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Abstract

How can a nervous system represent for itself the temporal relations of patterns
that it knows? In order to label auditory patterns, the nervous system must store early
portions in order to identify the whole. Both linguists and engineer-scientists have a
similar need to record spoken words. This paper reviews 3 basic models for handling the
information-collection problem that supports pattern recognition whether by scientists
or others. Many of these techniques have been implemented in connectionist networks.
In linguistic models for words, there are only ordered symbols, that is, either phonemic
segments or words. In engineering and speech science, time windows are built that
store the entire signal and allow parametric description of time. But such windows are
not plausible for nervous systems. A third alternative is a memory in the form of a
dynamic system. These models are driven through a trajectory in state space by the
input signals. Thus, the recognition process for familiar patterns produces a distinct
trajectory through state space for each learned pattern. Among the advantages of
such a system is that (1) it tends to recognise patterns despite changes in the rate of
presentation, and (2) the system can be run continuously yet will respond as quickly
as possible at appropriate times. Evidence will be reviewed about human auditory
memory for complex tone sequences. The data suggest that human auditory memory
exhibits many similarities to the dynamic model.

1 Introduction

How can a nervous system represent for itself the temporal relations of patterns that it
knows? What happens when you recognize an auditory pattern — like a word, a dog
bark, a train of footsteps or a familiar dance rthythm? To reach a state of recognition,

*I am grateful to Sven Anderson for many contributions to the research described here. I am also grateful
to Charles Watson, Gary Kidd, Michael Gasser, Jungyul Suh and John W. R. Merrill for helpful discussion
of these ideas. This research was supported in part by the Air Force Office of Scientific Research, Grant
870089, and by the National Science Foundation, Grants DCR-8505635 and DCR-8518725. To appear in
Connection Science, 1990.



2

some representation for the stimulus over time must have been created that is sufficient
to permit recognition to occur. The basic issue is how can complex patterns in time be
recognized?

Despite Lashley’s proclamation [Lashley, 1951] that temporal patterns are central to
the study of cognition, the fundamental issues surrounding the representation of time have
not attracted a great deal of attention over the decades. In contrast to Lashley’s primary
interest in motor control, our concern here is primarily with the problem of perception of
patterns in time. It turns out that some of Lashley’s theoretical suggestions sound quite
modern and are applicable to modern thinking about perceptual models.

This paper reviews three general schemes for the representation of sound as events in
time. Although many examples are described, the primary emphasis is on connectionist
models, since they seem the most promising general framework for cognitive models. These
familiar frameworks serve as a primitive typology of models. As far as I can tell, they span
the range of basic theories addressing this problem. In the next section, evidence from
experimental psychology is described that helps clarify the problem further. Research
on the perception of complex tone patterns — sequences of up to 10 randomly chosen
fones — suggests that one of the three representational frameworks is better, since the
model exhibits several properties exhibited by human subjects when they learn to recognize
complex sound patterns.

The issues here are fundament ally part of a general theory of perception, but I will focus
on techniques for representation of events distributed in time that support perceptual
recognition. The discussion will also be directed toward issues in speech and language.
Although there are a great many theories about perception, there are really only a couple
of theories about how temporally distributed events might be represented either in natural
cognition or in models of cognitive-like processes.

The first model for temporal representation to be discussed below is the Linguistic
View of the symbolic structure of cognition. The well-known Jakobsonian manifestation
of this general lingiustic model will be illustrated. In classical linguistics, words were
said to be spelled as ordered strings of segmental phonemes — consonants and vowels.
Incidentally, S. S. Stevens’ typology of psychological scales as nomanal, interval, integer
and ratio [Stevens, 1951] provides helpful terminology for discussions of time. Clearly both
phonemes and words, if they are part of the perception of speech, comprise an ordinal scale.
For example, like the symbols of a phonetic transcription or letters on a page, their spacing
and size could be altered without changing their meaning, and the number of symbols used
to transcribe an utterance does not provide a reliable measure of duration in real time.

Two analogs of real world temporal order can be defined in relation to the symbolic
model. First, within the symbol-system itself, locations in a string or buffer precede
and follow one another. On the other hand, in the external controller that ‘runs’ the
symbol system (that is, the operating system, programmer or whatever), the states of a
derivation precede and follow one another in the non-historical, timeless time in which
control operations for mathematical models are carried out.!

'The treatment of program states as time sounds absurd in artificial intelligence. No one would
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The linguistic answer to the Lashley’s problem was proposed by Chomsky. It is that we
should handle syntactic and phonological patterns in time by means of strings of symbols.
Indeed all current linguistic theory, whether in phonetics, phonology or syntax, looks for the
effects of rule-governed symbol string manipulation. This presumesa discipline of phonetics
that will supply to linguistic theory a set of discrete symbolic units [Ladefoged, 1989].

The second framework for temporal pattern specification is the Engineering Approach.
Those with practical concern for real sounds, like phoneticians and engineers, needed
mechanical techniques to store and process the sounds. Time is transformed into an analog
signal or a vector of numbers that can be recorded mechanically and manipulated in useful
ways. Obviously, there are many techniques that fall under this heading. Simply making
a sound spectrogram uses a clocklike device to translate temporal patterns into spatial
patterns. And speech recognition systems make a ‘window’ on the signal and interpret
spatial position in the symbol string to infer time. By such techniques, an unlimited
amount of information about events in time can, 1n principle, be extracted and represented
as numbers. A vast variety of quantitative relations at various levels of abstraction can be
defined, like the ratio of two durations. But, what is frequently ignored is that there must
be two systems here: (1) a program, the statement of processes and relationships, and (2)
a controller, like the operating system, that reads through the statements of the program,
interpreting and executing them.

The third framework, and the most subtle to design, is a Dynamic Model. Such a
system learns to respond dynamically to familiar patterns in time. This kind of model
reaches and remains for a while in a unique state for each trained pattern. It reaches
this stable state at the end of a distinctive trajectory of states. The representation of
time here could be said to be either the distinct trajectory (that is, a dynamic pattern) or
some terminal stable state itself. This class of systems is not yet well-developed, but they
are important since they have the advantage of not requiring an external control system.
Decisions about what to do next are built in to the dynamics of representations.

These three models or frameworks embody different assumptions about what kind of
temporal information the central nervous system can use and how this information is to
be extracted. I will argue that there are actually strong empirical reasons for continuing
to explore the dynamic model. The first matter that needs to be addressed, however, is
the question of what a temporal pattern is. This is attempted in the next section.

The Problem of Temporal Patterns. What kind of temporal patterns are relevant to the
study of cognition? All sound consists of variations in air pressure over time. But not all
sound is cognitively temporal. On the other hand, some patterns can be quite long even
though we may know every detail. The fundamental issue is what properties of sound

imagine that the order of states in a program implies any cognitive claims. Within linguistics, how-
ever, there have been debates about rule ordering which assume that the order of derivational states
somehow resembles real time. Some states are reached ‘earlier’ and others ‘later’. Recently, new ap-
poaches to phonology inspired by connectionism have attempted to have rules apply simultaneously
([Lakoff, 1988,Hare, 1990,Gasser and Lee, 1989] or partly simultaneously [Wheeler and Touretzky, 1989].



patterns are specified by time and what by place. There is a frequency representation in
the auditory nerve that is extracted from ambient sound by the ear. From the highest
audible frequencies down to a low range (perhaps as low as 100 Hz) there are fibers that
fire most strongly for particular frequencies. And fibers representing nearby frequencies
are physiological neighbors. This is effectively a place code, or tonotopic representation, for
frequencies. We may think of the sound as filtered through critical-band filters with a range
of integration times (proportional to the wave length). At the same time, however, the
auditory nerve also exhibits strong time-synchronous activity: cells tend to fire whenever
the input wave reaches a particular phase angle [Sachs and Young, 1980,Moore, 1982]. By
means time-synchronous firing, there is a direct temporal code not only of very slow events,
but even of the successive ‘clicks’ on each cycle of tones as high as 4 kHz ([Moore, 1982]).
It is obvious that very long-period events (like a ringing telephone) must be processed as
events in time. But the brain also has the information available to process many very
fast events as temporal — even though a place code is also produced by the ear. Only a
little is known about the role of these overlapping sources of frequency information (see
[Warren and Bashford, 1981]).

For the purposes of computational modelling of hearing and perception, it is conve-
nient to settle upon some single compromise integration window and sampling rate (see
[O’Shaughnessy, 1987] for general discussion). There many variants specialized for vari-
ous purposes. Typical integration windows for speech signals lie in the range of 2 ms (like a

wideband spectrogram) to 20 ms (like a narrowband spectrogram) [Klatt, 1986],[Carlson and Granstr.

For modelling purposes, it probably does not matter much how these details are imple-
mented as long as both frequency (that is, place) information and temporal information
are available. Our concern in this paper is with how to use the information that does not
have a natural spatial representation.

2 Temporal Representations

In the following sections, three frameworks for representing temporal patterns in a percep-
tual or recognition system are sketched. These models have been popular within different
disciplines dealing with speech since they seem to address the necessary issues. First,
we should consider some apriori constraints on the representation of signals to support
perception of temporal patterns. Very long and abstract patterns in time — such as a
familiar melody - should probably be represented in abstract units like the notes of a
symbolic musical scale (since a melody should be invariant over changes in key and mu-
sical instrument, for example). But problematic issues arise for short duration patterns,
like stop consonants and syllables — not to mention the sounds of chair squeeks, light
switches, breaking glass and refrigerator doors. These patterns are short enough so that
there are no obvious ‘symbol-sized’ pieces from which they could be represented. Until
some initial code for complex temporal patterns can be modelled, we are unlikely to suc-
ceed in representing higher-level units — like musical notes, syllables and words. Many
examples of speech perception show that listeners make use of detailed temporal prop-



erties of words as distributed over a range of a syllable or more. Changes in temporal
detail can sometimes change one word into another. Such results suggest that the tem-
poral invariance of words as they are actually pronounced is not nearly so abstract as an
ordinal scale. The kind of timing distortions that are permitted by an ordinal scale for
time go far beyond the kind of rate change transformations that one observes in speech (see
[Dorman et al., 1979,Port, 1986,Port and Dalby, 1982]. Observations such as these make
one skeptical about current linguistic models of memory for the phonetic and phonological
form of words.

2.1 Linguistic Viewpoint

In a strictly symbolic model like theoretical linguistics, there is no concept of time other
than in ordering symbols. In linguistic models of phonology and syntax, the sequential
property of words — that is, their occurrence in historical or ‘real’ time - is expressed
by concatenating symbols in a particular order. The symbols are phonetic or phono-
logical segments, such as those of the IPA (International Phonetic Association), Jakobson
[Jakobson et al., 1952] or Chomsky & Halle’s Sound Pattern of English ([Chomsky and Halle, 1968)).
Although a string of phonemes may look like an integer scale (like ‘beads on a string’ as
they used to say in the 1940’), linguists actually rely on ordinal ‘distance’ measures (like
‘A and B are adjacent/nonadjacent’). Symbols can be defined that are intended to be
interpreted as meaning ‘longer’ and ‘shorter’, but this doesn’t count as having to do with
time (see [Lisker and Abramson, 1971]). Since acoustic inputs are actually distributed in
real time, a perceptual system must have some sort of ‘front end’ that produces discrete
segmental units from this continuum. The development of this front end is normally taken
to be the task of experimental phonetics [Chomsky and Halle, 1968]. As shown below,
the feature detectors at the front end are primarily conceptualized as acoustic filters that
integrate over some fixed time window on the signal. Indeed, it is impossible to imagine
a perceptual system that does not integrate events when they are close enough together.
This integration process necessarily results in loss of information about the precise location
of events within the integration window. The empirical issue is whether that hypothesized
loss in the case of particular features is also observed in human listeners.

Jakobson's Distinctive Features Since Jakobson’s early work, feature-detector systems have
been conceptualized as devices that integrate information over a certain time window
([Jakobson et al., 1952] [Fant, 1973]). Thus, the feature acute was defined (in [Jakobson et al., 1952))
as a spectrum that has relatively more energy above 4 kHz than below 4kHz (assuming
other parameters are held constant, or ceteris paribus, as Jakobson put it). It was hoped
that for each feature, some filter could be defined which would indicate when a particular
linguistic feature occurred in the signal. If static detectors that simply integrate their
inputs are sufficient to permit identification of these features, then a complete theory of
speech perception might be constructed that would never have to deal with time as a scalar
parameter (nor general spectral parameters either, apparently). Such a result would be



very attractive to those who attempt to demonstrate that serial order is the only tem-
poral relationship required for human cognition. If time-integrating features like this can
be defined effectively, then a linguistic model could be proposed that jumps in one step
from real-time integration of the auditory signal (that is, averaging over time) to a serially
ordered symbolic structure for language and other higher cognition.

This perceptual model was conceptualized as a bank of feature detectors that examine
the incoming acoustic signal. The detectors would fire synchronously once for each seg-
ment. In this way, not only is the spectral space coded into a smaller set of properties,
but time has also been converted to a string of time-integrated objects. Jakobson et al.
were unclear how the correct center point for each segment was to be found as the signal
streamed through the detectors. In a Pandaemonium-like [Selfridge, 1959] or connectionist
implementation of such features, each feature could inhibit its competitors. Thus there
would only be one winner from among competing sets at a time.

Most of the 12 features in the system of Jakobson, Fant and Halle are defined in terms of
information integrated over time windows of roughly 20-50 ms. Thus, the features [grave],
[acute] and [compact] were defined in terms of a spectrum with, respectively, downard tilt
(that is, more energy in lower frequencies), upward tilt, and band-passed with a center-
frequency at around 3000 Hz. For stops, this window was to be centered over the stop
burst. Depending on the relative output of two opposed filters (for each + value), the stop
would be categorized as plus or minus for each feature. Thus, the linguistic features from
which phonemes were defined were to be directly extracted from the signal by using a set
of integration frames. A few features like [interrupted] were defined by a change in value
between neighboring temporal slices (eg, from low-amplitude to high-amplitude).

Although the Jakobson-Fant-Halle system could never actually be implemented as a
speech recognition device,? the conceptual model continues to thrive within linguistics
and linguistic phonetics despite experimental phonetic evidence of the importance of the
scalar properties of speech timing. For example, Stevens and Blumstein explored variants
of the Jakobsonian place features by using fixed integration windows for carefully con-
structed static spectral templates [Stevens and Blumstein, 1981] [Stevens, 1983]. Other
work showed that performance would improve if dynamic properties of the spectra were
considered [Kewley-Port, 1983].

Incidentally, recent developments in phonology [Goldsmith, 1976,Clements, 1985] have
expanded the traditional model of segments by incorporating ‘autosegmental’ data struc-
tures. These allow each articulatory subsystem (or ‘tier’) to define its own sequence rela-
tions. And all autosegmental tiers (such as the lips, nasality, tone, etc) are linked together
in a single spatio-temporal time line. This model seems attractive since it no longer forces

?Despite all the attractive properties of Jakobson’s vision, the model was flawed because of the ceteris
paribus clause. This phrase, almost a refrain in the original technical report, meant that the distinctive
features were always defined by holding everything else constant while the comparison was made. That is,
attention was always focussed on minimal pairs. But discrimination between pairs of competitors is not what
speech recognition or speech perception requires. To be successful, it must identify something — anything
that can be found. Identification means distinguishing some feature of the sound from all other features of
sound. This is vastly more difficult that distinguishing minimally different word pairs.



linguistic time onto a discrete scale (like orthographic letters). Instead, the ordinal nature
of linguistic elements is clarified and enriched. 3

There has long been evidence that many temporal properties of speech play critical roles
in the production and perception of speech (see [Lehiste, 1970,Klatt, 1976] for reviews, or
[Port, 1981,Port and Rotunno, 1979,Port and Crawford, 1989) )- Numerous disputes have
arisen over the years as to whether information about scalar time, measured in rational
numbers, rather than simply timeless feature states need to be incorporated into theories
of speech perception and production.*

2.2 Engineering Solutions

Over the past 40 years, researchers with both scientific and engineering interests have
developed a variety of practical means of representing speech signals. These approaches
have ignored the traditional linguistic view of ordinal segments — segments that can only
be obtained from a linguist or phonetician. The engineering tradition is represented by
a huge body of research in many disciplines. A sampling of examples of programs and
models that process temporal information are mentioned below.

One of the earliest and most long-lived devices that allowed scientists and engineers
to study speech sounds was the analog sound spectrograph that became available around
1950.

Sound Spectrogram  Phoneticians need tools for the study of speech sounds, of course, so
they make sound spectrograms on sheets of paper: a display of frequency by time with
intensity displayed as darkness. Like tape recorders, clocks and digital-analog convert-
ers, the sound spectrograph uses constant motion to translate time into distance. Much
interesting research has been conducted on spectrograms and their digital successors.
The sound spectrogram in Figure 1 below has a distance measure for time. The figure
shows a pair of English words and demonstrate the kind of information available in spec-
trograms. Speech scientists take temporal measurements from such displays and infer
characteristics of speech production and speech perception from them (see, for example,
[Lisker and Abramson, 1964,Klatt, 1976]).

% Autosegmental models clarify the original insight of segmental descriptions of words since one is no
longer tempted to ask ‘How many segments away from phoneme A is phoneme B?’, as though they were
beads. I doubt any linguist ever wrote a rule involving counting segments. It may make sense to speak of
“4-letter words” but linguists don’t ask about 4-phoneme words — because linguists think of phonemes as
ordinal.

*Another prominent example of such a dispute between phoneticians and supporters of ordinal time is the
issue of voice-onset time as a cue for the feature [voice]. Lisker and Abramson [Lisker and Abramson, 1964]
proposed that voice-onset time, the interval between the burst on an utterance-initial stop and the voic-
ing onset (measured as a scalar) is an important cue for speech perception in English. Their results
were reinterpreted, however, in terms of timeless distinctive features by [Chomsky and Halle, 1968] and
[Halle and Stevens, 1980]. Lisker and Abramson responded by insisting that scalar information about tem-
poral structure cannot be ignored [Lisker and Abramson, 1971]. The issue was never resolved since it involved
fundamental assumptions about models for auditory memory for speech.
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/deebar/ /teepear/

Figure 1: Spectrograms of the words dabber and tapper showing A, the point of the stop burst, B,
the point of the voicing onset, C, the onset of closure for the medial stop, D, release of the medial
stop, E, voicing offset for the medial stop, and, F, voicing onset for the medial stop. It can be seen
that the two segmental differences between the words ([d] vs. [t] and [b] vs. [p]) are manifested as
several durational differences: The first vowel is longer before the [b] than the [p], and conversely,
the [b] closure is shorter than the [p]. But tappers offers several possible locations of the ‘vowel
onset’. But, in any case, how is vowel onset defined also for fiubber and rubber? Manipulation of
these parameters in synthetic speech stimuli shows that they are used by listeners to identify words.

Although the notion of ‘echoic memory’ has been proposed [Neisser, 1967] [Crowder and Morton, 1
evidence that this representation is the raw unprocessed signal is based on stimuli that
are either very simple (like tones) or very familiar (like speech). On the other hand, when
two familiar auditory patterns, such as one speech and the other nonspeech, are presented
simultaneously. Listeners tend to segregate (or parse) them into independent streams
that correspond, in many cases, to familiar patterns ([Bregman and Campbell, 1971] or,
for a review, see [Handel, 1989]). The temporal alignment of the unrelated patterns with
respect to each other (like speech with a superimposed click) is only poorly represented
[Bever, 1973]. Such a result would not be expected if a representation of the raw signal
itself were available to subjects.
On the other hand, we can collect evidence about the kind of information that percep-
tual systems must be using when listening to speech. It can be shown that many of the tem-
poral details of natural speech are detected and used by listeners (see [Klatt, 1976,Repp, 1984]
for reviews). By and large, most prominent temporal regularities can be shown to play a
role in speech perception if a sensitive experimental task is designed [Liberman et al., 1967 [Dorman ef



Dynamic Time Warping Despite evidence of the role of temporal patterns in the specifi-
cation of words (at least from experiments on minimal pairs), this information could not
be incorporated in speech recognition very easily (see [Waibel, 1986]). One reason is that
easily intelligible tokens of real words are normally produced with a vast variety of tempo-
ral patterns. This variation is due to speaking tempo in part, but also due to many other
factors. Speech recognition techniques made practical progress in the 1970s (as reviewed in
[Lea, 1980] and [Vassiere, 1985]) by ignoring linguistic segmental descriptions. One result
was the dynamic time-warping (DTW) algorithm as a way to get rid of spurious temporal
information in isolated-word recognizers. DTW permits the comparison of a test item with
templates in such a way that errors due to differences in the timing patterns are minimized
(Itakura, 1975,Sankoff and Kruskal, 1983]. The algorithm allows comparisons to be based
almost entirely on serial order.> After collection and averaging of a set of ‘training to-
kens’ for items in the vocabulary, the recognition system constructs a template for each
word against which new test tokens can be compared. The dimensions of the template are
discrete time and frequency (or other parameters based on data input). However, since
actually occurring input items occur at a wide variety of rates and styles, time must be
normalized. A technique that simply scales all durations by a constant amount does not
work well for several reasons. First, rate variation produced by human speakers is much
more complex and nonlinear ([Klatt, 1976,Port, 1981]. Secondly, it is difficult to normalize
by, say, 10% when the spectral frame sizes are fixed. Both problems mean that reducing
error in one temporal region will tend to increase it at the other end of the template. So,
dynamic time warping, as shown in Figure 2, is done by finding the monotonic mapping
from the template vector to the test item vector that produces minimum error (where
error is the difference between the test vector and the reference vector) across the entire
mapping. The vector for each time slice is subtracted from all the neighboring vectors in
the template. The algorithm finds a path with the lowest total error through that matrix
starting at (1,1) and ending at (I, J). This approach is motivated by a strong assump-
tion about speech: that speech production can change tempo so rapidly that it could be
changed by a large amount between each time frame.

Although dynamic time-warping was never intended as a cognitive model, it neverthless
offers a provocative a way of thinking about time. It assumes, Just as the linguists insist,
that linguistic information lies only in the sequential order of the states (although, of course,
constraints on the warping path are always applied in practice). Of course, the states here
are spectral slices, not segmental symbols as in linguistics. In acknowledging that the
states are distributed in highly irregular ways, it treats all temporal structure as a kind of
noise to be ignored in this clever way.

Even though reassuring in some sense, to the traditional linguistic view, there is much
evidence that scalar values of time are more important than that. There is too much

5The mapping between template and test item makes only very weak assumptions about contraints on
timing variation. As noted above, there is information in many details of speech timing that could be used
to help recognize words. A primitive means to do this was demonstrated in [Robert Port and Maki, 1988]
even though these authors did not claim that their technique would be generally practical.
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Figure 2: Dynamic time warping is done by finding a minimum error mapping from the reference
(or template) vector to the test item vector. The vector for each time slice is subtracted from all
other vectors. The magnitude of those differences is displayed here as circles. The algorithm finds
a path through the matrix starting at (1,1) and ending at (I, J), where there are I time steps
in the template and J steps in the test item. It accumulates the error across all the maz(z, 5)
pairings. This error is used for comparing different words. The word with the smallest error after
time warping that meets some threshold is chosen.

phonetic evidence that subtle details of speech timing carries usable information about
word identities [Klatt, 1976,Port, 1986]. Engineers and phoneticians have preferred to act
as though listeners have available to them a time window on the signal, a stretch of the
signal that is available at one time, like a ‘neural spectrogram’.

Nonoverlapping Windows As in conventional approaches to speech recognition, many sys-
tems within the connectionist school employ windows that are long and more or less
nonoverlapping. These present the network with the entire bandwidth of a long enough
stretch of signal to allow the whole target pattern to be displayed. The basic idea is to
have a separate set of nodes to represent raw inputs from each time slice. Thus, these
models typically have a single output category node for the whole window.

One prominent example among network models for a speech recognition task is the
model of Elman & Zipser (1988, section 3) . This feedforward system (trained with back-
Propagation) was presented with speech samples in a simultaneous window of 64 ms in 20
slices. For each slice, 16 normalized spectral energy measures were provided. The speech
samples were many productions of the 9 syllables: /bi,ba,bu, di,da,du, g1,ga,gu/ by a single
speaker. Thus the network had 320 inputs, only 3 hidden nodes and 9 output nodes and
was trained to label the spectrum in the window. Elman and Zipser showed that this sort
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of network successfully categorizes stop-vowel syllables despite variation across hundreds
of tokens. At first glance, the network appears to capture phonetically useful information
about location in time in terms of a spatial representation within the window. But from
the standpoint of the network, the nodes representing each time slice are just parallel input
channels. They do not have even intrinsic serial order. Thus they actually constitute only
a nominal scale for time [Stevens, 1951]. The reason that the system can differentiate
the stops from each other and the vowels from each other s that the stop burst always
occurs at about the same place in each token (so the ‘shift-invariance problem’ is minimal).
Clearly the window duration must be fixed since window size determines network size.

As a theory of perception of temporal patterns, the nonoverlapping window solution,
with or without labels indicating serial position within the window, has little to support
it. If one tried to run it continuously, there would be strobe-like effects due to interference
with the periodic ‘blanking interval’ — the time point where window contents are switched.
Inputs that are periodic at the frequency of buffer switching or its multiples should be
susceptible to auditory disappearance. Since no information about the signal is obtained
prior to filling the window, this window would have to have a fixed duration (although a
stochastically varied window duration could help avoid stroboscopic interference). Only
after the window is full, can long patterns be used to influence processing itself.

Of course, phoneticians have certainly never claimed that the f x I x ¢ spectrogram is a
part of the theory of auditory perception, but reflection shows that something like it must
implicitly be postulated if parametric measurement of time intervals is to be available to
human listeners. (Of course, humans and animals are known to be poor at parametric
measurement of time even though a ‘chronotopic’ window should make that easy.)

If time is converted into place, such models explicitly separate the representation of
time from perceptual analysis of time. But parsing the input this way requires breaking
experience of the world up into temporal chunks, that imply periodic alternations of in-
formation collection and information processing. The motivation for this kind of ‘time
multiplexing’ is that the window must be long in order to recognize long patterns. In
order to be long enough for the longer patterns, the ability to respond to short patterns is
artificially delayed — even though some short patterns require rapid reaction time. Surely,
the criterion of a quick response is important enough that long patterns must be extracted
by a technique that permits continuous streaming of inputs and response that is as early
as the information in the pattern permits.

Although the static window models mentioned so far have windows that have little
overlap (since it is assumed that each section needs to be analyzed only once), it is also
possible to have reduced amounts of overlap up to the point at which the window is as
narrow as possible, and it slides over the spectral frames with each increment of time.

Iterative Nets with Delay Lines One way to move toward continuous behavior without
having recurrent edges (since backpropagation works only for feedforward architectures)
is to unwrap the network in time. Thus a feedforward net for processing long patterns
is analogous to a much smaller network with recurrent edges, as illustrated in Figure 3.
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This variant of the time window has inputs that arrive at different places in the net
[Hinton, 1988,Elman and McClelland, 1986,Lang et al., 1990]. At each time slice after the
first, what is retained about earlier events is an analysis of those events, not the original
signal itself. But these have several problems that limit their biological plausibility. First,
at the close of stimulus presentation, they must be reset to an initial activation state for
presentation of the next stimulus. Second, they have a set of inputs and outputs for each
iteration of the network (that is, for each time frame of possible patterns), rather than one
set of outputs for each learned pattern. Thus, some additional technique must be used
either to obtain a single categorical response to the entire pattern.

d

Figure 3: A simple iterative network in which stimulation for different time frames are supplied to
different input nodes. A single kernel network at the left is basically repeated for each time slice.
The flow of activations through the network simulates recurrent activity through time. After each
trial, the system resets all activations and the next window begins again at t5. One advantage is
the architecture remains feedforward so that backpropagation can be used.

The familiar NET-talk system [Sejnowski and Rosenberg, 1986] for translating ortho-
graphically spelled text into phonemic transcriptions could be streamed this way. The
system takes 7 input characters (ordinary letters, spaces and punctuation), using 8 1-bit
input nodes per character, and outputs a single phonemic character corresponding roughly
to the middle input character. Then it slides over by one symbol of input and repeats the
operation. In effect then, each node in the hidden layer is summing inputs from 3 sym-
bols forward (relative to the output character) and 3 backward across the input. These
connections across time are also sometimes called delay lines.

In a recent study, Lang, Waibel and Hinton [Lang et al., 1990| demonstrate many in-
teresting properties of models that collect information from continuously streamed input.
There are many other studies as well [Tank and Hopfield, 1987,Elman and Zipser, 1988|
and [Waibel et al., 1988, Watrous, 1990]. In such a system, events at several adjacent
points in time are presented simultaneously to a single node in the network. It is like
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a time window since physical places (that is, input lines) represent distinct points in time.
But in Lang et al’s model, the network itself looks only at a short stretch of signal. If only
a small number of delays are sufficient, they can supply useful information about the local
history of the signal without raising much of a problem of shift invariance. Sensitivity
to local time-distributed information can be encoded in the weights representing different
delays.

The most important advantage of delay lines is that they allow inputs to be streamed.
Unlike the previously described implementations of a time window, such a system can run
continuously, with each input progressing down the row of delays and falling off the end.
Such a design implies that learning a temporal template, that is, a pattern specified by
absolute values of duration, should be easy to learn. For example, if voice-onset time (VOT)
in syllables tends to be 50 ms, then the system should learn to look for a configuration of
particular patterns at ¢, and at t_soms- Learning is adversely affected by variation in the
time lag. That is, if voice onsets are distributed over the range from 25 ms to 100 ms,
then the system will learn temporal blur across that range. Clearly, any normalization
for tempo variation will have to be done at some other level. This design is ideal for
recognizing absolute time values, hence they are a plausible wiring technique for extracting
such information. For example, inter-aural time differences are important information for
the angle of a sound source in the horizontal plane ([Shamma, 1989)).

Selected Feature Windows Another engineering model for temporal pattern recognition is
based on portions of the frequency space. They track specialized kinds of events, by storing
information about changes in the signal over time. Some models for perception of place of
articulation in speech also exhibit this kind of basic structure ([Kewley-Port, 1983]). An
example that is suggestive of a more general approach to temporal pattern perception is a
model that detects slopes.

In this kind of model, activation of particular subnetworks indicates that specific spatio-
temporal event sequence occurred. So a bank of detectors is constructed that span some
range of frequency x time patterns. Time itself is no longer directly represented in the
output of the detector circuit, since only some form of df /dt has been obtained. Depending
on the temporal history of inputs and the current input, the system will adopt a particular
unique state. In this way, the instantaneous state of the network can carry information
both about what happened in the past as well as when it occurred. Recognition, prediction,
decision-making and memory are not easily separable. The input arrives and, if it has the
right properties, that is, if peaks occur in the right frequency regions, then activation is
accumulated over time in a summing device. Errors in time of arrival cause no activations
to be accumulated.

Study of neural structures in the visual system of a rabbit ([H. B. Barlow, 1965]) reveals
frequency xtime detectors that measure the rate of change in various parts of the visual

field. This idea has been explored in the connectionist paradigm by [Smythe, 1987,Smythe, 1988],

[Watrous, 1990] and [Lang et al., 1990]. Smythe’s system used a ‘handwired’ set of mini-
networks for identifying the slopes of tracks in a binary-coded matrix. The model has a
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battery of detectors for various positive and negative slopes across a range of ‘frequencies’.
In one order of firing of the input nodes all inputs would be summed. In a different order,
a node could veto (or shunt) subsequent inputs. Competition between each slope detectors
assures only one of these states being an attractor for a given input sequence.

This system illustrates one way that information distributed over time can be combined
into a perceptual decision through use of delay nodes and detector systems based on
shunting inhibition. The state of the system following presentation of a formant track
carried information, not only about what the ‘current input’ is, but also about its history
over the previous 5-10 slices. The system demonstrates the value of allowing very low-
level decisions to be made that depend on the local time-history of the input. But these
particular slope detectors, however, are rather inflexible. In a later section, a very different
model that exhibits some of these properties will be described.

Hidden Markov Models. Hidden Markov models (HMMs) are the most effective speech
recognition architecture currently available (for reviews see [Rabiner and Juang, 1986]
[O’Shaughnessy, 1987]). In one application to an isolated-word speech recognition prob-
lem, there is a process whose ‘hidden’ states change about as often as phonemes do (that
1s, roughly 3 to 6 states for the optimum model of a consonant-vowel-consonant word). For
each of these states, there is an ‘observable’ Markov process whose states are fixed-width
spectra that have been clustered (or vector quantized) into a small codebook of spectral
archetypes. Each of the two layers is Markovian since the probability of moving from state
si to state s; depends only on s;. The matrix of probabilities for the spectrum layer also
depends on the internal state. Thus, the model for each word (that is, the sequence of
hidden states and transition probability vectors corresponding to it) can be used to find
the probability that an observed sequence of spectra was generated by that model.

This kind of system is clearly dynamic in some sense, but some assumptions under-
lying these models limit their ability to accurately simulate dynamic cognitive processes.
In general, the assumptions that make optimization possible limit the generality of the
model. One example is the first-order Markovian assumption itself — that only one pre-
vious state influences the next state. Another is that the number of hidden states and
layers can be fixed in advance. These topological constraints on the form of models that
can be considered for stimulus patterns make them inappropriate as models for a general
cognitive system. In addition, although the quantization process on the space of possible
acoustic spectra seems essential in order to limit the size of the probability density vectors
(given realistic constraints on available training data), this process also means that sen-
sory discrimination is limited apriori. It seems that practical HMMs cannot have access to
raw inputs. Hidden Markov models have many appealing properties including a tendency
to automatically normalize for rate changes. But, of course, if the probability of word
identity is compared across word models at conclusion of a test word, then a standard
window is still assumed as a device for system control. Not all HMMs have this property
(see [Levinson, 1985]).

The dynamic character of HMMs is a clue to the right direction to turn. Our final
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class of systems does not save up the signal itself nor does it have a hardwired circuit
or subnetwork that accumulates information about chosen inputs over pattern duration.
Rather, it enters a trajectory when a known pattern begins to be presented. Events in the
past change the state. But time is not totally squeezed out, since the representation still
requires time to manifest itself.

2.2.1 Engineering Methods: General Observations.

Thus far, we have looked at systems that did one of two things. The linguistic models
insisted that there is nothing of interest in time anyway. The engineering approach creates
a window on the signal by saving it up, either externally to the system itself, or internally
arrayed along delay lines. Then various programming and optimization techniques do
whatever we may think of. This very practical approach is fine — until we want our
data analysis technique to become a model of the perceptual process. At this point, the
theoretical basis for data processing becomes a problem.

2.3 Dynamic Attractors

The third model for collecting information over time to support pattern recognition is a
nonlinear dynamical system. Such a system can learn to be driven through a particular
trajectory in its state-space by the input signals themselves. How to design such systems
In connectionist networks is still not well explored — although developments are under way
in various laboratories [Grossberg, 1982,Grossberg, 1986,Baird, 1986,Hirsch, 1989]. But
there is some behavioral evidence (to be discussed below) that auditory memory for com-
plex tone sequences take a similar form. If this is a general form for auditory memory,
then such models might be useful for representing and perceiving human speech.

In addition, there is evidence that dynamic models are appropriate for modelling activ-
ity in the olfactory bulb. This work suggests that in an alert state, the activity of the ol-
factory bulb resembles a chaotic or random state [Skarda and Freeman, 1987,Baird, 1986].
When a very familiar odor is detected, the cells on the cortex of the bulb enter a state-
space trajectory that is distinct for each odor. This limit cycle loops for several cycles until
the stimulation provided by inspiration ends. These simulations have many similarities to
those described below, althoug our modesl do not exhibit cyclic behavior.

2.3.1 Simple Recurrent Networks

Recently a number of investigators have attempted to deal with the weaknesses of feed-
forward network models with an architecture that has a limited kind of recurrence — the
simple recurrent network or SRN. The recurrence provides feedback and keeps track of
history in some form. One example that runs continuously and stores stimulus history
internally was explored by Elman.
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Elman's bi-daa-guuu Network. An SRN was proposed [Elman, 1988] for tackling an inter-
esting problem in sequence as shown in Figure 4. It is said to be an SRN because the
activations of the hidden nodes, or sometimes outputs, are copied on the next cycle to
the set of context nodes. Each node in the hidden layer sums inputs from outside and
from the context nodes. Elman constructed many random strings of sequences bi, daa and
guuu coded into 6-bit vectors (or ‘distinctive features’) for each character and presented
one character at a time to the network. After optimization of weights on the feedforward
edges, the system learns to predict most of the predictable properties of the strings. Its
average error for the dimension that distinguishes the consonants from the vowels is low
everywhere. For example, the system ‘predicts’ a consonant rather than a vowel after a
single I, and also after the second A and after the third U. That is, the system has learned
to predict structure in time based on the patterns that were presented. On the other hand,
it predicts the place of articulation of a consonant very poorly at the boundaries between
each substring, since these choices were made randomly.
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Figure 4: On the left, is Elman’s recurrent network for the bi-daa-guuu problem. The input is fed
one slice at a time. The hidden context node stores information about recent inputs. As shown on
the right, the system can predict the output bit corresponding to the place of articulation feature of
the consonants and vowels very well - except at the onset of each syllable where prediction cannot
be done. The feature distinguishing consonants from vowels is always predictable.

Prediction is an essential task for networks that process variable length input patterns.
This task can be acheived by employing a target-driven learning algorithm like back-
propagation. The prediction target is what motivates the system to optimize toward
representation of events in time. One important drawback of this system is that the inputs
and the network itself run according to the same clock. Each input sample moves through
the network in lockstep fashion. This clock reduces the ability of the network to recognize
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patterns that vary in rate. Real nervous systems probably cannot depend on such a clock.

Recently, there have been numerous attempts to construct network systems that can
learn to follow dynamic trajectories that differ depending on what input patterns arrive.
These dynamic systems (a few examples are [Keeler, 1988 Mannes and Dorfiner, 1989,Harris, 1989])
are intended to follow specified trajectories. To understand these models and their rela-
tion to the previous models, analytical techniques must be borrowed from the study of
dynamical systems. If an energy field is parameterized by two dimensions of the model
state space that constrains where the model will move in the next timestep, then we can
conceptualize the instantaneous state of the system during a recognition problem as a ball
rolling downhill in this 3-D ‘landscape’ [Hopfield, 1982]. The system is moving toward an
attractive state. In the systems described above, the goal of design and training was to
assure that the system would find the most attractive state (analogous to a least-energy
state for a physical system). Hopefully, that state would represent the correct answer as an
equilibrium point (or fixed point) of the system. On each trial (after training), the system
falls’ toward one of the target states. It can be guided in time by the input itself. These
networks rely heavily on recurrent edges as the basic mechanism to store information and
control the state. It also seems possible that higher order relations between nodes may be
useful, that is, activation products can help assure rapid response. In our dynamic memory
modules, there are fully recurrent cliques of nodes in which all nodes feed everything. In
some systems, sigma-pi nodes allow the input and memory information to gate each other.
In this way, successful prediction can be noted and made use of.

Recently Sven Anderson and I have been developing recurrent networks with dynamic
attractors that learn to recognize melodies. For all the simulations reported here, two
familiar tunes (shown in Figure 5) were recorded, 5 performances each, on an electronic
keyboard (see [Port and Anderson, 1989]). The waveforms were spectrally analyzed in 64
ms Hamming windows with their centers 48 ms apart. Six frequency bins were centered
around the 6 notes used in the pieces (between 261 Hz and 440 Hgz, key of C). The average
normalized amplitude in each bin was stored. Later, these files, one for each measure (with
8 spectra each), were fed, one slice at a time, to the 6 input nodes of various networks.

Tone Sequence Simulation with SRN. A recurrent network was designed, as shown in
Figure 6 [Port and Anderson, 1989]. It has two outputs to train, a description of the
next input frame (on the Prediction nodes) and a linearly ramped identification of the two
targets. The hidden layer has sigma-pi nodes. By multiplying its 2 inputs (rather than
just adding them), the context nodes can quickly amplify or attenuate their inputs (and
vice versa).

We evaluated the ability of this kind of system to learn temporal patterns by training
it to identify target measures from the music. Two measures, one from each tune, were
selected as target melody fragments. The two target measures were particularly difficult
to discriminate since they differed only in the duration of certain notes. Of the 5 recorded
versions of each target measure, 2 were used as training tokens and 3 performances were
reserved for testing. The competing ‘distractor’ measures were the 14 other musically
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Figure 5: Stimulus construction for the melody recognition task. Panel A shows examples of the
FFTs (fast Fourier spectra) for one measure. Panel B shows how a vector of 6 numbers was obtained
by averaging across the frequency bin for each musical note.

distinct measures. The measures were presented in a continuous stream with no breaks
between measures. :

Networks of this architecture are not easily trained with backpropagation (since recur-
rent edges also were trained), so the “real-time recurrent learning” algorithm ([Williams and Zipser, 1!
was used. This algorithm performs gradient descent in weight space but is computation-
ally expensive (and, of course, not psychologically plausible). Despite variance due to the
live performance, the system succeeded in recognizing the target measures among all the
others, and in discriminating each target measure from all others with a d’ of better than
2.5, °

Although successful, this network exhibits some limitations. When presented a simple
task that required duration measurement, the system still made confusions between the
two targets. This may be due to a weak representation of durational information. Further
evidence of problems with the SRN design is that informal tests of changes in tempo (in
which the rate of presentation of the target melodies was slowed down by presenting each
frame twice), resulted in very poor performance. There is little reason to expect this model
to handle rate change very well. In order to allow a dynamics that would be more flexible,
the next network was designed. The idea was to build a fully recurrent clique of nodes and
attempt to train the system to use dynamic changes in state to record the history of the

5The value d’ measures discriminability unaffected by response bias. Values of d’' are z scores along a
hypothetical discriminant dimension along which targets lie toward one end and distractors toward the other
end. Thus d' = 3 means the distributions lie of 3 standard deviations apart along the discriminant dimension.
See [Swets, 1961,Robinson and Watson, 1972] or, for tutorial introduction, [Kantowicz and Sorkin, 1983].
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Figure 6: The SRN network in Port and Anderson, 1989. It was trained both to predict the next
input on the prediction nodes and to identify the two target melody fragments on the category
nodes by following a linear ramp target function. It succeeded in discriminating the two targets
quite well.

input pattern.

2.3.2 Dynamic Memory Simulation

In our most recent simulations of the melody recognition, task, we have networks with
a fully recurrent Dynamic Memory, as shown in Figure 7 (see [Anderson and Port, 1990]
for more information). This system learned to recognize the melodies much better than
the SRN model, getting d' of 3 (that is, 96% maximum correct identification assuming
minimum response bias) for any pair of target measures.

More interesting than the basic result is the nature of the representation in the Dynamic
Memory when a learned pattern occurred. Since there are 7 dimensions to be examined
over time, it is convenient to perform principle components analysis. This rotates the 7
dimensions to find a small number of dimensions, the principle components, or PCs, that
exhibit the most variance. Thus each PC basis vector is a linear combination of the 7 node
activations. Thus Figure 8, shows the first two principle component values for continuous
presentation of two target measures. For all the nontarget measures, the memory cycled
around one region of its state space (that is, there was almost no differentiation between
the distractors). These discrete trajectories provide estimates of the direction field in the
basis provided by the principle components (similar to Waddington’s ‘adaptive landscapes’
and ‘energy landscapes’). This parameter represents a tendency to move through the
state space in a particular direction (for an introduction to the ideas of dynamics, see
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Figure 7: Dynamic network used for the melody recognition task in Anderson and Port, 1990.
There are 5 input Feature nodes (the note A left out here to reduce the number of nodes) which
feed to 7 fully connected Dynamic Memory nodes. Two of the memory nodes are trained to serve
as identification nodes: one must turn on and the other off on the last 2 frames of the two targets.
Real-time recurrent learning [Williams and Zipser, 1989] was used to optimize the weights.

[Abraham and Shaw, 1983] or [Luenberger, 1979]). When a target measure begins to be
presented, the system moves through a very characteristic sequence of states as it ‘falls’
along a path in state space that is created by the effect of the stimulus input sequence itself
and the dynamic memory. This system was gradually shaped by a slow learning process
into a something that could respond dynamically so as to distinguish the patterns.

So ‘recognition’ of a trained pattern is exhibited in this short-term memory not by
a single node lighting up (except for the two category nodes that were trained). Notice
that the G in the target sequence GFED (Target 1) is far from the G in target sequence
EEFG (Target 2). So the trajectory represents the whole pattern, not just their context-
independent notes. That is, the trajectory and the instantaneous state at the end of the
pattern both embody the whole pattern.

In order to see how well the system is following a trajectory, we should try to disturb it
and see if it tends to cling to its trajectory. Although many possible ways to do this could
be designed, one technique that we attempted was to slow down the rate of presentation.
As shown in Figure 9, if the tempo of presentation is slowed down by a factor of 2 by
simply presenting each spectral slice twice, the system still tracked the pattern and moved
through the same regions of its state space — it Just did so more slowly. The network was
trained only on the standard tempo productions, but performed appropriately without
retraining when the tempo was slowed by a factor of two. In other simulations it was
shown that addition of noise on input amplitudes had little effect on performance unless
very large.

Thus, the system is able to recognize patterns distributed in time even under certain
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Figure 8: The first two principle components for the dynamic short-term memory node activations.
The dark line follows the memory state during the 8 frames of pattern presentation. The X marks
the second frame. For Target 1, the first two frames were a G, then two F’s and so on. There were
8 frames for each target measure and they are connected in the order in which they were presented.
Note that similar input notes (eg, G and F have very different locations in each pattern. All the
nontarget measures lie in a single small attractor near the center of the space. See Anderson and
Port, 1990 for more information).

distortions of time and frequency. It was able to differentiate patterns by recursively
exciting itself such that, as long as inputs continue to support the pattern, then it follows
a trajectory through its state space. This trajectory was followed despite major distortions
of duration. Presumably, it will also exhibit resistance to other kinds of noise. Further
exploration of the resilience of this kind of system is under way.

This kind of representation appears to have certain advantages for a nervous system.

1. It has a built-in mechanism for reset when a pattern is completed. That is, it should
be able to learn patterns of any duration. The outputs shown above plus results of
other unpublished simulations suggest that fully connected network cliques trained
with real-time recurrent learning can allow inputs to control their own processing in
a reasonable and stable way.

2. Response can be initiated as soon as possible, that is, as soon as the information in
the stimulus permits a decision to be made.

3. Tempo invariance of the system was obtained ‘naturally’, that is, without training
on more than a single tempo. The tendency to follow a trajectory provided a consid-
erable amount of tempo invariance. Presumably there are limits on human tolerance
of complexity in tempo change which should be investigated experimentally.
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4. Finally, the system reaches recognition without having to label or identify any com-
ponents. It gets a label for the entire sequence but the label depended on generation
of a memory that was temporally stable. It employed a ‘subsymbolic’ representation
of temporal pattern to enable symbol-like recognition of the pattern as a whole.

The model has other implications, however. Scaleup of this idea seems to imply learn-
ing a large number of state trajectories for complex auditory patterns of various sizes and
complexity. In addition, these learned trajectories will have to nest within each other hi-
erarchically. The important implication of this model for a psychological theory of time
is that there is nothing that directly represents time. Thus there is no ‘chronotopic field’
such that distances along it represent intervals of real time. Instead, the lowest level of
the system does ‘time normalization’ intrinsically and automatically. It directly extracts
predictable patterns from inputs, and stores them in a useful way. But to get such rep-
resentation requires much practice in order to tune the dynamics of memory. A learning
process is clearly required to support development of a model for the states themselves.
Actually, as will be argued in the next section, there is evidence that human perception
depends on similar kinds of learning for the lowest level of auditory pattern perception.

3 Behavioral Evidence: Discrimination of Complex Sound Patterns

One conclusion from this review of temporal pattern recognition techniques is that static,
timeless models, of the kind used in linguistics, are quite inadequate for perceptual models.
And time windows, which are implicit in all research on speech and hearing, are implausible
biologically. Many kinds of experiments have been interpreted as support for a short-term
echo-like store. In these experiments subjects typically listen to stimuli that are either very
simple or else very familiar. The important question, however, is whether there is a raw
acoustic store in which some parameter represents time itself. Is there a true chronotopic
field containing spectra displayed through time which subjects can examine? To explore
this issue, subjects must be challenged with complex and unfamiliar patterns. Charles Wat-
son and his colleagues have conducted a large number experiments on such patterns over the
years (for reviews see [Watson and Foyle, 1985, Watson, 1987,Espinoza- Varas and Watson, 1986]).
Subjects’ performance on these tasks does not seem to be encouraging for a model that
assumes access to a spectrogram-like store of the raw acoustic signal.

The basic idea of this research program was to make very complex acoustic patterns
and evaluate subjects’ ability to make detailed judgments about the patterns. That is, in
the terminology of cognitive science, they explored the quality of auditory representation.
Subjects were presented two very similar sequences and asked if they are the same or
different, as shown in Figure 10. The quality of the representation is measured as the
proportional change in the stimulus that is required for subjects to reach a threshold
percent correct (usually 70%) discrimination of the difference. A typical stimulus in these
experiments is a random sequence of 10 tones, each of which is only 40 ms long. Thus, a
stimulus is a complex burst of sound (vaguely resembling a turkey gobble) that lasts less
than a half a second. The subject is played one of these sequences as a standard and then
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twice more, and asked if the last two are identical. One of the last two items may have one
component changed somewhat in frequency or, in some experiments, duration or intensity.
The primary dependent variable, then, is the As/s, that is, a percentage change in a
stimulus parameter, that is required in order to reach a certain level of performance. The
threshold Weber fractions for the parameters of frequency, intensity and duration are well
known, of course, for very simple tone stimuli. The question raised in these experiments
is what limitations on performance lie central with respect to the ears? If subjects need
to store a complex pattern, what is the representation like? How much detail do listeners
have access to?

The general finding is that if the random patterns presented to a subject are drawn from
a large set (eg, more than 50 patterns), then subjects are unable to do this task very well.
Even after thousands of trials, stimuli that are complex and unfamiliar require enormous
changes in stimulus parameters for the differences to be detectible [Watson and Foyle, 1985].
For example, in many cases frequency must be changed by more than an octave (that is,
by a factor of 2) before subjects can detect the change reliably. These changes are large
enough that a temporally integrated representation, that is, something like a long-time
spectrum averaged across the entire sequence, should be able to reveal the difference.

On the other hand, if the subject is trained on one pattern at a time, then his per-
formance at detection of a frequency change gradually approaches his performance on the
tones if they were presented under ideal experimental circumstances (where the tones are
long and immediately adjacent in time). However, asymptotic performance still may take
several thousand trials on each pattern [Spiegel and Watson, 1981, Leek and Watson, 1984].
It is possible that the training involved here produces a similar representation to that
achieved by the Anderson and Port network described above. That is, training may pro-
duce distinct dynamic trajectories through state space for learned patterns.

There are several kinds of evidence that support this account. The first is that it appears
that when subjects listen to patterns, correction for tempo variation is obtained quite
naturally, almost for free [Kidd and Watson, 1989]. It may initially seem counterintuitive,
but slowing down these very complex patterns by a factor of 4 or 8 provides almost no
improvement in performance [Watson and Foyle, 1985]. Even abrupt and unpredictable
changes in tempo do not impair performance whereas changes in the frequency range of
a pattern impairs performance greatly ([Kidd and Watson, 1989]). These characteristics
are compatible with the view that for rapid complex patterns, the auditory system learns
dynamic trajectories through state space. As the pattern appears at the periphery, the
system is driven through this trajectory. Some deviations in the pattern, such as changes
in the overall rate of presentation should not disturb it very much. Thus, these behavioral
results resemble our dynamic memory system. Both require extensive training but are
resistant to rate changes and should not exhibit backward masking (since patterns are
recognized as they come in, not after a period of subsequent processing).

In one experiment, Watson’s subjects were given many patterns — but with a special
constraint in one of the conditions: that Af was always added to the 7th component of
each 10-tone pattern. The subjects were not able to exploit this invariant to perform better
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here than they did in the condition where the target tone (the one with A f) moved around
from pattern to pattern [Watson et al., 1975]. So they were apparently unable to ignore
all other tones in the pattern except the 7th. They had to try to learn all the rest of the
pattern too. These results suggest that a temporal mask, one specified in absolute values, is
more difficult to learn than a ‘mask’ that is based on ordinal position. Conversely, patterns
that are defined in tempo-invariant terms (like a melody or word) should be difficult for
the delay-line model. A dynamic model should have a difficult time recognizing events at
a fixed time lag when intermediate events are varied. The intrinsic time normalization and
trajectory tracking of this system should reduce performance on such tasks. Obviously,
these are empirical issues that should be explored more carefully experimentally.

4  Conclusions

It is proposed that auditory memory suitable for recognizing long time-window patterns
may be achieved by continuously recoding the signal into descriptions that summarize
useful properties of what has been seen recently - including temporal properties. That
recoding process is achieved by making decisions (either continuously or on each input
time frame) as to what description is appropriate. Processing is controlled primarily by
the input sequence itself in conjunction with long-term learning (stored in the weights)
and dynamic responses to recently seen inputs. This means that control over the analysis
process is inherently bound up with the description itself, and that data structures are not
clearly distinguishable from the operations upon them. If recodings of this kind at various
time scales and various levels of abstractness can be constructed, then perhaps continuous
recognition of hierarchically-structured dynamic signals like speech is possible. But suc-
cess may require abandoning the common assumption of cognitive science that everything
in knowledge should have a representation. A clear distinction between operations and
representations may be impossible to make in a dynamic model. Instead of concatenation,
there will be a trajectory through state space. Instead of static symbols, there will be only
the stability of equilibria.

The words of human speech always exist in real time — in historical time. But the formal
symbolic model that offers so much power and clarity to modern thought about cognition
does so by giving historical time short shrift. Approaching the problem from a formalist
perspective, the assumption once seemed almost inescapable that scalar properties of time
can either be ignored and processed as serial order, or else, if that fails, that time can be
treated simply as another parameter. But if it is a parameter, then it must be measured.
And the measurement task places a huge burden on some preprocessing system that must
both display time as space (or is there some other way?) and recognize certain landmarks
and measure the required values as rational numbers. If our concern is with the description
of sound, then we should go ahead and measure time. But if measurements are supposed
to play a role in a model of cognition, then we are responsible to account for the extraction
of this information. There are only a few options. What I have tried to show in this essay
is the narrow range of underlying models that have actually been exploited in the many
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disciplines with a concern for speech. I have also tried to suggest that another model is
possible, one that is intrinsically dynamic.

Although the implementations in this paper are novel, the basic ideas have been on the
table for many years - especially in neuroscience. For example, Lashley’s informal model
of cortical processing of patterns in time ([Lashley, 1951]) sounds fresh and relevant today:

“The cortex must be regarded as a great network of reverberatory circuits,
constantly active. A new stimulus, reaching such a system, does not excite
an isolated reflex path but must produce widespread changes in the pattern of
excitation throughout a whole system of already interacting neurons.”

To understand things, we prefer to make them stand still for us. But cognition may
be something that can only be understood by plunging into models that are based on
‘reverberation’.
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Figure 9: Effects of changing tempo. On the left is the same display as the previous figure. On
the right the same pair of stimuli were presented to the network at half-tempo by repeating each
spectral frame twice. Almost same trajectory was followed for the slow presentation as before, but
it now takes 16 frames to complete the trajectory instead of 8. Notice for Target 2 in the Slow

presentation that the system circles closer to the final attractor state. No retraining was done for
this response.



33

4\ Frequency Discrimination
interval 1 ; interval 2 ; interval 3
(standard) ; (same) ; (different)
> | : Af
c ' :
o : :
=3 ' '
o ‘ :
@ H ]
= s i
o E ;
o ! ;

| «<— 500 — |

v

time (ms)

Figure 10: Sample trial for discrimination of a frequency change in a three-interval task. The
first is the standard, then either the second or third item may have A f added to one component.
Unless the subject is very familiar with the pattern this task is very difficult. If the patterns are
unfamiliar, critical A f/f (the percentage change to permit good discrimination) must be an order
of magnitude larger than if the pattern is highly trained.



