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Abstract

Direct denotational semantics is a simple method for defining programming languages. However
the semantics of goto commands must be rather elaborate and far from real implementations.
When a gote command is encountered, the abstract machine defining the meaning of programs
switches to a searching mode and begins to scan the code to find the corresponding label. The
same command in real machines is implemented as a direct jump (a pointer) to the appropriate
place in the executable code. This paper presents a compilation of programs defined by 2 direct
semantics to the usual form of a target code. Wand’s technique of combinator-based compilation
is used, so every transformation during compilation preserves the meaning of the program. This
means that the entire compiler is correct and no additional proofs are needed.
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1 Introduction

Blikle and Tarlecki in [2] present a “naive” direct (i.e. non-continuational) den-
totational semantics for a block-structured language with goto’s. The semantics is very
simple and does not require reflexive Scott domains ([5,6]) to define the meaning of
programs. Many of the domains used can be simple sets without additional features.
Definitions of semantic functions are expressed by very common combinators like com-
position and conditional composition. Therefore the semantics can be easily understood
by programmers and can be useful in proving correctness of programs.

The simplicity of “naive” semantics must have a drawback. The semantics of
goto’s is easily expressible in the continuational style, while for the direct style the ex-
istence of goto’s forces the language designers to introduce an additional component
to the abstract machine implementing the language. This component is a mode. The
machine is always in one of two modes: executing or searching for a label. The idea
is that when the machine is in executing mode, all non-goto commands transform the
state in the usual way. If a goto command is encountered, the machine switches to

.Author’s permanent address: Institute of Informatics, University of Warsaw, PKiN, P.0O.Box 1219,
00-001 Warsaw, Poland



2 1. Introduction

block var x,y; ——ip search path

print y;
end

Figure 1. A search path in a program

a searching mode and begins scanning commands until a corresponding label is fourd.
Then it switches back to the executing mode. Figure 1 presents a simple program with
a search path shown.

The authors admit ([2]) that their “ .. main concern is to say what programs are
doing rather than how we execute them”. The abstract implementation is not optimal,
although it is easy to think of a program defined in a traditional real-machine code which
produces the same answers and is optimal in the sense that all commands are always
executed (not scanned). Our task is to build 2 compiler which given a program defined in
the naive semantics produces such a code. Usually one shows that the original program
and the target code produced by a compiler are equivalent, that is they produce the same
answers for the same data. This proof may be quite difficult and therefore most compiler
designers omit any formal arguments of this equivalence.

. Wand in his papers ([8,9,10]) presents an approach that makes this question
trivial. His combinator-based compilers modify the code by equality-preserving transfor-
matjons. Hence every elementary step (processing a command, expression etc.) can be
performed separately and the result will still give correct answers. Due to this fact, the
compiler must be correct. In this paper, we apply Wand's technique to build a compiler for
a block-structured language with goto’s defined in almost the same way as introduced by
Blikle and Tarlecki. The target machine is always in the executing mode, so no scanning
of the code is needed to find 2 label when 2 program runs.

The method consists of the following steps:

— introduction of special purpose combinators that enable us to abstract from
the details of the code,

— linearization of the combinator code,

~ introduction of new fixed-point equations for each label in order to handle
jumps backwards,
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— elimination of goto’s, that is elimination of the searching mode.

For the program from Figure 1, we could informally denote the part with the
label as FIX()\6....if...theny ;= y— 1;6...). A real compiler built by our method must
therefore be able to introduce unique variables (like @ in the above “denctation”) and
unique labels for compiling conditionals.

The naive denotational semantics is defined exclusively for complete partial
orders. Therefore in order to present our notation and to provide a basis for our proofs,
in Section 2 we present basic features of complete partial orders. We also adopt pipe
combinators introduced in [4] which generalize composition to functions delivering many
results.

Section 3 presents a skeleton language which contains all control constructs
interesting to us and which may be easily extended to a full programming language. The
skeleton language does not define declarations, expressions or basic commands; every
sensible extension should be possible without changes in our algorithms. Also in this
part we introduce special-purpose combinators and show how to combinatorize semantic
equations. As a result, we can represent the denotation of a program as a graph whose
vertices are combinators and whose leaves are denotations of the basic constructs.

The combinator trees defined in Section 3 are still too complex for our trans-
formations. In Section 4 we introduce linear {rees which are of a very simple form and
provide means for structural induction in the proofs . We show how to linearize com-
binator trees corresponding to 2 program.

Finally in Section 5 we describe the main transformation, that is we show how
to change all goto’s into pointers to appropriate fragments of the code.

The method is illustrated by transformations of an example program.

2 Complete partial orders of partial functions

2.1 Complete partial orders

For the purpose of this paper, all domains may be simply regarded as sets. In
a more specific approach, domains form complete partial orders ([2]) or lattices ([5,6]).
Properties of complete partial orders are well-known. Here we recall only a few definitions
and basic facts. .

A partially ordered set (A, C4) is called a complete partial order (or a cpo) if
it contains the least element | 4 (the bottom) and if any increasing countable sequence
(a chain) ¢; C 482 4... in A has a least upper bound UAa, in A. We shall omit the
index A at the relation symbol, bottom symbol and least upper bound symbol if the set
can be understood from the context. Cpo’s may be combined together by operations like
disjoint union, Cartesian product and a few others. Figure 2 shows two different cpo’s of
truth values.

A cpo is called a set-theoretic cpo if its elements are sets and if they are ordered
by inclusion. An example set-theoretic cpo may be the set of all subsets of natural num-
bers. The least element of this cpo is the empty set. Every element of this cpo is a least
upper bound of a chain consisting of finite subsets only. Thus the set-theoretic partial
order of all finite subsets of natural numbers forms a basis for this cpo. For a set
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true maﬂv %
folse [ (1) L

Bool ! Bool

Figure 2. Cpo’s of truth values
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Figure 8. FIN(N) - the partial order of all finite subsets of natural numbers

A we denote the partial order of all its finite subsets by FIN(A). Figure 3 shows a few
elements of FIN(N).

2.2 Functions, least fixed points

If A and B are cpo’s then a total function f : A — B is monotone iff a; T 4 a
implies f(a;) Ep f(az). A total function is continzous if for any chaina; Coas C4 ...
we have a chain f(a,) Cp f(¢2) C5 ... (ie. f is monotone) and f(UA a,) = Ugf(a“).

If f/: A— A is continuous, then there exists the least a such that f(a) = a.
It is called the least fired point of f and we denote it by FIX(f). The least fixed point
is the limit of approximation sequence f(1) C f(f(L)) C f(/(f(1L)) E ... that is
FIX(f) = UJ“"(_L). This fact (Kleene's fized-point theorem) enables us to find solutions
for recursive definitions of functions. In this case, A is a cpo of functions.

Now let us fix our notation. We write f.z for a function application, although
we also feel free to write f(z) for the same purpose. The symbol ? is used to denote that
the value of some expression is undefined, that is f.z = ? means that the value of f for
z is undefined. We write ¢ — b, ¢ for a conditional expression. Its value is b if a is true
and c if a is false. If a is undefined, then the value of the conditional is undefined as well.
We write

by = a,
b2 = ¢,
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by — Ca,

OTHERWISE - Cgp41

for by ~ ¢1,(b2 = ¢2,...(ba = Cn,Cat1)--.)-

We use the h-notation to denote functions, for instance Az.z + & denotes a
function of z “add e to z”. However, more often we define a function by a formula
showing the value of f.z.

For b; € B and ¢; € A, [b1 /a1, ...bs/a,) denotes a pseudo-mapping from A to
B and is defined as:
[b1]81,...bafag).6 =

(6=1a1)— by,

(6 =a4) — by,
OTHERWISE — ?

2.3 Cpo’s of partial functions

The set of all partial functions from A to B is a set-theoretic cpo. A function
is a set of argument-value pairs. So we can order functions by inclusion; f C g means
that g agrees with f on all arguments where [ is defined, ¢ may, however, be defined in
some additional points. The least element in this cpo is the totally undefined function
(the empty set of pairs). This cpo is of a special interest to us since all semantic functions
(program denotations) in our semantics are partial functions. Figure 4 shows a few
elements from such a cpo; we denote this set by A > B.

B

o

-

o

[

&F =

Figure 4. A > B — a cpo of partial functions

Two partial functions f : A = Band g: B> C can be (sequentially) composed
together to define a function fog : A = C. The meaning of this composition is:
(fog)la=(f.a=1)— ?,9.(f.¢). The composition is associative, that is f o (go k) =
(f e g)o k. The o combinator is total on its arguments. It is monotone and continuous in
a cpo of partial functions.

If B is a set (or a cpo) that contains the truth values,p: A= Band f,g: A >
C, then we define a function (conditional composition) IF p THEN f ELSEgFI: A = C
as

(IF p THEN [ ELSE g FlI).c =
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(p.ac = true) = f.a,
(p.a = false) — g.a,
OTHERWISE — ?

It A= C and g is the identity on A, then we will write IF p THEN f FI. Again, this
combinator is total, monotone and continuous in a cpo of partial functions.

Due to the continuity of o and IF, every functional from (A = C)—+ (A = C)
defined exclusively by means of these combinators is continuous, so it has the least fixed
point. Since all our semantic functions are of this form, we guarantee the existence of the
least fixed points, so all our recursive definitions have solutions.

2.4 Pipes

Raoult and Sethi in [4] introduced a useful notation that enables us to compose
functions delivering many results. They called such a composition a pipe because it
resembles pipes used in the UNIX operating system. Pipes make it possible to pass some
arguments to functions which are not performed immediately. Consider the following
example. Let F : A = C=> (A X C)and G: A — A. If we want to peform F
for ¢ modified by G and for ¢, that is if we want to have F.(G.a)c, then the traditional
definition of composition, i.e. the o combinator, is not useful. Here we define a simple
version of pipes which make such compositions possible and quite easy.

[l |
f

FFIT
C E )
VL

9 G2 Qs Ga

Figure 5. f e g — a pipe of two functions
Let f: X3 =X Vi X--X Yjandg: Yy = Y= Yy = - Vi >
Zy X -+ X Zum. Then the pipe of f and g is a function
feg: Xj = oo =2 Xi=» Y=+ Y221 X X Zn
defined as:

? if fzy..2¢ =1

B {y-y:---ww-u--.ya, if f.21...2¢= (1, ..97)

The function in our example is then G o F°. Figure 5 shows this concept.

The o combinator is monotone and continuous in its arguments (as it is defined
by means of composition).

®Pipes in [4] are denoted by G | F.
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Property 1 . Right associativity of pipes

Let f: Xy —=---=X;= Y, X--- XY,
g: V1= Y=Yy == V™ 2, X---X Z,
hiZy— o= Zi= T = Im = Q1 X - X @n
Then
(feg)eh=[fe(goh)

Due to the right associativity of pipes, we can always linearize them to a standard
form of fy e (f2e---(fa ® fas41) --). We assume that pipes associate to the right, so this
form is simply written as f; 0 foe---fr 0 fry1. Notice also that the traditional composition
of two functions is a pipe of the functions as well. We can also curry the functions and
the pipe is still well-defined.

3 An example language and combinatorization

3.1 An example language - a skeleton

We are interested in transforming the goto command defined in the naive
denotational semantics style ([2]). Therefore our example language should have quite
a complex control structure while other constructs, like expressions, basic commands and
declarations, should be as general as possible. We do not specify such constructs, so the
method should work for almost any extension.

e: Ezp — expressions
&: Dec - declarations
f : Bes — basic commands
l: Lab ~ labels
¢: Com = Bas | - commands
Lab : Com |
goto Lab |

Com,y; Comg |
if Ezp then Com, else Com, i |

lock
b: Block =Igfocck Dec begin Com end — blocks
p: Program = Block

Table 1. Syntax of the language

The syntax of the skeleton language is presented in Table 1. Table 2 shows the
semantic domains and functions, while Table 3 defines the semantics of the language. We
assume that basic commands, Bas, do not change the control low. So Bas may contain
assignment statements, input/output operations etc. Expressions in our language are
side-effect-free. They are used in conditional commands and therefore the set of expressed
values, Data, must include the truth values true and false. Datfs might be Bool | Int |
Real. ...
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Domains
d: Data — expressed values
o: State — environments/store (target states)
t: Mode= Lab| nil - searching/executing modes
Functions

: Ezp — State = Data

: Program — State = State

: Com — Mode — State = Mode X State
: Bag — State = State

: Dec — State = Stale

: Dee — State => State

: Com — FIN(Lab)

LCOOURO O™

Auxiliary functions

PASS = \0o.(,0)

EVAL = Mo.(¢ = nil) = 0,?

ezecuting = it = nil) — true, false
searching = \i.(¢ € Lab) — true, false

Table 2. Domains and functions

The abstract machine defininig the semantics is always in one of two modes:
executing or searching for a label. Therefore its state conmsists of two components:
environment /store and mode. The environment /store remains undefined. So it should be
possible to apply our method to the common ways of defining them:

- the environment maps identifiers to values, the store corresponds to the state
of input and output,

— the environment maps identifiers to locations, while the store maps the latter
ones to values.

The function D is to undo declarations, that is to restore the old environment
(and possibly change the store by releasing some locations). In usual applications D[[6] o
D[¢] is the identity function; we do not require this property, though.

The function J returns all labels defined and visible within a command. The
function Loop in the definition of a block is well-defined since it is built by means of pipes
and IF combinators. (Notice that here we regard all total functions as partial functions).

The goal of our transformations is to find a target-machine code equivalent to
the original program for a machine which will always be in the executing mode. That
is, we would like to find a code which does not require the mode component in order to
produce correct answers.
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Definition of J

Ji:d={}uJld

Ja;ez] = Jfer]u J]e]

Jlif e then ¢, else ¢, ] = J[aJ U J[e2]
Jlc] =@ for all other commands

Semantic clauses

Plr] = Clp] @ EVAL .nil

ClB] = IF ezecuting
THEN Ae.K [B] e (PASS .¢)
ELSE PASS

Clt:d = i:(a = [) = C[c].ndl,
(: € Lab) — PASS ¢,
OTHERWISE — C[].c
Clgoto I] = he.(e = nil) — PASS [, PASS .t
Cles; 2] = Cller] o Clez]
Clif ¢ then ¢, else c; i] = IF ezecuting
THEN
IF EVALof[¢]
THEN
Clic1] o (1F searching THEN C [c,] ELSE PASS FI)
ELSE C[cz]
FI
ELSE C[e;] e (1F searching THEN C[c2] ELSE PASS F1)

C[block & block ¢ end] = IF Fclzccutiuy
THEN
EVAL eD[[6] o (PASS . nil)
Clic) @ Loop e (Ae.T[8] o (PASS .¢))

ELSE PASS
F1

where

Loop = F1x(M0.\e.(t € J[c]) = C[c] @ 8.¢, PASS i)

Table 8. Semantic clauses and definition of J
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Example
The following program will be used to illustrate the method:

block &
begin
h: By
Bz;
lo: Bs;
block &
begin
if e
then goto I3
else f,;
goto [>
fi;
ls: Bs
end;
goto I
end

3.2 Combinators and combinator graphs

The first step in our method is to find a more manageable structure of the
generated code. We would like to distinguish executable (target) parts of the code and
the control structure. Therefore we introduce combinators and auxiliary functions shown
in Table 4. The control structure will be some composition of combinators which we
represent in a form of a directed graph with

f b g for feg

and

A
x/ --\x for A(Xy,...Xn)

The general form of combinator graphs is not really useful for our transforma-
tions. In Section 4 we introduce linear trees of a very simple regular form which makes
structural induction possible in proving correctness of the method. Intuitively, a graph
for a block forms a linear tree if all combinators referencing to labels are located on the
rightmost path of the graph. So evaluation in the searching mode is carried out along
this path.

Property 2 . Eliminating PASS
PASSef = f

Proof: The property holds since PASS is a total function |
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W(f) = IF ezecuting THEN f ELSE PASS FI
W(f) = IF searching THEN f ELSE PASS FI
T(f,9) = IF ezecuting THEN f ELSE g FI
LABEL 4 (f) = FIX()\6.f)
X = \zy.(y, z)
1= M\z.2
R(IINS,9) =Nt €)= [, 90
TiF(e, f,9) = IF ezecuting

THEN

IF EVALee THEN f e W(g) ELSE g FI
ELSE f e W(g)

coTofl] = )u.(a'l nil) = 1,¢
REF[l] = \e.fe = 1) = nil,¢
BRA[/] (¢) = IF ezecuting
THEN
IF EVAL oe THEN PASS ELSE GOTO[] e PASS FI
ELSE PASS

Fi
CASEn(li = f1,...0a = fa,9) = M(¢ = 41) = fy1.nil,

(5 i la) =+ fg.ﬂﬂ,
OTHERWISE — g.¢
TEST(e)(/,g9) = IF ezecuting
THEN
IF EVALee THEN g ELSE f FI
ELSE g
F1

Table 4. Combinators
Property 3 . Eliminating X
XeXef =f
Proof: X is total, so

XeXef.z:007s.. .20 = Xof . Zo0123.. .2 = f.21202s...7p 0

Property 4 .

Iftf:A> Aandg: B— A= BX A, then
Xef X =0X\t.f o (PASS.¢)
W(EVALef o (PASS.nil) e g) = W(X of ® X og)

Proof:
XeofeX.io= feX.o1

? if fo=21
T1x.(f.o)  otherwise
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_In if fo="
~ |(PAss.i).(f.0)  otherwise
fo(PASS.i).0

(Ae.f e (PASS .t)).co

EVALef e (PASS.nil)e g.nilo= f e (PASS.nil)e g.0
= Xeof e X og.nilo

and since the argument of W is evaluated in the executing mode only, the property holds.B

3.3 Combinatorization and partial linearization

Using combinators defined in the previous section, we can express semantic
clauses in a2 combinatorial form. They are shown in Table 5; we transform a few of
them. Denotations of programs form trees; the combinator tree for our example program
is shown in Figure 6. Notice that due to the right associativity of pipes (and of the union
in the definition of J) some parts of the code are already linearized.

ClB) = w(xeK[B] e x)

Cli: ] = rEF[i] o C[c]

Clgoto {] = coTo[l] e PAss

C[if e then ¢, else c; i] = TIF( [¢], C[e1], Cllez2])

C[block & begin c end] = wW(x eD[5] e X e LABEL 8(C[[c] e R(J[])(4, X oD [5] o X)))

where ¢ is a unique variable

Table 5. Combinatorized semantic equations

ClB]= IF ezecuting
THENX¢.K[B] o (PASS .4)

Fi ELSE PASS

= IF ezecufing
THEN X oK [f] e x by Property 4

ELSE PASS
F1

= w(xeK[£] o)
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Figure 6. Combinator tree
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C[block & begin ¢ end]
== IF ezeculing
THEN
EVAL eD[[5] e (PAss.nil) e C[[c] o
FIX(A.\e.(¢ € J[c]) = C[c] @ 8.¢, PASS .t) @
(Ae.D[[6] e (PASS .¢))
ELSE PASS

FI .
= IF ezeculing

THEN
X eD[6] exeoC[c] o
FIX(\0.Xe.(¢ € J[c]) = C[[c] @ 6., PASS i) 0
xeD[5] x
ELSE PASS

= w(xeD[6] e XoC[d o
FIX(M0.\e.(¢ € J[]) = Cllc] @ 6.¢, PASS .t) @
x eD[5]  X)
= W(XeD[6] e xeo
LABEL 8(C[[c] ® (\e.(¢ € J[c]) = 0.¢,PASS L)) @
x oD [s]  X)
= w(xeD[s] exe
LABEL 6(C[[c] e R(J[])(6, PASS)) ®
x oD [5]  X)
= wW(X oD [6] e xe LABEL 6(C[c] o R(J[c])(8, X eD[5] © X)))

where the last transformations can be proved by unfolding the fixpoint expressions, using
for instance Bohm trees ([1,10]).

The combinators have the following property useful to group basic commands
in blocks which do not alter the control structure:

Property 5 . Creating basic blocks

wW(X oK [Bi]ex)ew(x oK [Az]0X)e- - - W(X oK [Ba] oX) = W(X eK [1] 0K [B2]e- - -K[Bn]ox)

We make also use of Property 2 to eliminate some PAsSS'es introduced by com-
binatorizing goto’s. Both these properties make the tree for next transformations shorter.
Figure 7 shows such a tree for our example.

4 Linear trees

4.1 Elements of linear trees

Combinator graphs corresponding to programs are quite complex. When we
analyze the control structure of a program, we are not really interested in the detailed
structure of blocks of basic commands, expressions or even inner blocks; they only increase
the level of difficulties. Therefore we introduce a special class of combinator graphs that
reflect only the control structure of a single block. Their form is almost linear, and we
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call them [linear trees. Since they are defined recursively, we can use structural induction
to prove their properties.

In linear trees we would like to express the fact that some labels have not been
used in a given part of a program. This is easy when we know the entire structure of a
combinator graph. If we want to abstract from inner blocks, we must provide a way to
guarantee that some labels cannot be produced within those blocks. Therefore we have a
combinator:

EX(J) = Mo.(t € J) =1 (¢,0)

To say that & cannot result in referencing [, or I, we may write that a = aeEX({l,l2}).
In our applications, the set of labels in EX(J) will be always finite. To shorten the code
of basic blocks, let E(f) = w(Xef ¢ X).

Linear trees are built of EX,E, combinators defined in Section 2, labels from Lab
and variables of the following sorts:

-6,¢,6p,6,,... ranging over Mode — State = Mode X Slale,

— ¢ €, €, €1,... ranging over Mode — State = Dala; they replace expressions
EVAL ef [e],

- n, 9, N0, M, .. ranging over State = Stale; they are used as substitutions
for w(xeK[[41] e ---K[Ba] ¢ X) to the form of E(n),

- Kk, ¥, ko, K1,... ranging over Mode — State = Mode X State which are
used in place of inner blocks.

To end this introductory part, let us define graphs free of some combinators.
For any combinator Z a combinator graph is 2-free(or free of 2) if it does not contain Z. So
we talk about REF[[/]-free, GOTO-free graphs and so on.

4.2 Linear trees

Internal nodes of linear tress are of the following forms:

- E(n),

w(k), w(x e EX(J)) where J is a finite subset of Lab; we call them blocks
since they correspond to inner blocks,

coTo[]],

REF[],

BRA[](¢).

Linear trees are defined recursively. Let o/ denote 2 linear tree in the recursive

part of the definition. A finite combinator tree o is a linear tree if it is of one of the
following forms:

|

- a = PASS,
— @ = feqd where § is a node,
- a= LABEL §(/).

As for other acyclic graphs, we can define the rightmost path of a linear tree. We
use a o+ Z to denote a combinator graph (not necessarily a linear tree) which is formed
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by extending the rightmost path of a linear tree o by a (rooted) graph Z, that is when
the rightmost node of a is “piped” with the root (distinguished mode) of Z. Since the
rightmost node is PASS, Z replaces it rather than follows it. As a convention we assume
that a w+ 6y means that 8 does not occur in « at all, unless otherwise stated. Figure 8
shows such a compoesition.

——
-

SR =
‘(/ “‘LﬂE'EL 9.5\ "~

s
(', GOTOTE)  ~
N\ b Y
PR REFTe, T
T E_ |
linear >
- s / ”
tree o ol S
- - s
s
\‘\9\ .
!’K L
l' hhhhh
graph 2

Figure 8. Composition a w+ Z

A variable 8 is called a free variable in a combinator graph if it is not bound
by any LABEL combinator in this graph. To make our proofs easier, we assume that if
a linear tree contains a subtree LABEL 6(a) then 8 should not occur outside this subtree.
In particular, LABEL combinators should bind distinct variables. We call such trees
well-formed and from now on we are interested in well-formed trees only.

A linear tree is without ! iff:
- every block is of the form of w(x e EX(J)) and I € J,
~ the tree is free of REF[[], coTo[/], BRA[].

The following properties can be easily proved by structural induction on a.

Property 8 . Evaluation
If o is a linear tree, then for any ¢, o:
a s Qoo =1 or a o .0 = 8y.t"c’
Property 7 . Evaluation of search
Let o be a REF[/]-free linear tree. Then for any state o:
a e #Q.IU = 90.I0'

This property says that if REF[l] does not appear in a linear tree, then the
search for [ is carried out along the righmost path and terminates in the rightmost node.

Property 8 . Unobtainable labels
Let @ be a linear tree without l. For every ¢ £ [,0 if & 1o+ 8y.00 = 05.4'0" then

vl

This property says that a tree without ! cannot generate jumps to [.
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Property 9 . Composition

If all # variables in a linear tree o are free in a rooted combinator graph 4 and
all bound variables in § do not occur in «, then a w+ g8 is well-formed.

If @ and B satisfy the assumptions, we say that o is composable with 8. If 8 is
a linear tree, then a w+ § is also a linear tree.

4.3 Linearization of conditionals

Our combinator trees are still far from being linear, mainly because of TIF
combinators used in conditional commands. Since our source language contains jumps, we
can use them to linearize both branches of a TIF combinator and replace this combinator
by a BRA combinator with two unique labels.

In the next three properties we assume that:
- a, f are two linear trees without [y, [,

- @ is composable with 8.

Property 10 .
For any ¢ # I,

a o+ W(B).e = a w» GOTO[l;] e REF[l;] 0 § =+ REF[l;] o PASS £

Proof: The only interesting case is when @ o+ y.t0 = 6.t'0’. Since a is without [;, Iy,
then ¢/ 3£ [, and ¢ 3 l;. Let us consider two cases: ¢’ = nil and ¢/ # nil.

Case 1. The lefthand side evaluates to (nil,o’). The evaluation of the righthand side is:
coTo[l.] erEF[l;] ¢ B e+ REF[L;] ¢ PASS . nilo’ =
REF[l;] e 8 w+ REF[l;] o PASS .Lho' =
p 1 REF[[l2] o PASS .[po' =
REF[!z] @ PASS .‘20‘ =
PASS . nilo’ = (nil,d’)
Case 2. ¢ 5 nil
The lefthand side evaluates to §.//0’. And the righthand side:
coTofl;] erEF[l;] @ § w+ REF[l;] e PASS .0 =
REF[l;] o § s+ REF[l;] o PASS /0’ =

B w+ REF[l;] e PASS /0’ =
B.ld

since 8 is without l; and ' 52 L,.
Property 11 .

B.nil = GoTo[l}] e a w+ GoTO[l2] ¢ REF[l;] @ 8 w+ REF[i;] e PASS. nil

Proof: Proof is similar to Fact 10. [ |
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Corollary 12 .
For unique labels Iy,

TIF(¢, @, B) = BRA[l;](¢) e @ 1 GOTO[Lo] e REF[l;] ¢ § ++ REF[,] o PASS
and the righthand side is a linear tree.

Property 13 .

Let a be any linear tree, § be any combinator graph and o be composable with
B. Then

(BRA[[J(e) e @) © p = BRA[lJ(c) o a 1 B
and by Property 2 we can eliminate the rightmost PASS in .

Figure 9 shows linearization of a TIF.

T BEA[L, ]

g

' :
ANDN— " A,

REF[t,3
e

*-RE.:[:J

To avoid the problem of generating unused labels, we can introduce a mew
auxiliary set of internal labels disjoint with the set of labels available to programs. The
set Lab should then be the union of internal labels and user labels. We assume that we
can use a function that generates a new unused element from the set of internal labels.

7

Figure 9. Linearization of TIF

By Fact 13, we can define a function s; to linearize the code. This function
should have the following property:

Property 14 . Linearization of conditionals
Let !} and I; be unique (unused) internal labels for s,(f), 8;(g) and 8;(k). Then

&1(TiF(e, f,g)oh) = BRA[l;] ()08, (f) > coTO[l] oeREF[l;]05:(g) =+ REF[I2] es:(h)

Proof: After applying f,g and h to s,, the results are trees without I; and ;. We
construct linear trees for 8,(f), s1(g) in the following way:

— all EVAL o [[¢] expressions are replaced by (unique) e variables,
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~ all blocks of basic commands are replaced by E(n) expressions,
- all inner blocks are replaced by w(x e EX({l;, 2 })).

Now by Property 13 we can produce a linear tree equivalent to TIF combining these trees.
By a reverse substitution, we get the result. [ |

Figure 10 shows the linear code (linear trees for each block) for our example
program. Of course, during linearization we make use of the right associativity of pipes.

4.4 Introduction of new labels

Having the code with linearized conditionals, we are able to carry out the first
transformation that leads us closer to the target code. Our goal is to eliminate the
searching mode, so, in effect, to remove the fixed-point definition of a block. Some
recursive equations will still be necessary since jumps backwards introduce loops in our
programs. We can use the following property of A-calculus:
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Figure 12. Preparation of jumps

Property 15 .
If 6 is not a free variable in @, then FIX(\0.a) = a.

So we can define a function s, which introduces new LABEL combinators in
front of every REF combinator. That is s, satisfies:

Property 16 .
8;(REF[] ) = REF[] e LABEL 6(s2(2))
where # is a unique variable; s; does not change any other constructs.

Now we can combine all the information about jumps within a block. We change
R(J)(6, @) using a CASE combinator first and then evaluate the jumps in CASE.
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Figure 18. Linear code with conditional exits

Property 17 .
Let J = {l1,...l}. Then

R(J)(4, @) = CASE, (I, — GoTO[1] ¢4, ...GOoTO[l,] 0 6, @)

Property 18 .
Let a be a linear tree free of REF[[], 8 be a linear tree without ;. Then

LABEL 6(a w REF[[{] e LABEL 6;(8 w» CASE,(...I = GOTO[l] 04...,6,))) =
LABEL 6(a i+ REF[l] e LABEL 6,(8 w» CASE,(...l = 6;...,6)))
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Proof: Since  is REF[[[]-free then GOTO[/] e @ t+ 8y = GOTO[!] © 6,. And we have:

LABEL §(a s REF[/] e LABEL 6,(8 w+ CASEq(...I — GOTO[l] €4...,6,))) =
LABEL §(a o+ REF[/] e LABEL 6,(8 1o
CASEqg(...I = GOTO[/] e REF[l] e LABEL 6,(8 w+ .. )...,0))) =
LABEL 6(a e+ REF[/] o (8 1> CASEg(...l = (8 w+ CASE,(...,6))...,6)))

The last transformation holds since 6, is not free in . Now using Bohm trees, we can show
that this expression defines the same function as the righthand side in the formulation of
this property. (We can also prove that A and FIX are continuous, and then use this fact
for a proof based on Kleene’s fixed-point theorem). i]

Figures 11 and 12 show this transformation and Figure 13 presents the example
code without R combinators.

5 Transformations of jumps

6.1 Distribution of CASE

The transformations discussed so far enable us to consider a linear tree for a
block as a set of mutually recursive functions:

§ = LABEL 6(a w REF[,;] ¢ 4,)
1= LABEL 0;(a; w+ REF[l;] e 62)

6= LABEL 8 (a s+ CASER(ly — 0y,...lp — 0k, 65))

if the block does not contain any conditionals. In the other case, the CASE combinator
does not contain labels introduced during linearization of conditionals.

The linear structure of the block means that all of these definitions appear on the
rightmost path. If we use the same 6 variable to denote 2 function defined by LABEL 6(/),
as we have done above, then the use of # outside / means a reference to the defined
functions (compare with [7]). It does not lead to any problems since we assumed that all
bound variables in the entire graph are distinct. Therefore the scope of any @ variable is
global.

We can distribute the information stored in the CASE combinator up the rightmost
path of the code. In the next section we show how to move all visible labels (from the out-
side blocks) to the rightmost CASE in a block, so let us assume that the CASE combinator
contains all the necessary information needed to eliminate GOTO combinators.

Property 19 . Distribution to basic blocks

E(n) @ CASEq(. .., @) = CASE.(...,E(n) e a)
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Figure 14. Evaluation of GOTO
Property 20 . Evaluation of REF
REF[l] e CASE.(...I = x...,@) = CASE,(...l = c...,q)
If { does not appear in CASE, then

REF[[]  CASE,(...,a) = CASEpq1(...,| = @, )

Property 21 . Evaluation of GoTO

GOTO[/] @ CASE(...I = X...,a) == CASE,(... = x...,T(x, a))

Figure 14 shows this transformation.
Property 22 . Evaluation of BRA

BRA[/J(¢) e CASEq(...I = x...,a) = CASEqg(...I = x..., TEST(¢)(x, a))

Properties 21 and 22 give the only way to use @ variables in the code. Notice that
the only occurence of  variables is LABEL 6(a), T(6, @) or TEST(¢)(4, @). So @ variables
are always given nil and o as parameters. Therefore the following property holds:
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Property 23 . Evaluation of LABEL
LABEL §(CASE,(...l = 4...,a)) = CASE,(...! = LABEL §(a).. ., LABEL 6(a))
If & does not appear in CASE then

LABEL 6(CASE(. .., @)) = CASE,(..., LABEL 8(a))

Figure 15 shows a transformation of BRA and Figure 16 shows evaluation of
LABEL and REF.

Let us assume for a while that the CASE combinator is somehow distributed
to inner blocks and passed along the rightmost path unchanged. Figure 17 shows the
transformations of the outer block from our example program. The distribution finishes
by:

Property 24 .

W(X 0D[5] @ X 6CASE,(.. ., @)) = W(X eD[[5] ¢ X ec)

8.2 Distribution to blocks

The transformations from the previous section are sufficient to remove GOTO
and REF combinators within a block. The partially compiled code would still contain
GOTO’s to the outside blocks. We can eliminate these jumps if we move the CASE
combinator from the outside block to the inner block. This is possible due to the following
properties:
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Property 25 . Composition as extension
Let a be a linear tree composable with graph 8, i.e. § does not contain variables
bound in @. Then
aefi=aqa w f
Proof: By structural induction on a. [ ]

So we have:

(xoD[5] e X ea 1+ XoD[5]  X) ® CASE,(...,8) =
X eoD[6] e Xoa 1o+ XoD[[5] ® X 6CASE,(..., )

Property 26 .

X eD[[6] e X eCASE.(ly = X1,...la = Xa,0) =
CASEq(ly = xoD[[6] e X 0x),...ln = X eD[[6] @ X 0x,,X eD[6] @ X 0f)

So we can move the CASE combinator inside the inner block. And we can
combine this combinator with the CASE already existing in the block:

Property 27 .
Let L={l,..dn} and L' = {ly,.. .h'}. Let L' = L= {l;,",.. 1i,'}. Then

CASEa(li = X1, da = X, CASER(h' = X', b = xa', 0)) =
CASEII-I-}'(’I =" Xl g Ja =t Xm Iﬁ =+ xﬁ’! S J‘; = X!,', C!)

By these properties we can distribute the labels defined in the outer blocks to
the body of an inner block.

6.3 The target code

During distribution of CASE we ¢an also produce the target code. Notice that
before distribution of labels in the outmost block, the code of the entire program is:

W(x) e EVAL = W(k) e CASEQ(EVAL)
And because programs are always started in the executing mode, this is equivalent to
W(x) @ EVAL == K @ CASEo(EVAL)

We show that during distribution CASE is of the form of CASE,(..., EVAL ea). First let
us introduce additional combinators:

L = \o.(nil,0o)
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and
ERROR = )\o.?

Notice that Le EVALea = a. To preserve the fact that all important combinators are
on the rightmost path, we introduce:

GLUE(f,g) =/

and

iF(e, f,g) = IF e THEN g ELSE f F1

Let us consider the code produced by distribution of CASE.

Property 28 . Undefined labels
If ! does not appear in CASE, then

GOTO[] @ CASE,(...,EVAL 8a) = CASEq(..., T(EVAL ¢ ERROR, EVAL ea))

Property 29 . Evaluation of basic blocks
E(n) e EVALea = EVALe(n e )

and by the right associativity of pipes, we can linearize the basic commands with .

Property 30 .
T(x, EVAL 8a) = EVAL e GLUE(L e, &)
Property 31 .
TEST{¢)(x, EVAL ea) = EVAL ¢ IF(¢, L o), a)
Property 32 .

LABEL 6(EVAL ea) = EVAL e LABEL 6(a|EVAL #8/6])

Notice that all occurrences of ¢ are inside . They have been changed (Property 30 and
31) to L e#, so we have LeEVALef = 4.

Property 33 .

X eD[5] e XeEVALea = EVALeD[5] e
X oD [6] e XeEVALea = EVAL eD[[0] 0 &
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Property 34 .

W(k) e CASE,(...,EVAL 0a) = CASE,(...,EVAL 0 L 0k 8 CASE,(...,EVAL ec))

Property 356 .
Loxfﬁlﬁ] eXea = D]&] eLea

Figures 18-23 show the steps of the entire distribution to the example program.
The distribution in the inner block is carried out after the distribution to the outer block.

Notice that we can reduce the number of GLUE combinators by the following
property:

Property 36 .

GLUE(a, GLUE(B, 7)) = GLUE(a,7)
GLUE(e,f)=a if f is a meaning function

Figure 23 presents the entire code.



5.3 The target code

L
Tx
20
Sax
S\ LAse e}
REFILY
LABEL %
W
s REF[L,)
X-K[p)-Kigax  TSLABEL O,
/
W
ay B}
X+ K1 \- = sl
7 TSCASE, b
/ / s * N
I
| g'_.a‘ GLUE \
¢.-9, J >Bg!
\ Le :
N ! s
L
Sy
D
Ny
= L ageL 8,
REFELT
LABEL @,

K\Rec 0,3

X-IfCFp.l- g, 3 x w | ABEL 9&

Figure 19. Distribution in the outer block - 2



80 i 5. Transformations of jumps

L
Ty
X TR
ey v
T LABEL G,
REF (L]
LaseL G
W =
™ Case, 82
ety S Se s
iy 4 "
/ z;»w%.//:/ ™
I 5@},] 5
Sl 2
\ e ey
N .0
\ X,
% . ! %
~ CASE, 5\
SN EvaL
h = -
w3 i ETenl
~ ,—BAL 6 Lgé ¥
B -
daI
LABEL O,
LABEL 6
X [g.';{
0,2
Q‘LA\S\EL o,
Hip1
ey
CASE,
S EVAL
s GLUE

L _asum_-ga N
i 9:/ BT

Figure £0. Distribution in the outer block - 3



5.3 The target code

31

L
\x\

DD

Sax

e LAge 6,

BRA [, )
GOTO[L, 7
€led ™ gorore, s
REFTE D
LABEL O

W
,/ \Gomu ]
XK IK S Rerrgg
LABEL \9‘

REF[e, 0
LABEL @,

W
TNCASE, L - -~
X'J(‘[p;]l-x \\‘(.CASEZ S
(e, ! e EVAL \\
3 %y e E
. _ o4y N
e BFg)e, ™ GLug '
[ LoevaLs Big6, / S _5%: 7'
\ o; /

- -~

~ .

L
ey
RV,
o
N LagEL 6,

BRATL, T
GOTOTY,D
Ele) e aomore; §
REFlL, ]
LABEL O

W
/™ oroft,d
X-Klp,3-x \’ - T =

L, —EuM Bl 7-8, LABEL B
| 4 Ew \
| s VAL LABEL &

\ 4 !

Figure 21. Distribution in the inner block — 1



82 5. Transformations of jumps

D083
LABEL 6,
i
:\" GLUE
Zhelil ™ GLoe
— -l - - aseL O
f | fgyd
! 1 > ~Ia‘wtcau.u;
1
I 1 Aa /
] 1 ab“-"sj‘ sq
| emmsesm i = LAgEL O
e e e e B T M T e ——;}-u‘aue,.
x[ﬁrﬂ
5043
\ GLUE
S
3
Figure 22. Distribution in the inner block — 2
DS
LABEL G,
LABEL @
gD
Kip,?
LABEL G,
Hleyd
Sl |
LABEL &,
K
|
£ Q]: iGI.J..'E
'—-:—-. LABEL @
: KUpyd
: GLUE
| = / \Lk%EL [0
! {Eﬂl
1 e,
 SNCUSIER. S SLAREL &
e 3
S
J(GD
.

Figure 23. Target code



6. Summary 88

5.4 Elimination of LABEL's

Due to the introduction of GLUE combinators, the target code satisfies the
rules for the scope of @ variables. That is a @ variable is used only inside a subgraph
LABEL 8(a). Therefore we can perform a transformation similar to the elimination of
LABEL combinators in [10]. We can eliminate § variables and LABEL combinators by
introducing pointers, so by introducing circular expressions ([7]). This transformation is
shown in Figure 24. The graph is not acyclic anymore. After this transformation we can
eliminate all GLUE’s and get a target code of the form from Figure 25.

Figure 24. Elimination of LABEL

Figure 25. Target code without LABEL’s and variables

6 Summary

The method presented in this paper can form a basis for a compiler. The
code obtained is of the desired form; it does not contain goto’s or labels. Since the
transformations preserve the meaning of the program, the compiler is in fact correct.
Some implementation issues concern the introduction of internal labels. That is how we
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can stop moving these very local labels inside inner blocks, so how we can decrease the
size of the distributing CASE combinator. One of the possible solutions can use the EX
combinator. We can compose every inner block with this combinator in the code (program
graph). Then during linearization we can propagate the information about local labels
to all inner blocks accordingly to EX(J) e EX(J’) = EX(JUJ’). Another solution can
involve an opposite combinator (another version of CASE) like ONLY(J) = \e.(t € J) —
t,? which means that only labels from J can be produced inside a given block and its
inner blocks. In both cases, before moving the distributing CASE combinator into an
inner block, the combinator can be “trimmed” accordingly to EX or ONLY.

The intermediate graphs (trees) formed by this method enable us to perform
additional transformations. Due to the fact that basic blocks are distinguished from the
rest of the code, we can linearize them and compile to a target form in a way presented
by Wand ([8,9,10]) for a continuational semantics and by Raoult and Sethi ([4]) for a
direct semantics. We can also optimize this code. After linearization of blocks, we can
distribute the information stored in compiler’s lookup tables and produce a code for a
display machine. This issue is presented in [3] for a block-structured language defined in a
continuational style. The same graph may be used for linearizing the IF combinator, that
is for producing a linear code to evaluate the expression and then select the appropriate
branch. This linearization is also discussed in [9] and [3]. Of course, introduction of
while-loops should not be difficult at all.

To conclude these comments, we think that simplicity of the method and easy
way to extend the compiler to perform additional actions, make the method an excellent
frame for building combinator-based compilers and target machines. The transition from
denotational semantics to operational one is almost transparent and correct without need
for additional proofs.
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