Standard, Storeless Semantics for
ALGOL-Style Block Structure and Call-by-Name

By

S. Kamal Abdali
Computer Research Lab
Tektronix, Inc.
Beaverton, Oregon 97077

and

David S. Wise
Computer Science Department

Indiana University
Bloomington, IN 47405

TECHNICAL REPORT NO. 186

Standard, Storeless Semantics for
ALGOL-Style Block Structure and Call-by-Name
by
S. Kamal Abdali, Tektronix, Inc.
and David S. Wise, Indiana University

December, 1985

This material is based on work supported (in part) by the National Science Foundation under
grant number DCR 84-05241.

-

i\ B

Standard, Storeless Semantics for

ALGOL-Style Block Structure and Call-by-Name

S. Kamal Abdals
Computer Research Lab
Tektronix, Inc.
Beaverton, Oregon 97077

David S. Wise?
Computer Science Department
Indiana University
Bloomington, Indiana 47405

0. ABSTRACT

This paper presents a formulation for the standard semantics of block structure
and ALGOL 60 style call-by-name. The main features of this formulation are the
use of continuations and streams. Continuations are used in such a way that the
semantics can be defined without requiring the idea of an explicit store. Thus the
concepts of address or L- and R- values are not used, and simple continuations
suffice for describing assignments, iterative control statements, compounds, blocks,
and functions using call by value. (Side effects are still allowed via assignments to
variables global to functions.) Call-by-name is handled by introducing the idea of
multiple continuations. Input-output is treated by using streams. In conjunction
with continuations, these allow the formulation of program “pipes” exactly like

compound functions.

* Research supported (in part) by the National Science Foundation under Grant
Number DCR84-05241.

1. Introduction

The purpose of denotational semantics, according to Milne and Strachey [8], is to
provide an accurate standard by which designers and implementors of program-
ming languages can judge their work. That standard must not be any more specific
than is necessary, lest the definition of the language enforce too strong a constraint
on its implementation; with new hardware and architectures becoming available
one can easily foresee that an overly specific definition will preclude growth of
software onto those new machines. “One singularly elegant sort of semantics,
‘standard semantics,’ is of special significance,” because “it reduces to a minimum
the amount of substantial information” that is manipulated; “whenever possible
precedence should be given to standard semantics rather than store semantics.”
[8, pp.11-12] The semantics of a programming language should “be specified in
the first instance by using standard semantics.”

Following the spirit of that dictum, we here demonstrate how to avoid the
store entirely in providing semantics for the archetype of languages that seem to
require it. ALGOL 60 was designed before development of the tools now familiar
to denotational semanticists, but it was designed so carefully [9] that the need
for such tools became obvious. By substantially solving the problem of specifying
syntax precisely, its designers hastened the development of formal semantics [7].

It was designed, however, with the traditional store in mind. Thus, we believe,
much of the early formal semantics also presumed the necessity of that structure.
Here we show again [1], but more clearly, how the store might be avoided entirely
without changing the (understood) meaning of ALGOL.

We are not the only ones doing this; Brookes attacks the same problem else-
where in this volume [2]. His approach is beautiful, though abstract; ours is
effective. To the extent that the lambda calculus is operational, one might say
that ours is closer to an implementation; his is clean and elegant. We feel, how-
ever, that a simple implementation in the lambda calculus (and, except for the
strange machinations of call-by-name, this is simple!) will be sufficiently abstract
to generalize to almost any machine [5]. Indeed, we also believe that our semantics
is ‘fully abstract.’

Previous efforts to define most of the programming features in languages like
ALGOL 60 [e.g., 5, 8] pivot on store semantics, with the store as one domain that
maps the so-called L-values (locations) to R-values (contents). This domain has

been deemed necessary because even such fundamental features as program vari-

3
ables and assignments seemingly require the concept of an explicit memory. More

complex features such as block storage, parameter passing mechanisms, sharing
or aliasing of variables introduced by a same variable occurring in different actual
parameter positions, etc., seem even more difficult to handle without introducing
the store.

Abstractly, the trouble with a store is that the management of the L-values
seems to preclude the semantics from being fully abstract in that it may not render
the same meanings for the same expressions in different interpretation contexts.
Intuitively, it raises problems with storage management: if memory overflow oc-
curs, are we certain that memory was used densely at the penultimate instant? If
the storage manager is not to be explicitly provided in the semantics, how are the
designers and implementors of a language to understand its properties?

Such questions may be miscast. Like others, we feel that faslures like these—
due to resource exhaustion of time, heap, or stack—are different from error signals
that might be necessary in the semantics of a programming language. The former
restrictions, imposed by the operating system, may well vary from site to site,
or with the hourly loading on a shared machine; their cure is as likely to be
rescheduling as it is program termination. The latter, however, likely require
uniform handling across all implementations and are, therefore, properly included
in a formal semantics.

This paper presents an approach to standard, storeless semantics of ALGOL
60 [9], the key ideas of which are a continuation-based scheme, already used for
translating nearly all of ALGOL 60 to the pure lambda calculus [1], and a clean
treatment of input-output using streams [4]. These ideas are, respectively, ten
and twenty years old; although he used them differently, streams were invented
by Landin [7] to grapple with this very problem! But these ideas were previously
used informally and with only intuitive justification. Both of these are newly cast
into the rigorous domain theory necessary for denotational semantics. Instead of
using a “store”, statically accessible parameters are explicitly passed (as if a unit)
around the system, to the (images of) statements and expressions.

This paper describes three semantic formulations. Section 2, following, intro-
duces the domain equations and describes some salient features of this presenta-
tion. The first formulation, introduced in Section 3, covers assignments, blocks,
control statements and I/O. The second formulation, in Section 4, provides for
procedures with called-by-value parameters. Finally, in Section 5 the third formu-

_ 4
lation describes the manner in which multiple continuations are used to implement
call-by-name. The resulting semantics is a toy language [5] with all the difficult
facilities for ALGOL 60 call-by-name. Section 6 presents an example and conclu-

sions.

2. Salient Features __

We make heavy use of the concept of ‘continuation’ in order to implement the
sequential nature of ALGOL implicitly through composition of functions. (There
is no other way of enforcing a sequential order in an abstract language, like the
lambda calculus, that admits alternative orders of evaluation.) Since continuations
are likely to be alien to the reader, we have taken pains to force all to be essentially
of two kinds: called either “continuation” or “program”.

Figure 1 presents all the domains needed here, although not all are used imme-
diately. Most important are X, which is the codomain of the significant semantic
functions, and K, the domain of continuations that effect the sequentiality neces-
sary in ALGOL.

The domain of continuations, K, is a bunch of functions, each of which maps
a pending result (conceptually, the accumulator), environment (current bindings),
and input file (its yet unread suffix) into the (yet ungenerated) suffix of the output
file. Each may as well be perceived as a function that maps pending result and
environment into a function from input files to output files. That last image is
the familiar picture of a program, mapping input to output, so we may say that
a continuation is merely a running program with the accumulator and current
bindings abstracted away.

We do not distinguish between expressions and commands with regard to the
nature of their semantics. Both commands and statements are mapped alike into
functions, £ € X, which at first thought seemed to map only from continuations
to continuations. While one might easily overlook the importance of lexical level,
one must notice that every phrase in the language resides at a lexical level which
becomes essential information at the instant that the binding of a variable must
be altered. Therefore, functions in X necessarily map from lexical levels, in N, as
well, carrying the size of a suitable environment.

Any environment represents only those bindings that are accessible in the
‘current’ scope of the program. ALGOL, of course, is lexically scoped, so the number
of bindings accessible at any point in the execution of a program is proportional to

5
the lexical nesting level at that point in the program; it is independent of how much
work ‘has already been done’ and of the number of pending (unfinished) function
invocations. Unlike the number of L-values, therefore, this census of accessible
bindings is fixed for any program, and it is likely to be relatively small (because
programmers seem to write code structures wider than they are deep.)

The domain of environments, R, is structured here as a linear list; each en-
vironment is a pair composed of a reference to the first item on the list and a
reference to the remainder of the list. The domain equation is isomorphic to
that for linear lists. The linear structure is chosen because it is easy to extend
(on block entry) and to attenuate on block exit. Indeed, many machines with
hardware stacks have been built for ALGOLesque languages whose nested structure
suggests this arrangement.

Each value to which an identifier might be bound is in D, the domain of de-
noted values. Denoted values are of three varieties, two of which involve functions
and arguments. Since this presentation postpones the treatment of functions and
procedures until later, for the moment we may perceive these § € D as simple
ground values. Then an environment is a list of such values read left-to-right as
bound in the deepest-to-shallowest block.

The domain of streams, S, is defined similarly to that of environments, R.
Streams are also linear lists of ground values. By structuring them as nested pairs,
however, we achieve two conveniences for Input/Output semantics [4]. First, the
head item on a file is readily accessible from a probe of the stream’s left field.
Second, the conventional behavior of advancing to the suffix of the file (obtained
by removing that head character), is effected by passing its suffix, available from
the right field, to a sequent function invocation. This behavior shows up in this
semantics only at the interpretation of the expression read.

Similarly, ‘output’ can be effected by returning a pair as a result, whose left
element is the ground value put out, and whose right element is a function invoca-
tion that is the ‘remainder of the program-run,’ which likely yields further output
pairs. This shows up here only in the semantics for the command output.

Input/Output, then, is built on a model of a single input-stream and a single
output-stream. Continuations and streams work together to provide a transpar-
ent, UNIXTM_like piping of program composition along a single stream [10]. It is
straightforward to extend the model to handle multiple I/O streams using func-
tional combination [4], but not enough would be learned to justify the additional

functionals necessary.

3. Semantics for a functionless language

Three features are to be observed in the semantic clauses of Figure 2. First is
the use of streams, as discussed above for I/O. Second is the unique uniting of
allocation and deallocation in the same clause for begin-end blocks. Last is the
use of the object Am to effect assignment to the variable I,,, whose binding appears
m positions from the right (nested at Position v — m in p of size v).

The function that is the image of a program under this semantics deals only
with the static environment (lexical scoping) of a program. This is much less
confining than what results from premature concern with storage-allocation. A
begin-end block is mapped as a unit onto a composition of entry, body, and
exit functions, the first and the last being interdependent. Upon block entry the
environment, p, is extended; upon block exit the additional binding is dropped.
Thus, the allocation of a local variable is not allowed to become a problem in-
dependent of its deallocation [6]. The depth of the program tree, which is the
maximum length of that (flattened) environment sequence, p, therefore, bounds
the accessible storage needed to run the program.

Continuations are used to carry out the evaluation of an expression from the
values of its constituents, as well as for propagating the effects of computation
from statement to statement. Consequently there is no need for the usual (address-
oriented) fetch and store functions. Fetch is provided in the portion of £ dealing
with I,; from lexical level v it finds position ¥ — m in p. Store into that same
location is provided by £ = A, which reads similarly, but is written separately

for reference below.

4. Introducing functions célled-by-value

Now we introduce part of the domain of functions, F, the second component in D.
Functions will initially be bound in declarations at block entry, but invocations
occur both in applscatson expressions and in call commands. Moreover, we also
provide a result command to allow a block (function body) to render a value
(for its invocations.) Each ¢ € F is a triple whose first component is boolean,
and will be used (later) to distinguish functions with parameters called-by-name
from those with a call-by-value protocol. For now all functions will have single
parameters called-by-value, and so this flag will necessarily be true. Likewise, the
third component of that triple will not be used yet.

Rather than repeating the entire semantics, we show in Figure 3 only the
additions necessary to the semantics of the functionless case discussed just above.
Introduction of functions and procedures with single arguments called-by-value
affects most of the existing semantic clauses. Most importantly, V now has a
non-trivial declaration.

Procedures with parameters called exclusively by value, with recursion, and/or
with side-effects via assignments to non-locals do not introduce complexity beyond
the domain equations. The images of user-defined functions are allowed as denoted
values within the “block” that define them,, but the values on the stack now
contain elements from X. Their manipulation of the stack, however, is exactly
that of E or D, as already used in Section 3. They look up and store to explicit

positions in the environment.

5. Call-by-name Arguments

We now discuss the semantics of call by name in the sense of ALGOL 60. We
give the semantic equations in Figure 4, restricting, for simplicity, to procedures
with a single argument. Although the semantics presented here provides only
one argument called-by-name, we can provide several. Where we discuss a single
binding below, however, all of the several simultaneously bound values must be
treated. After describing the single argument case in detail, we shall complete the
description of that treatment.

The idea for call-by-name semantics is that three continuations (thunks) are
passed for each parameter called-by-name. The first, the “assignment program”,
is only invoked from C on an assignment to this parameter; it installs a new value
as the binding in a calling environment for an identifier called-by-name The sec-
ond, the “evaluation program”, is used to retrieve/compute values in the calling
environment, and is only invoked from & as it discharges an identifier. In both
instances the program provides for reconstruction of the (modified) called environ-
ment. The third restores the calling context upon final exit from the invocation,
permanently abandoning the called environment; it is used in forming the exit
continuation as a call-by-name function is invoked.

Now one can better understand the structure of the domain of functions, F.
The boolean tags the parameter passing mechanism for the single argument; in the
case of alternative argument structures, a domain of signatures for the alternatives
would replace it. The program, &, is to be used later to restore the environment in
which the function was defined (closed) before invoking its body. The continuation,
K, is defined according to the meaning ofthe function body, itself. The separation
of £ from « is useful because £ may need to be performed repeatedly—after every
use of the argument called-by-name—but the body will only be invoked once for
each invocation. '

The argument, o is passed into the function as part of the “accumulator,” in
E. This convention allows us later to return a value (resulting from use of the
“evaluation program”) and a new « simultaneously. (When multiple arguments
are called-by-name, the bindings of all in Amust be so replaced when any one is
used.)

From the preceding description one can anticipate the complications intro-
duced by Call-by-Name: Invocation of such a function in € is complicated by
the need to compute three continuations, and by redirecting the exit continuation

9
through the third. The difference between the lexical level at which the function

was declared (closed) and the lexical level at which the invocation takes place
determines the amount of environment saving and restoration that must occur
upon function entry/exit and upon each reference to its parameter. Closing such
a function at its declaration in V, therefore, includes the rudimentary structure of
the argument triple based on the lexical level.

While the points on function closure and application are complicated, the
semantics for interpreting a call-by-name parameter end up being quite direct.
C or £ need only invoke the appropriate piece of the bound triple. Thus, the
complicated situation where one identifier called-by-need is bound to another sorts
itself out quite nicely.

Upon a context switch for call-by-name, the variable sequence (stack) shrinks
and then re-expands according to the declarations within the intervening blocks
jumped by the closing of the function. This restoration is necessary to provide for
side-effects to a non-local environment, particularly in the case where call-by-name
identifiers are cascaded: bound to-one another in an arrangement wherein the use
of one paramenter (called-by-name) causes multiple side effects in several others
at different lexical levels.

It is really remarkable how much formalism is necessary to provide for this
one “intuitive feature.” As we set aside L-values, the introduction of call-by-name
increases the bulk of semantic equations by 50% , approximating the burden it
causes the implementor!

ALGOL 60’s call-by-name is a particularly complex programming feature and
was abandoned in its descendents. It is interesting to note, however, that the
concept of closure in Scheme [11] and the newer Lisps resembles classic call-by-
name. Moreover, the style of using continuations there resembles the method
used in this paper to implement “store”. But these vistiges do not include ‘the
difficulties of assignement to an identifier passed-by-name.

What about space limitations when arguments are called-by-name? The size of
the lexical environment may always be bounded a prsors according to the syntactic
depth of the program. In the absence of call-by-name, we note that environments
grow and shrink predictably according to static -scoping rules. Call-by-value pa-
rameters require some environment saving and restoration via exit continuations,
but only for simple bindings and only for the full duration of a function invoca-
tion. Thus, even storage within continuations can be anticipated before run-time,

10
except for the effects of recursion.

The picture turns out little different for call-by-name (as long as upward func-
tions are prohibited.) However, continuations and the storage necessary for state
associated with them may be more expensive. A single argument called-by-name
requires the meaning of our triple of continuations, but the three likely share
the state information for restoring the calling environment. The allowed context
switches may occur repeatedly, but only one context (at a time) need be remem-
bered. In fact, though structured differently, the restoration information is exactly
that kept for the exit continuation for call-by-name, though it is held in a manner
to be used in any of the three ways. As before, recursion muddies the picture, but
static binding still is a very good first bound on the space require for stacks and
continuations. |

This situation should be constrasted with that for a store, with L-values. There
is no treatment here for bindings not either in the lexical environment or (implic-
itly) in a continuation. While this is a weaker space measure when recursive
functions are considered, it is far simpler than those requiring explicit space re-
lease upon block exit and concerns about garbage collection and exhaustion of
space [6]. While we do not give explicit semantics for space exhaustion, neither
do standard machine-independent languages.

Finally, let us reconsider the effect of multiple arguments called-by-name. We
have modified this semantics to run examples with n such arguments. All that
is necessary is to augment each continuation in the triple to purge and later to
restore all n bindings upon the use of any one. At first this seems like a great
complication, but it isn’t. The only change occurs in the meaning for V where
each triple is established, and in the function application line of £ where initial
triples are provided. In fact, the third part of each triple (as described here) need
only be provided as if it were the only argument, because function exit, provided

by it, is parameter-independent.

6. Examples and Conclusions =

The semantics described above has been verified by translating a number of
programs and evaluating their P-meanings applied to relevant inputs. A program
has been written in Scheme to actually carry out this process automatically. Two
sample programs used in the test are shown in Figure 5. Program P; illustrates
both call by value and call by name used in one-argument procedures. The call
by name part, though simple, involves the nontrivial operations of evaluating and
altering the argument sn the environment of the procedure call. This program
consumes a single item from its input stream, and appends three items to its
output stream. Thus, as a particular execution of this program, if P[P,]is applied
to the input stream represented by the tuple (3,1,4,1,5), the result is the tuple
(3,6,7, eof, (1,4,1,5)). —

Program P provides a more interesting illustration of call by name. It high-
lights the use of global variables as called by name arguments whose evaluation
and alteration requires crossing several block levels. It also shows nested procedure
calls and rather complex side-effecting. We have used an straightforward syntactic
convention for multi-argument procedures and functions in which all arguments
are called alike, either by value or by name. The semantic equations for obtaining
the P-meaning of such programs are not given in Figure 4, but we have outlined
the method of their translation in the previous section. This program does not
read anything from its input, but writes two items on its output. As a particular
execution of this program, if the expression (P[P1](3,1,4)) representing the exe-
cution of the program with inputs cosisiting of 3, 1, and 4 is evaluated, the result
is found to be the tuple (24,18, eof, (3,1,4)).

We have not provided for recursive definitions here. While we know different
ways to include it, none offer domain equations quite as elegant as appear here.
The most tractable solution is to redefine the codomain of V to be reflexive—
something other than X. That would suffice for recursive function definitions, but
it would, for example, preclude initializing variables from input (using read). A
complete solution confounds the domain definitions and, we feel, would detract
from the Call-by-Name semantics which we want to highlight.

If an implementor would like to perceive a stack or display in this behavior,
then she is likely to invent an efficient-on-current-hardware implementation of
ALGOL 60, as correct as her extension of this semantics. But if she sees some
other, efficient-on-future-hardware structure and faithfully uses it to extend this

12
semantics, , then she will effect an implementation that is both correct and efficient

on hardware yet unknown.

This last point is very important, because one of the virtues of formally describ-
ing languages like ALGOL 60 is the ability to express meaning of existing programs
on architectures unforeseen by the language designers. If one wanted to imple-
ment, say, ALGOL 60 on a machine that had no easy way of providing L-values,
would it be necessary to provide them? We have clearly answered that question in
the negative, showing how an iterative, lexically scoped, but richly side-effecting
language might be implemented on some pure Lambda-calculus machine. The im-
plication is that applicative architectures will be able to run ALGOL 60 programs,
perhaps with little loss of efficiency (because they will only run into complicated
code for the lesser-used pathologies of call-by-name.)

ALGOL 60 was not designed with the semantic rigor established by Denotational
Semantics, but its definition set a very high standard in its day. Indeed, one can
argue that the difficulties that arose in defining ALGOL 60 led directly to the
development of the denotational approach. That input/output and call-by-value is
expressed so cleanly here is a testament to the relative simplicity of these features.
That call-by-name (in the context of side effects) is so burdensome should not be
surprising—its implications were not all that well understood even to the ALGOL

60 commuittee.

13
REFERENCES

[1] S.K. Abdali, A lambda-calculus model of programming languages. J. Computer
Languages 1 (1976), 287-301 + 303-320.

[2] S.D. Brookes. A fully abstract semantics and a proof system for an ALGOL-like
language with sharing. (Included in this volume.)

[3] W.D. Clinger. Foundations of Actor Semantics, Ph.D. dissertation, Artifi-
cial Intelligence Technical Report 633, Massachusetts Institute of Technology
(1981), 86.

[4] D.P. Friedman and D.S. Wise. Applicative Programming for file systems. Proc.
ACM Conf. on Language Design for Reliable Software, ACM SIGPLAN No-
tsces 12, 3 (March 1977), 41-55.

[5] M.J. Gordon. The Denotational Description of Programming Languages, An
Introductson, Springer, New York (1979).

[6] J.V. Halpern, A.R. Meyer, and B.A. Trakhtenbrot. The semantics of local
storage, or what makes the free-list free. Conf. Rec. 11th ACM Symp. on
Prsnciples of Programming Languages, ISBN 0-89791-125-3 (1983), 245-257.

[7] P.J. Landin. A correspondence between ALGOL 60 and Church’s lambda no-
tation, Part I. Comm. ACM 8, 2 (February 1965), 89-101.

[8] R. Milne and C. Strachey. A theory of programming language semantics, Lon-
don, Chapman and Hall (1976).

[9] P. Naur (ed.) et al. Revised report on the algorithmic language ALGOL 60.
Comm. ACM 6, 1 (January 1963), 1-17.

[10] J.-C. Raoult and R. Sethi. Properties of a notation for combining functions.
J. ACM 30, 3 (July 1983), 595-611.

[11] G.L. Steele and G.J. Sussman. Scheme: an interpreter for extended lambda-
calculus. Artificial Intelligence Lab Memo 349, Massachusetts Institute of Tech-
nology (December 1975).

Figure 1. Domain specifications

Syntactic Domains

14

Ielde Identifiers
B € Bas Basic constants
0 € Opr Operators
P € Pro Programs
E e Exp Expressions
C € Com Commands
V € Val Values declarable
Syntactic Clauses
I:Ide = { identifiers} Identifiers
B:Bas = true | false | O | 1| -1 | 2] -2] .. Basic Constants
0:0pe == + | —-|x|+]|<|<|=]>]2].. Operators
P:Pro := program C Programs
E:Exp := B| true | false | read | I| Expressions
if E, then E, else E;| E,0E,;| EoE,
V:Val 2= E| Values declarable
function I value C| procedure I value C
function Iname C| procedure I name C
C:Com = 1I1:=E| output E| (C;;C3) | Commands
if Eo them C; else C3 | while E do C|
begin var I:= E;Cend | call EoE,; | result E
Semantic Domains
vre N = {0,1,23,..} integers
B = {TRUE, FALSE} booleans
G = N+ {eof} ground values
e€ E = (B+G+F)xE expressed values (accumulator)
D = E+A denoted values
ce 8 = GxS streams
ke K = E—-R—-S—S continuations
7€ P = K—K =K—-E-R—-S—S pure code
e X = N—-P=N-K—-E-R—-S-S code
pE R = DxR environments
o€ F = BxXxK functions
a€ A = PxPxK arguments called by name
Semantsc Functions
P : Pro—S—S meaning of program
€ : Exp—X meaning of expression
C : Com—X meaning of command
V : Val—=X meaning of decalarable values
B : Bas—E meaning of base values
0 : GxG—-G meaning of arithmetic opearators
A: N-=X alteration to lexical position v

Figure 2. Semantics for a functionless language

Semantic Clauses
Plprogram C] = C[C]O (Aepo. (eof,0)) LplR

E[B] = Avke.x(B[B])
£[true | = Avke.x(TRUE in E)
E[talse | = Avke.x(FALSE in E)
E[read | = Avkepo. k(o)1 in E) p(c]2)

élIm] = ix A (Avkeap;.
o (v=m —&(p1 |1 | E)p,
(v>m —&(v—1) (Aeapa. kea{p1 | 1, p3))e1(p1]2),
1s.s))

£[if E; then E; else E3] = Avk. £[EoJv(Ae.
(/B = TRUE — €[E,],
(|B = FALSE —€[Es],
Lx))vke)
£[E10 qu = Avk. 8[!‘.1]:/(,\51.
E[E)v(rea. x((O]0)(e1|G) (e2|G)) in E)) ¢)

V=£
Cilm:= E] = dvx. E[EJv(Am vk)
Cloutput E] = Avk. E[Ejr(Aepo. (€|G, kepo))

Clit Eo then C; else Cj3] = Avk. £[EoJv(Ae
(¢/B= TRUE — C][c,],
(e|B= FALSE —C[C5],
Lx))vxe)
Clwhile Edo C]=Av. (fix Ar. (Ax. E[E]r(Xe.
(¢jB= TRUE — C[C]v(nk),
(ejB= FALSE —«,
1)) 9)

Cl(Cy; Ca) | = Avk. C[Ci]v(C[Ca]vk)

Clbegin var I:=E;Cend | = Avk. V[EJu(resp:-
CICl(v+1) (Aeapz-kea(pa | 2)) e1{er in D, p))

A=Xdm. (fix AL (Avkep; .
(v=m —ke{e; in D, py | 2),
(v>m —&(v— 1) (Aeaps . kez {p1 | 1,p3))ex (p112),
1s.s))

15

16
Figure 3. Semantics for a language with call by value.

Syntactic Clauses.

I: Ide = { identifiers} Identifiers

B:Bas = true | false | O | 1| -1 | 2| —-2.. Basic Constants

0:0pe == + |- |x|+|<|L]|=]|>]2]-- Operators

P:Pro := program C Programs

E:Exp == B| true | false | read | I| Expressions
if Eo then E; else E; | E;0E; | EoE,

V:Val u= E| Values declarable
function I value C| procedure I value C

C:Com = 1I:=E| output E| if E; then C; else C; | Commands

while E do C| C;;C3 | begin var I:=E;Cend |
call EoE; | result E

Semantic Clauses. (Additions to Fig. 2)
glEﬁEll = /\Vﬂcl. E[Eo]v’l(/\éo.
(¢l1 = TRUE —&[B1]vi((¢12) viky)eo,
1s.s))
V[function Ivalue C] = Avyki€. k3(TRUE, €, 1K)
where
f = fix /\f (/\!fgﬂg(gﬂg.
(va=vy — C[Cl(v1+1)(Aesps . Kaes(ps | 2)ea{ea, pa),
(va> 11 —€(va—1) (Aeaps - kaea(pa | 1, p3))ea(pal2),
1s.s))
V[procedure I value C] = V[function I value C]J

V[E] = £[g]

Clcall EoE] = €[EoE]
Clresult E] = £[E]

A=2m. (fix X (Avkeypy .
(v=m — (
((p1l1)€EE—key(ey im D, py | 2),
i _.S 1
(v>m —&(v— 1) (Aezpa . kea (p1 | 1, pa))ex (p112),
1s.s))

: 17
Figure 4. Semantics forw language with call by name

Semantic Clauases

Plprograz C] = C[C]O (Aepo. {eof,0)) LELlR

E[B] = Avke.x(B[B])
Eftrue | = Avke.x(TRUE in E)
E[talse | = Avre.x(FALSE in E) _
Elread | = Avrepo. k(o|l in E) p(o)2)

E[Im] = fix AL (Avkep:.
(v=m — ((p1l1)€EA—(p1|1|A]1) vres(p112),
x(p1l1 | E) py),
(v>m —€(v—1) (Aeapa. kea{p1ll, pa))er(p112),
ls_.s))
E[if Eo then E; else Ej] = Avk. E[EoJv(Ae
(/B = TRUE — E[Ei],
(e|B = FALSE —€[E,),
Lx))vke)
E[E10 E3] = Avk. E[EiJv(Ae.
€[Ea]v(Aea. ((0[0](&4]G) (&2|G)) in E)) 1)

EIEOEI.I = ’\lel- EIEOI‘V}.(’\GD'
(¢11 = TRUE — E[EJii((¢12) viky)€o,
(11 = FALSE —(412) 11(¢13) ({ €0 in D, o) in E),

1s.s))
where

t.f) = 60] F
and
a = fix Aa. { Axa. E[Ei}vi(Aea. (8]2)vika. (€, a) ,
Akz. (E1=1m —Am, Lx) vi(Aes.
((¢12)v1k3({e3, @) in E))),

K1)

V[function Ivalue C]=Avk16. x(TRUE, §, 1)
where
§ = fix AL (/\Vzﬂzfzh-
(va=v1 — C[C)(v1+1)(Aeaps . kaea(ps | 2)ea(es, pa),
(va> vy —&(va—1) (Aeaps . Ka€s{pa | 1, p3))ea(pal2)
1s.s))

V[procedure I value C] = V[function I value C]

V[function I name C] = Avgkoco. Ko{ FALSE, &restore; Kstart)
where
Kstart = C[C](vo + 1)(Xe1ps. (p1l1|A3)ex(p112))
and
Erestore = fix AL (AviK €1 pg.
(r1=vo —k1(e1ll) (€1 | 2 in D, py),
(r1i>ve —&(vi—1)x1({ex | 1,@) in E) (p1]2),

1s.s))
where in turn
a=(fix Am . (Axzezps. (€112 [1)&zea{p1]1, pa)),
fix Amy. (Akzeapa. (€112 |2) kaea(pill, pa)),
fix Axs. (Aeaps. (€112 13) ea{p1l1, pa)))

V[procedure Iname C] = V[function Iname C]J

VIE] = £[E]

Clim:= E] = Avk. E[Ejv(Amuk)
Cloutput E] = Avk. E[EJr(Aepo. (€] G, kepo))

Clit E, then C; else C;] =ivx. £[EJv(Xe.
(¢/B= TRUE — C[c,],
(¢|B= FALSE —C[C;],
1y))vke)
Clwvhile Edo C]=Av. (fix Am (As. E[EJr(Ae.
(¢|B= TRUE — C[C}v(nk),
(¢|B= FALSE —«,
1K)) €)
Clcy;] = Avk. ClCiJv(ClCa]vk)

C[begin var I=E;Cend | = Avk. V[E]Jr(Ae1p1. C[C}(v+1) (Aezps -
xea(pa | 2)) &1{ex in D,p,))

Clcall EoE;] = E[EoE,]
Clresult E] = £[E]

A=m. (fix /\f [/\Vﬁﬁlpl =
(v=m — ((p111)€A—(p1|1|A]2)vKes(p1]2),
((p1l1)€E—key{ey in D, py | 2),
ls.s)
(r>m —&(v— 1) (Aezpa . ke3 (p1 | 1, p3))ex (p112),
1g s)™

18

Figure 5. Examples of programs using the call by name feature

P, = progran

begin var dbl := function ¢ value i:=2x1;
begin var inc := procedure ¢ name §s:=i+1;
begin var z := read:

((((output z;
z :=dblz); output z);
call ¢nc z); output z)
end
end
end

P; = progranm
begin var magic := function(n,i, a,b) named
(:=0; while i<n do ((i:=¢+1; a:=b); result 999));
begin var prod := function(s, j,p,gq) valued result ¢ x j;
begin var p:=999;
begin var g :=999;
begin var dummy := 999;
begin var a:=1;
(((dummy := magic(4,p,a,a X p); output a); a:=0);
dummy := magic(2, p, dummy,
magic(3, g, a, (a + prod(p, ¢, dummy, dummy))))):
output a)
ead
end
end
end
end
end

Note that the second call to magic is effectively equivalent to the statements:
(p:=0;
while p < 2 do
Up:=p+1; ¢:=0);
while ¢ <3 do
(g:=q+1; a:=a+pxgq)))

19

