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Abstract An experimental investigation of propagation methods with the game
Five-In-A-Row shows cases where nonminimax propagation methods usually beat
minimax. Previous research on the minimax pathology has shown that minimax is
not the optimum way to back up the estimates of the value of game positions, but the
previous work concentrated on games that were devised to illustrate the phenomenon.
This paper shows that an advantage comes from using a nonminimax propagation
methods with a common game.

1 Introduction

The standard approach to game-playing is based on a partial game-tree search al-
gorithm, MINIMAX. Computer programs playing games like chess and checkers im-
prove their performances by increasing the search-depth. Recently, computers such
as DEEP THOUGHT and HITECH have beat Grandmaster-level human players. This
was achieved through deeper search resulting from the increased computing speed
obtained by special hardware. The experience with chess programs is that deeper
search leads to better play [8]. On the other hand, Nau [3, 5], Beal [2], and Pearl [12]
showed that for some reasonable games and evaluation functions, there is a minimaz
pathology, where the quality of the move selected by minimax propagation gets worse
as the search is made deeper. In a uniform binary game tree with a probabilistic
evaluation function, the rate of error amplification per game cycle increases as the
square root of the number of alternative moves available to each player [10].

This paper is concerned with propagation methods and the quality of static eval-
uation functions on the game Five-In-A-Row (known as OH-Mok, Go MOKU, or
PENTE). Although no evidence of minimax pathology was found, cases were found
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where propagating a weighed average of the best moves was significantly better than
minimax propagation. This shows that avoiding the error amplification of minimax
can be important in real games.

2 Game Description

The game Five-In-A-Row is a two-person zero-sum perfect-information game. The
game board has 19 rows and 19 columns, so that the board consists of 361 points.
From left to right, numbers 1 to 19 are used to represent the z-coordinates. From
top to bottom, numbers 1 to 19 are used to represent y-coordinates. A point 1is
represented by z- and y-coordinates: (z,y). One player uses white stones, and the
other player uses the black stones. The players alternate placing one stone at a time
on any unoccupied point on the board. The player who first puts five adjacent stones
in a row in vertical, horizontal, or diagonal directions wins.

This game is essentially the same as the game Go MoXU, which has been played
for hundreds of years. However, modern Go MOKU has a few additional rules to
compensate for the advantage of moving first. We did not consider these additional
rules.

3 Static Evaluation Function

In our program, the static evaluation function assigns a value to each linear chain
consisting of stones of one color. The chain may contain empty spaces, but it can
not contain stones of the other color. Each chain is specified by a starting stone
and a direction. (Chains can overlap.) Each chain has a left termination point and
a right termination point consisting of a stone of the wrong color or of the edge of
the board. (The termination points for vertical chains are actually top and bottom
points.) When the distance to the termination point is more than 5, it is treated as
though it were 5. A chain is open if both ends are at distance five. (Distance five
gives just enough room to form a chain of five stones beginning with the starting
stone.) A chain is dead when the distance between the ends is less than five. All
other chains are closed. Each chains have a value V,, that depends the openness, o,
and the number of stones, s, of the chain. Dead chains have a value of 0. All other
things being equal, a chain with a large number of stones is much more valuable than
one with a small number of stones. Also, open chains are more valuable than closed
ones. Details of the values we assigned to chains are given in the next section.

The value of the white stones (Vi) is the sum of the values of all chains containing
white stones, while the value of black stones (Vj) is the sum of the values of all chains



containing black stones. To evaluate the value of the board in a position with white
to move, we use the formula

V = Vig — dVs,

where d is a defense factor. When evaluating a position with black to move we use
the formula

V =Vg —dWy.

(Since the program does a fixed depth search, it never needs to compare values gen-
erated with these two formulas.)

The defense factor improves the quality of the evaluation function. With a defense
factor of 1, a well optimized evaluation function for odd numbers of depths is too
offensive for even numbers of depths and also a well optimized evaluation function
for even numbers of depths is too defensive for odd numbers of depths. With a fixed
evaluation function, as the defense factor increases up to an optimal value, the number
of mistakes is reduced, so that generally the quality of decision making is improved.
When two players use very large defense factors, they become so defensive that the
game ends in a draw. Generally, odd numbers of search depths need small defense
factors, and even numbers of search depths need large defense factors.

To speed up the program, an incremental version of the evaluation function is
used. The placing of a new stones changes only a few chains. The new value of a
position is calculated from the old value plus the change in value that results form
the altered chains.

4 Adjustment of Parameters

The data set used in this experiment has 32 initial board configurations. For each
initial state, 2 games are played: one player starts first, and then the other player
starts first, initiating a total of 64 games.

Sets of games were played and the values of d and Ve,s were adjusted to obtain
good play. To reduce the number of parameters, the values of V,,s were required to
be of the form
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During the adjustment of the parameters minimax propagation with 2 ply lookahead
was always used. We found that @ = 1,b = 64,d = 64 leads to fairly good play. The
set @ = 1,b = 64,d = 256 is even better, but it leads to overflow problems when used
with 3 ply search. In 3 ply search the set a = 1,b = 64,d = 1 is better than the set
a =1,b = 64,d = 64. The appendix shows the results from selected runs used for
parameter adjustment.

5 Propagation Methods

The main objective of this experiment is to see how various propagation methods
work. After a given depth of search, the evaluation values of terminal nodes prop-
agated to the starting position. The propagation value of each nonterminal node is
determined from evaluation values of its children. Actual implementation used NEG-
MAX notation. Five maximum values are considered among sorted sibling nodes:
EVy, EV,, EVi, EVy, and EVi. EV; is the 1** maximum value. The propagation
value of a node is decided by Y7_, weight; x EV;. A set of weight’s decides a propa-
gation method.

In the minimax propagation, the only maximum value is propagated. This value
1s expressed by:

MM =10x EV;+00x EV,+0.0x EV3+0.0 x EV,+0.0 x BV}
The other propagation methods considered are:

P81100 =08 x EV; +0.1 x EV, + 0.1 x EV3 4+ 0.0 x EV, + 0.0 x EVs
P52111 =05 x EV1 402 x EV, +0.1 x EV3+0.1 x EV, + 0.1 x EVq
P43210 =04 x EV1 +03 x EVo +02x EV34+0.1 x EV, +0.0 x EVs

Every propagation method competes with the other ones, thus there were 6 pairs
of competitions: MM versus P81100, MM versus P52111, MM versus P43210, P81100
versus P52111, P81100 versus P43210, and P52111 versus P43210.

6 Results and Discussion

In order to find out how propagation methods work when the quality of evaluation
functions differs, three sets of parameters are used: PS1, PS2, and PS3. For PSI,
a=1,b=1,and d =1. For PS2, a =1,b= 64, and d = 1. For PS3, a = 1,b = 64,

and d = 64. Table 2 contains the result of competion between sets of parameters on



” Parameter Set | a ‘ b ‘ d ”

PS1 112 |2
PS2 11641
P33 1|64 |64

Table 1: Three sets of parameters

H Depth ‘ Propagation Constant [ Set [ T™W | PW [ Set ‘ TW [ PW—”

2 MM PS110 0 PS2 | 64 32

2 P81100 P51 |0 0 PS2 | 64 32

2 P52111 PS11|0 0 PS2 | 64 32

2 P43210 PS110 0 PS2 | 64 a2

2 Total P51.| 0 0 P52 | 256 | 128

2 MM P52.1 .31 0 P53 | 33 1

2 P81100 PS2 | 16 0 PS3 | 48 16

2 Pa2111 PS2 | 20 3 PS3 | 43 14

2 P43210 PS2 | 16 1 PS3 | 48 17

2 Total Ps2 | 83 4 PS3 | 172 | 48
|3 | MM |PS1]0 Jo [PS2]64 [32 |
|3 | MM | PS2[55 [24 [PS3[9 1 |

Table 2: Comparisons between parameter sets

some fixed depths and propagation methods. Depth means the lookahead depth. Set
is the parameter sets in Table 1. TW means the number of total winnings, and PW
means the number of pair winnings. As shown in Table 2, in 2-ply search, PS3 is, in
decision quality, better than PS2, and PS2 is better than PS1. In 3-ply search, the
PS2 is better than PS3, and the PS3 is better than PS1.

In the tables below, p-value means the probability that random play would result
in one of the players winning at least m out of n games. (This is a two-tailed test.)
Thus, the p-value is

(2 (1) 2.(1)

where m > n/2. If m = n/2, the ¢ = n/2 term is included in only one of the sums [9].
A small p-value suggest that winning program is better than the other one, rather
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Winner Loser
Propagation W PW Propagation
Constant No | p-value | No | p-value | Constant TW | PW
MM 34 | 0.71 710.77 P81100 30 5
MM 33 | 0.90 8| 1.00 P52111 31 7
MM 36 | 0.38 10 | 0.45 P43210 | 28 6
P52111 34 | 0.71 41 0.69 P81100 30 2
P81100 33 | 0.90 4 11.00 P43210 31 3
P43210 35 | 0.53 310.25 P52111 29 0
Propagation Constants | MM | P81100 | P52111 | P43210
Total of TW 103 | 93 94 94
Total of PW 25 |11 11 12

Table 3: Winnersfora=1,6=1,d=1, and I = 2 ply

than just lucky.

Parameter sets PS1, PS2, and PS3 are used in Table 3, 4, and 5 respectively, and
P52 and PS3 are used in Table 6 and 7 respectively. Each of these tables contains the
result of competition between propagation methods, and uses a fixed a,b,d, and L.
Tables 5 and 6 use well-adjusted parameters. They also show results that are signifi-
cant at the 5% level. At the lookahead depth 2, minimax propagation is significantly
better than the other propagation methods. At the lookahead depth 3, minimax
propagation is usually worse than the other propagation methods. The depth 3 re-
sults show the error amplification that can occur when minimax propagation is used
with heuristic evaluation functions.

Even though deep search has proven beneficial in some real games, it does not
mean that the pessimistic effect of the minimax pathology can be ignore in game
programming. Error amplification due to minimaxing is an established fact. It may
significantly degrade the quality of decisions in practical games [10]. More appropriate
propagation rules can make substantial improvements in decision quality by minimiz-
ing this deterioration. Recently Ingo Althofer [1] reported that in game tree models
with stochastically distributed evaluation error an incremental negamax algorithm
reduced the minimax pathology.



Winner Loser
Propagation TW PwW Propagation
Constant No | p-value | No | p-value | Constant TW | PW
MM 36 | 0.38 11 | 0.48 P81100 28 7
MM 38 | 0.17 910.15 P52111 26 3
MM 39 | 0.10 15 | 0.21 P43210 25 8
P52111 34 |0.71 51 0.73 P81100 30 3
P81100 33 | 0.90 5 1.00 P43210 31 4
P52111 32 | 1.00 3| 1.00 P43210 32 3
Propagation Constants | MM | P81100 | P52111 | P43210
Total of TW 113 |91 92 88
Total of PW 35 |15 11 15

Table 4: Winners for a =1, b =64, d =1, and [ = 2 ply

Winner Loser
Propagation TW PwW Propagation
Constant No | p-value No | p-value Constant TW | PW
MM 45 | 1.56 x 102 | 14 | 9.77 x 10~ | P81100 19 i
MM 45 | 1.56 x 10~ | 14 | 9.77 x 10~* | P52111 19 1
MM 46 | 6.17x 107* | 16 | 1.31 x 10~3 [ P43210 18 2
P81100 35 | 0.45 410.38 P52111 28 1
P43210 35 | 0.53 410.38 P81100 29 1
P43210 37 |0.26 516.25 x 10~% | P52111 27 0
Propagation Constants | MM | P81100 | P52111 | P43210
Total of TW 136 | 83 74 90
Total of PW 44 6 2 i3}

Table 5: Winners for a =1, b = 64, d = 64, and [ = 2 ply




Winner Loser
Propagation TW PW Propagation
Constant No | p-value No | p-value Constant TW | PW
P81100 38 | 0.17 10 | 0.18 MM 26 4
P52111 41 (328 x107%| 12]3.52x 1072 | MM 23 3
P43210 37 | 0.26 10 | 0.30 MM 27 5
P52111 44 | 3.69 x 107° | 12 | 4.88 x 10~* | P81100 20 0
P43210 46 | 6.17x107* | 14 | 1.22 x 10~* | P81100 18 0
P52111 32 | 1.00 0| 1.00 P43210 32 0
Propagation Constants | MM | P81100 | P52111 | P43210
Total of TW 76 76 117 115
Total of PW 12 10 24 24

Table 6: Winners for a =1, 6 =64,d =1, and [ = 3 ply

Winner Loser
Propagation TW PW Propagation
Constant No | p-value | No | p-value Constant TW| PW
MM 39 | 0.10 10 [ 9.23 x 1072 | P81100 25 3
P52111 39 | 0.10 13 | 0.17 MM 25 6
P43210 37 | 0.26 13 | 0.38 MM 27 8
P52111 34 | 0.71 910.80 P81100 30 7
P43210 34 | 0.71 810.79 P81100 30 6
P43210 34 | 0.53 81 0.58 P52111 29 5
Propagation Constants | MM | P81100 | P52111 | P{3210
Total of TW 91 85 102 105
Total of PW 24 16 27 29

Table 7: Winners for a =1, b = 64, d = 64, and [ = 3 ply




A Winners for parameter adjustment

The table below contains some result selected from competition between the param-
eter set (a = 1,b = 64, and d = 64) and other parameter sets which differ in one of
a, b, d from the parameter set. Lookahead depth 2 is used. In the table, TW means
the number of total winnings, and PW means the number of pair winnings.

Winner Loser
al b d| TW | PW | a b| d| TW | PW
1] 64 64 40 13| 2| 64|64 1L 0
1|64 64 26 8| 4| 64|64 14 1
1] 64 64 31 10| 8| 64|64 6 0
1] 64 64 31 1016 | 64 | 64 7 0
1] 64 64 28 5132 64|64 7 0
1] 64 64 64 32| 1 1] 64 0 0
11|64 64 64 32| 1 2| 64 0 0
1|64 64 64 32| 1 4164 0 0
1] 64 64 64 32| 1 8 | 64 0 0
1] 64 64 64 32| 1| 16| 64 0 0
1] 64 64 64 32| 1| 32|64 0 0
1] 64 64 32 0| 1]128 |64 32 0
1|64 64 32 0| 11256 |64 32 0
1|64 64 33 1 1] 64 1 31 0
1] 64 64 33 1] 1| 64|16 31 0
1| 64 64 33 1 1] 64|32 31 0
1] 64 64 32 0] 1| 64|64 32 0
1] 64 96 40 8 1| 64|64 24 0
1|64 128 53 21 1| 64|64 11 0
1]164| 128 52 20 1| 64|64 12 0
1164|1024 52 20 1| 64|64 12 0
1164 | 4096 52 20 1| 64|64 12 0
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