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An Exponential Lower Bound for the Pure Literal Rule

1. Introduction

A pure literal is a literal in a logic formula (usually in Conjunctive Normal Form) that occurs only positively
or only negatively. The Davis-Putnam procedure [1] was developed to find one solution to a logic formula,
and it contains several techniques for speeding up the typical solution time. One of these techniques is the
pure literal rule: a variable that occurs only positively or only negatively (a pure literal) needs to have only
one value considered, the value that makes all of its clauses true.

Goldberg [2] developed an algorithm that consisted of just splitting (trying each value for a variable,
simplifying the resulting subproblems, and considering each subproblem recursively) and the pure literal rule.
He claimed that this algorithm took polynomial average time. An error was corrected in [3] (concerning the
case where a variable did not appear at all), and Goldberg’s result was extended to a wider class of random
problems. A detailed upper bound analysis [6] showed that there was an extensive region where the average
time was polynomial.

This paper has the first lower bound analysis for this algorithm. We show that there is also an extensive
region where the average time for this algorithm is exponential. In many cases the current lower bound is
much lower than the best upper bound [6]. Presumably there are random problems that take exponential
time when solved by either backtracking or by the pure literal rule, but our current results are not strong
enough to show this. Those random sets where we show that the pure literal rule requires exponential
average time can be solved by backtracking in polynomial average time [5, 7.

2. Random model

We have v variables, ¢ clauses, and with probability p a literal is in a clause. A random clause is formed by
including each literal with probability p. A predicate consists of ¢ independently selected random clauses.
Since there are 2v literals altogether, and since each literal is included with probability p, the expected clause
size is equal to 2vp. One should note that the expected clause size is linear in v whenever p is fixed; the
expected clause size is fixed whenever p varies inversely with v, i.e. p = O(v™1).

The average time for the pure literal rule is given by the following recurrence equation [3]:

Alt,v) =tv+(1-p)*Alt,v - 1) +2) (:)p"(l -p)f At - 4,0 1),
i>1

A(t,0) = A(0,t) =0,
where fv is the time required for one step of the algorithm. The summation expression accounts for

all possibilities of eliminating one variable leaving two subproblems each of size ¢t — t, 1 < i <t The
(1= p)*A(t,v — 1) term accounts for the case where the selected variable does not appear in the predicate.

3. Analysis
We consider a lower limit on A(t,v) by dropping the (1 — p)?*A(t, v — 1) term. We obtain

L(t,v)=tv+ 22 (i)p‘(l -p) T L(t—i,v—1).

i21

L{t,v) is a lower limit on A(t,v) since (1 - p)>*A(t,v — 1) is positive. Define the exponential generating
function

H,(2) =) L(t, u)i;;. (2.1)

£20
Multiplying by 2*/t! and summing over ¢ gives
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Using eq. (2.1) on eq. (2.2) gives
Hy(z) = vze® = 2H, 1 ([1 - p|2) + 2¢**H,—1([1 - p]2)- (2.3)

The right most term in eq. (2.3) comes from the right most term in eq. (2.2) except the sum over i is starting
at zero instead of one. The middle term in the right side accounts for the fact that eq. (2.2) does not have
an { = 0 term.

Iterating with Hy = 0, we get

Hy(z)= Y 2(v—i)(1-p)zll-2" I (0%

0<igu—1 0<i<i-1

Expanding the exponentials and multiplying out [4], we find

pko+‘--+h—1 (1 - p)ﬂkn'Flh +--+ik; "
kolky!. .. kit ‘

-0 [ (0P - 1) = E( >
0<j<i~1 n>1 i "ikzﬂ e
B

Thus
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where b = 2(1 — p). Note that L(t,v) is equal to the coefficient of 2*/¢! in H(z). So

ot tkiog 1 — pYkade4ik;
7 (1-»)
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Lit,y)=to+ Y, bv~i) Y
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Simplifying the inner sum, using inclusion-exclusion and the multinomial theorem [4], we find that

Lit,v)=to+t ». b‘(v-s‘)[l— 2 -pl=gyrep

1<i<v—1 0<ro<i

+ Y [1-p(l—p)'°-P(l—p)"l"‘—“-]- (24)

05!‘0(!1 <i

If one approximates the expression in brackets with the leading terms, then the error is of the same sign and
no larger in absolute value than the first term not included, because each term corrects for items that were
over counted in the previous term.

4. Approximations

In this section we derive a lower limit on the size of the summation expression derived for L(t,v). We are
interested in the values of p and ¢ (for large values of v) that will lead to an exponential lower limit on the
size of L(t, v).



Taking the first two terms in eq. (2.4) and interchanging the order of summation gives

Lit,v)> D b(v-i) [1 - Z {1-p01- p)r}l-—l]
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To decide whether this is exponential for large v we look at the terms multipled by b”*!. Using S =
Yocreyz{l—p(1— p)"}t_l, to make the lower limit large, we need
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for some fixed a. This will be true when b > 1 unless S ~ 1 or b ~ 1. Assuming that p < 1/2, we have
exponential time whenever S < 1. Now

s= 3 {-plt-ar ) g ofi-p(1- gyt

S ve"(t‘l)’(l-”)'“:'
So Goldberg’s version of the pure literal rule takes exponential time whenever

Ue-(t-l)p(l-’)v_s < 1’

or
Inv
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The value of p that gives the smallest lower bound for ¢ can be obtained by setting, 9t/8p to zero, i.e.

t>1+
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4. Conclusion

We have established a large region where the pure literal rule requires exponential average time. This is
the first nontrivial lower bound on the pure literal rule algorithm. The typical problem in this region has
an exporentially small number of solutions. This is the region where backtracking algorithms (which verify
unsatisfiability) are known to be effective [7].

The remaining problem on the analysis of the average time of this algorithm is to find upper and lower
bounds that are closer together. It is particularly important to determine whether there is a region where
both the pure literal rule algorithm and backtracking take exponential average time. The approach used to
find our lower bound shows promise of giving both better upper bounds and better lower bounds.
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