Probabilistic Analysis of the Unit Clause
and Maximum Occurring Literal Selection Heuristics
for the 3-Satisfiability Problem

by

Ming-Te Chao
Case Western Reserve University

Department of Computer Engineering and Science
Cleveland, OH 44106

and

John Franco
Indiana University
Department of Computer Science
Bloomington, IN 47405

TECHNICAL REPORT NO. 164

Probabilistic Analysis of the Unit Clause
and Maximum Occurring Literal Selection Heuristics
for the 3-Satisfiability Problem

by
Ming-Te Chao, Case Western Reserve University

and John Franco, Indiana University
December, 1984

This material is based on work supported by the U.S. Air Force under grant number
AFOSR-84-0372.






ABSTRACT

An algorithm for the 3-Satisfiability problem is presented and a probabilistic
analysis is performed. The analysis is based on an instance distribution which is
parameterized to simulate a variety of sample characteristics. The algorithm assigns
values to variables appearing in a given instance of 3-Satisfiability, one at a time,
using the unit clause heuristic and a maximum occurring literal selection heuristic;
at each step a variable is chosen randomly from a subset of variables which is usually
large. The algorithm runs in polynomial time and it is shown that the algorithm
finds a solution to a random instance of 3-Satisfiability with probability bounded
from below by a constant greater than zero for a range of parameter values. The
heuristics studied here can be used to select variables in a Backtrack algorithm for 3-
Satisfiability. Experiments have shown that for about the same range of parameters
as above the Backtrack algorithm using the heuristics finds a solution in polynomial
average time.



1. Introduction

This paper is concerned with the probabilistic performance of two heuristics for the
3-Satisfiability problem (3-SAT). 3-SAT is the problem of determining whether all
of a collection of 3-literal disjunctions (clauses) of Boolean variables are ¢rue for
some truth assignment to the variables. This problem is NP-complete so there is
no known polynomial time algorithm for solving it. 3-SAT is a special case of the
Satisfiability problem (SAT) which is the problem of determining whether all of a
collection of disjunctions of Boolean variables are true for some truth assignment
to the variables.

The analysis is based on an equally likely instance distribution which has been
used in other studies of algorithms for this problem. This model has two parame-
ters: n, the number of disjunctions, and r, the number of variables from which dis-
junctions are composed. The model (which we refer to as M| (n,r,3)) is described
in greater detail in the next section. In [7] it was shown that, under M(n,r,3),
if limpr .00 £ > 5.2 then random instances have no solution with probability ap-
proaching 1. In [2] it was reported that, according to experiments, random instances
have no solution with probability approaching 1 if limp o0 2 > 4. In [1] it was
shown that Backtracking solves 3-SAT in exponential average time for all limiting
ratios of n to r which are constant. In [7] it was shown that a variant of the Davis.
Putnam Procedure [3] which searches for all solutions to the given instance requires
exponential time in probability under M(n,r, 3) for all limiting ratios of n to r which
are constant. But, in [5] it was shown that the Pure-Literal heuristic can be used to
solve random instances of 3-SAT in polynomial time with probability approaching 1
when limp,r 00 2 < 1. In this paper it is shown that the Unit-Clause heuristic and a
maximum occurring literal selection heuristic can be used to solve random instances
of 3-SAT in polynomial time with probability bounded from below by a constant
when lim,, ;.o 2 < 2.9. A similar analysis shows that the Unit-Clause heuristic
alone solves random instances in polynomial time with bounded probability when
limg e 00 & < 2.66. These results are useful because they indicate the effectiveness
of the two heuristics when used in a Backtrack algorithm for 3-SAT. Experiments
suggest that Backtracking, using the two heuristics to determine which literal to
consider at each step, will verify in polynomial average time that a solution exists
for about the same range of limiting ratios of n to r.



There are a number of papers which investigate the probabilistic performance
of SAT; these papers present results which are closely related to the results obtained
for 3-SAT. These results are based on the constant-density model for SAT: construct
each of n clauses independently by placing each of r variables independently in a
clause with probability p and complementing those variables in each clause with
probability 1/2. Average case results using the constant-density model or a variation
are in [1], [8], [9], [10] and [11]. Probabilistic results using the constant-density
model are in [6]. According to the results in [6], when the average number of
literals in a clause is 3, random instances of SAT are nearly always proven to have
no solutions in polynomial time.

2. 3-Satisflability and The Probabilistic Model

The following terms are used to describe 3-SAT. Let V = {v1,v2...9,} be a set of r
boolean variables. Associated with each variable v; is a positive literal, denoted by
v;, and a negative literal, denoted by #; and literal v; has value true iff the variable
v; has value #rue and literal §; has value true iff the variable v; has value false.
The literals v; and ¥; are said to be complementary. If l is a literal then comp(l)
is the literal which is complementary to I. A clause is a subset of the set of all
literals associated with the variables of V' such that no two literals in the subset
are complementary. A truth assignment to V is an assignment of truth values to
every variable in V. A clause ¢ is satisfied by truth assignment ¢ if at least one
literal in ¢ has value true under ¢. Let A;(V) denote the set of i-literal clauses that
can be composed of literals associated with the variables of V. An instance I of
3-SAT is a collection of clauses chosen from A3(V) and the problem is to find a
truth assignment to V' which satisfies all clauses in I, if one exists, and to verify
that no such truth assignment exists otherwise. A truth assignment which satisfies
all clauses in I is said to be a solution to I.

The probabilistic model used for analysis is presented by describing the method
used to construct random instances. A random instance of 3-SAT contains n clauses
chosen uniformly, independently and with replacement from A3(V). The distribu-
tion associated with this construction is referred to as M(n,r, 3).



8. The Algorithm SC,

The algorithm we consider, called SC,, takes as input a collection of clauses I and
outputs “a solution exists® or “cannot determine whether a solution exists®. SC;
contains a single loop. At each iteration ofn the loop a literal is chosen and some
clauses and literals are removed from I. Let Cg*’(j), for all 1 < ¢ < 3, denote the
collection of clauses in I containing exactly s literals at the end of the 7*® iteration
where o denotes the sequence of chosen literals. We shorten C'.' "?(7) to Ci(3). Then
Ci(0) = ¢ for all 1 < ¢ < 2 and |C3(0)] = n. K the 7 + 1°¢ chosen literal is I then
the lines

Remove from I all clauses containing !
Remove from I all occurrences of comp(l)

Have the following effect

V1<4<2Ci(5+1) = {c:ceCij) and I ¢ Ci(5) and comp(l) & Ci(7)
or cU {comp(l)} € Ci41(5)}
Cs(j+1) = {c: c € Ca(s) and I ¢ Cs(5) and comp(l) ¢ Cs(5)}.

In what follows card(v, Cs(5)) is the number of clauses in Cs (7) which contain
the literal v and card(®, Cs(7)) is the number of clauses in Cs(7) which contain the
literal 5. Clauses in C;(j) are said to be unit clauses. Finally, var(l) is the variable
associated with literal .



S C'l (n :
Jj<0
Repeat
If |C1(7)] = O Then Begin
Choose v randomly from V

VeV-{v}
If card(9,Cs(5)) > card(v,Cs(5)) Then ! «— & Else I — v
End
Else Begin
Choose ! randomly from C; (5)
V «V - {var(l)}
End

Remove from I all clauses containing I

Remove from I all occurrences of comp(l)

J+=5+1
Until I is empty or there exist two complementary unit clauses in I
If I is empty Then Output(“a solution exists”)

Else Output(“cannot determine whether a solution exists® )

SC; runs in less than O(r2n) time since I must be empty after r iterations
of the loop and the remove and card operations need look at no more than r * n
literals. An instance I of SAT has a solution if SCy run on I outputs ®a solution
exists”: one solution to I may be found by assigning the value true to the variables

whose positive literals were chosen and the value false to all other variables.



4. Analysis of SC)

In this section it is shown that if instances are generated according to M(n,r,3)
and limp ;00 & < 2.9 then for some ¢ > 0, the probability that SC; outputs “a
solution exists® is greater than e.

The following theorem will be used to show how the collections of clauses in
Ci(7) are distributed.

Theorem 1:

Let V;_; be the subset of variables associated with unchosen literals after ]
literals have been chosen. Suppose for all 1 < ¢ < 3 the clauses in Ci(7) are
independent and are equally likely to be any clause in A;(Vr—;). Then for all
1 <t < 3 the clauses in Cj(5 + 1) are independent and equally likely to be any
clause in A;(V;—;_,).

Proof:

Either the variable v is chosen randomly from V if |C, (7)] # 0 or it is chosen
randomly from C;(5). Consider the first case. Let ¢; and ¢3 be two clauses in
Ci(7 + 1) and let & and &; be the two clauses in C;(7) from which ¢; and ¢,
were derived after the 5 + 1°¢ literal was chosen. Then

pr(cs = z) =
pr(éi =z or & = zU {v} and & was chosen or &; = zU {0} and v was chosen)

=pr(é, =y or & = yU {v} and © was chosen or &, = yU {9} and v was chosen)

= pr(c: =y).

Also, pr(ec; = z; and ¢3 = z5) =

pr(éy =z and &3 =z3 0r &; = z; and &, = 23 U {v} and ¥ was chosen or
é1 = z; and &; = 2, U {0} and v was chosen or
¢1 = z; U {v} and é; = z, and ¥ was chosen or
¢1 = z; U {9} and é; = z; and v was chosen or
& =z, U{v} and é; = z3 U {v} and & was chosen or
¢ =z, U {0} and &; = z; U {0} and v was chosen)



=pr(é1 =y1 and é; = g or &; = y; and & = y, U {v} and ¥ was chosen or
¢1 =y and é; = yy U {0} and v was chosen or
¢1 =y U{v} and é; = y; and ¥ was chosen or
¢é1 = y1 U {9} and & = y; and v was chosen or
¢1 =y U {v} and é; = y, U {v} and & was chosen or
¢y = z; U {0} and é; = y; U {9} and v was chosen)

= pr(c; = 1 and ¢ = ).

Consider the second case. The j + 1°* chosen variable is equally likely to be
any of r — 7 variables and is selected independently of clauses in Ci(7) for all
2 < ¢ < 3. Hence for all 2 < ¢ < 3 we may use the proof of the first case. For
¢ = 1 the result follows from the independence and equal liklihood of the unit
clauses.

Corollary 1:

Forall 0 < 7 < rand 1 <¢ < 3all clauses in Ci(3) are independent and equally
likely to be any clause in A;(V;—;).

Proof:

By induction on 7. The basis step holds because of the assumed distribution
on instances given to SC;. The induction step holds because of theorem 1.

Because of corollary 1 a system of differential equations for finding the expected
number of clauses in C;(7) for all 2 < ¢ < 3 may be obtained. Let n;(7) denote the
number of clauses in Cj(7), let w;(7) denote the number of ¢ — literal clauses added
to C;(J) as a result of choosing the 7** variable and let 2;(7) denote the number of
clauses eliminated from C;(7) as a result of choosing the 5** variable. These three
terms depend on I and o but this dependence is omitted from the terms for the
sake of simplicity. The w;(j) term may be thought of as representing the “rate of
flow” of clauses into C;(7) when the 7*# variable is chosen and the z;(7) term may
be thought of as representing the “rate of flow” of clauses out of C;(7) when the jt*
variable is chosen. If the average rate of flow into C;(j) is always less than 1 the
number of clauses in C;(3) will not, in probability, grow very large since at least
one clause is removed from Cj(5) whenever C,(7) # 4. In this case the probability
that a complementary pair of clauses exists in C (5) for some j is small. However, if
the average rate of flow into C}(7) rises above 1 for a constant fraction of the values
of Z then the number of clauses in C;(j) gets large for a fraction of the values of

ﬁ: since the flow out of C;(7) " nptotically no more than one unless IC1(7)| is



large. In this case the probability that there is a complementary pair of clauses in
Ci(3) for some j is near 1. Since, as will be seen from the analysis below, if the
expected flow into Cj(7) goes above 1 + ¢ for any € > 0 then it stays above 1 for
% constant fraction of values of Z, the point at which E{w;(5)} is around 1 is a
critical one regarding the probabilistic performance of SC}.

We now develop the differential equations for finding E{w,(7)}, solve them and
find the condition on 2 which causes E{w; ()} < 1. Later, it will be shown that this
implies SC; finds a satisfying truth assignment when one exists with probability
greater than some positive constant.

Clearly, for 1<t < 3

ni(5 +1) = ni(5) + wi(5 + 1) — z(5 + 1).
Taking expectations gives
E{ni(5 + 1)} = E{ni(5)} + E{wi(5 + 1)} — E{z:(5 + 1)}
which can be written
E{ni(7 + 1)} - E{ni(5)} = E{wi(5 + 1)} - E{z(j + 1)}. (1)

For large r we can approximate (1) by

dE{n:(1)}

g =Bl +1)} - E{a(+1). (2)

But,forall1<¢<3

E{z(y + 1)} = B{E{z:(5 + 1)/m(5)}}

= B ff(jﬂ} -t E{ni(5)} (3a)

r r—j

because of corollary 1. Also,

E{w(5 + 1)} = B{E{w1 (5 + 1)/na(5)}}

_ 22 m(7),  E{na(5)}
_E{z(r_j)}— — (3b)

and
E{ws(5+1)} =0.

7



Finally, E{ws(5 + 1)} =

3%?:%%}- ~ Hj(7 +1) * pr(5 + 1° chosen literal does not come from C, (7)) (4)

where H(5 + 1) is the average number of extra clauses removed from Cs(7) given
the 7+ 1°¢ chosen literal does not come from C; (5). Therefore (2), for ¢ = 3 can be

written
dE{na(i)} _ _3+ E{ns(3)} -
& r=3

The solution to this differential equation under the assumption that E{n3(0)} =n
is

Theorem 2:

B{ns()} = (1~ L°n.

Proof;
Straightforward solution to (5).

In order to solve (2) for ¢ = 2 we must first find Hy(j + 1) and the probability
that the 5+ 1°* chosen literal does not come from Cy (7). It suffices to find a lower
bound for Hz(j + 1) and the probability mentioned since we require only an upper
bound on E{w;(3)}.

Theorem 3;

na(s)

. 8 (1)), 3 i B s
HQ(J"*'I)ZWE{; \/E( 3y )(r—:;]”(l-;"_-?) (5) v}

Proof:

The probability that a particular literal appears in z clauses given the variable
associated with that literal appears in y clauses is (¥)(1)%(1)¥~=. Hence the
expected number of clauses containing the least frequently occurring literal
associated with the chosen variable given y is

L) lli'_l_(sr)
Welyw_v_ U8V T
2;:(::)(2) =5 o if yis od



and

g'_l y(y
y),1 v v\, 1y ¥ 2(*) e .
253(3)(5)"‘*5(%)(5) ol i if yis even
Let
—(-},l y even
Gly) = { a+3)(§) g odd
Then
ns(5)
B+ D/ns() = 5 3 9606 (P0) (21 - 2y
y=0

ns(5) :
8 n3(5)), 3 _ 3 \(i)-
P g e

since, by stirling’s formula, G(y) > ﬁﬁ‘ Taking the expectation gives the
desired resul.

If E{n3(7)} and r — 5 are large and  is a constant, since lim, ;o ﬂ:‘f&’—'ll
is bounded by a constant and since n3(7) is binomially distributed then the lower
bound for Hj(5 + 1) may be approximated by the expression

8 P |3 * E{ns(5)}
oV2r r—j

where £ depends on the value of the expression under the large square root sign. A
few values of B are as follows: -

S*E! ﬂajj’“ ﬂ
r—3

1 7731

2 .891

4 .96

8 9083

16 092



But, E{ns(5)} = (1 - f,:)sn 80, for 1 < 5 < ér where § is any constant between
gero and one, the lower bound for Hz(5 + 1) is approximately

8v3 i, [n
g -2 ©

Only 2 lower bound for the probability that the 7 + 1°¢ chosen literal does not
come from Cj(7) still needs to be found.

Theorem 4:

Pr(j + 1% chosen literal does not come from Cy(5)) > 1 — E{w,(5)}  (7)

for all j from 1 to the point at which E{w,(5)} is maximum.
Proof:

The probability that the j + 1°* chosen literal comes from C)(5) is the prob-
ability that Cy(5) # 4. The probability that C;(5) # ¢ is less than the rate
at which clauses enter C;(j) which is E{w,(7)}. This is because at least one
clause is removed from Ci(j) if C1(7) # ¢ and E{w;(5)} is rising with 5. The
probability required is therefore greater than 1 — E{w;(7)}.

Substituting (6),(7), (1 - £)°n for £{ns(5)} and £22U)} for E{w,(5)} (from
(3b)) into (4) and substituting the result and (3a) into (2) with s set to 2 gives

dE{n:(7)} _ 3., _Jyan _2+E{m(5)} A 8V3 , [n E{ny(4)}
B T L Ty ¢ +9\/fiﬂ\/: r

8v3 n [l
-2 p/2 0. ®)

For the moment suppose S is constant. Then the solution to (8) with boundary
condition E{n3(0)} = 0 and with «a substituted for -:%% is

E{ns(5)} = (1- -f;.)’e‘riﬂﬁs/? [g aﬁ':/?;-'(l — e—$aBVF)

+rofy[Fa1 - 1) - oty [Py - 4y 47

10



(eBV7)? Irvad .
+r——2—-—-(111(l - ;) afs p + 253) — |-

Thus, from (3b)

E{w(7)} = (1 — %.)e"l:“’\/? [g aﬁ:/';"g(l b e—-ﬁaﬂﬁ)

+op) P11 - ) - (ot [Zuat1 - ) 4 )
-2

+3ep\ [P -2+ L4 Ty ] : (©)

The expression on the right in (9) has a maximum in the vicinity of and greater
than j = 7. We call the point at which the maximum occurs Jo. If & = 2.9 then
3xE{n3(5o)}/(r—J.) 8 1.980 f = .89 at 5 = j,. Since 3xE{ns(5)}/(r—7) < 32 <9,
B > .89 forall 0 < 5 < 37, so (8) with B set to .89 gives an upper bound on
E{n3(7)} and therefore E{w;(5)} up to 5. It can be seen from (9) that E{w,(7)}
for 1 < 5 < o is less than 1 when 8 = .89 and =29

The solution to (8) with # = 0 is an upper bound on E{ny(7)} in the range
Jo £ J < r. When divided by (r — 5) and an appropriate boundary condition is
added this solution is an upper bound for E{w;(7)} in the range 5, < 7 < r and
has value equal to the value of E{w;(5,)} at j = 7,. Since this bound is maximal
at 7 = 7 the maximum value of this bound in the range j, < J < r is equal to the
maximum value of the first bound in the range 0 < 7 < 7,. Hence

Theorem 5:

Given that inputs to SC, are distributed according to M(n, r, 3),

E{u(5)} <1lforall0<j<rwhen lim = <2.9

mr—sco

We now prove the main result

11



Theorem 8:

SC, verifies that a solution exists for satisfiable instances generated according
to M{(n, r, 3) with probability greater than ¢ for some ¢ > 0 when limg e .00 2 <
2.9.

Proof:

From theorem 5 E{w;(5)} < 1 for all 0 < 5 < r when lim, . .00 2 < 2.9.
From corollary 1 the clauses entering C) (5 + 1) from C3(7) are statistically
independent. Suppose all clauses entering Cy (5 + 1) are regarded as entering
Ci(7+1) in some order which is decided arbitrarily. Then the probability that
the ¢** clause entering C; (5 + 1) is complementary to no clause in C, (74+1)is

1 “I(J-}+q_1
1 ———— :
( 2(r — J))

Therefore, the probability that none of the clauses entering C)(7 + 1) is com-
Plementary to any clause in Cy(5 + 1) is

1 n1(5)sw1(5)+wi(5)*(wa(5)-1)/2
11
( 2(r - ﬂ)

so the probability that no complementary pair is encountered during a run of
SCy is

r—1 1 n1(s)*ws(5)+wi(s)%(wi(5)-1)/3 . .
(*-35) prl.m (4), wi(5)...

pr(...n1(7), wy (7))

1 sian

2r

z (1 1 )2'_ ;:; (LD (i!“’l!!;"‘f_l}‘!'!"l!i!-"!
- T2

11 ( 1 ) 5 (m1 () sws ()4 w1 ()4 (ws(5)-1)/2)

pr(..ni(7), w1 (7)...). (10)

If the sum in the exponent of (10) is less than £2 (where « is a constant) with
probability bounded from below by 2/3 then (10) is bounded from below by
2(1-2)?= which approaches a constant as r approaches infinity if the limiting
ratio of n to r is constant. To show that the sum in the exponent of (10) is
less than =* with probability greater than 2/3 we show that the expectation
of the sum is bounded from above by 5r and apply markov’s inequality.

12



To show that the expectation of the sum in the exponent of (10) is less than
3+ we need only show that the expectation of each term in the sum is less than
503- Denote by p;(7) the 5** term in the sum. Then

E{p:(5)}
= qlt,—) (E{w‘f‘(:')}+Zzzmt*pr(n.m =t,w(j) = a)) . ()

e=0%=0

The second term within parentheses is bounded by (1 - f_—)% for j < r—y8/°
and by (1 - -E)-E for 7 > r— r8/° where 71 and 73 are constants greater than
gero. Consider the first case, 1 < j < r — r8/%, Suppose SC, is modified so
that all literals not chosen from Cj(5) are chosen randomly from the set of all
unchosen literals and suppose that fiz(5) and  ( 7) have the same meaning as
ng5j) and w;(7) except applied to the modified SC;. Define n = E{f,(7)} —
n®/* and n, = E{fia(5)} + n3/%. 1t is easy to see that A;(7) is binomially
distributed with mean E{fi;(5)} proportional to 2(1 - 1)?n o the probability
that n; < fig(5) < ny is greater than 1 — 2¢—7*"*/E{#2(3)} from [4] and this is
greater than 1 — e~V since E{fi;(5)} < n. The double sum of (11) can be
bounded from above by using ; (5) for w; (5). We do so and split the result
into three parts:

o

n i

ZZ 2xsxtxpr(ni(5) = ¢,fa2(5) = u, D1 (5) = 9)

0=0{=0u

b My

+EZ Z Z2xsxtxpr(ny(7) =¢,Aa(s) = u,d,(j) = 5)

8=02t=0u=ng

n n

+zn:z Z 2x s xtxpr(n(5) = ¢, fiz(y) = u, 01 (5) = 3)

8=01=0 u=n,

<£+2*E{tﬁ()}*ﬁ‘{n()} (12)
ev/n 17 1J

13



in the limit since 2 < 2.9 and [ny — ny| — 0. But E{1#;(7)} may be shown to
be proportional to (1 — 2)2 by solving (8) with 8 = 0 and dividing by r — 5.

Also, E{n,(7)} is bounded by a constant for all 1 < 5 < r since E{w(5)} <1
and at least one clause is removed from C; (7) if Cy( 7) # ¢. So (12) is less than
71(1 = )2 where 4; is a constant greater than zero. Now consider the case

r—r%/° < § < r. In this range E{«,(5)} is proportional to (1 — f:)l:- and is
decreasing with increasing j. Clearly, in this range

ii:z #sxt+pr(ny(7) =t,wi(j) = s)

=0 ¢=0

<2+ B{@i(3)} » B{m(r - ")} < ms(1 - 12

as r — oo,

We now need to find a bound on E{w?(5)}. Let ;(5) be as before.
Clearly, E{w{(7)} < E{d?(5)}. But w,(7) is distributed binomially hence

E{21(3)} = o*(1(3)) + (E{r (1)})? < E{th1 (5)} + (E{1 ()})? and

E(ui(i)} <+ (1- )2,

Let v = max{7y;,v2}. Substituting y(1 - %)1:- for the double sum in (11) and
then 73 * (1 — 2)  for E{w}(5)} in the resulting inequality gives

. Y3+ n_k n
B < (211) 2=5. 0

From this the expectation of the sum in the exponent of (9) is less than £2.
By markov’s inequality the probability that the sum is greater than &2 s less
than 1/3. Therefore, the probability that the sum is less than =% is greater

than 2/3. Thus (10) is greater than %(1 ~ 3=)*¢ which approaches 3¢~ % as
r approaches infinity. Let € = 2(1 — L )2~

The Unit-Clause heuristic and the maximum occurring literal heuristic have
been incorporated into a Backtrack algorithm for 3-SAT and experiments run. The
algorithm is

14



BA(I) :
If there exist two complementary unit clauses in J Then return UN SAT
Else If I = ¢ Then return SAT
Else If there is a unit clause in J Then Begin
While there is a unit clause {1} in I Do Begin
Remove from I all clanses containing {
Remove from I all occurrences of comp(l)
End '
Return BA(I)
End
Else Begin
Choose a variable v which is present in J
If card(9,Cs) > card(v,Cs) Then I —  Else ] v
Iy ={c:celand l,comp(l)¢corcu{l}el}
I3 ={c:c€Iand lcomp(l) ¢ corcU{comp(l)} eI
If BA(I;) = SAT Then return SAT
Else If BA(I;) = SAT Then return SAT Else return UNSAT

Algorithm BA was run on random instances of 3-SAT generated according to
M(n,r,3) with = set to 2.4, 2.6, 2.8, 3.0, 8.2, 3.4 and 3.6 for r ranging from 10 to 200
in steps of 10. At each data point the average number of calls to BA per instance
was computed for 100 instances. The results are presented in figure 1. Note that for
£ < 2.6 the performance curves are practically straight lines, for = = 2.8 there are
occasional peaks and for # 2 3.0 the performance curves rise dramatically. Upon
looking at the performance of individual instances for the case 2 = 2.8 it was noted
that the peaks were due to a few runs that required many calls to BA.

15



§. A Modification to SC;

In this section we discuss why, in SCy, if C;(5) = ¢ then the J + 1°® chosen literal
is chosen only on the number of occurrences of that literal and its complement in
C3(7) and not in Cy(5). Suppose that the J+ 1% literal is chosen on the number of
times it occurs in Cs(5) and Ca(7) if Ci(5) = ¢. Assume the most optimistic case:
the literal appears in more clauses of both Cs(5) and C3(7) than its complement.
Let E{w;(5)} denote the new average “flow” of clauses into C, (7). Then

B{ui(9)} = B{wi(5)} - Hi(5)(1 - E{}(5)})

where H, () is the extra number of clauses removed from the “fow® into Ci(7)
when the chosen literal is not a unit clause and 1 - E{w}(5)} is the probability (to
within O(1)) that the chosen literal is not a unit clause. So

By = U= 2@,

Thus E{w;(5)} < 1 is equivalent to E{wi(5)} < 1 and no benefit is gained by
considering the number of occurrences of the chosen literal in Cs2(7).

6. Conclusions

We have presented an algorithm for 3-SAT based on the Unit-Clause and maximum
occurring literal heuristics and have shown that this algorithm finds a solution to
a random instance of 3-SAT in polynomial time with probability bounded from
below by a constant under M (n,r,3) when limp ;00 2 < 2.9. Experiments indicate
that a Backtrack algorithm containing these two heuristics performs extremely well
probabilistically over the same range of values of the limiting ratio of 2. The method
used to get these results has the advantages of providing intuition and being general
enough to be used on other algorithms for 3-SAT and other N P-complete problems.
The method can be used to show that the Unit-Clause heuristic alone finds a solution
to a random instance of 3-SAT in polynomial time with probability bounded from
below by a constant under M(n,r,3) when limpeoo 2 < 2.66: the analysis is the
same as presented here except that § = 0.
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Figure 1. - Average case performance of BA
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