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Abstract

Applicative (also called functional) programming systems prohibit side effects, in-
cluding assignments to variables. This restriction has several advantages, including
referential transparency and potential parallel program execution. A major disadvan-
tage, however, is that aggregate data structures become very expensive to maintain:
when the programmer updates a single element in an aggregate, many applicative lan-
guage implementations must completely recopy the aggregate. This paper solves the
aggregate update problem with a two-level architecture: a microprogram maintains
“associative aggregate” data structures, and a hardware memory design (the Associa-
tive Aggregate Machine) implements powerful insertion, deletion and searching oper-
ations required by the microprogram. The Associative Aggregate Machine contains a
linear sequence of cells comprising storage and combinational logic. Each cell is con-
nected to its predecessor and successor, so the sequence of cells forms a shift register
that supports insertion and deletion. In addition, a binary tree of combinational logic
nodes performs fast associative searching through the sequence of cells. The Associa-
tive Aggregate Machine architecture is extremely regular and is well suited for VLSI

implementation.



1. Introduction

Purely applicative languages (also called functional languages) have many advan-
tages, but their implementation raises several problems. This paper introduces a new
solution to one of them, the “aggregate update problem”. We define an associative
aggregate data structure that satisfies the representation and accessing requirements
of lists, vectors and environments, and we show how to implement the aggregate access
functions very efficiently (all aggregate accesses require a constant number of storage
cycles). Our solution does not rely on compile-time analysis of the applicative program.
Instead, it uses a new computer storage architecture that allows program interpretation

and that always works.

An aggregate is a data structure containing many elements that are individually
accessible. Common examples of aggregate structures are lists, streams and vectors.
Two operations are necessary to manipulate aggregates: lookup, which fetches a value
from the aggregate; and update, which stores a new value into the aggregate (possibly

replacing a previous value).

The update operation should return a new aggregate and leave all others (including
the one being updated) unaffected. Imperative languages do not insist on this concep-
tual view of update because there is always only one extant version of an aggregate:
the one that resulted from the most recent update. Thus implementation of the 1ookup
and update operations is trivial for imperative languages, because they compile into
fetch and store instructions respectively. In contrast, applicative languages prohibit
side effects, so update must return a new aggregate, leaving the old one unaffected.
Simply using store for the update would change the original aggregate. The usual
way to implement the applicative update is to recopy the original aggregate, making

it extremely expensive compared with an imperative update.

One way around the applicative aggregate update problem is to try to arrange the
program so as to make the trivial imperative update safe. Using this approach, Hudak
and Bloss [5] give several techniques based on applicative source program analysis that
often allow safe implementation of update with a store. This happens when the
original aggregate is inaccessible, so side effects to it are harmless. Such techniques
are extremely successful in many applications. In particular, imperative numerical
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analysis programs typically consist of sequences of lookup and update operations,
where lookup will be applied only to the aggregate resulting from the most recent
update. Most such update operations may be replaced safely by store operations,
since the original aggregate will never be used again. Related discussions of program
analysis are in [15] and [11].

One disadvantage of relying on program analysis to find safe ways to perform de-
structive updates is that compilation (or at least program analysis before execution)
becomes necessary. Several techniques for constructing applicative programming en-
vironments are better suited to interpretation, and we do not want to be forced into
compilation just in order to gain acceptable efficiency. Another disadvantage is that
program analysis techniques do not always work: update still may require recopy-
ing. Programmers might develop styles that enable the compiler to handle all updates
efficiently, but it is undesirable to constrain programming styles unnecessarily.

A better solution to the aggregate update problem would ensure that all applica-
tions of update and lookup execute in constant time. That would allow programmers
to express their algorithms as they wish, and would provide better support for advances
in programming style. This paper develops such a solution. We began by observing
that the fetch and store instructions of conventional architectures fail to implement
lookup and update efficiently for applicative languages. But our conclusion is not that
something is wrong with update or lookup, or with applicative languages; instead,
something is wrong with fetch and store. Our approach is to invent a novel architec-

ture with powerful instructions that do make applicative aggregate access efficient.

The remainder of the paper describes an architectural solution to the aggregate
update problem based on the Associative Aggregate Machine (AAM). Section 2 defines
associative aggregates and their access functions, and Section 3 shows how the AAM
architecture represents them. Section 4 gives the AAM’s instruction set, which is much
more powerful than the fetch and store of conventional architectures. Section 5 shows
how to manipulate the representations of associative aggregates using that instruction
set, and Section 6 then shows how to implement the AAM architecture directly in
hardware. Section 7 concludes by discussing the nature of parallelism in the AAM.
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2. Associative Aggregates

There are several ways to access information in aggregates. List aggregates have
car (or head, first, efc.) and cdr (or tail, rest, efc.) operations. Vector aggregates
allow access to elements through their indices. Lists and vectors appear to have very
different properties, but we have shown [13] that a computer storage architecture can
implement a combined list/vector aggregate data structure, in which all the usual list
and vector operations execute in a constant number of storage cycles (from one to
six). For example, it is possible to insert an element into a list /vector aggregate, delete
another element, and then index into the middle of the resulting aggregate in constant
time. The result of that work was to unify the notions of “list” and “vector”.

This paper deals with associative aggregates. An associative aggregate is a set
of bindings, where each binding is an ordered pair (name, value). The lookup and
update functions both refer to values through their associated names. An aggregate
may contain only one binding for a name (the data structures used to represent ag-
gregates may contain several bindings for a name, but only the most recently bound
value is used; see Section 3). Associative aggregates can represent lists and vectors by
using the index of an element as its name at the expense of doubling the size of the
representation. In a general applicative machine it would be better to combine the
techniques of [13] with the techniques introduced in this paper in order to eliminate
that expense. Associative aggregates can also directly represent environments, so the
applicative language interpreter can use lookup and update for efficient lambda bind-
ing and variable evaluation. We discuss our implementation in terms of “associative
aggregates” rather than “environments” because it is useful for many applications in

addition to environment manipulation.

Two functions are available to the applicative programmer for manipulating asso-

ciative aggregates:
update(z,n,f,v) and

lookup(z, n),

where z is a reference to an aggregate, n is a name, and v is a value of type ¢ to be
bound to n. A reference z to an aggregate must be either nil (the empty aggregate),
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or the result of an application of update. Both the update and lookup functions leave
all existing values undisturbed. The lookup function returns the value bound to n in
z, and the update function returns a new aggregate equivalent to z except that n is
bound to v with type £. Thus

lookup(update(z,n,t,v),m) = (m=n—v, lookup(z,m)).

Note that the update and lookup functions provide a natural implementation of envi-
ronments [4]. There is no function for explicitly creating aggregates; the programmer
must instead build up large aggregates by applying update to a sequence of aggregates
beginning with nil.

In addition to update and lookup, there is a function destroy available only to the
storage manager (but not to the applicative programmer). When the storage manager
knows that there are no live references to aggregate z, it executes destroy(z) to delete
all parts of the representation of z that are not shared by the representation of any
other aggregate. Most garbage can be found associatively; this is similar to reference
count reclamation. If circular data structures are present garbage collection will also
be necessary. With minor extensions, the AAM can support an extremely fast garbage

collector.

Descriptions of language interpreters often take the form of an algorithm manip-
ulating data structures, with the implicit assumption that the algorithm is executing
on a processor that issues store and fetch requests to a conventional storage with
addressable words. In contrast, the implementation described in this paper involves

two levels of abstraction:

1. The language interpreter, which executes on a processor that issues instructions
to an active storage architecture. By exploiting the powerful features of the active
storage, the interpreter algorithm is able to manipulate associative aggregates;
other useful data structures supported by the active storage are described in [12,
13].

2. The active storage architecture, called the Associative Aggregate Machine (AAM).
The AAM architecture must be implemented directly in hardware. An emulator
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running on a conventional microprogrammed host cannot implement the AAM
efficiently.

Therefore our solution to the aggregate update problem requires a new data structure,
algorithms to manipulate it, and hardware that can execute the instructions issued by
those algorithms. Thus

algorithms + data structures + architecture = implementation.

3. Representation of Associative Aggregates

The representation of associative aggregates must support two operations: fast
lookup and fast update. It is straightforward to find a representation that satisfies
either operation alone. For example, with a conventional linked list representation,
update requires a constant number of storage cycles, but searching the linked list for
a binding requires iteration, making lookup expensive. Similarly, conventional address
indexing can implement lookup in a constant number of cycles, assuming a fixed vector
representation for the aggregate, but updating an element inside a vector would either
require recopying the vector (making update expensive in both space and time) or
maintaining a file of transactions or exceptions (making lookup expensive). Thus the
problem is to find a representation that supports both lookup and update. The AAM

uses a vector representation with special hardware support for insertion and lookup.

The AAM storage consists of a linear sequence of cells. The content of a cell is
called a word. The interpreter frequently shifts words through the storage, so they are
not accessible through the addresses of the cells that hold them. Consequently words
are accessible through their relative positions or contents, rather than through fixed
storage addresses. We refer to the two endpoint cells as the leftmost and rightmost,
respectively, and they are connected to the Left Port and Right Port.

Each cell contains two fields (fype and value) and three flags (select, mark and
attacked). Figure 1 shows the notation for displaying the contents of a cell. If the
select, mark or attached flag in a cell is true, then the corresponding symbol (e, c,p)

appears in the box notation.

Each cell responds independently to every instruction, and its action usually de-

pends on the settings of its flags. The select flag implements associative pointers, and
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@ oD

type
value

select o indicates active cell
mark o marks a span of adjacent cells
atfached © indicates continuation of data
type data type of value
value data value

Figure 1. Storage Cell Fields

the mark flag marks a subset of cells that will respond to certain instructions. The at-
tached flag plays a crucial role in representing aggregates. The representations consist
of one or more spans. A span is a sequence of adjacent words comprising a single unit
of information. The last cell in a span has aftached = false, and all the others have

attached = true.

The type field indicates the data type of the value stored in the value field (thus
the AAM is a tagged memory [7]). The choice of data types depends on the intended
application for the AAM; we assume that at least five types exist: def, ref, ent, name
and ¢nt. Any cell containing type=ref and value=V represents a pointer to the cell
with type=def and value=V. Thus a ref is a pointer and a def is the target of a pointer.

Figure 2 illustrates aggregate representation by showing the result of a sequence
of update operations. Each execution of update requires several microinstructions
(and all microinstructions require exactly one AAM storage cycle). Only the final
results of the update instructions appear in Figure 2; Section 5 describes how the
microinstructions issue AAM operations in order to produce the final result. It is
important to note that there is a constant bound on the number of microinstructions
needed to implement update (seven cycles) as well as lookup (five cycles). The figure
does not show the value of the select and mark flags, since the microprogram needs
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them only during execution of an individual update or lookup, and their settings are
irrelevant to the representation of aggregates.

The microprogram represents a binding (n, v), where value v of type ¢, is bound
to name n, with a pair of words in adjacent cells. The leftmost word has type = name
and velue = n, and its aftached flag is true, indicating that its successor is part of the
same data structure. The successor contains the binding: type = ¢, and value = v.
The attached flag of the word containing the binding value may be either true or false,
depending on the presence of other bindings in the same aggregate.

Following a pointer to an aggregate requires associative searching. Since words may
be shifted from one cell to another, pointers are not representable as storage addresses.
However, the microprogram cannot access the binding (n, v) simply by searching for a
cell containing [name n], because an unrelated aggregate could have its own binding
for n. Therefore the microprogram maintains an explicit reference to every aggregate
through a word with type = def, value = p and attached = true, where p is a unique
identification number. Whenever the microprogram creates an aggregate, it finds an
unused identification number to serve as the value of the def word. The AAM is always
able to generate a unique identification number in one cycle; [12] explains the method

used.

Figure 2a shows the result of update(nil, z, snt, 101), which creates a new aggre-
gate by updating nil. The update function generated identification number 1 and
returned [ref 1], a reference to the aggregate P.

Figure 2b shows the representation after creation of @ = update(P,y, int, 102).
The reference to P is unchanged, and the attached flags indicate that the span beginning
with [def2] continues through the binding for P, so the following bindings exist: P =
{(zr 101)} and @ = {(y 102) (z 101) }.

When the microprogram destroys the reference to P (Figure 2¢) it can reclaim
only the word containing [def 1] because the binding for z is shared with aggregate Q.
The result is a compact representation of Q. Programs that keep live references only to
the result of the most recent update can thus maintain compact representations of their
current aggregates, and irrelevant def words will not proliferate. In the example, the
microprogram knows that the binding for £ must be retained because the attached flag
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(a) P :=update(nil,z, ¢nt, 101);

result: P = [ref 1]

P
Y
g g
def |name| int
1 X 101
(b) Q@ :=update(P,y,int, 102); result: Q = [ref 2]
Q P
Y Y
b 2 >4 g B
def |name| int | def |name| int
2 y 102 1 X 101
(c) destroy(P); result: release id 1
Q
Y
> > > >
def |name| ¢nl |name| int
2 y 102 X 101
(d) R :=update(Q,z,nt, 103); result: R = [ref 1]
R Q
4 Y
b & b B >4 b B
def |name| int | def [name| int |name| int
1 > 4 103 2 y 102 X 101
(e) S :=update(Q,z,int,104); result: S = [ref 3]
S R Sent Q
U Y U ¢
b b > 2 b b >4 -4 > b
def |name| int | def |name| int | cnt | def |name| int |name| int
3 z 104 1 X 103 | 3 2 y 102 X 101
Figure 2. Examples of Associative Aggregate Representation.




of the predecessor word is true, indicating that the binding of z is being shared with
another aggregate. The destroy microcode checks the attached flag of the predecessor
of the aggregate being destroyed, and deletes the entire aggregate if the flag is false,
indicating that the representation is unshared.

An associative aggregate may have only one binding for each name, but its rep-
resentation may contain several. For example, in Figure 2d, R is an update of Q so
its representation shares the representation of Q. Consequently the representation of
R contains three bindings, two of them for z: R = {(z 103) (y 102) (= 101)}. When
lookup searches R for the binding of z, it will choose the correct one by looking only
at the leftmost binding representation. Since update always inserts new bindings to
the left of existing aggregates, the more recent binding to a name will be to the left of
an older binding. Note that the identification number for P (1) was reclaimed when
P was destroyed, and that number now identifies R. The system must allocate and

reclaim identification numbers just as it allocates and reclaims storage words.

A more complex representation results when two distinct aggregates are created
by applications of update to the same older aggregate. Figure 2e illustrates the result
of defining S as an update to @Q, while R (an earlier update to Q) still exists. The
representation of S must reside in the AAM storage to the left of the representation
of R, because R is older. However, S must not share the representation of R since
it contains the binding (z 103). Therefore the microprogram clears the attached flag
in the last word of the new binding (i.e., [fnt 104]), indicating that the first span
representing S does not extend into the span for R. The microprogram also puts a
second span into the representation of S by inserting the word [ent 3] just to the left
of the def for @ (3 is the identification number assigned to S). The lookup operation
will search all spans belonging to the aggregate, whether they begin with a def or a
ent word (see Section 5). To summarize, Figure 2e shows the following represented

aggregates:
Q= {(y 102) (= 101)}

R = {(z 103) (y 102) (z 101)}

S = {(z 104) (y 102) (= 101)}
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4. AAM Instruction Set

A conventional computer storage can execute two instructions, fetch and store,
which are sufficient for the implementation of ordinary data structures. In contrast,
the AAM is an active storage unit that can execute nine instructions useful for imple-
menting associative aggregates. In addition to store and fetch, the AAM instructions
can perform operations that would require iteration using a conventional storage. This
section describes the AAM’s instruction set. Section 5 shows how the update, lookup
and destroy functions are implemented with these instructions, and Section 6 describes

how to implement them in hardware.

1. select(z)
Each cell with velue=z and either type=name or type=cnt sets its select flag; all
other cells clear their select flag.

2. select-first()
The leftmost cell with select set remains unchanged; all other cells clear their select
flag.

3. select-successor|()
Each cell whose predecessor has select set will set its own select flag; all other cells
clear their select flag. The effect is to move the select marker to the successor of
its current location.

4. select-span-head()
This instruction sets select in the leftmost cell of the span that currently has select
set in one of its words, and clears mark in the cells to the right of that point. The
purpose is to locate a word whose predecessor has attached=false, where it is safe
to insert new information without disturbing existing data structures.

5. search(n)
This instruction sets select in each cell whose mark flag is true and whose type is
name and value is n.

6. mark-to-select()
Each cell to the left of the leftmost cell with select set will set mark; all other cells
reset mark. This prepares the mark flags for an insertion or deletion.

11



7. mark-spans()
This instruction sets mark in all cells that are in a span headed by a cell with
select set. The purpose is to mark all the cells comprising the representation of an
aggregate, so that the search instruction will not search in the wrong cells.

8. insert-left({,v,a)
This instruction inserts a word into the storage at a point determined by all the
flag settings; the action of each cell depends on the values of its own select and
mark flags. There are four cases, illustrated in Figure 3:

(a) If the cell has mark set, but its successor does not have select set, then it
stores the contents of its successor.

(b) If the successor of a cell has select set, then the cell stores the values of the
instruction operands: type := t, value := v, aftached := a, and it sets its select
flag and clears its mark flag.

(¢) If select is set, the cell clears select but otherwise remains unchanged.
(d) If neither select nor mark is set, the cell keeps its old contents.

The effect of this instruction is to destroy the contents of the leftmost cell (where
the system keeps its available space pool), and to insert a new word just to the left
of the previously selected word. The select and mark flags are left in a state that
allows another insert-left instruction to insert another word just to the left of the
newly-inserted word. Thus the interpreter can insert a vector of words by using the
select instruction to set select at the point of insertion, executing mark-to-select
to prepare the mark flags, and then iteratively executing insert-left to insert
the elements of the vector, one by one.

9. delete()
This instruction deletes a word. There are three cases:

(e) If a cell has either select or mark set, then it stores the contents of its prede-
Cessor.

(b) If a cell has both select and mark cleared, but its predecessor has select set,
then it sets select but otherwise remains unchanged.

(c) If a cell has select and mark cleared, and its predecessor has select cleared,
then it remains unchanged.

The delete instruction deletes and reclaims a word of information by shifting a
sequence of words to the right. This moves a new word from the Left Port into
the available pool.
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(a) Initial representation, showing the insertion category of each cell:
@ O (© (@
' ¢ ¢ U

o o =]

tnt | int | int
1 2 3

(b) After executing insert-left(def, 100, true):

-] e b
tnt | def | int | int
1 100 2 3

Figure 3. Example of insert-left(def, 100, true)

5. Implementation of lookup, update and destroy

The interpreter for an applicative language using the AAM system is a micropro-
gram that executes in a conventional processor and issues instructions to the AAM
storage unit in order to maintain its data structures. This section describes how the

microprogram implements the aggregate manipulation instructions.

The AAM storage hardware returns a response to each instruction of the form
[s, ¢, v,a,pa], where each field is the logical OR of values output by each cell. Only the
selected cell outputs nonzero values for these fields (except pa), so the response allows
the processor to fetch the selected cell on each cycle. The [s, ¢, v, a, pa] fields correspond
respectively to the select, type, value, attached and predecessor attached values for each
cell. The interpreter can read useful information by ensuring that only one cell has

select set.

The update procedure (Figure 4) first allocates a new identification number for
the aggregate that it is about to create. Then it selects the def word of the argument
aggregate and prepares the mark flags throughout the AAM for insertion by executing
mark-to-select. At this point there are two cases, since the representation of the
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Update name n in aggregate z with new type ¢ and new value v.

procedure update(z, n, ¢, v)
begin
var y : ref;
y := allocate-id();
select(z);
mark-to-select();
(sets pa to the value of attached in the cell
whose successor has select set).
if pa
then
begin
insert-left(cnt,y, true);
select-span-head();
insert-left(¢, v, false);
insert-left(name,n, true);
insert-left(def, y, true)
end
else
begin
insert-left(t, v, true);
insert-left(name,n, true);
insert-left(def, y, true)
end;
return(ref, y)
end

Figure 4. update

new aggregate depends on whether the word that precedes the selected word has its
attached flag set (Section 3). The microprogram determines this by testing the pa field
of the response to the mark-to-select instruction, and it then sequentially inserts the
words comprising the new representation. Figure 5 shows how update produces the

representation shown in Figure 2e.

The procedure lookup (z,n) (Figure 6) first selects the def for z and then issues
mark-spans to set the mark flag in each cell that contains part of the representation of
z. Each marked span must begin with either a def or ent matching the identification
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(a) Inmitial representation (same as Fig. 2d).

) ¥
Y
> > > > > > >
def |name| int | def |name| int |name| int
1 | x [103| 2 |y [102| x | 101
(b) y:=allocate-id() result: y=3
select(z) (z=2)
mark-to-select() (pa = true)
R Q
4 U
o] o o -] opb ob oble P o2 g B
def |name| int | def |name| int |name| int
1 | x |103| 2 |y [102] x | 101
(c) insert-left(cnt,y,true)
R Sent Q
Y ¢ 4
o] o o op op opble D 2 g b ]
def |name| int | cnt | def |name| int |name| int
1 | x |103] 3| 2 |y [102] x |101
(d) select-span-head
R Sent Q
Y $ 4
o] o o e D =4 B> B> o2 o b >
def |name| int | cnt | def |name| int |name| int
1 | x |103]| 3 | 2 |y [102] x |101
(e) imsert-left(t,v,false) ¢ = int,v =104
insert-left(name,n,true) n=1z
insert-left(def,y,true) y=3
S R Sent Q
Y U LS
e P 3 > B 4 B >4 g > >4
def |name| int | def |name| int | ent | def |name| int |name| int
3 z 104 1 X 103 3 2 y 102 X 101

Figure 5. Example of update(Q, z, int, 104)
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number of z. The microprogram next issues a search, which sets the select flag in
every cell that belongs to the representation of z and that contains the name n. There
may be several such cells, so the microprogram next issues select-first to set select
in the leftmost marked cell (this cell contains the name field of the correct binding).
Then the select-successor operation selects the value field of the binding. Finally
the microprogram checks to see whether there is any cell with its select flag set. If not,
it returns unbound because there is no binding for n in z; otherwise it returns the
type and value of the selected cell, which constitute the value bound to n in z. Figure
7 illustrates lookup(S, ), using the data structures produced in Figures 2 and 5. Note
that there are two extant bindings for z, but lookup ignores the binding belonging to
R since it is not in any of the spans belonging to S.

Look up name n in aggregate z.

procedure lookup(z, n)
begin
select(z);
mark-spans();
search(n);
select-first();
select-successor();
(sets s iff some cell has select set)
return (if s then (,v) else unbound)
end

Figure 6. lookup

The applicative language interpreter is responsible for determining when a repre-
sentation becomes garbage. It can do so using either garbage collection or reference
counting — or, preferably, both. The AAM architecture presented in this paper provides
no special facilities for storage management algorithms, but it can easily be augmented
with powerful instructions to support both garbage collection and reference counting.
Reference counting works very well with the AAM architecture, because the reference
counts do not need to be stored explicitly: the tree architecture can count the number
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of references to an object by associative searching in one storage cycle. This technique
saves storage bits, and it also guarantees that there is no “sticky” maximum reference

count value that cannot be decremented.

Once the interpreter determines that aggregate z is garbage, it must delete as
much as possible of the representation of z without destroying any information that
is shared with another object. A simplified implementation of destroy(z) appears in
Figure 8. It deletes the def word for z, since there is no reference to it. If the word
that precedes the def has attached set, destroy cannot delete any more words because
they are shared by the aggregate preceding z. Otherwise destroy repeatedly deletes
words until it reaches the end of the representation of z or encounters a def or cnt,

whichever comes first.

Although there is no bound on the execution time of destroy (unlike lookup
and update, which both execute in a constant number of cycles), each iteration of
the repeat loop in destroy reclaims one word of garbage. In most applications that
is a good tradeoff, but [12] gives a method for incrementally reclaiming similar data
structures so that all the interpreter’s operations execute in bounded time.

This implementation of destroy does not always produce the most compact rep-
resentation possible, but it is straightforward to perform several optimizations. For
example, there may be redundant bindings to the same name where one of the bind-
ings will never be used. Associative searching can detect and remove those bindings. It
is also possible that an aggregate representation may contain two adjacent spans (for
example, in Figure 2e, this will happen to the representation of S if R is destroyed).
By setting attached in the first span and deleting the ¢nt that heads the second span,
lookup could reclaim another word.

6. Hardware Implementation of AAM

Figure 9 shows the organization of the AAM storage system. The cells (square
boxes) contain storage (type, value, select, mark and attached) and combinational logic,
enabling each independently to do its part in executing the instructions. The binary
tree consists of nodes of pure combinational logic, with no storage elements. Other
tree architectures and algorithms are described in [18], [9] and [14]. Most of those
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{a) select(3) result: [true,...]

S R Sent Q
y Y S

e » > > > >le o > > > >
def |name| int | def |name| int | ent | def |name| int |name| int
3 z |104] 1 | x [103] 3 | 2 |y [102] x |101

(b) mark-spamns(); result: [true,...]

S R Sent Q
y Y Y Y
® oD op © > -4 ble oD opb o b op °o D o

def |name| int | def |name| int | cnt | def |name| int |name| int
3 / 104 1 X 103 3 2 y 102 X 101

(c) search(z); result: [true,...]

S R Sent Q active
U Y ¢ 4 Y
o b o b ° b [ > o p op °op obleop ]

def |name| int | def |name| tnt | ent | def |name| int [name| int
3 z 104 1 x | 103 | 3 2 y | 102 | x | 101

(d) select-first(); result: [true, name, z, true, true]

S R Sent Q active
Y Y y 4 U
o b o b o b -3 > o b oD oD ople oD o

def |name| tnt | def [name| int | ent | def |name| int |name| int
3 z 104 1 x (103 ]| 3 2 y (102 ]| x | 101

(e) select-successor(); resull: [true, int, 101, true, true

S R Sent Q active
Y ¢ y Y Y
ob| op| o > > | op| op| op| ob| op|eo

def |name| int | def |name| snt | cnt | def |name| int |name| int
3 / 104 1 X 103 | 3 2 y 102 | x 101

(f) (s =true), therefore lookup returns (¢nt, 101)
Figure 7. Example of lookup(S, z).
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Destroy the portion of the representation of aggregate z that is not shared with any
other aggregate representation.

procedure destroy(z)
begin
select(z);
mark-to-select();
repeat
delete()

(Sets pa to the attached value of the cell whose
successor is selected; sets @ to the attached
value of the selected cell; sets ¢ to the
type field of the selected cell.)

until
pa or (nota) or (t=def) or (t= cnt);
release-id(z)
end

Figure 8. destroy

trees contain processors with clocked storage elements in every node, and they attempt
to put many of the processors to work simultaneously. In a tree architecture with
storage elements in the nodes, it may take as much as (log n)? gate delay time to send
information from the root to a leaf, where there are n leaves. In the AAM the gate

delays take no longer than logn time.

The AAM pays a penalty, compared with RAM memory, in two important cost
measures: chip area and clocking speed. Analysis of a preliminary VLSI [10] layout
shows that neither penalty will be too severe. For a layout with n storage cells (we
assume n = 22¥), the chip area required is (4n — 4,/n + 1) times the area required for
one cell. Thus the node combinational logic and data path connections introduce a
factor of 4 penalty in chip area compared to a RAM. There is another penalty factor
of about 2 to 4 because of the logic required for each cell. Although the AAM uses an
order of magnitude more chip area than a RAM, it scales to large n very well. The
AAM has gate delay time proportional to logn — but so does RAM memory. The
chief constraint on speed is the total data path length, which is O(,/n) for both AAM
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tree of
combinational

logic

Left o Right
Port cell cell cell Port

Figure 9. Organization of the AAM Storage

and RAM. In both AAM and RAM layouts the chip must broadcast information over
long data paths: the AAM’s nodes do this, while RAM chips have dedicated amplifiers.
The AAM does computation in its broadcast and communication circuits, while a RAM

does not.

The AAM organization provides several basic mechanisms that support fast exe-

cution of the instruction set:

1. Each storage cell is connected to its predecessor and successor by input and output
data paths. This interconnection enables the system to shift the contents of storage
in one cycle: each cell stores the contents of its predecessor or successor for a right
or left shift respectively.

2. In addition to its type and value fields, each storage cell contains three control
flags, select, mark and attached, and it also has combinational logic. These facil-
ities allow the cells to perform independent conditional operations. For example,
insertion and deletion instructions cause the cells to shift their contents condition-
ally, based on the values of their select and mark flags. Similarly, search causes
each cell to compare its own contents with the instruction operands (a standard
associative memory technique [3]).
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3. The binary tree of combinational logic can perform global operations that de-
pend on flag values throughout the entire set of storage cells. The select-first,
select-span-head, mark-to-select and mark-spans instructions all use the tree
to determine which cell flags to set.

4. The binary tree also broadcasts messages to all the storage cells. In addition
to conditionally shifting words, the insert-left instruction must broadcast the
{a,t,v) operands to all the cells, since each cell determines independently whether
it will store the operands, based on the values of its own flags. This differs from
conventional memories, where an address determines which storage cell must re-
ceive each message.

The hardware logic equations for the cells’ combinational logic is straightforward,
using multiplexors to select the values to be stored in each cell field according to the
instruction operands and the cell contents. Each cell contains comparators for matching
its own type and value with the ¢ and v instruction operands. The combinational logic
for the tree nodes is also straightforward for most of the instructions. For example,
the select-first instruction requires node combinational logic similar to standard
associative memory priority circuits [3]. The mark-spans instruction requires much
more complex combinational logic, since a global analysis of all the select and attached

flags is necessary to determine whether each cell is a member of a selected span.

The aggregate manipulation functions lookup and update always require a con-
stant number of AAM storage cycles. The storage cycle gate delay time is proportional
to logn for a storage containing n cells. Thus the lookup and update operations re-
quire log time with respect to total storage size, and they require constant time with

respect to aggregate representation size.

7. Conclusion

This paper has described a new solution to the “aggregate update problem” for
applicative languages. The solution consists of two levels: at the higher level, a mi-
croprogram maintains a data structure representation of “associative aggregates”, and
at the lower level a hardware storage design implements the powerful operations re-
quired by the microprogram. The associative aggregate data structures cannot be
implemented efficiently on conventional architectures.
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There is currently great interest in building parallel computer systems containing
large numbers of processors and storage units. But there are several hard problems in
designing highly paralle] systems:

1. finding something useful for all the components to do,

2. programming them to do it, and

3. arranging for communications that allow the components actually to run simulta-

neously.

The AAM system contains a single processor and a single storage, so at the level of
processor networks it does not appear to be a parallel computer. Actually the AAM
is a highly parallel system, but its parallelism exists entirely within the storage. The
components that execute in parallel are the storage cells and the tree nodes. Inside its
storage the AAM solves the problems of parallelism outlined above:

1. The cells’ parallelism (s.e. the shifting operations) performs insertions and dele-
tions in linearly ordered data structures in a constant number of cycles. Conven-
tional architectures require iteration for those operations, so conventional language
implementations use linked list representations for data structures that require ex-
tensive insertions and deletions — thereby losing the advantages of linearly ordered
representations. The tree nodes’ parallelism (¢.e. the searching and marking op-
erations) performs associative searching and resolves multiple name bindings. It
can also perform indexing [13].

2. The AAM storage needs to run only one program: the applicative language inter-
preter. Thus all users of the applicative language receive the full benefits of the
AAM’s parallelism without needing to program in the parallelism themselves. In
addition, the user need not adhere to a restrictive style of programming in order
to receive those benefits.

3. The interconnection network within the AAM fits exactly the communication re-

quirements of the cells and nodes. All the data paths present are necessary, and addi-
tional data paths would not help.

One of the (hoped-for) advantages of applicative languages is that they will work
well on highly parallel systems [1, 2, 16, 17, 19]. Hudak and Bloss [5] comment that
“. .. ‘modifying an aggregate’ translates into modifying a copy of the aggregate, and the
expense of copying large aggregates is extreme — indeed one might actually consider
limsting parallelism in an effort to avoid copying.” It is better to use parallelism to
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make aggregate updating fast, but it is not clear how to do that on parallel systems
containing large networks of conventional processors and storages. The AAM does
just what is wanted: it uses parallelism to solve one of the implementation problems
peculiar to applicative languages.

The AAM is a subset of a slightly more complex architecture that greatly improves
efficiency in a number of useful algorithms [12, 13]. It implements very fast “reference
counting” and garbage collection, supports interpreter data structures, and supplies a
rich set of data structure operations to the user. The AAM represents lists compactly
and provides efficient access (representation issues for conventional architectures are
discussed in [6, 8]). A hardware implementation should support all these algorithms.
It may also be possible to include many AAM’s in a large scale multiprocessor.

The ultimate goal of this work is to develop computer architecture techniques to
support programming languages. This is not simply a matter of finding better ways
to implement existing languages, because architecture research sometimes suggests im-
provements in programming style or in the languages themselves. Experimentation
with the AAM and its relatives has yielded several such improvements — for example,
the AAM demonstrates that applicative programmers can use aggregate data structures
as they wish, without worrying about inefficiencies due to recopying or shared struc-
ture representation. As we learn more about applicative programming and computer
architecture, discoveries in each field will affect our ideas about the other. Current
imperative languages are well-suited to the von Neumann architecture. Eventually

applicative languages should be even better suited to their own architectures.
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