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1. Introduction

The Digital Design Derivation system (DDD) is a facility for synthesizing digital
implementations of higher level algorithmic specifications. It is being developed to
explore an approach to design based on the algebraic manipulation of functional
expressions. This summary reviews the motives for DDD’s development, outlines
the synthesis process, and reviews experience with the system.

DDD is closer in character to a mechanical theorem prover than to a hardware
compiler [2], except that it manipulates design descriptions rather than assertions
about them. Intuitively, it supports reasoning from a specification toward an im-
plementation, while a verification system does the opposite. However, derivation
and verification are complementary aspects of design, not conflicting approaches to
it. A principal reason for developing DDD is to provide a framework for exploring
the integration of synthesis with formal verification.

Engineering by algebraic refinement is fundamental to the discipline of func-
tional programming. Results in that area lead to constructions of sequential sys-
tems, which provide a formal characterization of hardware [5]. DDD is an experi-
mental implementation of the algebra, which has evolved through a series of concrete
design exercises.

One benefit of automating design “in a logic” is descriptive abstraction, with
its potential adaptability to higher levels of description. DDD reflects no particular

technology, architecture, or problem class. The research goal is to characterize these

*This research was supported, in part, by the National Science Foundation under grants
numbered MIP8707067 and DCR8521497.
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aspects through tactical use of the algebra. Thus, the challenge of the approach lies

in managing the abstraction permitted by the formal system.

2. Background

DDD is a collection of transformations for manipulating expressions toward
physically meaningful forms. The synthesis process is called “derivation” to em-
phasize that these expressions are dialects of a single modeling language—higher

order functional notation. A derivation is a sequence of transformations,

By e By s s 3 By
Source expression Dy is sometimes called a specification and target expression Dy
an implementation. However, it is more accurate to say that a design is described
by sequence (Ty,...,Tk—1) applied to Dy, since the sequence states much of the
design intent.

Figure 1 shows the flow of information in DDD; nodes stand for expressions
and edges stand for transformations.

The system is open for integration of other functional programming tools, and it
produces a collection of boolean system descriptions for input to available logic syn-
thesis tools. Derivation is driven by script of transformation commands composed
by the engineer. A derivation typically has three phases, addressing behavioral,
structural, and physical aspects of design. An algorithm in functional form is trans-
lated into a system description. Next, a series of factorizations imposes a conceptual
architecture. Third, DDD incorporates concrete representations and restructures

the description for realization.

3.1. Control Synthesis

Specifications are given in terms of an arbitrary basis type, or vocabulary of
constants, operations and tests. They are systems of function definitions composed
of conditional expressions—a language of simple applicative terms, recursive invo-
cations, if-then-else expressions and case expressions. DDD currently requires that
specifications be iterative—the class of definition schemata associated with finite
state machine descriptions. Thus, DDD is a register transfer synthesizer in the vo-
cabulary of Keutzer and Wolf [4], but because the level of description is not fixed,

the notion of ‘register’ is abstract.
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FIGURE 1 Design derivation in DDD.



4

A SYSTEM FOR DIGITAL DESIGN DERIVATION Background

DDD builds sequential system descrip-

tions according to a theoretical construction

in [5]. The initial system does not necessarily

describe implementable architecture. The di- -
agram to the right expresses certain aspects

of its structure for the following discussion. G
Register entities (R1, R2, etc.) are connected

to various basis operations (H, F, and G in the -
figure). A synthesized decision combination :

(not shown) governs data movement. Typi-
cally, there is a high degree of parallelism in data transfer. In other words, the
initial system, though correct, would not ordinarily be reduced to a realization. It

may be described at too high a level and the architecture is often unrealistic.

3.2. Manipulating Logical Organization

The central phase of derivation imposes modularity by merging expressions and
encapsulating subsystems. The transformations are called system factorizations.
The diagram to the right illus-

trates some of the effects of factoring.

Multiple instances of the common subex-

pression F are reduced to a single com-

ponent. The register R3 is incorpo- F
rated in the function G; an example is '

encapsulating an integer register and S G
an incrementer as a counter. An im- =

portant third use of factorization cor- ’

responds to information hiding. A type

abstraction, such as memory or queue, is encapsulated as a process entity. Such
transformations often introduce of new registers—in the diagram, H1 and H2 re-
sult when R1 is incorporated with H. For example, a factored memory would leave
residual address and content registers.

The factorization algebra is based on a distributive law of selection. As it is
usually applied, the law “pushes” selectors through functions. If sel is a two-way

selector,

sel(P,f(S),f(T)) = f(sel(P,S,T))
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The effect on a diagram looks like
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Factorization hinges on a more general law, a basic identity for higher order expres-

sions that asserts distributivity over functions as well as arguments:
sel(P, f(5),9(T)) = (sel(P, f,g))(sel(P, S, T))

In DDD, distribution introduces a component which performs either f or g depend-

ing on an instruction, f or g:
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An example is the assignment of various arithmetic operations to an ALU. However,
such transformations also apply to arbitrary collections of terms, and are often used
to develop hierarchy in a description.

Failures in factorization induce refinements to control, which are accomplished

by serializing transformations on the specification (See Figure 1).

3.3. Developing Physical Organization

The final phase of a derivation introduces (more) concrete representations for
the values and operations of the basis type. At the binary representation level,
DDD generates a collection of boolean subsystems for implementing the design.

The decomposition may be orthogonal to

the logical hierarchy of a structural de-

scription. A common example, depicted B
to the right, is restructuring the data path 2;
into bit slices. Registers and certain com- R4
binational functions are projected to a sin- RS
gle bit in each component of the physical Ré

5
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organization. The algebraic characteriza-
tion of this phase involves a third class of
transformations, which perform pervasive
changes to the design description. It is a task of the DDD system to sustain cor-
rectness during the restructuring,.

The boolean subsystems are put into existing logic synthesis facilities, which
perform optimizations and assemble realizations. Working prototypes have been
built in PLA and PLD/MSI technologies. So far, the exercises have been data path

oriented designs; future experimentation will address other problem classes.

3. Experience and Research Directions

Our experience with DDD is evidence that a ‘formal’ approach to design can de-
velop into a practical tool. The most revealing exercise is a garbage collector project
reported in [1, 6]. The design involves a significant hierarchy of type abstractions:
a Heap, implemented by parameterized type, Memory(Address, Content), repre-
sented by RAM(Bit™, Bit™). Two derivations from a single specification were tar-
geted to a highly parallel PLD prototype, and a highly serial PLA prototype. The
specification text, executing with a production LISP system, generated test patterns
for a switch level simulation of the VLSI realization.

The system has also been applied to a mechanically verified microprocessor
description. Starting from Hunt’s FM8501 specification [3], DDD synthesized an
implementation comparable to the one proved in Boyer-Moore Logic. DDD was able
to manage a specification that was composed for the purpose of proof rather than
implementation. The exercise demonstrates the utility of an algebraic approach in
dealing with logical constructs.

The DDD system is open ended. Existing program transformation methods are
planned for the specification level. We shall continue to develop derivation tactics
for other target technologies. Finally, much remains to be learned about design at

higher levels of description.
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