Updating Derived Relations: Detecting
Irrelevant and Autonomously Computable Updates

by

José A. Blakeley
Computer Science Department
Indiana University
Bloomington, IN 47405

and

Neil Coburn and Per-Ake Larson
Department of Computer Science
University of Waterloo
Waterloo, Ontario, N2L 3G1 Canada

TECHNICAL REPORT NO. 235

Updating Derived Relations: Detecting
Irrelevant and Autonomously Computable Updates
by
José A. Blakeley, Neil Coburn and Per-Ake Larson
November, 1987

To appear in ACM Trans. on Database Systems.

S | ,

Updating Derived Relations: Detecting
Irrelevant and Autonomously Computable Updates*

José A. Blakeley Neil Coburn Per-Ake Larson!
University of Waterloo, Canada

Abstract

Consider a database containing not only base relations but also stored derived relations
(also called materialized or concrete views). When a base relation is updated, it may also be
necessary to update some of the derived relations. This paper gives sufficient and necessary
conditions for detecting when an update of a base relation cannot affect a derived relation (an
irrelevant update), and for detecting when a derived relation can be correctly updated using no
data other than the derived relation itself and the given update operation (an autonomously
computable update). The class of derived relations considered is restricted to those defined
by PSJ-expressions, that is, any relational algebra expression constructed from an arbitrary
number of project, select and join operations (but containing no self-joins). The class of update
operations consists of insertions, deletions, and modifications, where the set of tuples to be
deleted or modified is specified by a select condition on attributes of the relation being updated.

Categories and Subject Descriptions: H.2.1[Database Management]:Logical Design—Data Mod-
els

General Terms: Theory, Performance

Additional Key Words and Phrases: Database design, Relational databases, Conceptual relations,
Stored relations, Pre-joined relations, Derived relations, Materialized views

1 Introduction

In a relational database system, the database may contain derived relations in addition to base
relations. A derived relation is defined by a relational expression (query) over the base relations.

"Reference [6] is an early and incomplete version of this paper.

'This research was supported by Cognos, Inc., Ottawa under contract WRI 502-12, by the National Council of
Science and Technology of México (CONACYT), by a Natural Sciences and Engineering Research Council of Canada
(NSERC) Postgraduate Scholarship and under NSERC grant No. A-2460.

Authors’ addresses: J.A. Blakeley, Computer Science Department, Indiana University, Bloomington, Indiana, 47405-
4101 U.S.A.; N. Coburn and P.-A. Larson, Department of Computer Science, University of Waterloo, Waterloo,
Ontario, N2L 3G1 Canada.

1 INTRODUCTION 2

A derived relation may be wvirtual, which corresponds to the traditional concept of a view, or
materialized, meaning that the relation resulting from evaluating the expression over the current
database instance is actually stored. In the sequel all derived relations are assumed to be materi-
alized, unless stated otherwise. As base relations are modified by update operations, the derived
relations may also have to be changed. A derived relation can always be brought up to date by
re-evaluating the relational expression defining it, provided that the necessary base relations are
available. However, complete re-evaluation of the expression is often wasteful, and the cost involved
may be unacceptable.

Consider a database scheme D = (D, S) consisting of a set of base relation schemes D —
{R1,R3,..., R} and a set of derived relation definitions § = {E1,E,,...,E,}, where each E; € §
is a relational algebra expression over some subset of D. Suppose that an update operation U is
posed against the database d on D specifying an update of base relation ry on R, € D. To keep the
derived relations consistent with the base relations, those derived relations whose definition involve
R, may have to be updated as well. The general maintenance problem for derived relations consists
of: (1) determining which derived relations may be affected by the update U, and (2) performing
the necessary updates to the affected derived relations efficiently.

As a first step towards the solution of this problem, we consider the following two important
subproblems: Given an update operation I/ and a potentially affected derived relation E;,

o determine the conditions under which the update ¥ cannot have any effect on the derived
relation E;, regardless of the database instance. In this case, the update U is said to be irrelevant
to E;.

e if the update U is not irrelevant to E;, then determine the conditions under which E; can be
correctly updated using only &/ and the current instance of E;, for every instance of the database.
That is, no additional data from the base relations D is required. In this case, the effect of U/ on
E; is said to be autonomously computable.

In this paper we give necessary and sufficient conditions for detecting irrelevant and autonomously
computable updates. The class of derived relations is restricted to those defined by PSJ-expressions,
that is, any relational algebra expression constructed from an arbitrary number of project, select,
and join operations. However, multiple occurrences of the same relation in the expression are not
allowed (self-joins). The class of update operations consists of insertions, deletions, and modifi-
cations where the set of tuples to be deleted or modified is specified by a select condition on the
attributes of the relation being updated. We have implemented a simple prototype capable of de-
tecting irrelevant and autonomously computable updates; some experimental results are reported
in the last section of this paper. Testing the conditions eventually requires testing the satisfiability
of certain Boolean expressions, which, in general, is an NP-complete problem. Even though we
impose some restrictions on the atomic conditions from which the Boolean expressions are built,
we cannot avoid the exponential growth characteristic of NP-complete problems. However, the
exponential growth depends on the number of attributes and atomic conditions in the selection

1 INTRODUCTION 3

conditions of the update operation and the derived relation. Experimental results indicate that,
normally, this is not a severe problem.

The maintenance problem for derived relations is part of an ongoing project at the University of
Waterloo on the use of derived relations. The project is investigating a new approach to structuring
the database in a relational system at the internal level. In current systems there is, typically,
a one-to-one correspondence, in terms of data contents, between conceptual relations and stored
relations. (However, an implementation may map stored relations into physical files in various ways,
see [3].) This is a simple and straightforward solution, but its drawback is that the processing of a
query often requires data to be collected from several stored relations. Instead of directly storing
each conceptual relation, we propose structuring the stored database as a set of derived relations.
The choice of stored relations should be guided by the actual or anticipated query load so that
frequently occurring queries can be processed rapidly. To speed up query processing, some data
may be redundantly stored in several derived relations.

The structure of the stored database should be completely transparent at the user level. This
requires a system capable of automatically transforming any user update against a conceptual rela-
tion, into equivalent updates against all stored relations affected. The same type of transformation
is necessary to process user queries. That is, any query posed against the conceptual relations must
be transformed into an equivalent query against the stored relations. The query transformation
problem has been addressed in papers by Larson and Yang [12,13,18].

Although our main motivation for studying the problem stems from the above project, its
solution also has applications in other areas of relational databases. Buneman and Clemons 8]
proposed using views (that is, virtual derived relations) for the support of alerters. An alerter
monitors the database and reports when a certain state (defined by the view associated with the
alerter) has been reached. Hammer and Sarin [11] proposed a method for detecting violations
of integrity constraints. Certain types of integrity constraints can be seen as defining a view. If
we can show that an update operation has no effect on the view associated with an alerter or
integrity constraint, then the update cannot possibly trigger the alerter or result in a database
instance violating the integrity constraint. The use of derived relations (called concrete views) for
the support of real-time queries was suggested by Gardarin et al. [10], but it was discarded because
of the lack of an efficient update mechanism. Our results have direct application in this area.

The detection of irrelevant or autonomously computable updates also has applications in dis-
tributed databases. Suppose that a derived relation is stored at some site and that an update
request, possible affecting the derived relation, is submitted at the same site. If the update is
autonomously computable, then the derived relation can be correctly updated locally without re-
quiring data from remote sites. If the request is submitted at a remote site, then we need to send
only the update request itself to the site of the derived relation. As well, the results presented here
provide a starting point for devising a general mechanism for database snapshot refresh [2,7,14].

2 NOTATION AND BASIC ASSUMPTIONS 4

2 Notation and Basic Assumptions

A database scheme D = (D, S) consists of a set of (base) relation schemes D = {Ry, R>,..., R},
and a set of derived relation definitions § = {Ey, E,,...,E,}, where each E; € S is a relational
algebra expression over some subset of D. A database instance d, consists of a set of relation
instances r1,72,...,Tm, one for each R; € D. We impose no constraints (e.g., keys or functional
dependencies) on the relation instances allowed. A derived relation v(E;, d) is a relation instance
resulting from the evaluation of a relational algebra expression E; against the database d. We
consider a restricted but important class of derived relations, namely those defined by a relational
algebra expression constructed from any combination of project, select and join operations, called a
PSJ-expression. In addition, we impose the restriction that no relation occurs as an operand more
than once in the expression. In other words, a relation cannot be joined with itself (a self-join).
We often identify a derived relation with its defining expression even though, strictly speaking, the
derived relation is the result of evaluating that expression.

We state the following without proof: every valid PS J-expression without self-joins can be
transformed into an equivalent expression in a standard form consisting of a Cartesian product,
followed by a selection, followed by a projection. It is easy to see this by considering the operator tree
corresponding to a PSJ-expression. The standard form is obtained by first pushing all projections
to the root of the tree and thereafter all selection and join conditions. From this it follows that any
P S J-expression can be written in the form E = 7, o¢ (Ri; X Ry X+ X R;,), where R; , R;,,..., R;,
are relation schemes, C is a selection condition, and A = {A1, As, ..., A;} are the attributes of the
projection. We can therefore represent any PSJ-expression by a triple E = (A, R,C), where
A = {A1,As,..., A} is called the attribute set, R = {Ri,, Ri;,..., R;,} is the relation set or base,
and C is a selection condition composed from the conditions of all the select and join operations of
the relational algebra expression defining E. The attributes in A will often be referred to as the
vistble atiributes of the derived relation. A selection condition is a Boolean combination of atomic
(selection) conditions. The theory developed makes no other assumptions about atomic conditions
than that they are functions of attributes in the relations in the base to {true, false}. However, to
be able to actually test the conditions stated in the theorems, further restrictions must be imposed
on the atomic conditions allowed; this is discussed further below. We also use the notation:

a(C) the set of all attributes appearing in condition C
a(R) the set of all attributes of relation R
a(R) the set of all attributes mentioned in the set of relation schemes R. (i.e., Ur.cr a(R:)).

The update operations considered are insertions, deletions, and modifications. Each update op-
eration affects only one (conceptual) relation. The following notation will be used for update
operations:

INSERT (R,,T): Insert into relation r, the set of tuples T, where each ¢t € T is defined over B

2 NOTATION AND BASIC ASSUMPTIONS 5

DELETE (R,,Cp): Delete from relation r, all tuples satisfying condition Cp, where Cp is a se-
lection condition over a(R,).

MODIFY (Ry,Cu,Far): Modify all tuples in », that satisfy the condition Cpr, where Cpz is a
selection condition over a(R,). Fy is a set of expressions, each expression specifying how an
attribute of r, is to be modified.

Note that we make the assumption that all the attributes involved in the update expressions
are from relation R,. That is, both the attributes modified and the attributes from which the new
values are computed, are from relation R,. The set of expressions Fj; of a MODIFY operation is
assumed to contain an update expression for each attribute in R,. An update ezpression is of the
form A; := gi(Ai,, Aiz,y. .., A;,) where 4; Ay ...y A;, are attributes in R, and g; is a function over
Ay Aigy - .y Ay, This function, g;, is called the update function of attribute A;. Again, the theory
developed makes no other assumptions about update functions than that they are (computable)
functions on the attributes in R,. However, in practice, additional restrictions must be placed on
them in order to be able to actually test the conditions.

Note that in [6] we considered a more general class of update operations where the selection
condition of DELETE and MODIFY operations may involve attributes in relations other than
R,. (Autonomously computable modifications were not considered in detail in [6].) Further work
revealed that the results presented in [6] do not always hold for this more general class. However,
the results are valid if the selection condition involves only attributes from R,,. This is the class of
update operations considered in this paper.

For simplicity, all attribute names are taken to be unique (over the set of base relations).
Current systems are capable of handling only discrete and finite domains. Any such domain can be
mapped onto an interval of integers, and therefore we will in the sequel treat all attributes as being
defined over some interval of integers. It will often be necessary to identify exactly from which set
of attributes a tuple may take its value. Let A = {4;,..., A%} be a set of attributes. We will use
the phrase, tuple t is defined over set A, to describe a situation where ¢ is a tuple defined over the
attributes A4;,..., Ax; or more simply ¢ is over A, if no confusion will arise.

Conditions are Boolean expressions built from atomic conditions and logical connectives. An
atomic condition is a function from the Cartesian product of the domains of a set of attributes (vari-
ables) to the set {#rue, false}. The logical connectives will be denoted by “v” for OR, juxtaposition
or “A” for AND, “~” for NOT, “=” for implication, and “<” for equivalence. To indicate that
all variables of a condition C are universally quantified we write VC, and similarly for existential
quantification 3C. If we need to explicitly identify which variables are quantified, we write V X ()
or 3 X (C) where X is a set of variables.

An evaluation of a condition is obtained by replacing all the variable names (attribute names)
by values from the appropriate domains. The result is either true or false. A partial evaluation
(or substitution) of a condition is obtained by replacing some of its variables by values from the
appropriate domains. Let C be a condition and ¢ a tuple over some set of attributes. The partial

2 NOTATION AND BASIC ASSUMPTIONS 6

evaluation of C with respect to ¢ is denoted by C[t]. The result is a new condition with fewer
variables.

Detecting whether an update operation is irrelevant or autonomously computable involves test-
ing whether certain Boolean expressions are valid, or equivalently, whether related Boolean expres-
sions are unsatisfiable.

Definition 2.1 Let C(21,...,2,) be a Boolean expression over variables TiyereyZp. C is wvalid if
Vz1,...,2,C(21,...,2,) is true, and C is unsatisfiable if Az1,y...,2,C(21,...,2,) is true, where
each variable z; ranges over its associated domain. o

In other words, a Boolean expression is valid if it always evaluates to true, unsatisfiable if it
never evaluates to true, and satisfiable if it evaluates to true for some values of its variables. Proving
the validity of a Boolean expression is equivalent to disproving the satisfiability of its complement.
Proving the satisfiability of Boolean expressions is, in general, NP-complete. The theory presented
in this paper requires the ability to test the satisfiability of Boolean expressions. Therefore, we
assume that an algorithm for testing satisfiability, for the class of Boolean expressions of interest,
is available. We also assume the algorithm returns a set of values and if the given expression
is satisfiable then the values satisfy the expression. Since we have imposed the restriction that
attributes have finite domains and we assume that any functions used are computable we are
guaranteed the existence of a satisfiability testing algorithm—though it may not be efficient.

For a restricted class of Boolean expressions, polynomial algorithms exist. Rosenkrantz and
Hunt [17] developed such an algorithm for conjunctive Boolean expressions. Each expression B
must be of the form: B = B; A By A -+ A B,, where each B; is an atomic condition. An atomic
condition must be of the form (z @ y + ¢) or (z 8 ¢), where 8 € {=,<,<,>, >}, z and y are
variables representing attributes, and c is a (positive or negative) constant. Variables and constants
are assumed to range over the integers. The algorithm runs in O(n®) time where n is the number
of distinct variables in B,

In this paper, we are interested in the case when each variable ranges over a finite interval of
integers. For this case, Larson and Yang [12] developed an algorithm whose running time is O(n?).
However, it does not handle expressions of the form (z 8 y + c) where ¢ # 0. We have developed a
modified version of the algorithm by Rosenkrantz and Hunt for the case when each variable ranges
over a finite interval of integers. Details of the modified algorithm are given in Appendix A.

An expression not in conjunctive form can be handled by first converting it into disjunctive
normal form and then testing each disjunct separately. In the worst case, this may cause the
number of atomic conditions to grow exponentially. Several of the theorems in Sections 3 and
4 will require testing the validity of expressions of the form C; = C,. The implication can be
eliminated by converting to the form (- C;) V C;. Similarly, expressions of the form C; < Cy can be
converted to C; C; V (= C1)(—C3). Atomic conditions of the form (z # y + ¢) must be converted to
(2 < y+c¢)V(z > y+c) to satisfy the input requirements of the Rosenkrantz and Hunt algorithm;
similarly, for (z # c).

3 IRRELEVANT UPDATES 7

3 Irrelevant Updates

In certain cases, an update operation applied to a relation has no effect on the state of a derived
relation. When this occurs independently of the database state, we call the update operation
irrelevant to the derived relation. It is important to provide an efficient mechanism for detecting
irrelevant updates so that re-evaluation of the relational expression defining a derived relation can
be avoided or, at least, the number of tuples considered in the re-evaluation can be reduced.

This section presents necessary and sufficient conditions for the detection of irrelevant updates.
The conditions are given for insert, delete, and modify operations as introduced in the previous
section. First we define what it means for an update to be irrelevant.

Definition 3.1 Let d be an instance on the set of relation schemes D, and let d’ be the resulting
instance after applying the update operation & to d. Let E = (A,R,C) be a derived relation
definition. The update operation U is irrelevant to E if v(E,d') = v(E, d) for all instances d and
. o

If the update operation & does not modify any of the relations over which the derived relation is
defined then, obviously, & cannot have any effect on the derived relation. In this case I/ is said to
be trivially irrelevant to the derived relation.

The fact that an update is not irrelevant does not imply that the update will, in fact, affect
the current instance of the derived relation. However, determining whether or not it does requires
accessing the data in the database.

3.1 Irrelevant insertions

An insert operation into a base relation is irrelevant to a derived relation if it causes no tuple to
be inserted into the derived relation.

Theorem 3.1 The operation INSERT(R,,T) is irrelevant to the derived relation defined by F =
(A,R,C), Ry € R, if and only if C[t] is unsatisfiable for every tuple t € T.

Proof: (Sufficiency) Consider an arbitrary tuple ¢ € T. If C[t] is unsatisfiable, then C[t] will evaluate
to false regardless of the assignment of values to the variables remaining in C[t]. Therefore, there
cannot exist any tuple defined over the Cartesian product of the relations in R — {R,} that would
combine with ¢ to satisfy C and hence cause an insertion into v(E, d).

(Necessity) Consider a tuple ¢ € T, and assume that C[t] is satisfiable. C[t] being satisfiable
means that there exists a tuple s defined over a(R) such that s[a(R,)] = t, s|A] = u, for every
attribute A ¢ a(R,) U a(C), where 4 is the lowest value in the domain of A, and the rest of the
values s[A], A € a(C) — a(R,) are assigned in such a way that C[s] = true. The fact that C[¢] is
satisfiable guarantees the existence of values for attributes in o(C) — a(R,). We can then construct
a database instance d using s, such that the insertion of ¢ into r, will cause a new tuple to be
inserted into the derived relation v(E, d).

3 IRRELEVANT UPDATES 8

To construct d, we build a relation instance r; for each relation scheme R; € R — {R,}. Each
relation »; contains a single tuple ¢;, where #; = s|a(R;)]. The database instance d consists of the
relation r, = @ and relations r; = {t;} for each R; € R — {R,}. Clearly, v(E,d) = 0. However, if
we obtain d' from d by inserting tuple t into r,, then v(E,d’) will contain one tuple. Therefore,
the INSERT operation is not irrelevant to the derived relation. o

3.2 Irrelevant deletions

A delete operation on a base relation is irrelevant to a derived relation if none of the tuples in the
derived relation will be deleted as a result of the operation.

Theorem 8.2 The operation DELETE (R,,Cp) is irrelevant to the derived relation defined by
E =(A,R,C), R, € R, if and only if the condition Cp A C is unsatisfiable.

Proof: (Sufficiency) If Cp A C is unsatisfiable, then no tuple ¢ defined over a(R) can have values
such that Cp[t] and C[t] are simultaneously true. Assume that ¢ contains values such that Cp[t] is
true, meaning that the delete operation causes the deletion of the tuple t[a(R,)] from 7,. Since
t cannot at the same time satisfy C, then ¢ could not have contributed to a tuple in the derived
relation. Thus the deletion of t[a(R,)] from 7, will not cause any data to be deleted from the
derived relation defined by E. Therefore, the delete operation is irrelevant.

(Necessity) Assume that Cp A C is satisfiable. Let a(C) Ua(Cp) = {z1,23,...,2;}. Because
Cp AC is satisfiable, there exists a value combination z = (29,29, ...,2J) such that C[2] A Cp[z] is
true. We can then construct an instance of each relation in R such that deleting one tuple from
74, Ry € R, will indeed change the derived relation. Each instance r;, R; € R, contains one tuple
t; constructed as follows:

e if R; contains attribute z, 1 < k < I, then ¢;[zs] = 9.

o if R; contains an attribute y, y ¢ {21, 23, ..., 21}, then ¢;[y] = u,, where the value Ly is any
value in the domain of y, say the lowest value in the domain.

Initially the database instance d contains the relation instances r; = {t;}, R: € R. Hence, v(E,d)
will contain one tuple. Applying the delete operation to d then gives an instance d’ where the tuple
t, from relation r, has been deleted. Clearly, v(E,d') = @. This proves that the deletion is not
irrelevant. O

Example 8.1 Consider two relation schemes R;(H,I,J) and R(K, L), and the following derived
relation and delete operation:

E = ({H,L},{Ry, R2},(I > J)(J = K)(K > 10))

DELETE (R, (I < 5)).

3 IRRELEVANT UPDATES 9

To show that the deletion is irrelevant to the derived relation we must prove that the following
condition holds:

AH,I,J,K,L[(I>J)J=K)K >10)A(I < 5)].

Clearly, the condition holds because the condition (I > J)(J = K)(K > 10) implies that (I > 11),
which contradicts (I < 5). Hence, the delete operation is irrelevant to the derived relation. O

3.3 Irrelevant modifications

The detection of irrelevant modifications is somewhat more complicated than insertions or deletions.
Consider a tuple that is to be modified. It will not affect the derived relation if one of the following
conditions applies:

e it does not qualify for the derived relation, neither before nor after the modification;

e it does qualify for the derived relation both before and after the modification, but all the
attributes visible in the derived relation remain unchanged.

Theorem 3.3 introduced in this section covers the two cases mentioned above, but before we state
the theorem, we need some additional notation.

Consider a modify operation MODIFY (R,,Cp, Fpr) and a derived relation defined by E =
(A,R,C). Let a(R,) = {A1,42,...,4;}. As mentioned in Section 2, we will associate an update
expression with every attribute in R, that is, Far = {f4,, fa,,..., f4,}. Each update expression
is of the form f4;, = (4:i := gi(4i,, Aij,..., A;)). If an attribute A4; is not to be modified, we
associate with it a trivial update expression of the form f4, = (4; := A;). If the attribute is assigned
a fixed value ¢, then the corresponding update expression is f4; = (4; := ¢). The notation p(fa,)
will be used to denote the right hand side of the update expression f4;, that is, the function after
the assignment operator. The notation a(p(f4;)) denotes the variables mentioned in p(f4,). For
example, if fa, = (A; := A; +¢) then p(fa;) = 4; + c and a(p(fa;)) = {4;}.

By substituting every occurrence of an attribute A; in C by p(f4,) a new condition is obtained.
We will use the notation C(Fps) to denote the condition obtained by performing this substitution
for every variable A; € a(R,) N «(C). Depending on the update functions allowed, C(Fjs) may not
be in the class of Boolean expressions handled by the satisfiability algorithm in Appendix A even
if C is in that class.

An update expression p(f4;) may produce a value outside the domain of 4;. We make the
assumption that such a modification will not be performed, that is, the entire tuple will remain
unchanged. Each attribute A; of R, must satisfy a condition of the form (A4; < Uy,)(4: > Ly,)
where L4, and Uy, are the lower and upper bound, respectively, of its domain. Consequently, the
updated value of A; must satisfy the condition (p(fa;) < Uy,)(p(fa,) > La,) and this must hold
for every A; € a(R,). The conjunction of all these conditions will be denoted by Cg(F), that is,

CB(Fm)= AN (o(Ffa;) S Ua)(p(fa;) = La;)
A;€a(Ry)

3 IRRELEVANT UPDATES 10

The following example illustrates the notation introduced above.

Example 8.2 Consider a relation schema R(H,I,J) and the following modify operation:
MODIFY(R,(H >5)A (I > J),{H := H +20,I:=15,J := J}).

For this modify operation we have:

fa=(H:=H+20) p(fr)=H+20 ofp(fn))={H}
fr=(I:=15) o(f1) =15 alp(fr)) =10
fri=(:=J) p(fr)=J a(p(f1)) = {7}

Cu=(H>5)AT>J).
If the selection condition C of a derived relation is C = (H > 30) A (I = J), then
C(Fay)=(H+20>30)A(15=J).

Assuming that the domains of the variables H, I, and J are given by the ranges [0, 50], [10,100],
and [10, 100], respectively, we obtain:

C(Fu) = (H +20 > 0) A (H +20 < 50) A (15 > 10) A (15 < 100) A (J > 10) A (J < 100).
O

We make no assumptions about the types of update functions allowed. Hence, the condition
C(Far) may not be in the class of Boolean expressions of interest to us. Therefore, the satisfiability
algorithm we wish to use may not be able to handle this condition.

Theorem 3.3 The operation MODIFY(R,,Cas, Far) is irrelevant to the derived relation defined
by E =(A,R,C),R, € R, if and only if

V[Cu ACB(Fm) = (<CA-C(Fu))V (CAC(Fa)A(A (4 = p(£a:)))] (1)
A;eT

where T = Ana(R,) .

Proof: (Sufficiency) Consider a tuple ¢ from the base R such that ¢ satisfies Cp; and the corre-
sponding modified tuple, denoted by t', satisfies C(Fzs). Because condition (1) holds for every
tuple, it must also hold for . Hence, either the first or the second disjunct of the consequent must
evaluate to true. (They cannot both be true simultaneously.)

If the first disjunct is ¢rue, both C[¢t] and C[t'] must be false. This means that neither the original
tuple ¢, nor the modified tuple ¢, will contribute to the derived relation. Hence changing ¢ to ¢
will not affect the derived relation.

If the second disjunct is true, both C[t] and C[¢'] must be true. In other words, the tuple ¢
contributed to the derived relation and after being modified to #', it still remains in the derived

3 IRRELEVANT UPDATES 11

relation. The last conjunct must also be satisfied, which ensures that all attributes of R, visible
in the derived relation have the same values in ¢ and /. Hence the derived relation will not be
affected.

(Necessity) Assume that condition (1) does not hold. That means that there exists at least
one assignment of values to the attributes, i.e., a tuple t, such that the antecedent is true but
the consequent is false. Denote the corresponding modified tuple by t'. Since the consequent of
condition (1) is false, C[t] and C[t'] cannot both be false; thus there are three cases to consider.

Case 1: C[t] = false and C[t'] = true. In the same way as in the proof of Theorem 3.1, we can then
construct a database instance d from ¢, where each relation in R contains a single tuple and
such that the resulting derived relation is empty. For this database instance, the modification
operation will produce a new instance d' where the only change is to the tuple in relation
7y. The Cartesian product of the relations in R then contains exactly one tuple, which
agrees with ¢ on all attributes except on the attributes changed by the update. Hence, the
derived relation v(E, d') will contain one tuple since C[t] = true. This proves that the modify
operation is not irrelevant to the derived relation.

Case 2: C[t] = true and C[t'] = false. Can be proven in the same way as Case 1, with the difference
that the derived relation contains originally one tuple and the modification results in a deletion
of that tuple from the derived relation.

Case 3: C[t] = true, C[t'] = true but Ay, c7(A: = p(fa;)) is false, that is, t{A;] # t'[A;] for some
A; € Ana(R,). In the same way as above, we can construct an instance where each relation
in R contains only a single tuple, and where the derived relation also contains a single tuple,
both before and after the modification. However, in this case the value of attribute A4; will
change as a result of performing the MODIFY operation. Since A4; € A, this change will be
visible in the derived relation. This proves that the update is not irrelevant to the derived
relation. O

The following example illustrates the theorem.

Example 3.3 Suppose the database consists of the two relations R;(H,I) and Ry(J, K) where
H,I,J and K all have the domain [0, 30]. Let the derived relation and modify operation be defined
as:

E = ({I'J J}a {Rls R2}s (H > 10)(I = K))

MODIFY (R;,(H > 20),{(H := H + 5), (I :=I)}).
Thus the condition given in Theorem 3.3 becomes

Y H,I,J,K [(H>20)A(H+5>0)(H +5 < 30)(I > 0)(I < 30)

= (~((H > 10)(I = K)) A (~((H +5 > 10)(I = K)))
V(H >10)(I=K)(H+5>10)(I=K)I=1I)

which can be simplified to

4 AUTONOMOUSLY COMPUTABLE UPDATES 12

V H,I,K [(H>20)(H < 25)(I > 0)(I < 30)
= (~((H >10)(I = K))) A (~((H > 5)(I = K)))
vV (H > 10)(I = K)).

By inspection we see that if I = K, then the second term of the consequent will be satisfied
whenever the antecedent is satisfied. If I # K, the first term of the consequent is always satisfied.
Hence, the implication is valid and we conclude that the update is irrelevant to the derived relation.
a

The idea of detecting irrelevant updates is not new. In the work by Buneman and Clemons 8],
on the support of triggers and alerters, they are called readily ignorable updates and in the work
by Bernstein and Blaustein [4], on the support of integrity constraints, they are called trivial tests.

Maier and Ullman [16] study updates to relation fragments. In their work a fragment may be a
physical or virtual relation over a single relation scheme, defined by selection and union operators
on physical or other virtual relations. A fragment f; is related to fragment f, through a transfer
predicate (3:2; a Boolean expression defining which tuples from f; also belong to f,. When a set of
tuples is (say) inserted into f; only those tuples which satisfy B, will be transferred to f,. Tuples
not satisfying (3, are irrelevant to f;.

Our work improves upon previous work in several respects: (1) the update operations we
support are more general than the ones supported in any of the above related papers, (2) we provide
necessary and sufficient conditions for the detection of irrelevant updates, and (3) we provide an
algorithm, for actually testing these conditions, which handles a large and commonly occurring
class of atomic conditions.

Abiteboul and Vianu [1] investigated transactions that preserve a different kind of constraint,
namely those defined by equality generating dependencies, total tuple generating dependencies, and
acyclic inclusion dependencies. Although our notion of irrelevant updates characterizes individual
updates that preserve integrity constraints defined by PSJ-expressions, the idea can be extended
to groups of updates and thus to transactions. In this sense, our research complements their work.

4 Autonomously Computable Updates

Throughout this section we assume that for a given update operation and derived relation the
update is not irrelevant to the derived relation. We formalize this with the following statement:

Property 1 Given an update operation U/ and the derived relation defined by E = (A, R,C) then
U is not irrelevant with respect to E.

If an update operation is not irrelevant to a derived relation, then some data from the base
relations may be needed to update the derived relation. An important case to consider is one in
which all the data needed is contained in the derived relation itself. In other words, the new state of
the derived relation can be computed solely from the derived relation definition, the current state of
the derived relation, and the information contained in the update operation. We call updates of this

4 AUTONOMOUSLY COMPUTABLE UPDATES 13

type autonomously computable updates. Within this case, two subcases can be further distinguished
depending on whether the decision is unconditional (scheme-based) or conditional (instance-based).

When the decision is unconditional, the new state of the derived relation can be computed using
the definition and the current instance of the derived relation, and the information contained in the
update operation, for every database instance. When the decision is conditional, the new state of
the derived relation can be computed using the definition and the current instance of the derived
relation, and the information contained in the update operation, for the current database instance
but not necessarily for other instances. In this paper we concentrate only on the study of uncondi-
tionally autonomously computable updates, hence, we will often omit the word “unconditionally”.
For results on conditionally autonomously computable updates the reader is referred to [5).

Definition 4.1 Consider a derived relation definition E and an update operation ¥, both de-
fined over the database scheme D. Let d denote an instance of D before applying I/ and d’ the
corresponding instance after applying U.

The effect of the operation U on E is said to be unconditionally autonomously computable if
there exists a function Fy g such that

v(E, d’) = Fu'E(v(E,d))
for every database instance d.]

The important aspect of this definition is the requirement that Fy g be a function of the instance
v(E,d). In other words, if d; and d; are database instances where v(E,d;) = v(E, d;) then it must
follow that Fy g(v(E,d:)) = Fyg(v(E,d;)). The following simple but important lemma will be
used in several proofs in this section.

Lemma 4.1 Consider a derived relation definition E and an update operation I/, both defined
over the database scheme D. Let d; and d; be database instances and d} and dj, respectively, be
the corresponding instances after applying U. If v(E,d;) = v(E,d;) and v(E,d}) # v(E,d}) then
U is not autonomously computable on E.

Proof: Assume that there exists a function Fy g, as in Definition 4.1, such that v(E,d") =
Fu,g(v(E,d)) for every database instance d. Now consider the instances d; and ds. It follows that
Fu,g(v(E,d1)) = v(E,d;) and Fy g(v(E,d;)) = v(E,d}). Since Fy g is a function and v»(E,d;) =
v(E, dz), it follows (from the definition of a function) that Fy g(v(E,d:1)) = Fu,g(v(E,ds)), that
is, v(E,d}) = v(E,d)). This contradicts the conditions given and proves the lemma.]

4.1 Basic concepts

The concepts covered by the following definitions are required in the rest of this section. They were
originally introduced by Larson and Yang [12].

4 AUTONOMOUSLY COMPUTABLE UPDATES 14

Definition 4.2 Let C be a Boolean expression over the variables 21,22,...,2&,. The variables
Z1,...5 %k, k < n, are said to be nonessentialin C if

[!
V31,...,23k,2;¢+1,...,2ﬂ,21,...,ibk

[C(21s- e o Zhs Zht1s e e s Bn) & C(Z5 e e o3 Bhs Zhi1s e e o 20)]-

Otherwise, 21,..., 2} are essential in C.]

A nonessential variable can be eliminated from the condition simply by replacing it with any
value from its domain. This will in no way change the value of the condition. For example, the
variable H is nonessential in the condition

(I>5)(J=I)((H>5)V (H < 10)),

since the condition (H > 5) V (H < 10) will evaluate to true for any value assigned to variable H.
Similarly H is nonessential in

(I > 5)(H > 5)(H < 5),
since the condition will evaluate to false for any value assigned to H.

Definition 4.3 Let Cp and C; be Boolean expressions over the variables z,,2s,...,2,. The vari-
ables #;,23,...,2, k < n, are said to be computationally nonessential in Cy with respect to Cy
if
Vzls“ 9 ThyTh41y0 .,2,-;,2;_,. ..,Zi
[C]_(:B]_, cooy Ty Thylye- .,zn) A Cl(ti, - z‘;c, Thilye-os Zﬂ)

= (Col@1yeesZhsBht1seres@n) € CoZhse e s Zhes Tht1se -5 2n))]-

Otherwise, z1, 23,..., 2, are computationally essential in Cy with respect to C;. O

The idea behind this definition is that if a set of variables 21, %3,...,2; are computationally
nonessential in Co with respect to Cy, then given any tuple defined over the variables 21, 25,...,2x
satisfying the condition C;, where the variables #,,2,,...,z; have been projected out, we can still
correctly evaluate whether the tuple satisfies the condition Cy without knowing the exact values
for the missing variables 2y, 23,...,2¢. This is done by assigning surrogate values to the variables
Z1,%3,..., 2k as explained by Larson and Yang [12].

Example 4.1 Let C; = (H > 5) and Co = (H > 0)(I = 5)(J > 10). It is easy to see that if we are
given a tuple (i, j) for which it is known that the full tuple (A, i, j) satisfies C;, then we can correctly
evaluate Co. If (h,i,j) satisfies C; then the value A must be greater than 5, and consequently it
also satisfies (H > 0). Hence, we can correctly evaluate Co for the tuple (i,j) by assigning to H
any (surrogate) value greater than 5. O

4 AUTONOMOUSLY COMPUTABLE UPDATES 15

Here is a brief description of the procedure for determining surrogate values. Consider a derived
relation defined by E = (A, R,C,), and suppose that we want to find which tuples in v(E, d) satisfy
some condition Co. For example, Cy may be the selection condition of a DELETE operation. Since
every tuple in the derived relation satisfies C; we are interested in the case where all variables in
the set § = (a(Co) U @(C1)) — AT are computationally nonessential in Cy with respect to Cy. Let
S = {z1,22,...,2%} and a(Co) U a(Cy) = {21, 2,,.. »2n},m > k. For each ¢ € v(E,d) surrogate
values for 21, 23,...,2; can be computed by invoking an appropriate satisfiability testing algorithm
with input Cy[t]. For each tuple ¢ the algorithm returns a set of values 22,29, ...,2%. The values
23,23,...,2) are the required surrogate values needed to evaluate Co on tuple ¢ and z? = t[z;],
for k + 1 < i < n. We are, therefore, guaranteed that surrogate values for the variables B1yeeey T
exist, since ¢ € v(E, d) implies that C,[t] is satisfiable.

Definition 4.4 Let C be a Boolean expression over variables 1,820 038y Y1, Y29+ ++5Ym- The
variable y;, 1 < i < m, is said to be unigquely determined by 21,2, ...,z, and C if

']
V’-’Is- Ty Ylgee s Yms Y1o oo o9 U

[C(zls-”sa’ﬂaylv"sym) A C(zla”-’znayiv'”!y:n) = (yi =y£)]'

O

If a variable y; (or a subset of the variables y1,y3,...,¥m) is uniquely determined by a condition
C and the variables 2,,...,2,, then given any tuple ¢ = (,...,2,), such that the full tuple
(215 ++Zn, Y15+ -+, Ym) is known to satisfy C, the missing value of the variable y; can be correctly
reconstructed. How to reconstruct the values of uniquely determined variables was also shown by
Larson and Yang [12]. It is similar to the way surrogate values are derived for computationally
nonessential variables. If the variable y; is not uniquely determined, then we cannot guarantee that
its value is reconstructible for every tuple. However, it may still be reconstructible for some tuples.

Example 4.2 Let C = (I = H)(H > 7)(K = 5). It is easy to prove that I and K are uniquely
determined by H and the condition C. Suppose that we are given a tuple that satisfies C but only
the value of H is known. Assume that H = 10. Then we can immediately determine that the
values of I and K must be 10 and 5, respectively. O

Definition 4.5 Let E = (A, R,C) be a derived relation and let Az be the set of all attributes in
a(R) that are uniquely determined by the attributes in A and the condition C. Then A+ = AUAg
is called the eziended atiribute set of E. O

Larson and Yang [12] proved that AT is the maximal set of attributes for which values can be
reconstructed for every tuple of E. A™ can easily be computed by testing, one by one, which of
the attributes in a(C) — A are uniquely determined by C and the attributes in A. An attribute not
mentioned in C cannot be uniquely determined and, thus, cannot be in Ag.

4 AUTONOMOUSLY COMPUTABLE UPDATES 16

4.2 Insertions

It should be stressed that if the update & on a derived relation defined by E is autonomously
computable, then the update can be performed for every derived relation instance v(E,d). This
characterization is important primarily because of the potential cost savings realized by updating
the derived relation using only the information in its current instance. The reader should keep this
in mind in this section and the subsequent ones on delete and modify updates.

Consider an operation INSERT (R,,T) where T is a set of tuples to be inserted into r,. Let
a derived relation be defined by E = (A, R,C), R, € R. The effect of the INSERT operation! on
the derived relation is autonomously computable if

A. for each tuple t € T we can correctly decide whether ¢ will (regardless of the database instance)
satisfy the selection condition C and hence should be inserted into the derived relation, and

B. the values for all attributes visible in the derived relation can be obtained from ¢ only.

Note that if ¢ could cause the insertion of more than one tuple into the derived relation, then
the update is not autonomously computable. Suppose that ¢ generates two different tuples to be
inserted: ¢; and t5. Then #; and #; must differ in at least one attribute visible in the derived
relation; otherwise only one tuple would be inserted. Suppose that they differ on 4; € A. A;
cannot be an attribute of R, because the exact value of every attribute in R, is given by ¢. Hence,
the values of A; in ¢; and ¢, would have to be obtained from other tuples. We cannot always
guarantee that the required tuples will be available in the current instance of the derived relation.

Theorem 4.1 Consider a derived relation defined by E = (A,R,C), R = {R;,..., Ry}, and the
update INSERT(R,, {t}) where E and the update operation satisfy Property 1. The effect of the
insert operation on the derived relation E is autonomously computable if and only if R = {R.}.

Proof: (Sufficiency) If R = {R,}, then all attributes required to compute the selection condition
C as well as all the visible attributes A are contained in the new tuple ¢. Hence, the function
Fy g required by Definition 4.1 trivially exists and we conclude that the effect of the insertion is
autonomously computable.

(Necessity) If R includes other base relations schemes in addition to R,, then the insertion
of tuple ¢ into r, may affect the derived relation defined by E. Whether it does depends on the
existence of tuples in relations whose schemes are in R — {R,}. We can easily construct database
instances where it is necessary to access the database to verify the existence of such tuples, even
for the case when o(C) C a(R,) and A C a(R,). A database instance dy = {ry,72,...,7p} is
constructed as follows. Each relation r;, 1 < i < m, ¢ ¢ {u,j}, contains a single tuple £;, and
relations r, and r; are empty. Similarly, construct another instance d, in the same manner with
the one exception that r; now contains a single tuple t;. Clearly v(E,d;) = v(E,d;) = 0. Now
suppose that tuple ¢ is inserted into r, and furthermore, assume that C[t] = true. The existence of

'Recall that if R, € R, then the update cannot have any effect on the derived relation.

4 AUTONOMOUSLY COMPUTABLE UPDATES 17

such a tuple £ is guaranteed by the fact that the INSERT is not irrelevant. Even though tuple ¢
satisfies the selection condition of the derived relation and it contains all visible attributes, it will
not create an insertion into the derived relation in instance d; (because relation r; is empty) whereas
it will create an insertion in d;. Therefore, by Lemma 4.1, the update cannot be autonomously
computable. O

4.3 Deletions

To handle deletions autonomously, we must be able to determine, for every tuple in the derived
relation, whether or not it satisfies the delete condition. This is covered by the following theorem.

Theorem 4.2 The effect of the operation DELETE(R,,Cp) on the derived relation E = (A,R,C),
where E and the update operation satisfy Property 1, is guaranteed to be autonomously computable
if and only if the aitributes in

[a(Co) Ua(c)] - A*

are computationally nonessential in Cp with respect to C.

Proof: (Sufficiency) If the attributes in [a(Cp) U a(C)] — At are computationally nonessential in
Cp with respect to C, then we can correctly evaluate the condition Cp on every tuple in the derived
relation v(E, d) by assigning surrogate values to the attributes in o(Cp) — At. Hence, the function
Fy g required by Definition 4.1 exists.

(Necessity) Assume that [a(Cp) U @(C)] — At contains an attribute z, and assume that 2z is
computationally essential in Cp with respect to C. We can then construct two tuples ¢; and ¢,
over the attributes in A* U @(C) U a(Cp) such that they both satisfy C, ¢, satisfies Cp but ¢, does
not, and #; and #; agree on all attributes except attribute z. The existence of two such tuples
follows from the fact that the update is not irrelevant and from the definition of computationally
nonessential attributes. In the same way as in the proof of Theorem 3.2, each of #; and ¢, can
now be extended into an instance of D, where each relation contains a single tuple. Both instances
will give the same instance of the derived relation, consisting of a single tuple #;[A] (or ¢;[A]).
In one instance, the tuple should be deleted from the derived relation, in the other one it should
not, resulting in two different (updated) instances. Hence, by Lemma 4.1, the DELETE is not
autonomously computable. O

Example 4.3 Consider two relation schemes R;(H,I) and R,(J, K). Let the derived relation and
the delete operation be defined as:

E = ({Ja K}’{RI) Rz}s(f = J)(H < 20))

DELETE(R;, (I = 20)(H < 30))

For every tuple ¢ in E we have At = {I,J, K} hence the attributes in (a(Cp) U a(C)) — At =
{H,1,J}—{1,J,K} = {H}. In order for the effect of the deletion to be autonomously computable
H must be computationally nonessential in Cp with respect to C. That is, the following condition
must hold:

4 AUTONOMOUSLY COMPUTABLE UPDATES 18

V H,I,J,K,H' [(I=J)H < 20)A(=J)H < 20)
= ((I =20)(H < 30) & (I = 20)(H’ < 30))].

The conditions (H < 30) and (H' < 30) will both be ¢rue whenever (H < 20) and (H' < 20)
are true. For any choice of values that make the antecedent frue, we must have J = I. Any
value taken on by the variable I will make the condition I = 20 either true or false, and hence
the consequent will always be satisfied. Therefore, the variable H is computationally nonessential
in Cp with respect to C. This guarantees that for any tuple in the derived relation we can always
correctly evaluate the delete condition by assigning surrogate values to the variable H. Notice that
because I € A* is uniquely determined by C and the variables A, we must also find surrogate
values for I.

To further clarify the concept of computationally nonessential, consider the following instance
of the derived relation E.

v(E,d): J K
10 15
20 25

We now have to determine on a tuple by tuple basis which tuples in the derived relation should be
deleted. Consider tuple £; = (10,15) and the condition C = (I = J)(H < 20). We substitute for
the variables J and K in C the values 10 and 15, respectively, to obtain C[t;] = (I = 10)(H < 20).
Any values for H and I that make C[t;] = true, are valid surrogate values. For I the only value that
can be assigned is 10 and for H we can assign, for example, the value 19. We can then evaluate
Cp using these surrogate values, and find that (10 = 20)(19 < 30) = false. Therefore, tuple &,
should not be deleted from v(E, d). Similarly, for ¢; = (20, 25) we obtain C[t,] = (I = 20)(H < 20).
Surrogate values for H and I that make C[t;] = true are I = 20, H = 19. We then evaluate Cp
using these surrogate values and find that (20 = 20)(19 < 30) = true. Therefore, tuple t5 should
be deleted from v(E, d). m)

4.4 Modifications

Deciding whether modifications can be performed autonomously is more complicated than deciding
whether insertions or deletions can. In general, a modify operation may generate insertions into,
deletions from, and modifications of existing tuples in the derived relation. In the next three
sections we will state necessary and sufficient conditions for determining when a MODIFY update
is autonomously computable. In Section 4.4.1 we characterize what may happen to tuples which
are not in the current instance of a given derived relation; in Section 4.4.2 to tuples which are in
the current instance. These two sections present conditions which are necessary for a MODIFY to
be autonomously computable; in Section 4.4.3 we show that those same conditions are, collectively,
also sufficient. Intuitively, the procedure required to decide whether a MODIFY is autonomously
computable consists of the following steps:

4 AUTONOMOUSLY COMPUTABLE UPDATES 19

A. Prove that every tuple selected for modification which does not satisfy C before modification,
will not satisfy C after modification. This means that no new tuples will be inserted into the
derived relation.

B. Prove that we can correctly select which tuples in the derived relation should be modified. Call
this the modify set.

C. Prove that we can correctly select which tuples in the modify set will not satisfy C after modi-
fication and hence can be deleted from the derived relation.

D. Prove that, for every tuple in the modify set which will not be deleted, we can (autonomously)
compute the new values for all attributes in A.

To help comprehend the subsequent discussion the reader should keep these steps in mind.

4.4.1 Tuples Outside the Derived Relation

In this section we investigate the possible outcomes for a tuple which is not in the current instance
of a given derived relation. Let the derived relation of interest be defined by E = (A,R,C) and
the update by & = MODIFY(R,,Ca, Far). We consider the possible outcomes of evaluating the
conditions Cpr A Cp(Fpr) and C(Fjpy) for a tuple ¢, defined over set a(R). The outcomes are given
in Table 1; for completeness we include C[t] even though it is never satisfied. Let us consider each

Clt] | Cult] A Ce(Fum)(t] | C(Fm)[t] | Comments
false false false No change
false false true No change
false true false No change
false true true Insert ¢

Table 1: Possible results for tuples not in v(E, d).

line of the table. If Cps[t] A Cp(Far)[t] is false then, ¢ is not modified and obviously cannot cause
any change in the instance of E. Note that, in this case, the value of C(Fy) is immaterial. This
explains the first and second lines. If Car[t] A Cg(Fur)[t] is true then, since C[t] is false, whether or
not ¢ requires a change in the instance of E depends on whether or not C(Fys)[t] is satisfied. That
is, on whether ¢ satisfies C after it is modified. Intuitively, if a new tuple should enter v(E,d) we
may not be able to determine the appropriate values for that tuple from v(E, d). That is, we may
need to obtain values from elsewhere in the database. Hence, to guarantee that I/ is autonomously
computable we must guarantee that no tuples will be inserted into v(E, d). This is the intention of
the following property and subsequent theorem.

4 AUTONOMOUSLY COMPUTABLE UPDATES 20

Property 2 Given the update operation MODIFY(R,,Cu, Far) and the derived relation defined
by E = (A,R,C), R, € R, the following implication is valid,

v (—|C ACu A CB(FM) = ﬂC(FM)).

Example 4.4 Suppose a database consists of the relation scheme R(H,I) where H and I each
have the domain [0, 50]. Let the derived relation and modify operation be defined as:

E = ({H,1},{R},(H = 20)(I < 10))
MODIFY(R, (I < 30),{(H := H),(I:=I+1)}).

The condition stated in Property 2 is then

VHI
(=((H = 20)(I < 10))) A (I < 30) A (H > 0)(H < 50)(I+ 1> 0)(I +1 < 50)
= —((H = 20)(I + 1 < 10))

which can be written as

VH,I
((H #20) Vv (I >10))A (I <30)A(H > 0)(H < 50)(I > —1)(I < 49)
= ((H # 20) v (I > 9)).

The first two atomic conditions in the antecedent are sufficient to guarantee that the consequent
will evaluate to true. Hence, the property is satisfied for this update and derived relation and we
are guaranteed that a tuple outside F will not enter E due to this update. To see why, consider the
condition (H = 20)(I < 10) used to select tuples for the derived relation. A tuple which does not
satisfy H = 20 before U is applied will still not satisfy it after, since the value of H is not modified
by U. Similarly, since U increases the value of I, a tuple which does not satisfy I < 10 originally
will not satisfy it after modification. o

Theorem 4.3 If the operation MODIFY(R,,Car, Far) is autonomously computable with respect to
the derived relation defined by E = (A, R,C), where E and the update operation satisfy Property 1,
then Property 2 must be satisfied.

Proof: Assume that Property 2 is not valid, that is, ["CACpy ACg(Fpr) AC(Far)] is satisfiable. Let
a(C)Ua(Cy)Ua(Ca(Fu)) = {21,22,..., 2k }. Because [-C ACyr ACB(Far) AC(F)] is satisfiable,
there exists a value combination z = (29,29,...,2}) such that (=C[z] A Car[z] A Ca(Far)[z] A
C(Fp)[z]) is true. We can then construct an instance of each relation in R such that modifying
one tuple in r,, R, € R, will cause a new tuple to be inserted into the derived relation. Each
instance r;, R; € R, contains one tuple ¢; constructed as follows:

o if R; contains attribute z;, 1 < ¢ < k, then ¢;[2;] = z?.

4 AUTONOMOUSLY COMPUTABLE UPDATES 21

e if B; contains an attribute y, y ¢ {z1,23,...,2%}, then t;[y] = My, Where the value g, is any
value in the domain of y, say the lowest value in the domain.

Initially the database instance d; contains the relation instances r; = {t:}, R; € R; and since
—C[z] is true we know that v(E,d,) is empty. Applying the modify operation to d; then gives an
instance d; where the tuple ¢, from relation r, has been modified, since Car[2] A Cp(Far)[z] is true.
However, now v(E, d}) contains one tuple since C(Fs)[z] is true. We construct a second database
instance d; from d; where all relation instances are the same, except instance r, which is empty.
Now, v(E,d;) is empty and v(E,d}) is empty. Hence, by Lemma 4.1 the MODIFY cannot be
autonomously computable. O

4.4.2 Tuples Inside the Derived Relation

In this section we investigate the possible outcomes, under a MODIFY operation, for a tuple
which is in the current instance of a given derived relation. Let the derived relation of interest
be defined by E = (A, R,C) and the update by # = MODIFY(R,,Car,Far). We again consider
the possible outcomes of evaluating the conditions Cyr A Cg(Far) and C(Fyy) for tuple ¢, defined
over a(R); for completeness we include C[t] in Table 2. Again we consider each line of the table.

Clt] | Carlt] A Ca(Fur)t] | C(Far)[t] | Comments
true false false No change
true false true No change
true true false Delete ¢
true true true Modify ¢

Table 2: Possible results for tuples in v(E, d).

If Cum[t] A C(Fum)[t] is false then ¢ is not modified and obviously cannot cause any change in the
instance of E. This situation is depicted by the first two lines of the table. Note that, in this
case, the value of C(Fps) is immaterial. Since £ is already visible in v(E, d) we need to be able to
identify it as a tuple which will be unaffected by the update. Hence, it appears that we only need
to distinguish, within v(E, d), those tuples which are characterized by line one or two, and those
characterized by line three or four. That is, it seems we need to evaluate Cpr A Cp(Fps) for each
tuple in v(E,d). This requires that all the attributes in (a(C) U a(Car) U a(Cs(Far))) — At be
computationally nonessential in Cps ACp(Fps) with respect to C. However, as the following example
illustrates, this is a slightly stronger condition than is necessary.

Example 4.5 Suppose a database consists of the relation scheme R(H,I,J) where H, I, and J
each have the domain [0, 50]. Let the derived relation and modify operation be defined as:

E = ({H},{R},((H=1I)(H < 30)(J < 20)) v (H > 40))

MODIFY(R, (I < 40),{(H := H),(I:=1I),(J :=J + 5)}).

4 AUTONOMOUSLY COMPUTABLE UPDATES 22

Therefore, the set (a(C) U a(Cu) U a(Cum(Far))) — At is {I,J}. The test to determine if {I, J} is
computationally nonessential in Cps A Cp(Fps) with respect to C is:

VYIS
[(((H = I)(H < 30)(J < 20))V (H > 40)) A (((H = I')(H < 30)(J' < 20)) v (H > 40))]
= [((£ <40) A (H > 0)(H < 50)(I > 0)(I < 50)(J + 5 > 0)(J + 5 < 50))
© ((I' <40) A (H 2 0)(H < 50)(I' > 0)(I' < 50)(J' + 5 > 0)(J' + 5 < 50))]

which can be simplified to

vHIJT,7
[(H = I)(H < 30)(J < 20)(H = I')(J' < 20)) V (H > 40)]
= [((I < 40) A (H > 0)(H < 50)(I > 0)(I < 50)(J + 5 > 0)(J + 5 < 50))
& ((I' < 40) A (H > 0)(H < 50)(I' > 0)(I' < 50)(J' +5 > 0)(J' + 5 < 50))].

If the term ((H = I)(H < 30)(J < 20)(H = I')(J' < 20)) in the antecedent is true then we know
I=H =TI and both J and J' are less than 20, hence the consequent is true. On the other hand,
if this term is not satisfied but (H > 40) is satisfied then we know nothing about the values of
I,I',J and J' and hence the consequent may not be satisfied. Therefore, we conclude that {I,J}
is computationally essential in Cpr A Cp(Fpr) with respect to C.

Consider a particular tuple s over R where s[A] = ¢ for some ¢ in E. Since H € A then we know
the value of s[H]. If s[H| < 30 then we know that s[I] = s[H] and s[J] < 20 and therefore we can
evaluate Cpr ACp(F) for tuple s and hence for ¢. The reason I is computationally essential in Cys
is because for s[H] > 40 we do not know the value of s[I] and hence cannot evaluate Cps. However,
consider what would happen even if s should be modified, say to s’. The value of J would change,
that is s[J] # s'[J], but this value is neither visible in E nor used in the term (H > 40). As this
term would still be satisfied then s’ would remain in the new instance of E and s[A] = s'[A] =¢. In
other words, for tuples which satisfy (H > 40), it does not matter whether or not they are modified;
in either case they will remain in the instance with no visible changes. Hence, the fact that we
cannot evaluate Cps for these tuples does not impair our ability to determine the new instance from
the current one. O

In terms of Table 2 the tuples which create this situation are some of those characterized by the
fourth line. Simply because t is chosen for modification does not mean it will be visibly changed.
In other words, if we can prove that even if ¢ is modified it will remain in v(E, d') with all the
same attribute values as it had in v(E,d) then it does not matter whether Cas[t] A Cp(Fpr)[t] is
satisfied or not. Hence, we only need to evaluate Cps A Cp(Fps) for those tuples which may be
visibly modified. Property 3 and the theorem which follows it are intended to provide a procedure
which will enable us to do this.

4 AUTONOMOUSLY COMPUTABLE UPDATES 23

Property 8 Given the update operation MODIFY(R,,Car, Fas) and the derived relation defined
by E = (A,R,C), R, € R, the following condition holds

v tl! iy
[((Cti] A Culta] ACB(Fm)lta]) = (C(Fa)lt] AC A (4i = p(fa))t1])))
A;€(a(Ru)NA)
V((Clta] AClta]) = ((Cult1] A CB(Fu)[t1]) ¢ (Cumlte] A CB(Fur)(t])))).

for t1,t, over set R and ¢;[A*] = t,[AT].

Theorem 4.4 If the operation MODIFY(R,,,Cpr, F) is autonomously computable with respect to
the derived relation defined by E = (A, R,C), where E and the update operation satisfy Property 1,
then Property 3 must be satisfied.

Proof: Assume that neither term of the condition in Property 3 is satisfied. This means that for
some tuple ¢; we cannot guarantee that if ¢; is in E and is modified then it will have no visible
changes nor can we guarantee that £;[A*] will contain all the attribute values required to evaluate
Cm ACg(Far). Hence, there exist two tuples ¢; and ¢; over the attributes in R such that they both
satisfy C, #; satisfies Cayy A Cp(Far) but ¢; does not, ¢; satisfies ~C(Far) or ~[A 4;¢(a(ra)na)(4i =
p(fa;))], and t; and ¢, agree on all attributes in A*. Each of ¢; and ¢, can now be extended into an
instance of D, d; and d; respectively, where each relation contains a single tuple. Both instances
will give the same instance of the derived relation, consisting of a single tuple ¢;[A] = t,[A].
In d; the tuple in the derived relation should be modified. Hence, the tuple #;[A] will either
be deleted or a change will be made to some visible attribute; depending on whether ¢, satisfies
—C(Fu) or =[Ase(a(r)na)(4i = p(fa;))]. In either case v(E,d;) # v(E,d}). On the other
hand, in the instance obtained from ¢, the tuple in the derived relation should not be modified; so
v(E,d;) = v(E,d}). Therefore, by Lemma 4.1, I is not autonomously computable. O

Returning to Table 2, the previous property and theorem give us a necessary condition for
determining which tuples in v(E, d) should be placed in the modify set and which should not. That
is, for distinguishing tuples which will not be visibly changed, and hence remain in v(E,d’), from
those that should be placed in the modify set. The next property and theorem give a necessary
condition for distinguishing between those tuples in the modify set which satisfy line three and
those which satisfy line four. That is, we need to determine which tuples will not still satisfy the
selection condition of the derived relation after modification and should be deleted.

Property 4 Given the update operation MODIFY(R,,Cpr, Fps) and the derived relation defined
by E = (A,R,C), R, € R, the attributes in the set? [a(C) U a(Cp) U a(Cp(Fpr))] — At are
computationally nonessential in C(F5s) with respect to the condition CACy ACE(Far) A(—(C(Far) A
(As;e(a(rana)(4i = p(£4,)))))-

*We do not need to include the attributes in a(C(F)) in the set as they are all contained in a(C) U a(Ca(Far)).

4 AUTONOMOUSLY COMPUTABLE UPDATES 24

Before we state the corresponding theorem we give a lemma that will simplify the proof of the
theorem.

Lemma 4.2 Consider an update operation MODIFY(R,,Cp, Far) and a derived relation defined
by E = (A, R,C) where R, € R. Given two tuples, ¢; and t,, over a(C)Ua(Car) Ua(Cp(Far)) then
there are only four assignments of truth values to the expressions in

CEEMBIAC A (4= p(Fa))11))

A;e(a(Ry)NA)
ACCEMIAC A (4= p(f4))[E]))
A;e(a(Ry)NA)
A (=(C(Far)[ta] & C(Far)lt2])) (2)

which will make this statement evaluate to true.

Proof: There are four component expressions in Expression 2, each representing a column of
Table 3. Since each may take a truth value from the set {true, false} this yields sixteen possible
assignments. Since (~(C(Far)[t1] & C(Fpr)[tz])) must be frue then the values given to C(Fps)[t1]
and C(Fps)[t;) must be different. This eliminates eight of the sixteen assignments. Also, both
factors of the conjunction in (=(C(Far)[t1] A (A4;e(a(rana)(4i = p(f4;))[t1]))) cannot be true
if this condition is to be satisfied; this eliminates two more of the remaining eight assignments.
Similarly, the condition (—(C(Far)[t2] A (As;e(a(ru)na)(4i = p(fa;))[E2]))) eliminates a further two
assignments. Hence, the only assignments that will satisfy Expression 2 are the four given in

Table 3. o
C(Fm)t1] | (Asie(a(rina)(4i = p(£4,)))[t] | C(Fam)ltz] | (Asse(a(rana)(4i = p(fa,)))[t2]
true false false false
true false false true
false false true false
false true true false

Table 3: Assignments which satisfy Expression 2

Theorem 4.5 If the operation MODIFY(R,,Car, Far) is autonomously computable with respect to
the derived relation defined by E = (A, R,C), where E and the update operation satisfy Properties 1
and 3, then Property 4 must be satisfied.

Proof: Assume that the update is autonomously computable, that Property 3 is satisfied but
that Property 4 is not. This means that [a(C)U a(Cy) U a(Cp(Far))] — At contains an attribute
z that is computationally essential in C(Fps) with respect to the condition C A Cayr A Ca(Far) A
[~(C(Far) A (Asie(a(ra)na)(4i = p(£a;))))]. We construct two tuples ¢; and ¢ over the attributes

4 AUTONOMOUSLY COMPUTABLE UPDATES 25

in AtUa(C)Ua(Cu)Ua(Cs(Far)). This is done in such a way that ¢;[z] # ¢,[z] but they agree on
the values of all other attributes. We require both ¢; and ¢, to satisfy the conditions C, Cas,Ca(F 1),
and [~(C(Fum) A (As;e(a(ro)na)(4i = p(f4;))))]. Since we wish = to be computationally essential
we would also like (=(C(Far)[t1] & C(Fu)[t2])) to be satisfied. Therefore, by Lemma 4.2 there
are four possible assignments to consider. Due to the symmetry of the truth values in these four
assignments (see Table 3) we can, without loss of generality, require that ¢, satisfy C(Fps), and ¢,
not satisfy C(Far). Thus (A4 e(a(ro)na)(4i = p(fa;)))[tz] may be either true or false; it will not
affect the rest of the proof. The fact that z is computationally essential in C(Fjs) with respect to
the condition C ACp ACB(Far) A ((C(Far) A (A u;e(a(ra)na)(4i = p(f4;))))) guarantees that such
values exist. We can now extend ¢; and t; to obtain two different database instances where each
relation contains only one tuple. In both cases the derived relation contains the same tuple and the
tuple is selected for modification. In one case (for the instance obtained from ¢,) the single tuple
in the derived relation should be deleted after the modification, while in the other case it should
not. Hence, by Lemma 4.1, the update U/ is not autonomously computable. O

The only tuples still of interest are those that satisfy the conditions characterized by line four
of Table 2 and are in the modify set. These tuples are visibly modified and remain in the updated
instance so we need to be able to determine the updated values of all visible attributes. The next
property and theorem establish the necessary conditions under which the modified values for the
attributes in A can be correctly computed. But, before we state them we need a new definition
which extends the concept of uniquely determined to apply to functions.

Definition 4.8 Consider a set of variables {21,...,2;,2j4+1,...,2k}. Let C be a Boolean expression
over some of the variables in this set, that is, a(C) C {#1,...,2%}. As well, let f represent a function
over variables in the set {21,...,2:}. The value of the function f is said to be uniquely determined
by condition C and the set of variables {z1,...,2;} if

Vzl,...,zj,zj+1,...,a:k,a:;-H,...,z},
[C(215e e e s @5y Zjt1see s ZR) AC(R1ye e ey Bjs @100 0 0r 2L)
= (F(Z1yeeer@jsBigtsee s Br) = F(Brae e s s @ipgs e o a2})]s

O

Example 4.6 Let C = (H = 5)(I = 10— J) and f(I,J) = (I + J). For any values of I and J
that satisfy C we are guaranteed that the value of I 4+ J, and hence f, is 10. In other words the
condition of Definition 4.6 becomes

v H.I,JE.J
(H=5)I=10-J)A(H=5)I"=10-J")
=> (I+7)=T"+JY)].
As this is a valid implication we conclude that f is uniquely determined by C. Note, that we can
state this in spite of the fact that we do not know the value of either I or J. O

4 AUTONOMOUSLY COMPUTABLE UPDATES 26

Property 5 Given the update operation MODIFY(R,,Cyy, Fjr) and the derived relation defined
by E = (A, R,C), R, € R, the value of the function p(fy4,) is uniquely determined by the condition
C A Cu ACB(Far) AC(Far) A (~(Asiea(ra)na)(4i = p(f4;)))) and the attributes in A+, for each
A; € (a(R,)N A).

Theorem 4.8 If the operation MODIFY(R,,Cu, Far) is autonomously computable with respect to
the derived relation defined by E = (A, R,C), where E and the update operation satisfy Properties 1,
3, and 4, then Property 5 must be satisfied.

Proof: Assume that U is autonomously computable, that A N a(R,) contains a single attribute
A; with a non-trivial fy;, and that p(fy;) is not uniquely determined by the condition C A Car A
CB(Fum) A C(Far) A (~(Asie(a(rana)(4i = p(fa;)))) and the attributes in A+. We can then
construct two tuples ¢; and ¢, over the attributes in a(R,) U a(C) such that ; and t, both satisfy
C,Cum,CB(Fm),C(Fu), and (-(A 4;¢(a(ra)na)(4i = p(f4;)))). We also require that t; and ¢, agree
on the values of all attributes in A; but have some values that make (o(f4;))[t1] # (p(f4;))[t2]-
That such a set of values exists is guaranteed by the fact that Property 5 is not satisfied. To find
such values one can use the set of values returned by an appropriate satisfiability algorithm used
to test the validity of the implication in Definition 4.6. Since p(f4;) is not uniquely determined
then the implication is false when tested for this function. Therefore, the set of values returned by
the algorithm will satisfy the antecedent but not the consequent. This is exactly what is required
of the values in the tuples ¢; and ¢,.

Each of ¢; and £, can now be extended into an instance of D, where each relation contains
a single tuple. Both instances will give the same instance of the derived relation, consisting of a
single tuple #;[A] = t,[A]. In both instances the tuple in the derived relation should be modified;
as both tuples satisfy (~(A;e(a(ra)na)(4i = p(f4,)))) the modifications will be visible in both
cases. However, the value of the modified attribute, A;, will be different depending on whether we
use ¢; or {3. Hence, by Lemma 4.1, Y is not autonomously computable. O

4.4.3 Updating the Instance

In the previous two sections we gave a number of necessary conditions for an update to be au-

tonomously computable. We will now prove that taken together those conditions are sufficient to

guarantee that the update is autonomously computable. However, we first present some notation

and then a lemma that will aid in the part of the proof of sufficiency which deals with Property 3.
Recall that the first part of the condition in Property 3 is of the form

CACunCa(Fu)) = CFMIA(A (4i=0(fa))-
AiE(“(Ru)nA]
Let C,,, represent the negation of this expression, that is,

Cna = CACa ACBEIIA (-CEMA(A (4= plFa))):
A;€(a(R.)NA)

4 AUTONOMOUSLY COMPUTABLE UPDATES 27

We will use C,,, to determine whether or not a tuple should be placed in the modify set; hence
the subscript ms. Recall that only those tuples which may be deleted or visibly changed by the
MODIFY operation constitute the modify set.

Lemma 4.3 Consider a modify operation &/ = MODIFY(R,,Cyy, Fur), and a derived relation
E = (A,R,C) where U and E satisfy Properties 1 and 3. Let ¢ be a tuple in the current instance
of E. Tuple ¢ should be placed in the modify set for ¢ if and only if C,,,[t] is satisfiable.

Proof: (Sufficiency) Assume that C,,,[t] is satisfiable. For this to be the case each of the expressions
used to form C,,, must be satisfiable. Hence, there exists a tuple s over R such that s{[A] =t and s
satisfies each expression in C,,,. Since C[s] A Cps[s] A Cp(Fpr)[s] is satisfied then ¢ is in the current
instance of E and is chosen for modification. In addition, since (—(C(Fum)[s] A (A4;e(a(r)na)(4i =
p(fa;))[s]))) is satisfied then at least one of C(Far)[s] or (A4 c(a(r)na)(4:i = p(f4;))[s]) is false.
Hence, either ¢ will be deleted from the instance after it is modified or it will appear in the new
instance but with visible modifications. In either case, ¢ should be placed in the modify set.
(Necessity) Assume that t should be in the modify set but that C,,,[t] is not satisfiable. Hence,
for every tuple s over R such that s[A] = ¢ we have C,,,[s] = false. This means that at least one
of the conjuncts will be false when evaluated for tuple s. If C[s] is false then ¢ is not in the current
instance of E and hence, should not be in the modify set. If Cps[s] A Cg(Far)[s] is false then t is
not chosen for modification; again, ¢ should not be in the modify set. Finally, if (—~(C(Far)[s] A
(AA.-E(a(R,,)nA)(Ai = p(f4:))[8]))) is false then both C(Far)[s] and (A 4;e(a(ru)na)(4i = p(f4:))[s])
must be ¢rue. In this case ¢ is guaranteed to be in the new instance of F and also to not have any
visible modifications. Therefore, again there is no need for ¢ to be in the modify set. Each of the
three possibilities reaches a contradiction, therefore we conclude that our assumption is incorrect.
Hence, the satisfiability of Cp,,[t] is a necessary condition. ' O

Theorem 4.7 Consider a modify operation U = MODIFY(R,,Cuy,Far) and a derived relation
E = (A,R,C) where U and E satisfy Property 1. If Properties 2, 8, 4, and 5 are satisfied then the
effect of U is autonomously computable on E.

Proof: We prove the sufficiency of Properties 2, 3, 4, and 5 by demonstrating how v(E, d’) can be
determined from U and v(E,d).

Assume that Property 2 is satisfied. Consider a tuple £ in the Cartesian product of the relations
in the base R, and assume that ¢ is selected for modification. Let ¢' denote the corresponding tuple
after modification. Assume that ¢ does not satisfy C and hence will not have created any tuple in
the derived relation. Because Property 2 is satisfied for every tuple, it must also hold for ¢ and
hence ¢’ cannot satisfy C. Consequently, modifying ¢ to ¢’ does not cause any new tuple to appear in
the derived relation. Therefore, the only tuples in v(E, d') are those whose unmodified versions are
in v(E,d). In other words, we are assured that v(E,d) contains all the tuples needed to compute
v(E,d").

Now consider Property 3. If ¢ is a tuple in v(E,d) then, by Lemma 4.3, testing C,,,[t] will
determine whether or not ¢ should be placed in the modify set. Since this is true for each ¢ in
v(E,d), we can decide, for each tuple whether or not it should be in the modify set.

4 AUTONOMOUSLY COMPUTABLE UPDATES 28

For Property 4, if every attribute z € [a(C) U a(Cy) U a(Cp(Fur))] — At is computationally
nonessential in C(Far) with respect to CACy ACB(Far) A(—~(C(Far) A(Asie(ara)na)(4i = p(£4:)))))
we can correctly evaluate the condition C(Fjps) on every tuple of the modify set by assigning
surrogate values to the attributes in a(C(Fpr)) — A*. This means that, for those tuples in the
modify set we can determine which tuples will remain in the new instance of v(E,d) and which
must be deleted.

Finally, assume that Property 5 is satisfied. Hence, for each ¢, in v(E, d) which is visibly modified
and will remain in the new instance, and for each 4; € Ana(R,), the value of the expression p(f4,)
is uniquely determined by the condition CACy ACE(Fm)AC(Far)A(=(A4;e(a(ra)na)(4i = p(f4,))))
and the attributes in A*. A procedure for computing uniquely determined values can be found
in [12] and in more detail in [18]. As p(f4;) gives the new value for attribute A;, this means
that the given condition and the visible attributes contain sufficient information to determine the
updated values of 4;. We have assumed this for each A; € Ana(R,), therefore, the value of every
modified attribute in A is autonomously computable. Hence, for every tuple in v(FE,d) which is
visibly modified and remains in the updated instance we can calculate the new values of all visible
attributes.

The entries in Tables 1 and 2 completely characterize all the possible cases for a tuple . To
distinguish between these cases we have defined four properties. We have shown that these four
properties are sufficient to allow us to compute the updated instance from v(FE,d), the definition
E, and U. The procedure described above defines the function Fy 5. Hence, the MODIFY is
autonomously computable on F. O

We give an example which proceeds through the four steps associated with Theorems 4.3 through
4.7, at each step testing the appropriate condition.

Example 4.7 Suppose a database consists of the two relation schemes Ry(H,I) and R,(J, K, L)
where H,I,J, K and L each have the domain [0, 30]. Let the derived relation and modify operation
be defined as:

E = ({I,J}, {R1,R,}, (H < 15)(I = K)(L = 20))

MODIFY(R,, (K > 5)(K <22), {(J:=L+3),(K:=K),(L:=L)})

and note that Property 1 is satisfied since the value of J, which is visible in F, may be modified.
From the definition of the derived relation we can see that A = {I,J} and A* = {I,J,K,L}.

Test of Property 2:

V H,I,K,L [(~((H < 15)(I = K)(L = 20))) A (K > 5)(K < 22)
A (L+3 > 0)(L+3 < 30)(K > 0)(K < 30)(L > 0)(L < 30)
= (=((H < 15)(I = K)(L = 20)))]

Note that, the consequent ~((H < 15)(I = K)(L = 20)) appears as a condition in the antecedent
as well. Therefore, the given implication is valid, and we can conclude that the modify operation
will not introduce new tuples into v(E,d).

Test of Property 3:

4 AUTONOMOUSLY COMPUTABLE UPDATES 29

v (H,1,J,K,L),(H',I1,J,K,L)
[(H < 15)(I = K)(L = 20) A (K > 5)(K < 22)
AL +3 > 0)(L +3 < 30)(K > 0)(K < 30)(L > 0)(L < 30)
= (~((H < 18)(I = K)(L = 20) A (J = L + 3)))]
v
[(H < 15)(I = K)(L = 20) A (H' < 15)(I = K)(L = 20)
= (K >5)(K<22) A (L+32>0)(L+3<30)(K>0)K <30)(L>0)L < 30)
& (K >5)(K<22) A (L+32>0)(L+3<30)(K > 0)(K < 30)(L > 0)(L < 30))]]

Consider the implication which is after the disjunction; comprising the last three lines. The right-
hand-side of this implication contains an equivalence. Since the two conditions in the equivalence
are identical, then clearly, the implication is valid. Thus we can correctly select the tuples in the
derived relation that satisfy Cps A Cp(Far) and will be visibly modified.

Test of Property 4:
We are now interested in the set, [2(C) U a(Cy) VU a(C(Fn))| - At = {H,I,K,L}- {I,J,K,L}
={H}.

vV H,I,J,K,L,H' [(H<15)(I=K)(L=20)A(K >5)(K <22)
A (L+32>0)L+3<30)(K >0)K <30)L>0)(L< 30)
A(-(((H<15)(I=K)L=20)A(J=L+3)))

A (H'<15)(I = K)(L =20)A(K > 5)(K < 22)
A (L+32>0)(L+3<30)(K > 0)(K < 30)(L > 0)(L < 30)
A (~(((H'<15)(I = K)(L =20)A(J = L + 3)))
= ((H <15)(I = K)(L =20) & (H' < 15)(I = K)(L = 20))]

The conditions (H < 15) and (H' < 15) in the antecedent guarantee that the expressions in the
consequent will be equivalent. Therefore, H is computationally nonessential in C(F) with respect
to CACu ACB(Fur) A (-(C(Far) A (Aae(a(ra)na)(4i = p(f4;))))). Thus, determining the tuples,
in the modify set of the current instance, which satisfy C(Fas) can be computed autonomously.

Test of Property 5:

V H,I,K,L,H' [(H<15)(I=K)(L=20)A(K>5)(K < 22)
A (L+3>0)L+3<30)(K >0)(K < 30)(L>0)L < 30)
A(H<15)(I=K)L=20)A(~(J=L+3))
A (H' <15)(I = K)(L=20)A(K > 5)(K < 22)
A (L+3>0)(L+3<30)(K > 0)(K < 30)(L > 0)(L < 30)
A (H' <15)(I=K)L=20)A(~(J =L+3))

= (L +3)=(L+3))]
By considering the right-hand-side of this implication we see that it is obviously valid. Hence,

the above condition verifies that the expression f; is uniquely determined by the condition C A
Cm A CB(Fu) AC(Fum) A (~(As;e(a(rana)(4i = p(f4;)))) and the variables A*. Therefore, the

4 AUTONOMOUSLY COMPUTABLE UPDATES 30

new attribute values for the visibly modified tuples that will remain in v(E, d) are autonomously
computable.
To summarize, let us consider a numeric example for the given database scheme.

Before

rit H I r2 J K L o(Ed): I J
1 5 19 5 20 5 19
2 15 10 15 29 22 16
3 22 16 22 20
4 20 18 20 29

After

ri: H I r: J K L oEJ): I J
1 5 19 5 20 5 19
2 15 32 15 29 22 23
3 22 23 22 20
4 20 32 20 29

Property 2 provides assurance that the tuples in the Cartesian product of r; and »,, which do
not satisfy C before modification, will not satisfy C after. For example, consider the last tuple in
each of r; and ry. In the Cartesian product these will form (4, 20, 18, 20,29). Although this does
satisfy (I = K) it does not satisfy (L = 20) and hence will not be in the current instance. Moreover,
even though this tuple is modified to become (4, 20, 32,20, 29) it still does not satisfy (L = 20) and,
hence, remains outside the updated derived relation instance.

Property 3 guarantees that we can determine which tuples in v(E, d) belong in the modify set.
For each tuple in v(E,d) we need to test the satisfiability of

Cms =CACU ACB(Fa)A(SCFEM)A(A (4i=n(f4))))))-
A;e(a(Ry)NA)

For this example we have

Coms = [(H < 15)(I = K)(L = 20) A (K > 5)(K < 22)
A(L+3 2 0)(L+3 < 30)(K >0)(K < 30)(L > 0)(L < 30)
A (~((H < 15)I = K)(L = 20) A (J = L + 3)))].

The first tuple in v(E, d) gives us (h, 5,19, k, I) to test. Since, C,n,[(h, 5,19, k, I)] is not satisfiable we
conclude that (5,19) will not be visibly modified and can be placed in the new instance. The second
tuple to test from v(E, d) is {h,22,16, k, I). Since, Cms[({h,22, 16, k, I)] is satisfiable we conclude that
(22,16) belongs in the modify set.

Property 4 allows us to determine which tuples in the modify set will be deleted since they will
no longer satisfy condition C. The tuple (22,16) satisfies C(Fpr) and will remain in the updated

instance®.

3Since the attributes in C have trivial update functions C(Fas) = C. Hence, no tuple will be deleted from the
derived relation.

5 IMPLEMENTATION ISSUES 31

Property 5 ensures that we can compute the new values for the modified tuples. Here we need
to compute (L + 3). Since C contains the condition (L = 20) we know that for any tuple in the
modify set (L + 3) = 23. Therefore, (22,16) should be updated to (22,23) in the new instance. O

5 Implementation Issues

As pointed out earlier we assume the existence of an algorithm to test the satisfiability of a particular
class of Boolean expressions. We may not be able, in general, to use that algorithm to test the
condition of Definition 4.6. This is due to the fact that when we substitute an update function in
the right-hand-side of the implication given in that definition we may obtain atomic conditions that
the algorithm cannot handle. However, the following corollary establishes a sufficient condition,
that allows us to compute the new values of the attributes in A, for which we can still use that
algorithm.

Recall that a(p(f4;)) denotes the set of attributes occurring in the right hand side expression
of fa;. Define the set Z as '

z= U alelfa)
A;eAna(R.)

that is, Z is the set of attributes used to compute the new values for the attributes in A.

Corollary 5.1 If all variables in Z — A%t are uniquely determined by the condition C A Cyr A
CB(Fum) A C(Fur) A (~(Asie(e(rana)(4i = p(f4;)))) and the attributes in At then Property 5 is
satisfied.

Proof: Assume the values of the attributes in Z — A1 are uniquely determined by the condition
CACM ACB(Far) AC(Far) A(~(Asie(a(rana)(4i = p(fa;)))) and the attributes in A+. This means
that we can determine (exactly) one value for each argument of each update function. Since each
p(fa;) is a function it will have a single value for the set of arguments so determined. O

In practice it is probably better to enforce the conditions of Corollary 5.1 instead of those of
Property 5.

Consider the condition stated in Property 3. We consider that occurrences of tuples for which
the first disjunct of the condition is true but the second disjunct is false will be very rare. Put
more fully, assume this situation occurs for some tuple ¢ in the derived relation instance. Then
we know that if ¢ is modified we can prove that it will remain in the instance and that it will not
be visibly changed; moreover, we will not be able to evaluate Cps[t] A Cp(Far)[t]. Although such
situations must be considered in a theoretical discussion it seems unprofitable to test for them in
practical situations. Therefore, we present the following property, which states a condition which
is sufficient but not necessary.

Property 3' Given the update operation MODIFY(R,,Cys, Far) and the derived relation defined
by E = (A,R,C), R, € R, the attributes in [a(Cpr)Ua(C)Ua(Cp(Far))]— AT are computationally
nonessential in Cpr A Cg(F) with respect to C.

5 IMPLEMENTATION ISSUES 32

Of course, if we use this instead of Property 3 we cannot use Properties 4 and 5 without
adjusting their conditions. We give the corresponding properties.

Property 4’ Given the update operation MODIFY(R,,Cyr, Far) and the derived relation defined
by E = (A,R,C), R, € R, the attributes in the set [a(C) U a(Cym) U a(Ca(Fn))] — A+ are
computationally nonessential in C(Fjs) with respect to the condition C A Casr A C(Far).

Property 5’ Given the update operation MODIFY(R,,Car, Far) and the derived relation defined
by E = (A,R,C), R, € R, for each A; € AN a(R,), the value of the function p(f4,) is uniquely
determined by the condition C A Car A Cp(Far) A C(Far) and the attributes in A+,

We state the following theorem without proof.

Theorem 5.2 Consider a modify operation U = MODIFY(R,,Cym,Fu) and a derived relation
E = (A,R,C) where U and E satisfy Property 1. If Properties 2, 3', 4', and 5' are satisfied then
the effect of U is autonomously computable on E. O

Of course, just as Corollary 5.1 provides a sufficient condition for Property 5 to be satisfied,
we can provide a sufficient condition which guarantees Property 5' will be satisfied. We state it
without proof.

Corollary 5.3 If all variables in Z—A™ are uniquely determined by the condition CACpr AC(Fpr)A
Cp(Fu) and the atiributes in A% then Property 5' is satisfied. m]

Given a MODIFY operation and a derived relation defined by an expression E, we first test
whether or not the update is irrelevant and then (if it is not irrelevant) we proceed to test whether
or not the update is autonomously computable. The test for irrelevant updates is stated by The-
orem 3.3 and the first test for autonomously computable modifications is given by Theorem 4.3.
These two tests can be cascaded as explained below.

The condition for irrelevant modifications is given by

V[Cu ACB(Fy) = (=CA-C(Fu))V (CAC(Em)A(A (4 = p(f4.))))]
A;eT

where 7T = AN a(R,) . This is equivalent to testing

V[(=C ACpr ACB(Fpr) = —-C(Fpr))
A (c ACu ACB(Far) = C(Fa) A(N\ (4i= P(.fA.‘))))]
A;eT
which is equivalent to testing
clV[-C A Cy /\CB(FM) = —IC(FM)] A (3)

VIC ACu ACB(Fu) = C(Fa) A(N (4 = p(f4.))))- (4)
A;eT

6 EXPERIMENTAL RESULTS 33

Notice that the first condition of the outermost “A” operator is exactly the condition stated by
Property 2 and the second condition is the first implication in Property 3. Therefore, we can
test for irrelevant modifications by testing, in two stages, the above condition and storing the two
results. To test for autonomously computable modifications we can avoid testing the condition of
Property 2 by recalling the first result from the test for irrelevant modifications. Similarly, if the
result of the second test is {rue we know that Properties 3, 4, and 5 must be satisfied. The last two
properties will be satisfied vacuously since the modify set is empty. However, if the result of the
second test is false then we must test the entire condition of Property 3.

6 Experimental Results

In order to test the viability of the approach presented we have built a prototype system. The pro-
totype accepts as input a database schema, definitions of derived relations, and update operations.
For each operation given it tests the update against each of the derived relations. The outcome of
this test is a partitioning of the set of derived relations into three classes; those derived relations
for which the update operation is irrelevant, those for which it is autonomously computable, and
those for which it is neither irrelevant nor autonomously computable. The tests for autonomously
computable modifications is based on Properties 2, 3/, 4’, and Corollary 5.3. This section reports
the cost of testing a number of update operations using the prototype system.

The example database used to obtain the experimental results reported below represents an
enterprise which keeps information on customers, distributors, items, and orders for items. Each
customer and distributor is located in a particular region. The derived relations used suggest a
distributed database where the regions are grouped into three geographic areas. This is reflected in
the derived relations by partitioning the relations based on region. We wished to allow some variety
in the type of derived relation used. To this end we did not horizontally partition the join of orders
and items to obtain three derived relations, but left this as a single derived relation. We could view
this as a ramification of the fact that order processing is centralized. As well, one derived relation
corresponds exactly to one of the conceptual relations. There are a total of six conceptual relations
and seventeen derived relations. The details of the conceptual and derived relations as well as the
update operations are given in Appendix B.

The times where taken with the prototype running on a VAX 8650* under the UNIX® operating
system. The code is written in the C programming language. Although an attempt was made
to avoid obvious inefficiencies, none was made to produce “optimized” code. The point of the
prototyping exercise was to demonstrate the feasibility of the approach, not to produce code of
commercial quality.

Some explanation of the contents of table 4 is in order. The update numbers refer to the update
operations listed in Appendix B. The three columns entitled “Number of Derived Relations” give

*VAX is a Trademark of Digital Equipment Corporation.
SUNIX is a Trademark of AT&T Bell Laboratories.

6 EXPERIMENTAL RESULTS 34

Update | Update Number of Derived Relations Time required (ms)

Number Type Irrelevant | Aut.Comp. | Neither | Irrelevant | Aut.Comp. | Total
U1 INSERT 11(11) 0 6 53 0 53
U2 MODIFY 11(11) 3 3 405 54 459
U3 DELETE 7(7) 10 0 75 9 84
U4 |DELETE | 7(7) 10 0 78 9 87
Us | DELETE | 17(7) 10 0 106 9 115
Us | MODIFY | 14(8) 3 0 239 34 273
U7 MODIFY 11(8) 3 3 197 34 231
U8 | MODIFY | 14(8) 3 0 325 37 362
U9 | MODIFY | 14(8) 3 0 247 36 283
U10 | DELETE | 10(10) 7 0 59 7 66
U11 MODIFY 12(12) 5 0 309 65 374
U12 | MODIFY | 12(12) 5 0 276 61 337
U13 INSERT 13(13) 0 4 40] 40
U14 MODIFY | 13(13) 4 0 379 7 456

Table 4: Results of testing updates against 17 derived relations.

the number of derived relations in each class as discussed above. The figures in parentheses indicate
the number of derived relations for which the update is trivially irrelevant. Similarly, the columns
entitled “Time required” give the number of milliseconds (ms) required to determine for which
derived relations the update is irrelevant, for which of the remaining derived relations the update
is autonomously computable, and the total time to perform these tests. The time required to
determine trivially irrelevant updates has not been listed as it is usually less than 1ms.

For example, consider the results given for update U7; it modifies the region of some distributors.
It is irrelevant to eleven derived relations; the bracketed value indicates that it is trivially irrelevant
to eight of these. Of the remaining six derived relations U7 is autonomously computable on three.
This means that there are three derived relations for which U7 is neither irrelevant nor autonomously
computable. Testing to find out which of the seventeen derived relations U7 is irrelevant to took
197ms. Testing the remaining six derived relations to determine on which U7 is autonomously
computable took 34ms. Hence the total time for testing was 231ms.

The modify operations required the most time to test; this is not surprising considering the
number and complexity of the conditions to be tested. Even so, in the worst case the total time
required for a modification was less than 0.5s and for all the updates tested the average was about
0.23s. We believe that these examples demonstrate the practicality of our approach and justify
continued research in this area.

The times listed in Table 4 only reflect the time required to determine which class each derived

7 CONCLUSION 35

relation is in for this update operation. Additional computation, involving the retrieval and up-
dating of tuples in the database would be required to actually perform the update operation, even
when it is autonomously computable.

7 Conclusion

Necessary and sufficient conditions for detecting when an update operation is irrelevant to a derived
relation (or view, or integrity constraint) have not previously been available for any nontrivial class
of updates and derived relations. The concept of autonomously computable updates is completely
new. Limiting the class of derived relations to those defined by PSJ-expressions does not seem to
be a severe restriction, at least not as it applies to structuring the stored database in a relational
system. The update operations considered are fairly general. In particular, this seems to be one of a
few papers on update processing where modify operations are considered explicitly and separately
from insert and delete operations. Previously, modifications have commonly been treated as a
sequence of deletions followed by insertion of the modified tuples.

Testing the conditions given in the theorems above is efficient in the sense that it does not
require retrieval of any data from the database. According to our definitions, if an update is
irrelevant or autonomously computable, then it is so for every instance of the base relations. The
fact that an update is not irrelevant does not necessarily mean that it will affect the derived relation.
Determining whether or not it will, requires checking the current instance. The same applies for
autonomously computable updates.

It should be emphasized that the theorems hold for any class of Boolean expressions. However,
actual testing of the conditions requires an algorithm for proving the satisfiability of Boolean expres-
sions. Currently, efficient algorithms exist only for a restricted class of expressions, the restriction
being on the atomic conditions allowed. An important open problem is to find efficient algorithms
for more general types of atomic conditions. The core of such an algorithm is a procedure for
testing whether a set of inequalities/equalities can all be simultaneously satisfied. The complexity
of such a procedure depends on the type of expressions (functions) allowed and the domains of the
variables. If linear functions with variables ranging over the real numbers (integers) are allowed, the
problem is equivalent to finding a feasible solution to a linear programming (integer programming)
problem.

We have not imposed any restrictions on valid instances of base relations, for example, functional
dependencies or inclusion dependencies. Any combination of attribute values drawn from their
respective domains represents a valid tuple. Any set of valid tuples is a valid instance of a base
relation. If relation instances are further restricted, then the given conditions are still sufficient,
but they may not be necessary.

In particular, how to make use of referential integrity constraints is an important open problem.
At present the system has no knowledge of such constraints; this leads to situations where the
results of a test could be more informative than is now the case. The following example based
on the database in Appendix B illustrates the problem. It would not be unusual to demand that

7 CONCLUSION 36

a customer tuple be present in the Customer relation before an order tuple can appear in the
Order relation for the corresponding customer number. Let us consider what would happen in our
system if we inserted a new tuple, <custNumb=456,custName="XYZ Corp.”,custRegn=36>, in
the Customer relation. As a result of testing, the system would determine that the update is not
irrelevant to the derived relations PartOrder, CustWest, OrdrWest, and FillWest; and is irrelevant
to all others. However, referential integrity implies that only one of these four derived relations—
CustWest—can actually be affected by this update. Trying to determine how this update affects
the other three is therefore a waste of time.

Appendix A: Satisfiability Algorithm 37

Appendix A: Satisfiability Algorithm

The theorems presented in this paper require that statements be proven at run-time, that is, when
updates are issued. What is required is that certain types of Boolean expressions be tested for
unsatisfiability or that implications involving Boolean expressions be proven valid. The latter
problem can be translated into one of showing that a Boolean expression is unsatisfiable. Hence,
in either case we can proceed by testing satisfiability.

Rosenkrantz and Hunt [17] gave an algorithm for testing the satisfiability of conjunctive Boolean
expressions where the atomic conditions come from a restricted class. Their algorithm is based on
Floyd’s all-pairs-shortest-path algorithm [9] and therefore has an O(n®) worst case complexity,
where n is the number of distinct variables in the expression. The algorithm presented here is
a modification of that given by Rosenkrantz and Hunt; there are three main differences. First,
we assume that each variable has a finite domain whereas Rosenkrantz and Hunt allow infinite
domains. Second, if the expression is satisfiable our algorithm not only verifies the satisfiability
but also produces an assignment of values to the variables which satisfies the expression. Third,
although the worst case complexity of our algorithm remains O(n?), for some cases the complexity
is reduced to O(n?).

The algorithm given here tests the satisfiability of a restricted class of Boolean expressions.
Each variable is assumed to take its values from a finite, ordered set. Since there is an obvious
mapping from such sets to the set of integers, we always assume that the domain consists of a
finite interval of the integers. It is assumed that each Boolean expression, B, over the variables
Z1,22,...2,, is in conjunctive form, i.e. B = By A By A...A B,,, and that each atomic condition,
B;, is of the form (z; 0 z; + ¢) or (z; 8 ¢) where 6 € {=,<,<,>,>} and c is an integer constant.
We will outline the algorithm and discuss each step in more detail.

(Step 1) We first must normalize B so that the resulting expression, N = Ny ANz A...A Ny,
only has atomic conditions of the form (z; < z; 4+ ¢). Conditions of the form (z; @ ¢) are handled
by modifying the domain bounds for the variable z;. If any such modification results in U[i] < L[i],
for any 1 < i < n, then B is unsatisfiable.

(Step 2) We build a weighted, directed graph G = (V, E) representing N. Without loss of
generality we assume that IV is defined over the variables 2,,...,2,, where ny < n. Each variable
in N is represented by a node in G. For the atomic condition (2; < z;+c) we construct an arc from
node “z;” to node “z;” having weight c¢. Hence, |V| = ny and |E| = my. The graph is represented
by an ny X ny array A where, initially, A(%, j) = ¢ if and only if N contains an expression of the
form (2; < 2; + ¢). If two nodes do not have an arc between them the corresponding array entry
is labeled with oo (i.e. an arbitrarily large positive value). If there is more than one arc between a
pair of nodes, then use the one with lowest weight.

(Step 3) The graph, G, can be reduced in size by removing nodes of in-degree zero. The
justification for doing this is that if z; is such a node then N does not have any conditions of the
form (z; < z; + ¢). Hence, the upper limit value of z; is not constrainted by the value assigned to
any other variable. Therefore, we allow z; to be assigned its (possibly modified) upper bound Uf[j].

Appendix A: Satisfiability Algorithm 38

Algorithm Satisfiable

Input: A conjunctive Boolean expression B over the variables zi,...,2,. The variables’ domain
bounds are given by vectors L and U with L[] < 2; < U[{],1< i < n.

Output: If B is satisfiable then the value true is returned and the assignment z; := U[s] will satisfy
B, otherwise false is returned.

Begin

1. Normalize B to obtain N. Check the resulting domain bounds; if U[i] < L[4] for some z; then
return false.

2. Initialize A (the adjacency matrix of the directed graph representing N).

3. Reduce A, that is, remove (recursively) rows representing nodes of in-degree zero.

4. Test the trial values against the lower bounds. If U[i] < L[] for some z; then return false.
5. Test the trial values in N. If they satisfy IV return true.

6. Execute Floyd’s Algorithm on A, after each iteration of the outer loop perform the following:

(a) If A contains a negative cycle then return false.
(b) Calculate the new trial values.

(c) Test the trial values against the lower bounds. If U[i] < L[i] for some z; then return
false.

(d) Test the trial values in N. If they satisfy N return true.

End

Also, for each node z; in G, such that there is an arc of weight ¢ from z; to z;, we replace the upper
bound on z; with min{U[:], U[j] + c}. We can then remove node z; and its incident arcs from G.
This process may be repeated until no nodes of in-degree zero remain in G. If G is acyclic (i.e.
if B does not contain a cyclic chain of atomic conditions involving mutually dependent variables)
then this process will terminate when there are no edges left in G. The resulting trial assignment
of values either proves or disproves that B is satisfiable (Steps 4 and 5). As the reduction process
requires examining each element of matrix A at most once, the entire Satisfiable algorithm performs
O(n%) operations in this case.

(Step 6) If G is not acyclic then A is used as the input to a modified version of Floyd’s algo-
rithm [9] to determine either that N is unsatisfiable or to produce an assignment which satisfies

Appendix B: Example Database and Updates 39

N. The idea is that we give each remaining variable, z;, an initial ¢rial value equal to its (possibly
modified) upper bound U[i]. At each iteration we adjust the values (downward) to reflect the
current values in A and the previous set of trial values. The iterations continue until we find an
assignment to the variables which satisfies N or until we determine that N is unsatisfiable. This
takes at most nyy iterations.

To be more specific, given a graph with nodes z1,...,2,,, the kth step of Floyd’s algorithm
produces the least weight path between each pair of nodes, with intermediate nodes from the
set {z1,22,...,24}. In terms of the Boolean expression this corresponds to forming, from the
conditions in IV, the most restrictive condition between each pair of variables. The only conditions
of N which may be used at the kth step are those involving the variables 21,...,2;. The new trial
value, U[i], for z; is found by taking min{U[j] + A[4, 5]} for 1 < j < ny. There are three possible
situations that indicate that the algorithm should terminate. We test each of these conditions after
each iteration:

1. Is there a negative weight cycle? In this case IV is unsatisfiable.

2. Does the current trial assignment violate any variable’s lower bound? Again, N is unsatisfi-
able.

3. Does the current trial assignment satisfy the lower bound for each variable and satisfy N? In
this case N is satisfiable.

Since the longest cycle can contain at most ny arcs we conclude that this is the maximum number
of iterations required; hence the O(n3;) complexity. If after ny iterations we have not found a

negative weight cycle or violated any lower bound then the current trial assignment must satisfy
N.

Appendix B: Example Database and Updates

This appendix contains the details of the database and updates used to obtain the timings in Sec-
tion 6. As explained in that section, the enterprise being modelled maintains data about customers,
distributors, items, and orders. To that end we use the following six conceptual relations:

Conceptual Relations

Customer (custNumb, custName, custRegn)

Distributor (distNumb, distName, distRegn)
Item (itemNumb, itemDesc, itemPrix)
Order (ordrNumb, ordrDate, ordrCust)
Line (lineOrdr, lineltem, lineQnty)
Available (avlbItem, avlbDist, avlibSply)

Appendix B: Example Database and Updates 40

The underlined attribute(s) serve as the key of the relation. The first four characters of each
attribute name are used to indicate which conceptual relation contains the attribute; the last four
are to designate the attribute and perhaps suggest if it is a foreign key. In particular, Numb stands
for number, Regn for region, Desc for description, Prix for price, Cust for customer, Ordr for order,
Qnty for quantity, Dist for distributor, and Sply for supply. The intention is that lineOrdr and
lineltem refer to ordrNumb and itemNumb respectively; avlbItem and avlbDist to itemNumb and
distNumb respectively. The first four relations need no comment. The Line relation gives the
quantity ordered of a particular item for a particular order. The Available relation gives the supply
a particular distributor has of a particular item. Recall that these are the relations which the user

“sees” and against which all queries and updates are posed.

The derived relations which are used to actually store the above conceptual relations are de-
signed to efficiently yield information about customers, distributors, orders, availability of items,
and which distributors can fill which orders for which items; these are the “Cust”, “Dist”, “Ordr”,
“Avlb”, and “Fill” derived relations. In keeping with the distributed flavour of this example each
of these is actually three derived relations, based on region. The partitioning is done by regions,
regions 10 to 19 being East, 20 to 29 Cent(ral), and 30 to 39 West. We envision that the relevant
derived relations are stored at three regional offices. It is also assumed that a centralized order
processing office is located at the Central office and that the Part and PartOrder derived relations
are stored at that office also. Thus, the types of derived relations used are quite varied. The
resulting seventeen derived relations are:

Derived Relations
Part = ({itemNumb,itemDesc,itemPrix}, {Item}, (TRUE))

PartOrder = ({itemNumb,itemDesc,itemPrix,lineOrdr,lineltem,lineQnty,
ordrNumb,ordrDate,ordrCust,custNumb,custName,custRegn},
{Item,Line,Order,Customer},
(itemNumb=lineltem)A(lineOrdr=ordrNumb)A(ordrCust=custNumb))

CustEast = ({custNumb,custName,custRegn}, {Customer}, (custRegn>10)A(custRegn<20))
CustCent = ({custNumb,custName,custRegn}, {Customer}, (custRegn>20)A(custRegn<30))
CustWest = ({custNumb,custName,custRegn}, {Customer}, (custRegn>30)A(custRegn<40))
DistEast = ({distNumb,distName,distRegn}, {Distributor}, (distRegn>10)A(distRegn<20))
DistCent = ({distNumb,distName,distRegn}, {Distributor}, (distRegn>20)A(distRegn<30))
DistWest = ({distNumb,distName,distRegn}, {Distributor}, (distRegn>30)A(distRegn<40))

OrdrEast = ({ordrNumb,ordrDate,ordrCust,custNumb,custName,custRegn},
{Order,Customer},
(ordrCust=custNumb)A(custRegn>10)A(custRegn<20))

OrdrCent = ({ordrNumb,ordrDate,ordrCust,custNumb,custName,custRegn},
{Order,Customer},
(ordrCust=custNumb)A(custRegn>20)A(custRegn<30))

Appendix B: Example Database and Updates 41

OrdrWest = ({ordtNumb,orera.te,ordrCust,custNumb,custName,custRegn},
{Ozder,Customer},
(ordrCust=custNumb)A(custRegn>30)A(custRegn<40))

AvlbEast = ({itemNumb,itemDesc,itemPrix,avlbItem,avlbDist,avlbSply,distNumb,distName,dist Regn},
{Item,Available,Distributor},
(itemNumb=avlbItem)A(avlbDist=distNumb)A(distRegn>10)A(dist Regn<20))

AvlbCent = ({itemNumb,itemDesc,itemPrix,a\rlbItem,avlbDist,avleply,distNumb,distName,distRegn},
{Item,Available,Distributor},
(itemNumb=avlbItem)A(avlbDist=distNumb)A(distRegn>>20)A(dist Regn<30))

AvlbWest = ({itemNumb,itemDesc,itemPrix,avlbItem,avIbDist,avlbSply,distNumb,distName,distRegn},
{Item,Available, Distributor},
(itemNumb=avlbItem)A(avlbDist=distNumb)A (distRegn>30)A(dist Regn<40))

FillEast = ({distNnmb,distName,distRegn,avlbltem,avlbDist,avleply,lineOrdr,]ineItem,lineQnty,
ordrNumb,ordrDate,ordrCust,custNumb,custName,custRegn},
{Distributor,Available,Line,Order,Customer},

(distRegn>10)A(distRegn<20)A(dist Numb=avlbDist)A(avlbItem=lineItem)A(avibSply >lineQnty)
A(lineOrdr=ordrNumb)A (ordrCust=custNumb)A(cust Regn>10)A(custRegn<20))

FillCent = ({distNumb,distName,distRegn,avlbItem,avlbDist,avlbSply,lineOrdr,lineltem,lineQnty,
ordrNumb,ordrDate,ordrCust,custNumb,custName,custRegn},
{Distributor,Available,Line,Order,Customer},
(distRegn>20)A(distRegn<30)A(distNumb=avlbDist)A(avlbltem=lineltem)A(avlbSply>lineQnty)
A(lineOrdr=ordrNumb)A(ordrCust=custNumb)A(cust Regn>20)A(custRegn<30))

FillWest = ({distNumb,distName,distRegn,avlbItem,avlbDist,avlbSply,lineOrdr,lineltem,lineQnty,
ordrNumb,ordrDate,ordrCust,custNumb,custName,custRegn},
{Distributor,Available,Line,Order,Customer},
(distRegn>30)A(distRegn<40)A(distNumb=avlbDist)A(avlbIltem=lineltem)A(avlbSply >lineQnty)
A(lineOrdr=ordrNumb)A (ordrCust=custNumb)A(cust Regn>30)A(custRegn<40))

The following fourteen updates were used to obtain the timings given in table 4.
Updates

Ul = INSERT(Available, { < avlbltem=43, avlbDist=542, avlbSply=10 >,
< avlbltem=112, avlbDist=571, avlbSply=800 >,
< avlbltem=203, avlbDist=627, avlbSply=250 > })

U2 = MODIFY(Available, (avlbItem=117),
{ avlbltem=avlbltem, avlbDist=avlbDist, avlbSply=avlbSply+300 })

U3 = DELETE(Customer, (custNumb=123))
U4 = DELETE(Customer, (custNumb>123)A(custNumb<130))

U5 = DELETE(Customer,
(custNumb=123)V(custNumb=125)V(cust Numb=127)V(custNumb=129))

Appendix B: Example Database and Updates 42

U6 = MODIFY(Distributor, (distRegn=19),

{ distNumb=distNumb, distName=distName, distRegn=18 })
U7 = MODIFY/(Distributor, (distRegn=19),

{ distNumb=distNumb, distName=distName, distRegn=20 })
U8 = MODIFY(Distributor, (distRegn=18)V(distRegn=19),

{ distNumb=distNumb, distName=distName, distRegn=17 })

U9 = MODIFY/(Distributor, (distRegn>18)A(distRegn<19),
{ distNumb=distNumb, distName=distName, distRegn=17 })

U10 = DELETE(Order, (ordrDate<860901))
Ull = MODIFY(Item, (itemNumb=45)V(itemNumb=113)V(itemNumb=297),

{ itemNumb=itemNumb, itemDesc=itemDesc, itemPrix=itemPrix+125 })
Ul2 = MODIFY(Item, (itemNumb=45)V(itemNumb=113)V(itemNumb=297),
{ itemNumb=itemNumb, itemDesc=itemDesc, itemPrix=995 })
U13 = INSERT(Line, { < lineOrdr=101, lineltem=42, lineQnty=3 >,
< lineOrdr=102, lineltem=71, lineQnty=80 >,
< lineOrdr=103, lineltem=27, lineQnty=250 > })
Ul4 = MODIFY(Line, (lineltem=47),
{ lineOrdr=lineOrdr, lineltem=lineltem, lineQnty=IlineQnty+250 })

We wish to remark on some interesting aspects of these updates. Notice that update Ul is irrele-
vant to eleven of the seventeen derived relations. Of the remaining six derived relations—AvlbEast,
AvlbCent, AvlbWest, FillEast, FillCent, and FillWest—none is autonomously computable since
each requires more attribute values than are contained in the inserted tuples. On the other hand,
U6 is irrelevant to fourteen and the remaining three —DistEast, AvlbEast, and FillEast—are all
autonomously computable. Moreover, all three reside at the same regional office, hence no data
need be transmitted from this site to any other; not even the update operation! By way of contrast,
consider U7 which is very similar to U6. This time instead of combining regions 18 and 19 into 18,
we combine 19 and 20 into 20. The update is irrelevant to eleven derived relations; of the remaining
six, three are autonomously computable and three are not. The six derived relations are DistEast,
AvlbEast, FillEast, DistCent, AvlbCent, and FillCent. Changes to the first three are autonomously
computable as we can tell which tuples correspond to distributors in region 19 and hence should
now be removed from these derived relations. On the other hand, changes to the latter three are
not autonomously computable as we cannot determine from their present instances what tuples
(corresponding to distributors which have had their region changed to 20) should be inserted.

Acknowledgements

The authors would like to thank the referees for their constructive and detailed comments which
led us to improve the clarity and rigour of this paper.

REFERENCES 43

References

[1] Serge Abiteboul and Victor Vianu. “Transactions and Integrity Constraints.” In Proc. of
the 4th. ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, (Portland,
1985), 193—204.

[2] Michel E. Adiba and Bruce G. Lindsay. “Database Snapshots.” In Proc. of the 6th. Interna-
tional Conference on Very Large Databases, (Montreal, 1980), 86-91.

[3] D.S. Batory. “Modeling the Storage Architectures of Commercial Database Systems.” ACM
Transactions on Database Systems, Vol. 10, No. 4, (December 1985), 463-528.

[4] Philip A. Bernstein and Barbara T. Blaustein. “A Simplification Algorithm for Integrity
Assertions and Concrete Views.” In Proc. COMPSAC 81, (Chicago, 1981), 90-99.

[5] José A. Blakeley. Updating Materialized Database Views. Ph.D. Thesis, Department of
Computer Science, University of Waterloo, 1987.

(6] José A. Blakeley, Neil Coburn, and Per-Ake Larson. “Updating Derived Relations: Detect-
ing Irrelevant and Autonomously Computable Updates.” In Proc. of the 12th International
Conference on Very Large Data Bases, (Kyoto, 1986), 457-466.

[7] José A. Blakeley, Per-Ake Larson, and Frank Wm. Tompa. “Efficiently Updating Materialized
Views.” In Proc. of the ACM SIGMOD International Conference on Management of Data,
(Washington, 1986), 61-71.

[8] O. Peter Buneman and Eric K. Clemons. “Efficiently Monitoring Relational Databases.”
ACM Transactions on Database Systems, Vol. 4, No. 3, (September 1979), 368-382.

[9] Robert W. Floyd. “Algorithm 97: Shortest Path.” Communications of the ACM, Vol. 5,
No. 6, (June 1962), 345.

[10] G. Gardarin, E. Simon, and L. Verlaine. “Querying Real Time Relational Data Bases.” In
IEEE-ICC International Conference, (Amsterdam, 1984), 757-761.

[11] Michael Hammer and Sunil K. Sarin. “Efficient Monitoring of Database Assertions.” In Sup-
plement Proc. ACM SIGMOD International Conference on Management of Data, (Austin,
1978), 159.

[12] Per-Ake Larson and H.Z. Yang. “Computing Queries from Derived Relations.” In Proc. of
the 11th International Conference on Very Large Data Bases, (Stockholm, 1985), 259-269.

[13] Per-Ake Larson and H.Z. Yang. “Query Transformation for PSJ-queries.” In Proc. of the
13th International Conference on Very Large Data Bases, (Brighton, 1987), 245-254.

[14] Bruce Lindsay, Laura Hass, C. Mohan, Hamid Pirahesh, and Paul Wilms. “A Snapshot Dif-
ferential Refresh Algorithm.” In Proceedings of the ACM SIGMOD International Conference
on Management of Data, (Washington, 1986), 53—60.

REFERENCES 44

[15] David Maier. The Theory of Relational Databases. Computer Science Press, Rockville, MD
(1983).

[16] David Maier and Jeffrey D. Ullman “Fragments of Relations.” In SIGMOD’83 Proc. of
Annual Meeting, Sigmod Record, Vol. 13, No. 4, (December 1983), 15-22.

[17] Daniel J. Rosenkrantz and Harry B. Hunt III. “Processing Conjunctive Predicates and
Queries.” In Proc. of the 6th International Conference on Very Large Data Bases, (Mon-
treal, 1980), 64-72.

18] Hongzhi Yang. Query Transformation. Ph.D. Thesis, Department of Computer Science,
g
University of Waterloo, 1987.

