Compiling Lambda Expressions Using Continuations

and Factorizations

Mitchell Wand
Daniel P. Friedman
Indiana University

Bloomington, Indiana 47401

TecunNicAL ReporT No. 55
CoMPILING LAMBDA ExPRESSIONS USING CONTINUATIONS
ND FACTORIZATIONS
- MitcHELL Wanp
DaNIEL P, FRIEDMAN

REvisep: Jury 1977

To appear Computer Languages (1978).

Research reported herein was supported in part by the National
Science Foundation under grants numbered DCR75-06678 and MCS75-08145.

Abstract: We present a source-level transformation for
recursion-removal with several interesting characteristics:
(1) the algorithm is simple and provably correct.
(1i1) +the stack utilization regime is chosen by the compiler
rather than being fixed by the run-time environment.
(i1ii) +the stack is available at the source language level so
that further optimizations are possible.
(iv) the algorithm arisesfrom ideas in category theory.
In addition to its implications for compilers, the ftransformation
algorithm is useful as an implementation technique for advanced
LISP-based systems, and ene such application is described.
Key Words: compilation, .continuations, factorization, lambda-

expressions, LISP, recursion-removal.

1. Introduction

There has been considerable recent interest in compiling
(or, more strictly speaking, code generation) via source-to-source
transformations [12, 15, 17]. 1In this paper, we consider a class
of transformations which extend this technique to recursive
languages such as LISP. Code generation for such languages
consists of a recursion removal phase in which the recursive
program is transformed into an iterative one which utilizes a stack,
followed by conventional optimization and code generation.

We present a source-level transformation for recursion-
removal which is interesting for several reasons:

(1) the algorithm is simple and provably correct (although
we do not present a correctness proof here).

(ii) depending on the choice made at the key step in the
algorithm ("factorization"), a variety of alternative stack
utilization regimes may be employed. Conventional compiling
fechniques seem to view stack usage as part of the run-time system
for the language as a whole, rather than as a decision to be made
by the compiler.

(11i) the stack is available at the source language level
so that other optimizations can take place. Many clever tricks,
including some involving alternative stack regimes, are apparently
(%)

familiar to some assembly-language programmers. Despite this

5]

Typlcally communicated by marginal notes of the form "of
course, on the DEC-10, you can replace a with B" where o and
B are strings over the alphabet {PUSH,PUSHJ,JRST}. Such notes,

of course, appear only rarely in the published literature.

fact, we believe that our account of such techniques is useful,
since it liberates them from the realm of undocumented "coding
tricks" and allows their use by a somewhat wider class of
programmers.

(iv) Algebraic identities are used as the source language.

The algorithm converts recursive LISP source code into a system
of identities which can then be transformed into iterative code
for a variety of host media. The idea of using the identities as
an intermediary arose from a recognition of the similarity between
the results of two independent investigations: a study of the
relation between direct and continuation semantics in the frame-
work of category theory, and a study of a lambda calculus inter-
preter based on Sussman and Steele's SCHEME [29] to isolate its
non-applicative aspects. We have consciously suppressed the
categorical ideas in our presentation, on the hypothesis that a
necessary condition for the utility of a theory is that it yield
useful applications which do not require intimate knowledge of
the underlying theory.(*) Related results in category theory
are presented elsewhere [32, 33].

These transformations produce identities which can be

translated into iterative code in a straightforward way. If we

(*)

e.g. one need not understand thermodynamics to enjoy an air
conditioner.

were interested only in compiling for a conventional machine,
standard code generation techniques [26] would suffice. Our
primary interest, however, is in using the transformations as
an implementation technigque for advanced LISP-based systems.
Toward that end, we present a series of "host media," or methods
for implementing the identities in LISP. All these hosts use
only a bounded portion of the LISP run-time stack, the major part
of the stack being maintained by the compiled program in the heap
(and therefore being subject to local optimizations [31]). Some
register allocation problems are considered in this model.

As an example of the power of these techniques, we consider
an implementatlion problem relating to the
suspending "CONS " [10].

The remainder of the paper is divided as follows:

Section 2 gives a brief discussion of those features of
LISP which we utilize. Section 3 describes the source language
and preprocessor. Section 4 describes the main transformation.
Section 5 discusses three host media. Section 6 presents an
application of these techniques to an implementation problem.
Finally, Section 7 discusses some related work by other investiga-

tors.

2. PFeatures of LISP

This section briefly indicates those features of LISP which
are important for this paper. Section 2.1 gives LISP basics
required for an understanding of the algorithm; Section 2.2
discusses some more advanced properties which are used for the
host media. This section is not intended to be tutorial; for
more detail see [8, 18, 21, 34].

2.1 Basic LISP

The basic data structure in LISP is the list. A list is a
sequence of elements, each of which is either a 1list or an
identifier (called in LISP an atom); the null list, called NIL,
is also permitted. Lists are delimited by parentheses. Thus
((FOO B) (AR) BAZ) is a list of 3 elements, two of which are
lists and one of which is an atom. Lists are decomposed by two
functions, CAR and CDR; CAR of a list returns its first element
and .CDR of a list returns all but the first element. Thus the CAR
of the 1list above is (FOO B) and its CDR is ((AR) BAZ). Lists
are built with the function LIST, which, applied to n arguments,
returns a list consisting of those arguments. (LIST is in fact
synthesized from the more primitive constructor, CONS which
allocates a cell with CAR and CDR fields.)

A distinctive feature of LISP is that expressions to be
evaluated are represented as lists, just as data are. Expressions
to be evaluated are called forms; the CAR of a form is the function

to be applied, and the CDR is the list of arguments. Thus

(CAR (LIST (QUOTE (A B)) (QUOTE C))) evaluates to the list (A B).
Evaluation may alsc be invoked by use of the LISP function EVAL.
Thus, 1f the current value of DEBUG is the list (CAR X) and the
current value of X 1is the list (A B), then evaluation of

(EVAL DEBUG) returns the atom A.

Functional objects are represented in LISP by lists of the
form (LAMBDA formal-param-list body). Data structures of this
form are interpreted as functions by the function APPLY. Thus,
if the current value of F is the list (LAMBDA (X Y) (LIST Y X (CAR F)))
and the current value of Y 1is the list (A B), then evaluation
of (APPLY F (LIST Y (CAR Y))) yields as its value the list
(A (A B) LAMBDA).

APPLY causes the body of the lambda-expression to be evaluated
in an environment which is the current environment (at the time
APPLY is called) extended with the values of the actual parameters
assigned to the formal parameters. Thus free variables in the
lambda-expression take thelr values from the call-time environment.

This is called dynamic binding, contrasted with static binding,

in which free variables retain their values from the time the
functional object is created.

Another special kind of list is an association list, which is

a list of key-data pairs.

2.2 Property Lists

In LISP, atoms have structure beyond their printed name. All

atoms occurring in an input stream are entered in a symbol table

2-3

called the oblist, and references to atoms are replaced in the
machine representation by pointers to the appropriate symbol

table entry. This entry is itself a list, called the property
list of the atom, which functions as an association list. Keys

on this association list must be atoms, and are called indicators.

The print name and the current value of an atom are two properties
stored on the property list.(*) The technique of storing the
current value of an atom on its property list is called shallow
binding. (The alternative, that of keeping all atom-value pairs

on a single association 1list, is called deep binding and is used

in some systems.) The function SETQ may be used to accomplish
assignment.

The user may store and retrieve data from the property list
using the functions GET and PUTPROP. For our purposes all property
lists are static (except for values), so we introduce some notation
for creation of indicator-value pairs:

B o= (LAMBDA (X) (G (CAR X)))
EXPR

The indicated lambda-expression is to be placed on the property list
of F under the EXPR indicator. The EXPR property is used by the

LISP system to store functional values for use by EVAL.

(*)This is a somewhat idealized discussion. In most LISP systems,
the value property i1s treated specially to improve performance.
Also, the property list may have a format slightly different from
that of an association list.

2-4

A useful feature found in some LISPs is the REPEAT loop,
[35] of which we shall use only the following special case:
(REPEAT UNTIL boolean exp) is equivalent to the PASCAL while

not boolean do exp.

3. The Source Language

The system takes as input a list of atoms, which are the
names of the functions to be compiled. Each atom is associated
with a A-expression (via the EXPR indicator).

Definition: An atom is serious iff it is on the list of input

atoms or it is the atom SEND. All other atoms are trivial. A
form is serious if it contains an unquoted serious atom anywhere;

otherwise 1t is trivial.

Each of the input expressions must satisfy the following
restrictions:

(1) No serious atom may appear unquoted anywhere except in
the function position of some form.

(1ii) Except for COND, QUOTE, AND, and OR, every trivial func-
tion must evaluate all its arguments.

(1ii) It may not contain free variables.

The following steps are performed by the preprocessor:
(1) COND, AND, and OR are converted to three-argument IFs:
(IF predicate thenpart elsepart).
(ii) A few atoms used by the host medium (in particular SEND,
VAL, QUIT, and GAMMA) are renamed throughout.
(ii1) Embedded lambda-expressions in the function positions
are eliminated by associating each such lambda-expression with a new

serious function name, adding as arguments all parameters free in

the lambda-expression, and then substituting an appropriate call in
the form where the A-expression appeared. For example the function
body

(LAMBDA (X7 ((LAMBDA (Y) (FOO X Y Y)) (EXPENSIVE-FUNCTION X)))
is converted to

(LAMBDA (X) (G X (EXPENSIVE-FUNCTION X)))
where G Dbecomes assoclated with the function body

(LAMBDA (X Y) (FOO X Y Y)).

4, The Main Transformation

The basic idea of this algorithm is to remove nontrivial

recursions by the use of continuations. That is, to do g(f(x),y) ,

we do f(x) and send the result 2z to a continuation which applies
the function Az.g(z,y) to the value. In the context of this
system we add to every serious function f a new argument, the
continuation. fnew(x,y) should compute f(x) and then apply
the continuation <y to the value.

A continuation is therefore a function. Considerable effort has
been made in the field of formal semantics attempting to get a good
mathematical theory of continuation funetions [23, 24, 28, 30]. From the

programmer's point of view, however, the important issue is the

representation of that functional object as a data structure [29, 31].

For any function represented as a data structure, one must have
some application function which causes that data structure to be
interpreted as a function.(*) This principle is very general:

(i) 4if the function is represented as hardware, the application
function might be the LOAD-CARDS button.

(i1i) 4if the function is represented as a bitstring, the
application function might be an operating system CALL command [36].

(iii) 4if the function is represented as a lambda-expression,

the application function is APPLY.

(%)

A similar situation arises in "closed categories" [19, p. 1801,
where a function space YX is characterized by an application
function e:YXXX+Y.

An obvious possibility 1s to represent continuation functions
as lambda-expressions and to use APPLY. Unfortunately, because
of dynamic binding, LISP must use a "retention strategy" [7],
which uses up too much space. Furthermore, such a representation
is needlessly general, since not every lambda-expression 1s a
potential continuation. We shall see that for a given input program,
all required continuations can be built from a finite number of

continuation-builders. We will use this fact to create a special

representation for continuations. In order to interpret this
representation of continuations as functions, we must, as part of
the transformation, write a function send(val,y) which applies
Yy to the argument val.

We do not, however, wish to become immediately embroiled with

representation issues. We therefore deal in terms of identities.

An identity is a pair of forms. In an identity, atoms in the left-
hand side which are not in the function position are pattern varlables;
all others are pattern literals which must match. Performing rewrites
in the obvious way then gives a picture of the substitution semantics

for a lambda calculus extended by the pattern matching capability.

Let us consider the simple example shown in Figure 4.la, the
fibonacei function. The first identity in Figure 4.1b
shows what to do when presented with (FIB n y). The goal, of course,
is to compute fib(n) and send the result to Y. If n=<l, then
fib(n) 1s 1 and we can send 1 to vy immediately. Otherwise,

we start to compute fib(n-2) with continuation (Cl n y) which will

4-3

eventually carry out the rest of the calculation. Here Cl is

a trivial function which builds a data structure for the new
continuation. It will be the job of send to decode the data
structure bullt by Cl. Once the decoding (a representation-
dependent operation) is completed, the analysis may continue, as
follows:

The second identity says what to do if a value vy is sent

to a continuation of the form (Cl ny). A continuation of this
form is reached only when we have just finished computing
fib(n-2) (=vl) in the computation of fib(n) with continuation

Yo So we would like to compute v, + fib(n-1l) and send the

1
result to . To do this, we start to compute fib(n-1) with

continuation (C wl.y) which will eventually finish the calculation.

2

The third identity shows what to do if a value v2 is sent to

a continuation of the form (02 vy A A continuation of type 02

is merely waiting for its second addend, and so it sends vl+v2 o v.

L4

This analysis is unsatisfying because it only tells how to
build new continuations from old, but not how to get them started.
We create the null continuation (represented by (QUIT)), and say
that the result of sending any value to the null continuation is
just that value. Thus a typical call to the new version of FIB

would be (FIB 5 (QUIT)), which would yield the following derivation:

1}

(FIB 5 (QUIT)) ==> (FIB 3 (C; 5 (QUIT)))

Il
I
v

(FIB 1 (C1 3 (cl 5 (QUIT))))
(SEND 1 (C; 3 (Cq 5 (QUIT))))

i
I
\%

Il
il
v

(FIB 2 (c2 1 (Cy 5 (QUIT))))

I
]
v

(SEND 2 (02 1 (cl 5 (QUIT))))

Il
1
v

(SEND 3 (Cl 5 (QUIT)))

1l
1]
v

(FIB 4 (02 3 (QUIT)))

Il
]
v

(SEND 5 (C, 3 (QUIT)))

]
]
v

(SEND 8 (QUIT))
8

1l
1]
v

4-5

Note that at every state in the computation, the rewrite took
place on the entire form and not on some subform; indeed, no sub-
form ever became eligible for a rewrite. It is this property which
makes "continuation form" felicitous for iterative calculations
(29, p. 191.

Before we can state the algorithm for generating the identities
we need some definitions.

Definition: A substitution is a function ¢ whose domain is

some finite set of atoms (called the variables of ¢ and denoted
vars(o)), and whose range is the set of lists. If t 1is a form
and ¢ 1s a substitution we define the form tg as follows:

bt = t if t is an atom and t ¢ vars(oc);

to = g(t)if t € vars(o)

(QUOTE s)o = (QUOTE s);
(f tl s tn)c = (f tlc L4 tno) T#QUOTE.
Definition: The set of tail-recursive forms 1s defined as

follows:

(i) If F 1is a serious function and Upsee.,l, are trivial
forms, then (F ul... un) is tail-recursive.

(ii) If wu is a trivial form and t, and t, are tail-

recursive forms, then (IF u ty tz) is tail-recursive.
(iii) Nothing else is tail-recursive.
Notice that all the right-hand sides of the identities of Figure 4.1b

are tail-recursive.

h-6

The algorithm deals with a set A of identities which are
successively transformed into identities where every right-hand
side is tail-recursive. The transformations, as we will see,
preserve the correctness of computations in a moderately straight-
forward way.

We initialize A as follows: for each serious function
symbol F, with

F (LAMBDA (xl...xn) rhs)

EXPR
in the preprocessed source code, insert in A the identity

(F x X_ GAMMA) = (SEND rhs GAMMA) .

1 eee X

The initial set of identities may fail to be acceptable as
output for two reasons:

(a) Calls on serious function symbols on the right hand side
refer to the "old" versions, and therefore do not supply a continua-
tion argument.

(b) A right-hand side may fail to be tail-recursive.

The algorithm proceeds to remedy this fault in a nondeterministic
fashion. At each step, we transform a non-tail-recursive form
(SEND exp cont) within a right-hand side by driving the SEND inward.
When this process is complete, all the identities will be tail-
recursive, and all calls on serious functions will supply a continuation
argument. We proceed by cases. Notice (by induction) that the

second argument to SEND will always be a trivial form.

h-7

Case I. (SEND exp cont) where exp is trivial. This is
already tail-recursive, so no action required.

Case II. (SEND (F u ._..un) cont) where each uy is trivial.

1

Replace by (F u u cont). This is correct, since the new F

1 * 8 ®
is supposed to compute (F ul Via un) and send the result to the
continuation supplied.

Case III. (SEND (IF u t te) cont) where u is trivial.

1

Replace by (IF u (SEND t. cont) (SEND t. cont)).

1 2
Case IV. (SEND t cont) where t does not match Cases I, II,

or ITI. In this case t 1s too complicated to be dealt with

immediately, so we need to factor it into simpler subproblems.

The general notion of factorization arises from category theory,

where it is important in categorical systems theory [1]. The

flavor of this notion which is appropriate for our purposes is

given as follows:

Definition: A factorization of a form t is a lU-tuple

(¢',0,v,<) where t' 1is a form, o¢ is a substitution, and
v € vars(o), such that
() + = B¢
(ii1) if b e vars(o) and b # v, then bo 1is trivial.
(iii) < is a total order on vars(oc).
A typical factorization is shown in Figure 4.2. We think of
the form t as a tree, which 1s factored into a top part ' and

a "skirt" specified by o, whose pieces are vVvo,b 0,..,bnc.

It is possible to reccnstruct t by attaching the skirt to t'

at the variables vars(o): so t = t'o. Furthermore the skirt has
the property that at most one of its elements is a serious form.
Practitioners of the A-calculus [6] may recognize this as an
inverse B-reduction, that is

((x (v Dy .- b) t') vo byo .. bnc)

1
B~reduces to t. The ordering < 1is significant only with respect

to side-effects; we will discuss 1t shortly.

Given this factorization, our strategy for evaluating ¢t 1s
as follows: Since blU,..,bnG are all trivial, we compute them
immediately, and store them in a continuation. We then start
evaluating the (possibly) serious form vo. Eventually the
computation of vo will finish and send its result to our continua-
tion, which will retrieve the values of bio,..,bno, and continue
with the evaluation of ¢t°'.

To build this new continuation, we introduce a new continuation-
builder (a trivial function) C,:

Case IV. (SEND t cont) where t does not match Cases I, II,
or III. Let (t',0,v,<) be a factorization of t with vars(o) =
{v,bl,f..,bn} and Db,<...<b . Let C;, be a new trivial function

:

symbol. Replace by (SEND vo (Ci bld EW] bnd cont)) and add to

A the new identity (SEND v (Ci b bn GAMMA)) = (SEND t' GAMMA).

1 e

The new identity with left-hand side (SEND v (Ci b bn GAMMA))

1 °"

ensures that when evaluation of vo terminates and this continuation

¥-9

is resumed, it will go to work on the remaining portion of t --

namely, ¢t'. Notice that (Ci b, .. bn GAMMA) looks very much

1
like a stack in which the topmost stack frame consists of the

"return address" Ci and stacked data Db v 5b. e

127 n

This would work fine if it were not for conditionals and
side—-effects. For example, in

(IF (F X) (CAR X) X)
one may not stack (CAR X) since one does not know that X 1is
nonatomic (i.e. that (CAR X) exists). In general, one may not
stack any non-variable in a continuation arising from a conditional
unless it is in the predlcate part.

Definition: We define the relation t << t' (read "t is per-

formed unconditionally in t' ") to be the smallest transitive

relation such that:

Il

(1) if &' = (IF t; t, t5), then t, << ¢

1
t), where f ¢ {IF,QUOTE}, then

L

(11) 4if t' = (f ¢

1 e

ti << t' Tor lzizn.

Definition: A factorization (t',o,v,<) of t admits

conditionals iff if b € vars(o), b # v, and bo 1s nonatomic,

then bo << t.

Another problem with which we must deal is that of side-effects.
We assume that side-effects may be introduced only by trivial
functions (e.g. READ, PRINT, etc.). Trivial forms may therefore

be partitioned into those with side-effects and those without. We

h-10

also assume that evaluation of arguments to a function proceeds
left—to—right,(*) both in the scurce code and the object code.

We then reach the following definition, which makes the pessimistic
assumption that any serious function call may introduce side-effects:

Definition: A factorization (t',o,v,<) admits side-effects

i
(1) v occurs only once in t'
(ii) if b € vars(o) and bo has side-effects, then b occurs
only once in ¢!
(1i1ii) if b e vars(o) and bo has side-effects, then the unique
occurrence of b 1s to the left of v in t', and
(iv) if b,b' € vars(o), b # v, and bo and b'o both have
side-effects, and b occurs to the left of b' 1in €', then
b<b'.
(In this definition, "occurs" means "occurs unquoted," of course).
When the code generated by Case IV is executed, the biU are
executed in order, followed by vo, followed by ¢t'. These
restrictions guarantee that the side-effects of this execution order
are the same as that of the execution of ¢. Note that if we can
guarantee, by flow analysis or other means, that vo never performs

any side-effects, then condition (i) may be dropped; if, in addition,

*

()In a pure A-calculus system, this assumption may be made un-
necessary by using Currying or other techniques to explicitly control
argument evaluation order.

h-11

vo always terminates, then condition (iii) may be dropped as well.
Last, we need to know that the factorization makes progress:

Definition: A factorization (t',o,v,<) 1is proper iff

(i) t' 1is nonatomic, and
(i1) for some b e vars(o), bo 1is nonatomic.

Definition: A factorization is admissible iff it is proper,

admits conditionals, and admits side-effects.

Now we obtain a correct algorithm by changing Case IV as
follows:

Case IV': Same as Case IV, but require (t',o0,v,<) to be
admissible.

Tt is important to notice that there is at least one and
usually more than one admissible factorization. In the following
examples, let F and G be serious; since there are no side-effects,

we omit "<",

(a) We can use factorization to eliminate common subexpressions.

The form (G (IF (F (CAR X)) (CDR (CAR X)) (CDR X))) may be factored

as:
t* = (@ (IF (F Bl1) (CDR B1l) (CDR X)))
& ={(Bl, (CAR X)), (X, X)}
v =X

(choosing v = Bl would also yield an admissible factorization).
(b) The usual factorization 1is leftmost-innermost, stacking

only variables. The same example gives

t' = (G (IF V1 (CDR (CAR X)) (CDR X)))
o ={(V1l, (F (CAR X))), (X,X)}
v = V1

h-12

This factorization has the advantage that (SEND vo cont) is
guaranteed to fall into Case II.

(¢) Another factorization is leftmost-outermost, again
stacking only variables. The example gives:

t' = (G V1)

o ={(V1,(IF (F (CAR X)) (CDR (CAR X)) (CDR (CAR X)) (CDR X)))}

v = V1

This last alternative is the algorithm we chose to implement.
It has the interésting property that several stack "frames" [4] may be
created at once. An example of this is shown in Figure 4.4 where
the first identity creates four frames. This saves the expense of
repeatedly pushing and popping Y off the stack.

Either (b) or (c) may be modified to stack expressions instead
of variables. Thus the usual trick of stacking the right subtree
in a preorder traversal [15] falls within the range of admissible

factorizations.

5. Translating for a host medium

The algorithm of Section 4 leaves us with a set of identities

of the following forms:

rhs

(F x -

1 oeee X GAMMA)

(SEND v, (C. b, ... b_ GAMMA)) = rhs,
i n 1

i 1

where each rhs 1is a tail-recursive form. In this section we
discuss how these identities may be implemented on a garden-variety
shallow-binding LISP system. We refer to these implementations as

host media to distinguish them from implementations of the algorithm

of Section 4.
In order to implement these identitles in a host medium, we

must first implement the patterns (Ci b bn cont) with associated

1 *--

constructors and decomposers. We choose to represent the pattern

(Ci bl A bn cont) as a list of n+2 elements, the first of which

is the atom Ci. Such a pattern may be decomposed by appropriate
selectors. For example, if the form Q evaluates to an instance of

the pattern (Ci b bn GAMMA), we could obtain the components

lc-o

using the substitution 0% = {(bl,QvQ),..,(bn,Qvn+l), (GAMMA , Qvn+2)}

where V. is the transformation on forms defined by

tvl = (CAR t)
t\)j_l_l = (CDR t)\)j
Then bjoé = ij+l is a form which selects the (j+1l)-st element

(that 1s, the value of bj) from Q. We use suffixes consistently to

denote transformations on forms.

Patterns may be built by associating a trivial function with
each continuation-builder Ci:

C,

1 (LAMBDA (bl r bn GAMMA) (LIST (QUOTE Ci) bl - bn GAMMA))

EXPR

and then B-reducing each call (Ci tl ety cont).

5.1 Monadic Medium

An obvious implementation policy is to represent the entire
state of the computation as a single list, as in the first example
*
of Section 4.() We will then have a driver with an inner loop

that looks like:

(REPEAT UNTIL (EQ (CAR STATE) (QUOTE QUIT))
(SETQ STATE (NEXT-STATE STATE)))
At termination of this loop, the answer will be in (CAR(CDR STATE)).
NEXT-STATE will be a function which looks at the state-list, determines
which identity to apply, and constructs the new state, extracting
components from the old state as necessary. For each serious
function symbol F, with associated identity

(F x X, GAMMA) = rhs

¥ i B

let EF = {(Xl, STATEu2),..,(Xn,STATEv (GAMMA , STATEvn+2)};

n+l)’
EF is the extractor substitution. For each continuation-builder Ci’

with associated identity

(*)

We call this monadic because it uses a single data object to
represent the state.

53

(SEND vy (Ci B, .. bn GAMMA)) = Phsi

1
let 51 - {(Vi’ STATEV2)} U o

il .
STATEv3’

substitution. We may now write a skeleton for NEXT-STATE as follows:

§. 1s the extractor

NEXT-STATE =
EXPR

(LAMBDA (STATE) (COND

((EQG(CAR STATE) (QUOTE Fl))rhsFlgFlg)

o

((EQ (CAR STATE) (QUOTE Fm))PhSF%FFmﬁ)

((EQ (CAR STATE) (QUOTE SEND))
(COND
((EQ STATEvBVl) (QUOTE Cq)) rhs;6,§)

L]

-3

((EE STATEU3Ul) (QUOTE C,)) rhs, ¢ §)

(T (ERROR UNKNOWN-CONTINUATION))))
(T (ERROR UNKNOWN-FUNCTION-SYM))))
l""cp are
the continuation-builders. To each rhs the appropriate extractor

Here Fl,..,Fm are the serious function symbols., and

substitution is applied, and then the resulting form (still tail-
recursive) is transformed by the state-building transformation §,
which is defined (on tail-recursive forms only) as follows:

(1) (F Uy .. un)§
(including SEND)

(LIST (QUOTE) U, .. un) where F is serious

(11) (1P & U; Us)8 = (IF ¢ u,§ us8§)
The code produced for FIB is shown in Figure 5.1. The continuation
variable is just another component of the state and requires no

special treatment.

the extractor substitution is
i i

P” = O pHR_MESSAGEv, Y{(Vj, THE-MESSAGEVv,)}

2
The state-building transformation ¢ looks like:

(G u . un+l)d produces code which performs the parallel

7 -

assignment
THE-TARGET <« (QUOTE G)
THE-MESSAGE < (LIST u; .- un+l)

and (IF u tl t2)¢= (IF u tld t2¢).
We next observe that the sequential search performed by

SEND (the embedded COND in the monadic host) can be replaced by a

similar use of the property list. This gives us the following code:

F = rhanF¢ for each serious function symbol except SEND
SCRIPT
SEND E (EVAL (GET THE—MESSAGEvavl (QUOTE SCRIPT)))
SCRIPT =
C = ¥
i 2E 5 rnsipi¢
SCRIPT

The code for FIB is shown in Figure 5.2.

We have chosen the names for this host to accentuate the
similarities with Hewitt's actors [13]. Here each serious function
symbol is an actor which receives a message; upon receiving the
message 1t follows its script and sends another message by leaving
notes in the mail boxes (THE-TARGET and THE-MESSAGE); the driver
then delivers the message by telling the new target it can find a
message addressed to him in THE-MESSAGE. The same metaphor works for
the continuation symbols, except that SEND sends them messages directly

rather than through the driver loop.

5.3 Register Machine Host

In this host, we spread the state out still further. We
store the serious function symbol as the value of the atom #PC# 5
and each parameter in the most convenient place —-- namely as the
value of the lambda-variables of the serious function symbol
(VAL and GAMMA for SEND). This architecture is due to Sussman
and Steele [29]. We store the code for determining the next
state on the property list of each function symbol, under the INSTR
property. Thus the inner loop of the driver will look like

(REPEAT UNTIL (EQ #PC# (QUOTE QUIT))

(EVAL (GET #PC# (QUOTE INSTR))))
with the variable VAL containing the result upon completion of the
loop.

Since the variables for the serious functions are already in
their lambda-variables, no extractor substitution is necessary.
For a continuation identity of the form

(SEND Ve (Ci b bn GAMMA)) = rhsi

l . =

ok o{(v,, VAL)}.
GAMMA i

The state-building transformation $ is defined as follows:

the extractor substitution T; is

(i) (a PR un+l)$ is any code that performs the parallel
assignment:

#PC# <« (QUOTE G)

BT

where the yi‘s are G@G's A-variables, and the u; are evaluated left
to right to ensure that side-effects are handled properly.
(11) (IF u t, t,)8 = (IF u t.$ t,%) .

We then store the following code under the INSTR property:

SEND = (EVAL (GET (CAR GAMMA) (QUOTE INSTR)))
INSTR

F = rhsF$
INSTR

o = rhs.t.$
INSTR vk

Here, SEND effectively does an assigned go-to, indexed by the
(%)

There is considerable freedom in choosing an implementation

continuation symbol, instead of using a sequential search.

of (G u, .. un+l)$. The simplest solution is to make G an

1
EXPR which performs the appropriste assignments (thus using the
A-bindings as temporaries), and setting

(G Uy . un+l)$ = (@ u; . un+l) .
our solution is to generate a sequential assignment, using a topo-
logical sort to determine the order of assignments and to intro-
duce temporaries (e.g. GCD in Figure 5.4). We use a function
BLOCK to delimit such sequences of assignments.

If a function calls itself with one or more of its parameters
unchanged, this algorithm generates code of the form (SETQ var var),
which is promptly eliminated. In particular, the extra variables

introduced by the preprocessor to eliminate free variables in an

embedded lambda-expression never cause any assignments to be generated.

*)

A more precise analogue is the machine instruction "execute
indirect."

5-8

Similarly, variable assignments of the form (SETQ #PC# (QUOTE G))
are eliminated when the value of #PC# i1s already G. This greatly
reduces the number of assignments in tightly-looping functions.
For example, in Figure 5.5, the first recursive call on ALLREMBER
is implemented with a single assignment.

A simlilar phenomenon occurs when two or more functions share
a lambda-variable. For example, all functions share the variable
GAMMA; thus mutually tail-recursive function calls(*) and function
returns via SEND need not generate any assignments for the continua-
tion variable (eg, the terminal condition of ALLREMBER). Similar
assignment elimination can occur on any variable.

If the LISP system in which the register machine is implemented
resists compiling things other than EXPRs, it may be preferable

to create a new symbol g for each INSTR-binding

atom = code
INSTR
and instead bind as follows:
atom = (g)
INSTR
g = (A() code)
EXPR

This makes compiling, tracing, etc possible. This idea is seen
in Sussman and Steele [291.(i

In order to simplify the user interface, the top-level code

(¥)Like EVAL and APPLY in the LISP interpreter [18, Chap. 1].

('t) Theinterface can be made even smoother if something like MACLISP's
FUNCALL is available.

h=3

reads a list of the form (F a; .- an) from the console, loads
F into #PC#, loads (QUIT) into GAMMA, and loads the a, into F's
A-variables. It then starts the inner loop.

The result of all this is a LISP system which runs itera-
tively on any reasonable LISP system. On our DEC-10 with a KL
processor, without any compiled code, running time averages about

2.5 msec per step.

5.4 Optimizing Assignments in the Register Machine

The register machine offers considerable flexibility in the
implementation of $, which is unavailable in either of the other
hosts. In this section we will discuss a method for discovering
opportunities for register-sharing at the preprocessor phase.

We construct an equivalence relation on the set of registers
and write [v] for the equivalence class of v. With each equiva-
lence class Q we associlate a set

users(Q) = {F|F is a serious function symbol and

(4v e Q(v is a A-variable of F) } .

We start by renaming all lambda-variables to eliminate
duplications, and then set [v] = {v} for each lambda-variable V.
For each form (F .. w ..) in the source code (where w is a
variable) there is an opportunity to merge w and Vv, where Vv
i1s the corresponding A-variable of F. (This corresponds to the
generation of (SETQ v w) in the register machine.) If the users([v])

are disjoint from the users([w]), then we merge [v] and [w]. At

5-10

the end of the process, all equivalent registers are replaced by
a single register. Thus each (SETQ v w) for which a merge took
place would be eliminated. The order in which pairs are merged
evidently makes a difference, and we do not claim that this gives
a minimal number of SETQs (indeed, optimal code generation is
NP-hard in most cases [3]).

If it is desired to minimize the total number of registers
used, equivalence classes whose user sets have empty intersections
may now be merged arbitrarily.

This algorithm assumes that all functions are global; more
sophisticated sharing may be obtained by consideration of program

localities and lifetimes of temporaries [27, 371.

6. An Application

In this section we discuss an implementation problem which was
solved using the techniques of this paper. We consider the
"suspending CONS" of [10]. Normally, CONS evaluates its arguments
and allocates a cell in which the CAR and CDR fields point to the
values of the two arguments. Instead of placing these final values
in the node, a suspending CONS places in each field the unevaluated
argument and the current environment in a distinguishable data

structure called a suspension. CONS immediately returns with

(a pointer to) the new cell. When either CAR or CDR is applied to
that node, the argument is evaluated in the preserved environment.
The resulting value takes the place of the suspension in the node
and is returned.
The semantics of the suspending CONS is implemented by making
a few changes to the LISP interpreter of [18, Chap. 1]. The CONS
line is removed from APPLY and added in EVAL as follows:(*)
(LAMBDA (E A) (COND ;E is the form, A the environment
((ATOM (CAR E))
(COND
((EQ (CAR E) (QUOTE CONS3))
(CONS (SUSPEND Ev2 A)

(SUSPEND Ev3 A)))

*
()We adopt the notation used in the rest of this paper.

Here SUSPEND is a trivial function which builds the "distinguishable
data structure" and CONS is the old CONS of the defining language.

We change the CAR line of APPLY as follows:

R - RERR RN R SRS ;FN is the functiorn
s X° 38 The 1ise &
((ATOM FN) sevaluated arguments
sA is the call-time
senvironment
;Xv, is the cell we are
trying to CAR on.

(COND
((EQ FN (QUOTE CAR))
(COND
((SUSPENDED? (CAR le)) §is,its.CAR suspended?
(RPLACA le (EVAL (FORM (CAR le)) ;Yes—?valuate the sus-
. pension

(ENV (CAR le)))));and RPLACA it

(T (CAR le)))) ;No-just grab it.

Here SUSPENDED? determines if a structure is suspended, and FORM and

ENV extract the components from a suspension. The CDR line in APPLY is
modified similarly, by changing each "CAR" to "CDR" (The v;'s stay un-
changed). Under the interpreter just described, a call to CAR runs

until it finishes—- possibly forever. Let us try to put this evaluation
under the programmer's control by supplying a primitive called COAXA.

(COAXA L) is a predicate which returns true if the GAR of L is a suspension,
with the side-effect that the evaluation of the suspension is forced

to proceed some small amount. Given such a primitive we could write

code like:

6-3

CHOOSE (LAMBDA (L) (HELP-CHOOSE L L))

EXPR

HELP-CHOOSE (LAMBDA (PART WHOLE) (COND

EXPR ((NULL PART) (CHOOSE WHOLE))
((COAXA PART) (HELP-CHOOSE (CDR PART) WHOLE))
(T (CAR PART))))

If L 1is a form which evaluates to a finite list, some of whose
members may diverge, then (CHOOSE L) returns a convergent element
of L, if there is one, by "kicking" each element of I with
COAXA in a round-robin.

Now it turns out that COAXA is not a desirable addition; it
quickly leads to pathological programs. It is, however, the first
and simplest of a sequence of extensions which eventually led to a
flexible facility for multisets and related structures [11]. We
therefore consider the problem of implementing COAXA (and, of course,
COAXD).

It seems reasonably clear that COAXA cannot be implemented by
modifying this version of the interpreter, since one has no choice
but to wait for EVAL to return a value. The techniques of this
paper, however, give a good notion of "a small amount" - namely
one step of the driver.

Let us, therefore, apply the main transformation to the modified
interpreter and consider the monadic host, where NEXT-STATE is a
well-defined notion. For notational convenience, let o and e
be the extractor substitutions for APPLY and EVAL (called EAPPLY

andEEVAL in Section 5. 1).

6-4

The activation of a suspension in the CAR line of APPLY compiles
into

(LIST (QUOTE EVAL)

(FORM (CAR Xv,))o

(ENV (CAR le))u

cont)
where cont is some continuation which takes care of the RPLACA, ete.
If we intend that COAXA advance a suspension "one step", then the
suspended computation might no longer be in an EVAL state; the
suspension itself will have to indicate where it wants to be re-
started. Furthermore, stepping through the computation might
generate a local continuation, which must be maintained and
interfaced as necessary to the continuation of the calling computa-
tion.

Thus we conclude that a suspension must contain a state; we
therefore change SUSPEND to take a state-list as its argument and
introduce STATE-COMP to extract state-list from a suspension.

We change the code for CONS in the EVAL portion of NEXT-STATE. The
original compilation yields:

(LIST (QUOTE SEND)

(CONS
(SUSPEND Ey.,e Ae)

(SUSPEND EvZe Aec))
GAMMA) 3

We change this to

(LIST (QUOTE SEND)
(CONS
(SUSPEND

(LIST (QUOTE EVAL) Ev,e Ac (QUOTE (LOCALEND))))
(SUSPEND

(LIST (QUOTE EVAL) Evye Ae (QUOTE (LOCALEND)))))
GAMMA)

where each suspension is equipped with the dummy continuation

LIOCALEND. We put code for COAXA in the APPLY portion of NEXT-STATE
with the following COND-pair:

((EQ FNo (QUOTE COAXA))
(COND

((SUSPENDED? (CAR lea))
(PROG2(*)

(HELP-COAXA le

(NEXT-STATE (STATE-COMP (CAR Xv,a))))
(LIST (QUOTE SEND) T GAMMAa)))
(T (LIST (QUOTE SEND) NIL GAMMAw))))
with
HELP-COAXA = (LAMBDA (CELL STATE) (COND

EXPR ((LOCALEND? STATE) (RPLACA CELL STATEv._))
(T (RPLAC-STATE {(CAR CELL) STATE)))) 2

If the CAR is suspended, the state of the suspension is extracted
and advanced one step by NEXT-STATE. If the resulting state is a
terminal state of the local computation, of the form (SEND val (LOCALEND)),
then the value is RPLACA'd into the cell. Otherwise, the state field

of the suspension i1s updated (using RPLAC-STATE). Note that

()(PROG2 expl exp2) evaluates expl and exp2 in order and returns
the value of exp?2.

NEXT-STATE is now recursive! Luckily, 1t recurses down the
structure of the state, which is never circular, so termination 1is
assured. Last, we must fix the code for CAR and CDR. To do a CAR
on a suspended structure, we restart the suspended calculation and
let it run to completion; we then resume the global calculation.

To do this we merely splice the continuation of the calling process
(which takes care of the RPLACA) onto the end of the local continua-
tion. The code for reactivating a suspension in the CAR line of

the APPLY portion of NEXT-STATE, which was originally

(LIST (QUOTE EVAL)
(FORM (CAR le))a
(ENV (CAR Xv,))o

cont)

is changed to:

(APPEND (ALL-BUT—LAST+ (STATE-COMP (CAR lea)))
(SPLICE
..[.
(LAST (STATE-COMP (CAR lea)))
GAMMA®))

with
SPLICE = (LAMBDA (LCONT GCONT) (COND
EXPR ((EQUAL LCONT (QUOTE (LOCALEND))) GCONT)
((NULL (CDR LCONT)) .
(LIST (SPLICE (CAR LCONT) GCONT)))
(T (CONS (CAR LCONT)
(SPLICE (CDR LCONT) GCONT)))))

A similar change is made in CDR.

T _ - i L =
if L = (al..an), (LAST L) a and (ALL-BUT-LAST L) (al..an_lj.

6-7

By compiling the interpreter, we got to a level where "a
computational step" was meaningful. (We could similarly introduce
escape expressions [22] at this point.) The result is a recursive
version of NEXT-STATE. We could lét the LISP run-time stack handle
this recursion, or we could compille the patched NEXT-STATE again
to remove the recursion, using the talil-recursive driver
(LAMBDA (STATE) (COND

EEPR ((EQ (CAR STATE) (QUOTE QUIT)) (
(T (DRIVE (NEXT-STATE STATE))))

DRIVE
CAR (CDR STATE)))
)

The second compilation may be made with any host:; if the register

host 1s used, the code for DRIVE will look very much like the driver

of Section 5.1.

T Conclusions and relation to other work

The experimental programming system we have described is
related to work on several current topics in programming. We
classify these into four groups: recursion removal, compiling,

semantics, and modular programming.

7.1 Recursion Removal

Our system performs automatic recursion removal on a wide
class of LISP programs, using source-to-source transformations in
the style of Knuth [15]. The techniques used are quite general
and have been demonstrated on examples, such as a LISP interpreter,
which are considerably larger than Knuth's "sturdy toddler."™ LISP
extensions such as functional combination and starred functions
[9] are also compilable.

Other work in this vein has been done by Auslander and Strong
[2]. Much of their effort is devoted to overcoming the handicaps
imposed by PL/l as a source language -- imperative control struc-
tures, side-effects, declarations, scope of variables, etc. Con-
sequently, their system is only semi-automatic. Our choice of LISP,
with its flexible data structures, simple control structures and
variable bindings, bypasses these roadblocks and allows us to obtain
good performance with an automatic system. Our work is therefore
complementary to theirs.

It is also worth noting that a naive approach to manual

recursion removal in LISP would typically replace instances of CONS

by APPEND or NCONC, which causes degradation of algorithm per-
formance. Our system commonly improves the asymptotic space
performance of the input program.

7.2 Compilers

The major innovation of this work is the use of factoriza-
tions and continuations as a sufficient criterion for the correctness
of stack-manipulation regimes. In conventional language proces-
sors, one starts with a particular scheme for using the stack.

By using the ideas of factorization, one may consider alternative
schemes, e.g.

(1) stacking different sets of variables for different
resumption points of a procedure.

(2) stacking expressions rather than variables.

(3) creating multiple frames (e.g. Figure 4.4).

The last alternative may be attractive in some cases since it
trades stack space against the time for retrieving and restacking
variables across function calls which do not involve them (as in
Figure 4.h4ec).

This kind of analysis 1s useful even if local variables are
maintained on the run-time stack. Both the registers for the
register machine host and the temporary locations for trivial
calculations may be allocated at the top of the stack. In this

implementation, the order in which variables are allocated may

be varied in order to decrease the amount of rearrangement neces-
sary at continuation-building time.

The system itself is useful as an implementation tool
for LISP systems. Because it produces code which will run
iteratively even on LISP systems which do not properly handle
tail-recursion or its variants, it is possible to run LISP programs
which were formerly impractical to run because of their egregious
stack usage -- recursive LISP interpreters, for example. Tail-
recursion, which was heretofore discouraged in real LISP programs,
may now be encouraged -- as it should be, since the complled

code runs in a tight, iterative loop.

7.3 Semantics

The system is an outgrowth of research into the relation
between direct and continuation semantics. It emphasizes the
notion of a continuation as a data-structure. Although this idea
is implicit in [22] and mentioned explicitly in [23] (see also
[25]), it has been obscured in the literature by alternative
notions. Fischer [7] used continuations and a retention strategy
to suppress procedure returns, thus eliminating the need for return-
ing closures. Sussman and Steele [29] correctly point out that

a continuation is merely a closure to be applied at some later

point. Similarly, Tennent [30] speaks of "prophetic interpretations.

Unfortunately, this picture of a continuation as a function re-
quires lattice theory for a proper mathematical treatment [23,24,

28,301].

7-4

The contribution of category theory is the recognition that
for a given program, all continuations needed for that program may
be built as first-order objects, using only a finite number of
continuation-builders. This avolds getting embroiled in lattice
theory or anything else more complicated than list processing.

The algorithm clearly works for any set of "trivial" functions
which include list builders and decomposers. Although we have
chosen not to emphasize it, this property gives the system a

flavor of program schemata.

T.4 Modular Programming Systems

It has become almost conventional to describe computations in
terms of a "frame" model [3], that is, a model in which the major
object is a local state of the computation, possibly with pointers
to other local state spaces, each describing a state of the computa-
tion, and a transition function on these packets.(*) Typically
one specifies a set of packets sufficient to describe the computa-
tions of any program in a particular programming language [9, 11].
Such a model constitutes an interpreter for that language. QOur
system, given a LISP program, in effect produces a frame model
tailor-made for that program.

Each frame (INSTR) is an independent entity to which control

is passed unconditionally. This property is the origin of the

(*)

Similar packet models, associated with assumptions about control
structures in human information processing, have become prominent
in artificial intelligence and natural language processing [20].

similarity between our object code and the concepts of "distributed
computing" and "unidirectional message passing" advocated by Hewitt
et. al [13]. Our system may therefore be viewed as a system for

go-to introduction in the style of Knuth [15], except that our host

machine's program counter is not sequential, so one may not "fall

¥
into" a label.()

¥
(_jIn other words, we have an n+tl-address machine -- the program
counter is always set and never incremented.

References

T

10.

M. A. Arbib and E.G. Manes, The Categorical Imperative, Academlc

Press, 1974.

M. A. Auslander and H. R. Strong, Systematic Recursion Removal,
IBM, Yorktown Heights, NY, Report RC5841, 1976.

D. G. Bobrow & B. Raphael, New Programming Languages for_

Artifiecial Intelligence Research , Computlng Surveys E,

155-174 (1974).

D. Bobrow & B. Wegbreit, A Model and Stack Implementation of
Multiple Environments, Comm. ACM 16 , 591-602 (1973).

J. Bruno and R. Sethi, Code Generation for a One-Register

Machine, J. ACM 23, 502-510 (1976).

A. Church, The Calculi of Lambda-Conversion, Annals of

Mathematics Studies, no. 6, Princeton University Press, Prince-
ton, NJ (1941).

M. J. Fischer, Lambda-Calculus Schemata, Proc. ACM Conf.

on Proving Assertions About Programs (Las Cruces, 1972), SIGPLAN
Notices 7,1 104-109, (January, 1972).

D. P. Friedman, The Little LISPer, Science Research Associates,

Palo Alto, CA (1974).

D. P. Briedman and D. S. Wise, _Functional Combination, Computer

Languages 3, 1 (1978).

D. P. Friedman and D. S. Wise, Cons should not evaluate its
arguments, in S. Michaelson and R. Milner (eds.) Automata,

Languages,and Programming,, Edinburgh University Press, Edinburgh

pp. 257-284 (1976).

References (Con't)

11

12

13.

14,

15

L6,

17.

18.

19.

20.

2L

22'

D. P. Friedman and D. S. Wise, Applicative Multiprogramming,

Indiana Univ. Computer Science Department, Technical Report #72
(January, 1978).
W. Harrison, A new Strategy for Code Generation--

h
The General Purpose Optimizing Compiler, Conf. Rec. ME— ACM

Symp. on Principles of Programming Langs. 29-37 (1977).

C. Hewitt, Viewing Control Structures as Patterns of Passing

Messages, Artificial Intelligence 8, 323-364 (1977).

J. B, Johnston, The Contour Model of Block Structured Process-

es, Proc. ACM Symp. on Data Structures in Programming Languages,

SIGPLAN Notices 6, 2, 55-81 {February, 1971).

D. E. Knuth, Structured Programming with Goto Statementé,

Computing Surveys 6 - 261-301 (1974).

P. J. Landin, The Mechanical Evaluation of Expressions, Com-

puter J. 6, 308-320 (1964).

D. B. Loveman, Program Improvement by Source-to-Source

Transformation J. ACM 24, 121-145 (1977).

J. McCarthy et. al.,LISP 1.5 Programmer's Manual, MIT Press,
Cambridge, Mass. (1965).

S:. MacLane, Categories for the Working Mathematician,

Springer-Verlag, New York (1971).
M. Minsky, A Framework for Representing Knowledge; 1in The

Psychology of Computer Vision (Winston, ed.), McGraw-Hill,

New York, pp. 211-277 (1975).

J. Moses, The Function of FUNCTION.in LISP, SIGSAM Bulletin

ﬁ: 13_‘27 (—Julys 1970)-
J. C. Reynalds, Definit®onal Interpreters for Higher-Order

Programming Languages, Pmoc. ACM Nat'l Conf., 6 71T7-740 (1972).

References (Con't)

23

24,

25.

26

27.

28.

29.

50

31

32

J. C. Reynolds, On the Relation between Direct and Continua-

tion Semantics, Proc. 2nd Collog. on Automata, Languages, and

Programming, Saarbrucken (1974).

J. C. Reynolds, Semantics of the Domain of Flow Diagrams, J.
ACM 24, 484-503 (1977).
B. Russell, On an Equivalence between Continuation and Stack

Semantics Acta Informatica g, 113-124% (1977).

R. Sethi and J. D. Ullman, The Generation of Optimal Code for
Arithmetic Expressions, J.ACM, 17, 715-728 (1970).

G. L., Steele, LAMBDA: The Ultimate Declarative, Mass. Inst.

of Tech., AI Memo 379 (October, 1976).

C. Strachey and C. P. Wadsworth, Continuations: A Mathematical
Semantics for Handling Full Jumps, Oxford University Computing
Laboratory, Technical Monograph PRG-11 (January, 1974).

G. J. Sussman and G. L. Steele, Jr., SCHEME: An Interpreter
for Extended Lambda Calculus, Mass. Inst. of Tech., AL Memo

349 (December, 1975).

R. D. Tennent, Denotational Semantics of Programming Languages,

Comm. ACM 19, 437-453 (1976).

M. Wand, Continuation-Based Program Transformation Strategies,

J.ACM, to appear.

M. Wand, Final Algebra Semantics and Data Type Extensions,
Indiana University Computer Science Department,Technical

Report #65 (July, 1977).

References (Con't)

33+

34,

35.

36.

37-

M. Wand, Algebraic Theories and Tree Rewriting Systems,
Indiana Univ. Computer Science Department, Technical Report #66

(July, 1977).

C. Weigsman, LISP 1.5 Primer, Dickenson Publishing Co., Encino,

CA (1966).

D. S. Wise, D. P. Friedman, S. C. Shapiro, and M. Wand,
Boolean-Valued Loops, BIT 15, 431-451 (1975).

W. Wulf et.al., HYDRA: The Kernel of a Multiprocessor Operating
System, Comm. ACM 17, 337-345 (1974).

W. Wulf, R. K. Johnson, C. B. Weinstock, S. O. Hobbs, and

C. M. Geshke, The Design of an Optimizing Compiler, American

Elsevier, New York (1975).

(DEFPROP FIB
(LAMBDA{N)
CIF CLESSP N 1)
1
(IF (CEQUAL N 1)
1

(PLUS (FIB (DIFFERENCE N 2)) (FI3 (DIFFERENCE N T3
EXPR)

(DEFPROP IDENTITIES
(CCFI3 N GAMMA)
€IF CLESSP N 1)
(SEND 1 GAaMMA)
(EF (cquAaL N 1)
(SEND 1 GAMMA)
(FIB EDIFFERENCE N 2) €C1 N GAMMAI))))
CC(S5END ¥1 (C1 N GAMMA)) (FIB (DIFFERENCE N 1) (C? V1 SAMMA)))
((SEND V2 (C2 V1 GAMMA)) (SEND (PLUS V1 V2) GANMMA)))
IDENT)

Figure 4.1 Preprocessed source code and identities for FIB

bla b.o

Figure 4.2 A factorization of t. Here vars(eo)={v,b

1250}

KV///Q¥D *'////}lg\;xxxw
¥ /o* &

o/*c o/c\,

Figure 4.3 The starred nodes delimit the subtrees evaluated uncon-
ditionally in &.

(CEFERCE F
(LAEBLR 4¥ Y) «C {F (E (B (B X)))) Y))
EXEF)

(CEFEFCE €
{LAPELCA (¥ Y) (CUCTE GSTUIL))
EXEF)

(CEFERCE E
(LANEC2 {J) (CUCIE ESTUE))
EXEE)

(a) Source code

(CEFERCE TLENTITIES
CFU(FE X Y CREEA) (E X (C1 (CZ (C2 (CU4 Y GAFER))))))
({G X ¥ CRAFPB) (SENI (CUCTE GSTUE) CRrER))
((E X GAFMD) (SENL (CUCTE HSTUE) GAEEFA))
{{SENC V1 {(C1 GArr2)) (B V1 GAFPFA))
{(SENC V2 (CZ GAMFRA)) (B VZ GAEER))
((SENLC V3 {C3 GAPRFR)) {E V3 CGAPFD))
((SENL W& (Cu ¥ GAEED)) (G V4 Y GANEA)))
ICENT)

(b) Nested continuation version

(DEFPROP IDENTITIES
(CCE X Y GAMMA) (H X (CT Y GAMMAY))
((& %X Y GAMMA) (SEND (QUOTE GSTUB) GAMMA)})
((H X GAMMA) (SEND (QUOTE HSTUB) GAMYA))
CC(SEND ¥1 (C1 Y GAMMA)) (H V1 (C2 Y GAMMA}))
CESEND W2 (C2 GAMMA)) (H V2 (C3 Y BGAMMA)))
C(SEND ¥3 (C3 GAMMA)) (H ¥3 (C4 Y GAMMA)))
((SEND V& (C4 GAMMA)) (& V& Y GAMMA)))
IDENT)

- < =

(¢) Iterated Continuation Version

Figure 4.4 Creation of multiple frames

(DEFPROP NEXTSTATE
(LAMBDA(STATE)
CCOND
((EQ (CAR STATE) (QUOTE FI3))
CIF €LESSP €CAR €CDR STATE)X 1)
(LIST C(RUOTE SEND) 1 (CAR (CDR (CDR STATE))))
(IF (EQJAL (CAR (CDR STATE)) 1)
(LIST (QUOTE SEND) 1 (CAR (CDR (CDR STATE))))
(LIST (QUCTE FI3)
(DIFFERENCE (CAR C(CDR STATE}) 2)
CLIST €QUOTE C1)
CCAR (CDR STATE))
(CAR (CDR (CDR STATE)XXX)))))
((aND (EQ@ C(CAR STATE) (QUODTE SEND))
(EG@ €CAADDR STATE) (QUOTE C13>))
(LIST (@UOQTE FI3)
€DIFFERENCE (CAR (CDR (CAR (CDR (LDR STATEXX)))} 1)
(LIST CRUOTE C2)
(CAR (CDR STATE))
(CAR €CDR (CDR (CAR (CDR (CDR STATE))X)}))}))
(CAND (EQ (CAR STATE) (QUDTE SEND))
(EQ@ (CAADDR STATE) (QUOTE €2)))
(LIST (GUOTE SEND)
(PLUS (CAR (CDR (CAR (CDR (CDR STATE)})}))
(CAR (CDR STATE)))
(CAR (CDR (CDR (CAR (CDR (CDR STATEJ)IN)))
C(AND (EQ (CAR STATE) (QUOTE SEND))
(EG& (CAADDR STATE) €QUOTE QUIT)))
(LEST (QUOTE QUIT) (CADR STATE)))))
EXFR)

Figure 5.1 Monadic host code for FIB

C(DEFPROP FIB
(IF (LE3SP (CAR MESSAGE) 1)
{PROGZ2 (SET@ TARGET (QUOTE SEND))
(SETQ MESSAGE (LIST 1 (CAR (CDR MESSAGE}))))
(IF (EQUAL (CAR MESSAGE) 1)
(PROGZ2 (SETQ TARGET (QUOTE SEND))
(SETQ MESSAGE (LIST 1 (CAR €CDR MESSAGE)))))
(PROGZ (SETG TARGET (QUOTE FI3))
(SETQ MESSAGE
CLIST (DIFFERENCE (CAR MESSAGE) 2)
€LIST €QUOTE C1)
(CAR MESSAGE)
(CAR (CDR MESSA85E))))))))
SCRIPT)

(DEFPROP SEND
(EVAL (GET (CAADR MESSAGE) (QUOTE SCRIPT)))
SCRIPT)

CDEFFROP L1
(FROGZ2 (SETQ TARGET (QUOTE FI3))
(SETQ@ MESSAGE
(LIST
(DIFFERENCE (CAR (CDR (CAR (CDR MESSAGE)))) 1)
(LEST €QUODTE €2)
(CAR MESSASE)
(CAR (CDR (CDR (CAR (CODR MESSAGE)IIIIIIMN
SCRIPT)

(DEFPROP (€2
(PROGZ2 (SETQ TARGET (QUOTE SEND))
(SETa MESSAGE
CLIST
(PLUS C(CAR (CDR (CAR (CDR MESSAGE)))) (CAR MESSAGE))
(CAR (CDR (CDR (CAR (CDR MESSAGE))))))))
SCRIPT)

Figure 5.2 Actor host code for FIB

(DEFPROP FIB3
€T E CLESSE N 1)
(BLOCK (SETQ H#PC#H# (QUOTE SEND)) (SETQ VAL 1))
CIF CERUAL N 1)
(BLOCK (SETG #PC# (QUOTE SEND)) (SET& VAL 1))
(3LOCK (SETG TEMP1 (DIFFERENCE N 2))
(SETQ GAMMA (LIST (QUOTE C1) N GAMMA))
€SETQ N TEMPI)X))
INSTR)

(DEFPROP SEND
(EVAL (GET (C€AR GAMMA) (QUOTE INSTRJID))
INSTR)

(DEFFROP C1
{BLOCK {S5ETG #PCH {GQUOTE FI3))
(SETR N (DIFFERENCE (CAR (CDR BGAMMA)Y) 1))
(SETa GAMYA (LIST (QUOTE C2) VAL (CAR (CDR (CDR GAMMAX))))})
INSTRI

(DEFPROP C2
(BLOCK (SETG VAL (PLUS (CAR (CDR GAMMA)) VAL))
(SETQ GAWMMA (CAR (CDR (CDR GAMMAR)))))
INSTR)

Figure 5.3 Register host code for FIB

(DEFPROP GCD
(LAMBDACX Y)
CIF CEQUAL X Y)
X

(IF (GREATERP X Y) (GCD (DIFFERENCE X YY) Y) (GCD Y X))))
EXPR)

(DEFPROP IDENTITIES
CC(GCD X ¥ GAMMA)
(If C(EQJAL X Y)
(SEND X GAMMA)
(IF (GREATERP X Y)
(GCD (DIFFERENCE X Y) Y GAMMA)
(GCD Y X GAMMAIIII)
IDENTY

(DEFPROP GCD
(IF CEQUAL X Y)
(BLOCK (SETQ #PC# (QUOTE SEND)) (SETQ VAL X))
CIF (GREATERP X Y)
€BLOEK €SET8 X (DIFFEREMCE X ¥)))
(BLOCK (SETQ TEMP1T Y) (SETQ Y X) (SETQ X TEMP1))))
INSTR)

Figure 5.4 Register host code for GCD

(DEFPROP ALLREMB3ER
(LAMBDACA L)
(IF (NULL L)
NIL
(IF (E@ C(CAR L) A)
(ALLREMBER A (CDR L))
(CONS (CAR L) (ALLREMBER A €CDR L3)Y¥)))

EXPR)

(DEFPROP IDENTITIES
CCCALLREMBER A L GAMMA)
(IF (nuLtL L)
(SEND NIL GAMMA)
(1F C(Ea (CAR L) A)
(ALLREM3ER A (COR L) GAMMAD
(ALLREMBER A (CDR L) (CT L GA¥YA))D D)
CC(SEND V1 (C1 L GAMMA)) (SEND (CONS (CAR L)Y V1) GAMMA)))

IDENT)

(DEFPROP ALLREM3ER

(IF ¢NULL L)
(3LOCK (SETQ BPCH (QUOTE SEND)Y) (SETQ VAL NIL))

(IF (Ew (CAR L) A)
€3LOCK (SETR L €(CDR L))
(3LOCK (SETR TEMP1 (CDR L))
(SETG GAMMA (LIST (GQUOTE Ci) L GAMMA)}

¢SET@ L TEMPI)) D))
INSTR)

(DEFPROP C1
(BLOCK (SETQ VAL (CONS (CAR (CAR (CDR GAMMA))) VAL))

(SETG GAMMA (CAR (CDR (CDR GAMMA))DI D)
INSTR)

Figure 5.5 Code for ALLREMBER

