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Abstract

Topologies and learning algorithms interact in con-
straining the performance of networks that attempt
to deal with time-varying signals like speech. We
trained several connectionist networks to classify the
English syllables ba, da, ga, pa, ta, ka. Tokens of
the six syllables were collected from 10 male and 10
female speakers. Using a speech preprocessor, per-
ceptually scaled spectra and zero-crossing rate were
computed every 5 milliseconds and used as an input
stream. A subclass of recurrent networks inspired
by Jordan (1986) were trained by second order back-
propagation to categorize the stimuli. Trained on 10
speakers, a sequential network correctly categorized
87% of the syllables from the other speakers. More-
over, relevant speech cues are extracted rapidly by the
network as processing proceeds. We conclude that
recurrent networks are well suited to an inherently
temporal domain.

1 Speech Categorization

Modern phonetics has taken one of its primary
tasks to be that of discovering the acoustic cues
that are to be identified with various abstract
categories such as allophones, phonemes, syl-
lables, words, and syntactic boundaries. The
feature systems of Jakobson, Fant, and Halle
(1951), Chomsky and Halle (1968), and Sagey
(1986) are intended to specify the primary
cues, both acoustic and articulatory, necessary
to distinguish the sounds of English. Re-
search in acoustic phonetics, however, suggests
that static matrices of acoustic-articulatory fea-
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tures do not adequately specify speech sounds
[Liberman et al., 1967). Instead, our perception
of distinct categorically valued phones results
from a perceptual process that employs many
independently obtained temporally distributed
features. The temporal dimension of speech is
important not only for its prosodic character-
istics (e.g., stress) but also for its segmental
description.!

Speech is produced by a slowly moving vocal
tract. Consequently, speech cues are distributed
over time in a complex manner. The cognitive
system in humans responsible for phonetic per-
ception must assimilate large numbers of weak
cues that are distributed over time in order to
obtain a categorical percept. For example, the
words ‘shop’ and ‘chop’ are perceptually distinct
when said in isolation. Dorman et al. (1979)
have shown that the word ‘shop’ in the utter-
ance ‘please say shop’ is perceived as ‘chop’ if
more than 50 milliseconds (msec.) of silence is
introduced between the words ‘say’ and ‘shop’.
The vowel in ‘say’ and following silence, both
temporally distant from the frication, constrain
higher level categorical perception. The duration
of silence is also critical to perception of ‘chop’
versus ‘shop’.

It is this aspect of perception, integration of
information distributed over time, that is not
adequately handled by feed-forward networks
that lack other means to handle time. In the
experiments described here we chose the task
of identifying stop-vowel syllables differing in

'Klatt (1976) provides an excellent review of segmental
timing.
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place of articulation and voicing. This problem
is difficult because acoustic information spec-
ifying place of articulation is available early
in the syllable [Stevens and Blumstein, 1978]
whereas voicing information depends on acous-
tic differences much later in the syllable
[Lisker and Abramson, 1964].

2 Speech Categorization By
Networks

During the past several years connectionist net-
works have been applied with some success to the
problems involved in speech perception. Neu-
ral networks excel at simultaneously combining
large numbers of cues to detect objects that are
constant at a more abstract level. The parallel
processing of acoustic cues permits each of them
to act as a weak or ‘unreliable’ knowledge source
and to interact with other cues. The value of
this general approach is attested by the success
of speech recognition systems that use hidden
Markov models [Lee and Hon, 1987]. Like con-
nectionist networks, stochastic models can han-
dle the large amount of variability in acoustic
cues [Waibel et al., 1988].

2.1 Feed-forward Networks

Elman and Zipser (1988) have examined feed-
forward architectures that perform simple speech
recognition. Their networks consisted of 320 in-
put nodes, 2 to 6 hidden nodes, and as many out-
put nodes as there were distinct consonant-vowel
sequences to be distinguished (usually 9). Elman
and Zipser show that this sort of network can
be trained to successfully categorize stop-vowel
syllables despite variation across hundreds of to-
kens taken from a single speaker. Feed-forward
networks capture temporal information by con-
verting it into a spatial representation. They use
temporal windows of speech since without fixing
the size of the input representation, they cannot
fix the topology of a feed-forward network.
Every digital speech processor must subdivide
a continuous waveform into discrete values on
some time scale. An important distintion exists

between time slices and time windows. Within
the domain of speech, these terms are probably
best defined with respect to the rate at which
articulatory gestures are made. A 5 millisecond
time slice of speech will contain only part of even
rapid vocal tract gestures (like the intervocalic
flap in ‘butter’), whereas a single window of 30
msec. or more can specify enough information
to accurately cue place of articulation in stops
[Kewley-Port et al., 1983]. In short, single time
slices do not convey enough acoustic informa-
tion to be phonetically useful—time windows do.
Feedforward networks make use of a time window
of duration sufficient to capture relevant cues in
the longest token [Klatt, 1986]. The duration of
the window of speech selected is arbitrary, but
must span the time segment in which the neces-
sary cues reside. Thus, for most speech tokens
the window selected has redundant nodes which
remain unactivated by the input for stimuli that
are shorter than the maximum. Although node
redundancy is not in itself a problem, that re-
dundancy exists merely to fix network topology.

Another problem concerns the representation
of temporal dependencies, such as those that
hold across several segments [Port et al., 1987;
Anderson and Port, 1988]. Elman and Zipser
(1988) also describe a network that performs an
identity mapping of 9 syllables. They note that
as input patterns are shifted through the input
layer, the recognition error rate is minimized
whenever the utterance boundaries are aligned
with the input window boundaries. When the
beginning of an utterance is not aligned with
the first clique of input nodes, the net error
increases very rapidly. The ability of a feed-
forward network to exploit temporal dependen-
cies in the data depends critically on the pre-
segmentation of input into appropriate windows
by a pre-processor. Any cues lying outside the
window cannot be used by the network, so the
choice of window size can have important impli-
cations for the internal representation generated
by the network.

Because it has no memory, a feed-forward net-
work is not equipped to represent processing as
state transitions over time without mechanisms
such as delay links [Waibel et al., 1988; Tank
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and Hopfield, 1987]. Instead, the temporal di-
mension must be treated as an additional aspect
of input representations. Recoding time as space
cannot be the mere conversion of one dimension
to another; it is inevitably the transformation of
system dynamics into actual connections among
nodes. The model suggested by the architecture
of recurrent networks is one in which the state
of a network at any point in time depends on
a complex aggregate of previous states. In a
feed-forward network the hierarchical structure
of these states is limited by the number of layers
it has, and therefore the representation of system
dynamics is necessarily limited.

3 Sequential Networks

Recurrent networks offer a partial solution to
these problems. In these networks temporal de-
pendencies are not represented by means of net-
work topology, but exist implicitly in the oper-
ation of the network. The network used in the
experiments to be described is an extension and
reinterpretation of the general class of network
used by Jordan (1986) to model sequential be-
havior. On Jordan’s view, one can model serial
action using a feed-forward network with limited
feedback loops. We will refer to this type of net-
work as a sequential network. The input units in
this network receive what Jordan calls a plan, a
constant vector that triggers a certain pattern of
sequential behavior in the network. In addition
to a layer of hidden nodes, the network contains a
group of nodes called state nodes that receive in-
put from themselves and the output nodes. State
nodes initially have no activation. The weights
between output nodes and state nodes have con-
stant value 1. The activation level of the state
nodes at an arbitrary time ¢ can be calculated as
follows:

$1= 580+ 0o

and by induction,
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Figure 1: Sequential network for dynamic cate-
gorization.

where S is the activation of a state node (in-
dex supressed) and O the output activation of
a node connected to it. The recurrent connec-
tions linking state nodes to themselves act as
decay terms, allowing the network to maintain
distributed memory of past activation levels,

During execution, Jordan’s network operates
as follows: the plan and state node activations
are applied to the input nodes and all activa-
tions are forward propagated until the output
nodes are active. The output nodes then di-
rectly activate, in turn, the state nodes. Each
output vector corresponds to an element of the
entire output sequence. Thus, the network can
be trained to output various sequences depend-
ing on the initial vector of plan activations. As
Jordan notes, the nodes of a feedforward network
are only activated by nodes in previous layers.
Therefore, a feedforward network with constant
input can produce only a single response; it can-
not generate sequences. If the plan is held con-
stant, recurrent connections are required in order
to produce sequential action.

In the networks examined in this paper, the
input to the layer of input nodes enters one time
slice at a time over many cycles of the network,
as shown in Figure 1. The speech signal is in-
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herently dynamic, so a network that accepts a
stream of speech requires recurrent connections
in order to maintain a representation of previous
cues. Each output node of our system commu-
nicates with a clique of state nodes, each mem-
ber of which has a different weight associated
with the recurrent connection to itself. The state
nodes combine these decaying activations with
the ongoing processing at the output layer to re-
tain useful portions of the past states of the net-
work. During training the first hidden layer of a
network learns to maximize the useful informa-
tion it extracts from the state nodes. The net-
work cycles for a number of times specified from
outside the system, although in the experiments
reported here the network only cycled while the
data stream was input (here 25 time cycles).

4 Methods

4.1 Speech Materials

The syllables we chose for this categorization
task were single repetitions of the six sylla-
bles [ba, da, ga, pa, ta, ka]. An impor-
tant cue for point of articulation of the stop
consonants is the direction in which the sec-
ond and third formants move toward the rel-
atively steady state of the following vowel
[Delattre et al., 1955]. Spectrum shape follow-
ing release (the point in time at which the vo-
cal tract opens) also contributes to the deter-
mination of place of articulation [Kewley-Port,
1983; Stevens and Blumstein, 1978]. Stop voic-
ing is strongly correlated with voice-onset-time,
the time from the stop release until glottal ex-
citation [Lisker and Abramson, 1964]. The du-
ration of high zero-crossing rate correlates with
the voiceless feature in these consonants, since
high zero-crossing rate indicates a random wave-
form. The stop consonants provide a well-
understood data set on which to test the ability
of a network to integrate complex information
distributed throughout time and perform simple
categorization on the basis of that information.
Using stimuli from many speakers complicates
the task considerably, since each speaker’s voice
has different spectral and temporal characteris-

tics. The ability of a system to perform cross-
speaker categorization is a crucial test of how
well a network has grasped the necessary gener-
alizations that make speech possible for humans.

4.2 Subjects

Twenty native speakers of English read 5 num-
bered lists, each list containing the 18 possible
combinations of the consonants [b,d,g,p,t,k] and
vowels [a,i,u]. In order to facilitate reading the
syllables, each list maintained a specific vowel or-
der and the three combinations with each conso-
nant occupied a single line. Both vowel and con-
sonant order were randomized across the 5 lists,
and the lists themselves were shuffled before they
were given to the subjects. Subjects read the lists
at a relaxed tempo and were recorded in a mod-
erately quiet environment. All syllables having
the vowel [a] were extracted from the produc-
tions and digitized at 16 kHz through a 6.4 kHz
low-pass filter. The syllables were then edited to
remove all but the portion of the syllables from
20 msec. before stop release to 100 msec. after
stop release. This was done to speed training,
since approximately three-fourths of a syllable is
composed of steady-state vowel. This part of a
syllable is unnecessary for the correct identifica-
tion of stops by humans.

Before using the stimuli, we performed a sim-
ple perceptual study to eliminate those that were
ambiguous to listeners. The onsets and offsets
of the edited stimuli were digitally ramped over
10 msec. to remove abrupt edges. A single
randomized list of the 600 stimuli was prepared
and presented binaurally to 13 unpaid listeners
over headphones in a forced 6-way categoriza-
tion task. Listeners were told that they would
hear one of the 6 syllables [ba, da ,ga, pa, ta,
ka] produced by various people and were asked
to write their choice on an answer sheet.? Lis-
teners correctly categorized 97% of the produc-
tions. A total of 24 stimuli were incorrectly cat-
egorized by two or more listeners. These tokens
were excluded from the data set used in study-
ing networks. On this revised data set, humans

2Four of the subjects were familiar with how the stim-
uli had been prepared.
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correctly categorized 99% of the stimuli.

4.3 Preprocessing

Input tokens to the network were preprocessed in
a manner consistent with gross characteristics of
the peripheral auditory system. From the edited
waveforms, 256 point pitch-synchronous Fourier
transforms were computed. The transforms
were interpolated onto 5 msec. frames, passed
through 35 1-Bark filters placed at half bark
intervals [Sekey and Hanson, 1983], and linearly
compressed onto the interval [0,1]. The normal-
ization was based on the standard deviation of
the entire data set to ensure that more than 95%
of all extrema fell between 0 and 1 without com-
promising the dynamic range of the input data.
In addition, zero-crossing rate was generated and
normalized in the same manner. Thus, for ev-
ery syllable the network received a stream of 25
5-msec. spectral slices, each of which consisted
of 35 frequency-intensity values and one zero-
crossing-intensity value. Due to problems ex-
tracting pitch for one of the female speakers, 15
stimuli could not be processed. The total num-
ber of syllables used was thus reduced to 561.
Stimuli from 10 of the speakers (5 male, 5 female)
were randomized and used for training; the other
half of the data were used for testing networks.

5 Results and Discussion

5.1 Overall Performance

The output of the networks was specified by
Boolean values. In one set of simulations, the
activation of each node represented exactly one
of the 6 possible syllables. The output layer of
the second set of simulations had just 4 nodes:
one node represented voicing, and the other three
independently represented the three places of ar-
ticulation. In order to foster learning at every
cycle of network processing, target output acti-
vations for the correct syllable rose linearly with
each 5 msec. time slice from the unbiased value
of 0.5 to a final value of 1.0 (following a mov-
ing fixed-point technique used by Watrous and
Shastri (1987)). Simultaneously, the target ac-

tivation of other output nodes fell linearly from
0.5 to 0. All networks were trained using second
order back-propagation [Parker, 1987]. The dif-
ferential equations that arose were solved using
the trapezoidal rule. Networks were simulated
on a VAX 8800.

Networks of many different sizes were tested.
As training proceeded, the 3 learning coefficients
were lowered. Training ceased when the sum-
squared error of the training set no longer de-
creased by at least one part in 1,000 over 50,000
presentations of the training data. Total training
time was usually between 400,000 and 2 million
presentations. Most networks learned the train-
ing set to a total sum-squared error (SSE) of less
than 1000, where all but about 5% to 15% of
the training stimuli were correctly categorized.®
The SSE for the testing set were similar, having
percentage correct from 72% to 87%. The best
performance for any network was 87% for a net-
work having 4 layers of 66, 66, 12, and 6 nodes.
Table 1 summarizes some of the networks that
have been tested. Networks with 4 layers appear
to have the ability to build an internal repre-
sentation of the spectrum that leads to better
generalization. This would allow normalization
for vocal tract variation. It is interesting to note
that no ‘overlearning’ of the training set was ob-
served in any of the simulations. The best so-
lutions to the training stimuli were also optimal
for the set of testing data.

5.2 Error Analysis

An examination of errors made by the network
reveals a pattern of confusions that mirrors both
the known phonetic differences among the stop
consonants and the errors human listeners make.
Table 2 is a confusion matrix for network 7.
Voiced and voiceless stops are rarely confused.
When voicing confusions occur, they primarily

®For testing data SSE is based on the difference be-
tween target and actual activations for every time slice.
Throughout this paper we use a winner take all criterion
at the final time slice. In the case of the networks having
a node representing voicing, values above .5 indicate voic-
ing, and below or equal to .5 indicate voicelessness. Using
greatest average activation to interpret network response
vields nearly identical results.
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Net # of Nodes per Train  Test %
Layers Layer SSE SSE

Correct

66,66,12,6 384.5 594.1 86.9
72,124 463.7 533.8 83.6
72,72,12,4 818.8 528.2 82.9
66,10,6 607.5 815.3 81.8
66,20,6 551.1 858.5 81.4
66,12,6 616.5 1036.7 78.1
66,6,6 810.0 988.1 76.6

=1 O WG Lo b
2 G2 L L 0O

Table 1: Best scores for 3 and 4-layer sequential
networks. Net = network reference number; SSE
= sum-squared error.

Network Response

ba da ga pa ta ka
ba 96 0 -0 2 0 2
da 50 30 0 9 2

9

9 23 56 0 0 12
pa 2 0 0 94 2 2

0 0 0 11 8 9

0 0 0 13 T 80

Table 2: Syllable confusion matrix for 274 testing
stimuli in percent correct. Intended syllables are
listed at left.

occur between stops having the same point of
articulation. It is well known that because of
similarity in production, homorganic stops share
acoustic properties (e.g., formant transitions).
The greatest source of confusions is obviously be-
tween [da] and [ga]. Similar basic results have
been observed for every network tested.

Confusions were also analyzed with respect to
the behavior of output activations over time. We
selected only those responses from the testing set
produced by network 7 that were correctly cat-
egorized (that is, the diagonal cells of Table 2).
At each point in time the network produced an
output vector of length 6. For each stimulus,
these output vectors were concatenated to yvield
a description of the network’s evolution during
the 120 msec. stimulus duration. These 210 vec-
tors were then hierarchically clustered using a

e
—
85% ta

L=

100% ba

Figure 2: Cluster analysis of 210 testing tokens
from 0-120 msec. Branches are labelled with a
percentage breakdown of the syllable types they
dominate.

Euclidean distance metric and the complete-link
method. Figure 2 shows the results of this clus-
ter analysis. One can see that network response
to voiceless and voiced sounds are most distinct,
whereas [ga] and [da] are most similar. These re-
sults show that the relative confusability of the
stops is not restricted to the last cycle (on which
the confusion matrix in Table 2 is based) but is
manifested over a significant part of the stimulus
duration.

This cluster pattern is remarkably similar to
the confusion errors made by humans on the
same set of syllables masked by varying amounts
of white noise [Miller and Nicely, 1955].* Shep-

“Miller and Nicely examined a much larger stimu-
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Consonants

saaneoir) uoid

S — S

Stops Front Back fric. Stops Front Nasals

fric. [(sibilants) fric.
N e —
Voicelass Voiced

Figure 3: Cluster analysis of the Miller and
Nicely data that was not differentially filtered.
Reproduced from Shepard (1980).

ard (1980) applied cluster analysis to the Miller
and Nicley results. The resulting displays are re-
produced in Figure 3. The syllables [da] and [ga]
are most confusable for humans and sequential
networks alike, while the voicing distinction is
salient for both.

In sequential networks, the process of catego-
rization takes place over time. The similarities
among output activations over time reveal the
emergence of categories as the network cycles.
Such an analysis was attempted by analyzing
early and late outputs from the total 120 msec.
duration of each network response. Figure 4 and
Figure 5 show two cluster diagrams based on dif-
ferent segments of network cycles. In the first
diagram the vectors begin at the point of release
(20 msec.) and continue for 25 msec. Branches
that dominate clusters of similar syllables are
labelled with the majority category they dom-

lus set that included about three quarters of all English
consonants.

45% | pa
44% | ba
42% |ka

Wh B oo

Figure 4: Hierarchical cluster analyses of 20-45
msec. for test stimuli that were correctly cate-
gorized.
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92% pa F‘E
— e
89% ta
_Z 11% ka
100% ka — e
E——
R - —
=

75% ba —— e

19% pa —

Figure 5: Hierarchical cluster analyses of 80-105
msec. for test stimuli that were correctly cate-
gorized.

inate. During this processing interval, the net-
work has begun to differentiate the stops accord-
ing to point of articulation (labial, alveolar, or
palatal). This behavior is consistent with stud-
ies demonstrating that humans can use the the
first 10-60 msec. of the waveform after release
to determine place of articulation in stop con-
sonants [Kewley-Port et al., 1983; Stevens and
Blumstein, 1978]. During this interval, voicing
is still not determined by the network, because
it depends on how soon periodicity appears in
the syllable. A comparison of the later portion
of the output (80-100 msec. after release) reveals
that a voicing decision has emerged. We surmise
that sequential networks are capable of rapid ex-
traction of speech cues from an input stream. As
we shall see, this is apparently essential to their
solution of the categorization task we chose.

5.3 Learning in Sequential Networks

Context sensitivity is extremely important in
many speech tasks. Beyond merely recogniz-
ing appropriate cues, a network that performs
in synchrony with stimulus input must allocate
a number of its processing elements (state nodes
in sequential networks) to serve as memory. If,
for example, the network fails to encode early
cues bearing on place of articulation, then that
information will be lost to the final decision pro-
cess. In fact, the interpretation of the place of
articulation cue has a synergistic effect on the
network’s use of voicing and other cues. The
implications for our choice of learning algorithm
are important. As we will show supervised learn-
ing algorithms that require training at each cy-
cle will tend to purge the network’s memory at
each cycle, obstructing the creation of appropri-
ate mechanisms for information retention.

The output representation we employed in net-
works 1, 4, 5, 6, and 7 does not distinguish the
6 syllables in terms of voicing or place of articu-
lation. All 6 output representations are linearly
independent. For example, at any given cycle of
a network that is being presented a token of [ba],
the target value for the [ba] output nodes is no
more similar to the target value for [pa] than it is
to any of the other four syllable types. Neverthe-
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less, the actual outputs of the networks share im-
portant similarities that clearly capture signifi-
cant generalizations about stop consonants. This
is demonstrated by the activation clusters in Fig-
ures 3 and 4, which indicate that the actual out-
puts possess meaningful information (e.g., place
of articulation) about that portion of the stimu-
lus the network has already processed. The out-
put activations convey more information to the
state nodes than is specified by the target func-
tion with which they were trained.

This observation accounts, in part, for the fail-
ure of certain training techniques. In training
sequential networks that accept constant input
vectors, the conventional wisdom is that the tar-
get vector should be propagated from output to
state nodes in order to speed training (Jordan,
personal communication). This is because prop-
agating the actual output rather than the desired
output may cause error to be propagated from
cycle to cycle. However, actual outputs can pro-
vide a means for encoding and storing informa-
tion. In all of the networks described here, the
actual output activations, not the target func-
tions, were propagated back to the state nodes.
Several attempts (using both back-propagation
and second-order back-propagation) were made
to train our networks by propagating target acti-
vations to the state nodes during training. None
of the networks was successfully trained. We be-
lieve the reason for this is that simply specify-
ing the category an output must have prevents
necessary information about the history of the
signal from being propagated. The network can-
not learn the target functions and also perform
the task successfully. The target function fails to
encode necessary contextual information.

The difficulty of learning the linear ramping
function can be seen from the slope of the out-
put activation functions. We have not been able
to train a network to achieve a sum-squared er-
ror below 300 on the training set. Although this
might be due to the limited number of computer
cycles available to us, it seems likely to be a con-
sequence of the target function and the super-
vised training algorithm employed. In addition,
the networks do not learn to respond with a lin-
early increasing activation function. Visual in-

~

time

Figure 6: Examples of typical output activations
(solid lines) displayed with their target functions
(dashed lines) corresponding to 6 stimuli.

spection (see Figure 6) shows that output tran-
sitions are generally steeper than the slope of the
linear ramps they were trained with. In order to
demonstrate this statistically, we plotted an ideal
linear ramp to the observed maximum value of
the actual output for every token. We then cal-
culated smooth derivatives of the actual output
activation. We found that 41% of the derivatives
were less than half of the slope of the ideal ramp-
ing function (to the same maximum activation).?
This implies that actual activation values rose
much more rapidly than those of the target func-
tion. The target function is not learned per-
fectly, and final category decisions must be made
rapidly, not slowly.®

*Results for the testing data were 44%. Since the net-
work was trained to produce a linear ramping activation
for the training data, we emphasize that case here.

6Waibel et al. (1988) have suggested a means of avoid-
ing this difficulty for time-delay neural networks. The
authors use an error measure that is integrated over the
entire time course of network processing. The weights are
then readjusted using the average of the weight changes
for each cycle. This can be applied to sequential net-
works by updating weights after several cycles of process-
ing. Preliminary results suggest the usefulness of this up-
date schedule. A network having the save topology as
network 1 was trained to 88.7% correct classification of
the test data and a training error of 10.84 using update
averaged over 5 time slices.
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6 Conclusion

We have shown that sequential networks can cat-
egorize dynamic data streams such as those in-
volved in auditory perception. Although the per-
formance of sequential networks on novel speech
from speakers outside the training corpus does
not approach human performance (87% versus
99%), we found that the mapping learned by
sequential networks generalizes surprisingly well
across speakers. The ability of sequential net-
works to generalize rests on the extraction and
integration of primary cues for voicing and place
of articulation. The extraction of relevant cues
arises naturally when time is not represented by
external mechanisms.” Humans are believed to
rely on these cues as well. Another important
property of real nervous systems is their rapid
response to environmental changes. We have
shown that sequential networks can extract cues
from speech as they arrive in the input stream.

With respect to temporal processing, sequen-
tial networks are theoretically superior to feed-
forward networks, because they do not require
node connections to represent time. Conse-
quently, sequential networks obviate the need for
redundant processing nodes, accomplishing sim-
ilar tasks with fewer processors.

A very serious problem remains with training
sequential networks using supervised learning al-
gorithms. Our target function was chosen to be
a monotonic function from the unbiased state to
the correct output pattern. The crucial prob-
lem is with respect to the arbitrary specification
of network dynamics. Without knowledge of the
appropriate intermediate states of a network, one
has no principled method for selecting a target
function. In order to learn at each cycle, back-
propagation requires immediate feedback (i.e.,
feedback before nodes are activated by another
stimulus). One must specify the output at in-
termediate stages if learning is to occur there.
Specifying the output activations to increase lin-
early restricts the network to discovering solu-

?Using feed-forward networks with time-delay links,
Waibel et al. (1988) have argued that feed-forward net-
works can show similar tendencies to extract cues such as
formant transitions over time.

tions that nearly satisfy those constraints. This
severely constrains the space in which optimiza-
tion occurs. As we have seen, the linear ramp-
ing function does not conform to the actual solu-
tion discovered by the networks, yet despite these
shortcomings, linear ramps foster the discovery
of distinctions important to speech.
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