3e!ec 2] ﬂ5])234}€22410’g
where gg : 1 = 1, 2 — ‘uninitialized’, 3 - 1, 4 — ‘uniniticlized’
Mg 4(Bs: [S fetch fo])234£224130,
M3z 4(Bs: [S |unpred zero?] f7])234x,24110s
‘Ms.;(ﬁ';: test (51 11])2343‘52241!&!&80’3
Mgs(m1: [S [selec 1] 72])234K2 24100
Mz s(v2: [S [selec 2] 73])234K224120,
Mg s(7ys: [S fetch 04])234K2241230,
Mss(’!;;i S[mk-funo ﬂo] 75])234&22412 los
Mazg(7s: [S checky 76])234x,24121f : (Junctiony, f1)os
Maes(ve: [S [selec 2] 77])234x,24121 fo,
Magz(v7: [S fetch 73])234K,24121 f 30,
Mg7(ve: [S [unop minusi] v5])234Kx224121f 106
.nfsf(']’gi S [38188 3] ’110])234-‘62 24121]‘005
Mgs("no: [S Gpp!yz 711])234&224121f040’5
Mos(Bo: functiony,81)Ks : (retptys711234x2,24121) /0040,
Ms1(61: [pass, P2])58TksBo7
where 07 : 1 = 1, 2 — ‘uninitialized’, 3 — 1, 4, 5 — ‘uninitialized’,
8—-0,7— 4
Mgs(B2: |S E-pass Bs|)587k3 56005
where 63 : 1 — 1, 2 — ‘uninilialized’, 3 — 1, 4, 5, 8 — ‘uninitialized’,
77— 4
— Ms31(Bs: [pass, B4])567ks B0,
where 09 : 1 — 1, 2 — ‘uninitialized’, 3 — 1, 4, 5 — ‘uninitialized’,
8—-0,7—4

£

I O O

T

}

P4 L L

!

Appendix B. Interpretation of Example 2

L1 ddlld !

!

L L 1d i 4

11l

Ll

Msa(,@.;! IS ISEIBC 2] ,65]]567!63 5740’10
where 019 : 1 — 1, 2 — ‘uninitialized’, 3 — 1, 4, 5 — ‘uninitialized’,
6 — 0,7 — ‘uninitialized’
M34(;65: [Sfetch ﬁa]}5°75357460‘10
M3 4(Be: |S |unpred zero?] 5;])587k3 57400,
Ma,g[ﬂ?: [t83f 61 ’]’1]}56753 574‘!’“8010
Msa(ali [S [38‘80 1] 62])507!635740’10
M34(521 [S [canst].I 63])557!63 57450’10
M3 5(03: [S store 6,])56Txk35745101
Mas(ﬁqi [S [sefec 3] 65”56753574011
where 1) : 1 — 1,2 — ‘uninstialized’, 3 — 1, 4 — ‘uninitialized’,
8 —1,6—0 7 — ‘uniniticlized’
M3 4(65: [S [const 0] 8))567ks 57470y,
M55(551 |S store ﬂ1)5°7;‘€3574700’11
Msgs(m:[S I-pass n2])587x3 67 40,2
where 032 : 1 — 1,2 — ‘uninitialized’, 3 — 1, 4 — ‘uninitialized’, 5 — 1,
8—-07—0
Msl(ﬂgi [Sfetch ng]]5°7|‘93 8503
where 035 : 1 = 1,2 — ‘uninitialized’,3 — 1,4 -+ 0,5 - 1,8 — 0,
7—0
Mgy (ns: release-funy)587ks : (retptss711234K2,24121)1073
Msg(711: [S [binop times] 712])234K22412110y4
where 014 : 1 — 1,2 — ‘uninitialized’ 3 —+ 1,4 — 0,5, 8,7 — ‘unused’
Msa("hg! [S store 1}1]}234!623413 1014
Mss(m: |S I-pass n2])234K2 241045
wheredy3:1—+1,2—-41,3—-1,4 -0
M,g,l(f}gi [Sfetch 7]3])234!02 2010
where 0g: 1 —+0,2—+1,3—1,4—0
Mg 1(ns: release-fung)234k; : (retpt;, @11 1k11) 1010
Mlz(au: [S store au]]lxl 110’17
where 017 : 1 =0, 2,3, 4 — ‘unused’
Mio(aiz: |S[selec 1] eys])1k1018
where oyg : 1 — 1
Mll[alai ISfetc,’; C!l.;])lﬁi 10’13
Myi(c14: [S print ay5))1k, 1018
Mio(ais: release-block,)1k : (retptyo return inii-cont)oqg
The second component of ¢;¢ contains 1
Mo (return) init-contoy 020 : 1 = ‘unuged
init-cont oag produces the answer: 1 “pnormal termination”

Notice that the value of the function call is transmitted after all result para-

meters (states 0,7 and o;g for instance).

