-
Reading

e-Science k
Centre k

JStyx v.0.1.0-SNAPSHOT

Project Documentation

Reading e-Science Centre 06 September 2005

TABLE OF CONTENTS i

Table of Contents

JStyx

OVBIVIBW . . o o 1

DOWNIOAASo 2

FAQS o oo 3

UtilitiES . . oo 5

TULOMTAl . . 6
1 First StyX SYStemo 7
2. Reading and Writingot 10
3. Custom files . . .o 15
A NEXE S PSS . . o 17
5. Asynchronous files 18
B. SIIAIMS 19

Styx Grid Services

TUtOriAl . . o 20
Tutorial L 21
TUtorial 2 . .. 22

JStyx References
JAVADOCS . . . ot 23

SOUICE COUR . . . ettt e e e e e e 24

©2004 READING E-SCIENCE CENTRE « ALL RIGHTS RESERVED

TABLE OF CONTENTS

©2004 READING E-SCIENCE CENTRE

ALL RIGHTS RESERVED

11

1.1 OVERVIEW 1

Overview

What is JStyx?

JStyx is a pure-Java implementation of the Styx protocol for distributed systems. The JStyx libraries also
include an implementation of the Styx Grid Services (SGS) system for building stream-oriented services
and workflows.

What is Styx?

Styx is used in the Inferno and Plan9 operating systems. It is essentially a file-sharing protocol, similar in
many respects to NES.

More information

The FAQs are a good place to start for more information. To learn how to use the JStyx software, see the
tutorial . If you want to ask any questions, please use the mailing lists .

©2004 READING E-SCIENCE CENTRE « ALL RIGHTS RESERVED

http://www.vitanuova.com/inferno/papers/styx.html
http://www.vitanuova.com/inferno/papers/styx.html
http://www.vitanuova.com/inferno/
http://www.cs.bell-labs.com/plan9dist/

1.2

1.2 DOWNLOADS 2

Downloads

Downloading the JStyx libraries

Currently the only way to download the JStyx libraries is as a platform-independent installer package in
JAR format. The latest version is 0.1.0-SNAPSHOT and you can download it from here .

Installing the software

If you have downloaded the JAR installer (currently the only option) you can start the installer by
running:

java -jar jstyx-0.1.0-SNAPSHOT-installer.jar

This has been tested on Windows and Unix. You will need a Java runtime environment version 1.4.2 or
above (‘http://java.sun.com) in order to run the installer (and, indeed, to run the software).

Uninstalling the software
If you installed using the JAR installer, you can uninstall the software by changing to the "Uninstall"

directory of the distribution and running

java -jar uninstaller.jar

If you are running Windows, there is probably a shortcut to this uninstaller in the JStyx program group in
the Start Menu.

©2004 READING E-SCIENCE CENTRE « ALL RIGHTS RESERVED

http://prdownloads.sf.net/jstyx/jstyx-0.1.0-SNAPSHOT-installer.jar?download
http://java.sun.com/

1.3 FAQS 3

Frequently Asked Questions

General

1. What is JStyx?

2. What can I use JStyx for?

3. Why should I use JStyx for my distributed system?
4. Where can I go for help?

Download and installation

1. How do I install JStyx?
2. What is the licence?

Specific points

General

General
What is JStyx?

JStyx is a pure-Java implementation of the Styx protocol for distributed systems. Styx is used by the
Inferno and Plan9 operating systems. Styx is essentially a file-sharing protocol; it is similar in many
respects to NFS but in Styx systems, files do not always represent bytes on the hard disk. They may
represent a chunk of RAM, a physical device such as the screen, the interface to a device such as a
digital camera or the interface to a program.

Both the Inferno and Plan9 operating system virtualize all resources as files and both use Styx as the
protocol for accessing all these files, irrespective of the undetlying resource they represent and their
location (local or remote). Applications in Inferno and Plan9 do not know the difference between
local and remote files: the underlying operating system routes all Styx messages to the correct
location. Therefore the creation of distributed systems with Inferno and Plan9 is very easy. The idea
behind JStyx is to allow similarly easy development of distributed applications in other operating
systems.

What can I use JStyx for?

There are several potential uses of JStyx in the field of distributed systems:

* Java interface to Inferno/Plan9 systems (e.g. web interface to Inferno Grid)
* Standalone clients and servers (e.g. messaging systems). See JStyx tutorial.

* Styx Grid Services. See SGS tutorial.

©2004 READING E-SCIENCE CENTRE « ALL RIGHTS RESERVED

http://www.vitanuova.com/inferno/papers/styx.html
http://www.vitanuova.com/inferno/
http://www.cs.bell-labs.com/plan9dist/

1.3 FAQS

Why should I use JStyx for my distributed system?

Lots of reasons:

Lightweight - Styx messages are very short and add little bloat to the payload
Firewall-friendly

Data streaming

Built on robust framework (MINA)

Platform independence

Secure (in future!)

Comparison with Web Services...

Where can I go for help?

The first place to go for information is the |Styx website , which is where you are probably reading

this FAQ ;-). You can join the mailing lists : the jstyx-users mailing list is the one to use for posting
questions about all aspects of the use of JStyx. Please check the archives (and read through this
FAQ)!) before posting a new question.

Download and installation

Download and installation
How do I install JStyx?

See the instructions here .

What is the licence?

The JStyx software is released under a BSD-style Open Source licence: see here for the full licence

text. Hssentially you are allowed to do anything with the software, provided that you include the
licence text with any redistribution.

Specific points

Specific points

©2004 READING E-SCIENCE CENTRE « ALL RIGHTS RESERVED

http://jstyx.sf.net
http://sourceforge.net/mailarchive/forum.php?forum=jstyx-users

14

1.4 UTILITIES 5

Utilities

Useful utilities
The JStyx library comes with a set of useful utilities to aid with creating and debugging Styx applications.
TO BE CONTINUED.

StyxBrowser

StyxMon

©2004 READING E-SCIENCE CENTRE « ALL RIGHTS RESERVED

15

1.5 TUTORIAL 6

Tutorial

Tutorial Introduction

This tutorial will guide you through the process of creating distributed applications using the JStyx library.
We will start with very simple systems and build up to more complex ones, showing how even quite
sophisticated applications can be created with little effort.

Basic concepts

As you may be aware, in Styx systems a// resources are represented as one or more virtual files. These
resources may be literal files on disk, chunks of RAM, databases, physical devices or interfaces to
programs. A Styx server may serve up any number of files in a hierarchical fashion, very much like a
filesystem on a hatrd disk. In Styx, this hierarchy of virtual files is called a namespace.

In essence, the creation of a Styx server is very simple. You assemble a hierachy of files and directories,
then run a server program that listens for connections on a given port. Clients can then make
connections to this server and perform standard file operations on the files in the namespace that the
server is exposing. Most of these file operations will be very familiar: opening and reading files and
directories, creating new files, writing and appending to existing files and so forth. All these operations
are handled using high-level API calls in the JStyx library and you will never need to know the nuts and
bolts of the Styx protocol. (If you do want to know more about the Styx specification, see

http:/ /www.vitanuova.com/inferno/man/5/INDEX html).

Tutorial contents

You can follow this tutorial online or, if you prefer to work from a printed copy, you can download a
PDF version of this entire website. The tutorial sections are:

* Your first Styx system

* Reading and writing Styx files
* Creating new types of file

* More complex namespaces

* Asynchronous files

* JStyx and data streaming

©2004 READING E-SCIENCE CENTRE « ALL RIGHTS RESERVED

http://www.vitanuova.com/inferno/man/5/INDEX.html

151

1.5.1 1. FIRST STYX SYSTEM 7

1. First Styx system

Your first Styx system

In this tutorial you will create a basic Styx server and client. This will introduce you to the main classes of
the JStyx software and how they are used.

A very simple Styx server

We will create a Styx server that serves up a single file. The contents of the file are held in memory on the
server. The namespace of this system is extremely simple:

/ (The root of the nanmespace)

readne (The only file exposed by the server)

The full source is contained in the SimpleServer class, but these are the important lines (see full source
for comments):

StyxDirectory root = new StyxDirectory("/");
InMenoryFile file = new | nMenoryFi | e("readne");
file.setContents("hello");

root.addcChild(file);

new StyxServer (9876, root).start();

In these five lines, we create a root directory for the namespace, then create and add a file with the name
"readme" that contains the string "hello". Note that the file is an InMemoryFile , which is an instance of
the general superclass for all files on a Styx server, StyxFile . Finally, we create and start a Styx server,
passing it the root of the namespace.

You can run the server by changing to the bi n directory of your JStyx installation and running:

JStyxRun uk. ac.rdg.resc.jstyx.tutorial.SinpleServer

(The JStyxRun script sets up the classpath, then runs the main method of the provided class.) You will
probably see some logging messages printed to the console.

©2004 READING E-SCIENCE CENTRE « ALL RIGHTS RESERVED

1.5.1 1. FIRST STYX SYSTEM 8

A very simple Styx client

It is just as simple to write a client program that can read the contents of the file exposed on the server.
The full source is in the SimpleClient class, but these are the most important lines:

St yxConnection conn = new StyxConnection("l ocal host", 9876);
try
{
conn. connect () ;
CStyxFile readneFile = conn.getFile("readnme");
System out. println(readneFile.getContents());
}
catch (StyxException se)
{
se. printStackTrace();
}
finally

{
}

conn. cl ose();

We create a StyxConnection to the server and call the connect () method to make the connection and
perform the relevant handshaking. (Note that you might need to edit the hostname and port to suit your
system.) We then get a handle to the "readme" file: this handle is an instance of the CStyxFile class. (The
"C" means "Client", to avoid confusion with the server-side StyxFile class.) We read the contents of the
file as a String, then print them out. Finally, we close the connection.

You can run the client by changing to the bi n directory of your JStyx installation and running:

JStyxRun uk.ac.rdg.resc.jstyx.tutorial.Sinpledient

You should see the string "hello" printed out, perhaps in amongst some logging messages.

Serving up files on disk

TODO (talk about the FileOnDisk and DirectoryOnDisk classes)

Summary

In this section of the tutorial, we have created a simple Styx server and client and have passed some data
between them. From the server point of view, the key classes are StyxFile , which is the superclass for all
virtual files on a Styx server, and the StyxServer class itself. In client-side code, the most important classes
are the StyxConnection class, which represents the connection to the server, and the CStyxFile class,
which we use to interact with files on the server.

©2004 READING E-SCIENCE CENTRE « ALL RIGHTS RESERVED

1.5.1 1. FIRST STYX SYSTEM 9

In the next section of the tutorial we will look at different ways of reading from and writing to Styx files.

©2004 READING E-SCIENCE CENTRE « ALL RIGHTS RESERVED

152

1.5.2 2. READING AND WRITING 10

2. Reading and writing

Reading and Writing Styx files

The most common tasks (from the client's point of view at least) in a Styx system are reading from and
writing to files. There are several ways to do this, each with advantages and disadvantages. In this section
of the tutorial, we'll go through the options.

getContents() and setContents()

The easiest way to read from and write to files is to use the get Cont ent s() and set Cont ent s()
methods, as used in the SimpleClient from eatlier in this tutorial. These methods are suitable if the entire
contents of the file can fit sensibly in a String, i.e. for relatively small data volumes.

Once you have a handle to a CStyxFile obgct, you can call set Cont ent s() and get Cont ent s() to
write and read the entire contents of the file as Strings:

file.setContents("hello JStyx world");
Systemout.println(file.getContents());

Note that both set Cont ent s() and get Cont ent s can throw StyxException s and so you will have to
catch this or re-throw it from the method. If you run this code the string "hello JStyx wotld" should be
printed out. (Try running the SimpleServer again and try this out. You can adapt the SimpleClient class to
produce the client code.)

InputStreams and OutputStreams

Another easy-to-use option for reading and writing is through streams. This is probably one of the most
familiar ways of dealing with I/O to Java programmers. In essence, once you have a CStyxFile object you
can turn it into an InputStream or OutputStream by using the wrapper classes CStyxFileInputStream and
CStyxFileOutputStream respectively. You can then use standard stream I/O to get data from and to the
files on the Styx server.

Charactet-based 1/O can be achieved by further wrapping these streams in CStyxFileInputStreamReader
and CStyxFileOutputStreamWriter objects. These convert the streams into character streams by using the
UTT-8 character set. These Readers and Writers can then be wrapped yet again as BufferedReaders and
BufferedWriters to allow, for example, reading and writing data a line at a time from a remote file.

Using URLSs to get handles to streams

©2004 READING E-SCIENCE CENTRE « ALL RIGHTS RESERVED

1.5.2 2. READING AND WRITING 11

You can get a handle to a Styx file on a remote server using a URL. For example, the URL of a file called
r eadmne in the root directory of a Styx server on | ocal host , port 9876 would be

styx://1 ocal host: 9876/ r eadne. You can use this URL to get an Input- or OutputStream for
interacting with this file, as in this code snippet:

URL url = new URL("styx://I|ocal host: 9876/ readne");
InputStreamis = url.openStream);
Qut put Stream os = url.openConnection(). get Qut put Streamn();

Note that you do not have to instantiate or open a StyxConnection before you do this. This is done
automatically in the protocol handler for the st yx: // URLs.

In order to make Java recognize st yx: // URLs, you have to add the string
uk.ac.rdg.resc.jstyx.client.protocol to the system property

j ava. protocol . handl er. pkgs. This is done automatically by the JStyxRun script in the bi n/
directory of the JStyx distribution. If you don't set this property, you will get MalformedURLExceptions
when trying to create URL objcts from st yx:// URLs.

download() and upload()

The downl oad() and upl oad() methods of the CStyxFile class provide convenient methods for
copying data from a remote Styx file to a local j ava. i 0. Fi | e or vice-versa.

Some technical details

The above methods of reading and writing completely hide the details of the Styx protocol mechanisms
from the user. In order to understand the remainder of this section of the tutorial, you will need to know
a little about how Styx works.

The most important thing you need to know is that when you read from - or write to - Styx files, you do
so in chunks. When you read from a file, you are actually making lots of individual requests for data. By
default, JStyx reads and writes data a maximum of 8KB at a time. So, if you are downloading a file of
1MB in size, you are actually making at least 128 separate requests for 8KB of data. (It is possible to
choose a different maximum message size at the point of making a connection to a server: see the various
constructors for the StyxConnection class. However, it is generally recommended to stick with the default
message size unless you know what you'te doing.)

When the server receives a request for a chunk of data, it can respond with a chunk of azy size from zero
bytes to the requested chunk size. If the server responds with zero bytes, this means that the end of the
file has been reached. Clients can make requests for any chunk size up to the maximum allowable on the
connection.

This feature of the Styx protocol has several advantages, including the fact that it is easy to download data
from arbitrary positions in the remote file. However, it means that reading and writing large amounts of
data are rather slower than with a system (e.g. HT'TP) that simply opens a socket connection and passes
the data in one long stream. The speed can be significantly increased by selecting a larger maximum
message size when making the connection to the server (64KB is suggested as a maximum) or by using

©2004 READING E-SCIENCE CENTRE « ALL RIGHTS RESERVED

1.5.2 2. READING AND WRITING 12

an "accelerated download" by making several simultaneous read requests, thereby attempting to saturate
the connection (see the downl oad(File file, int nunRequests) method). However, Styx file
transfer rates generally do not exceed HTTP transfer rates for static files.

read() and write()

There may be situations in which you want to have more control over the reading and writing of files:
perhaps you want to read or write data from or to a specific position in the remote file. In this case you
can use the read() andw it e() methods of CStyxFile .

The r ead() method takes as an argument the offset (position) in the remote file from which you wish
to read data. It returns a ByteBuffer of data, but this is not the normal java.nio.ByteBuffer to which you
might be accustomed, although it is very similar. This is a ByteBuffer from the MINA framework, which
is the networking software that underlies JStyx. MINA ByteBuffers are obtained from a pool and
returned to the pool when they are no longer needed. This means that ByteBuffers are not continually
being created and garbage-collected. This gain in efficiency comes at a price: when using the r ead()
method of CStyxFile you must remember to call the r el ease() method on the ByteBuffer that is
returned, once you have finished with the data.

There are a few versions of the wr i t €() method. In each case you provide a byte array containing the
data to write and specify the position in the remote file where you want the data to go. You can also
specify whether you want the remote file to be truncated at the end of the data. If the byte array that you
provide is larger than the maximum message size... [TODO: I don't think JStyx checks for this at the moment!!]
To save you worrying about how big the input array is, the wr i t @Al | () method allows you to write an
array of any size: the data in the array will be split across several messages if necessary.

When using the r ead() and wri t () methods, the file is opened automatically in the correct mode.
However, you should remember to cl 0se() the file when you have finished with it.

Asynchronous reading and writing

So far, all the methods we have used have been synchronous in nature. That is to say, the methods only
return when their job is done. However, there may be situations in which there may be a significant time
gap between sending a read request and actually getting the data back: this may not be because of a slow
server, but by deliberate design of the Styx system (see the section of the tutorial on asynchronous files
for example). Also, when writing graphical programs, you will want to keep the user interface responsive
and it will be undesirable to have your program hang while waiting for data. You can solve this by firing
off lots of threads but there is a neater way: use the asynchronous versions of the reading and writing
methods.

There are a couple of ways of doing asynchronous reading and writing, but both are based on the idea
that you send the read and write message using one method, which returns immediately, leaving your
program to do other things. When the reply atrives, a specified callback method is called so that you can
deal with it.

Using a change listener

The first way to use asynchronous reading and writing is by creating a class that implements the

©2004 READING E-SCIENCE CENTRE « ALL RIGHTS RESERVED

http://directory.apache.org/subprojects/network/xref/org/apache/mina/common/ByteBuffer.html
http://directory.apache.org/subprojects/network/index.html

1.5.2 2. READING AND WRITING 13

CStyxFileChangeListener interface. (Or, for convenience, you might choose to subclass the
CStyxFileChangeAdapter abstract class, which provides empty default implementations of all the
methods in the interface.)

Having got a CStyxFile , you register your change listener using the addChangelLi st ener () method.
Then you call one of the . . . Async() methods (e.g. r eadAsync()) and the relevant method in the
change listener will be called when the reply arrives. For example, here is a code snippet that will read a
file from a remote server:

public class DataReader extends CStyxFil eChangeAdapter

{
public void readFile(CStyxFile file)
{
/1 Register this object as a change |istener
fil e. addChangelLi stener (this);
/!l Read the first chunk of data fromthe file
file.readAsync(0);
/1 This returns imediately
}
public void dataArrived(CStyxFile file,
TreadMessage t ReadMsg, ByteBuffer data)
{
/1 This nmethod is called when the data arrive. The argunents to
/1 this nethod contain the file that is being read, the original
// read nessage and the data thensel ves.
if (data.hasRemaining())
{
// W got sonme data back. Work out the offset (file position)
/1 of the next chunk
long of fset = tReadMsg. get OFfset (). asLong() + data.remaining();
/1 ... (Do sonething with the data here)
/1 Now read the next chunk of data. This nethod will be
/1 called again when the data arrive.
file.readAsync(offset);
}
el se
{
/1 W have reached end of file. Cose the file.
file.close();
}
}
}

Writing data is very similar, except that you use the wr i t eAsync() method and, when the write
confirmation arrives, the dat aW i tt en() method of all registered change listeners will be called. These
are all the asynchronous methods with their relevant callbacks in the CStyxFileChangeListener interface:

Note that errors from all asynchronous methods are caught in the er r or () method of the change
listener.

©2004 READING E-SCIENCE CENTRE « ALL RIGHTS RESERVED

1.5.2 2. READING AND WRITING 14

One Golden Rule

When implementing callback functions (such as dat aAr ri ved()), you must be very careful to avoid
using non-asynchronous (blocking) methods such as r ead() and wri t e() . This will cause deadlock
(you will block the thread that dispatches Styx replies). You can only use asynchronous methods within
callback functions. The Javadoc comments for each function will tell you whether a method blocks, but
in general, only methods called xxxAsync() will be guaranteed not to block. An exception to this is the
cl ose() method, which never blocks (it doesn't wait for the reply to the close request).

Using MessageCallbacks

Sometimes you might not want to use a CStyxFileChangeListener : perhaps you want more control over
individual Styx messages or you don't like the way that all errors are caught in the same err or ()
callback in the change listener. In this case, you can create individual callback obgcts for each call to an
asynchronous method.

To do this, you create an instance of the MessageCallback abstract class. This requires you to implement
two methods: r epl yArrived(), which is called if the operation succeeds; and er r or () , which is
called if an error occurs. (The error () callback is equivalent to the throwing of a StyxException in the
synchronous methods). The following example will set the contents of the remote file to the given String
(i.e. the asynchronous equivalent of set Cont ent s() :

public void witeString(CStyxFile file, String str)

{
/!l Wite the string to the beginning of the file (offset=0).
/1l The file will be truncated at the end of the string
file.witeAsync(str, 0, new WiteStringCallback());
}
private class WiteStringCall back extends MessageCal |l back
{
public void replyArrived(StyxMessage r Message, StyxMessage tMessage)
{
/1 The argunents to this nethod are the request (the tMessage)
// and the reply (the rMessage), but we don't always use them
Systemout.printin("Wite confirmation arrived");
}
public void error(String errString, StyxMessage tMessage)
{
/1 The argunments to this nethod are the request (the tMessage)
/1 and the error string
Systemerr.printIn("An error occurred: " + errString);
}
}

There are a number of Wi t eAsync() methods that can be used: see the code or the Javadoc for the
CStyxFile class.

©2004 READING E-SCIENCE CENTRE « ALL RIGHTS RESERVED

153

1.5.3 3. CUSTOM FILES 15

3. Custom files

Custom files: Introduction

In the first section of this tutorial, we created a very simple Styx system which exposed a single file, an
InMemoryFile that simply represented a section of RAM. Similarly, the FileOnDisk class is used to create
a Styx file that represents a literal file on the local filesystem. The key to creating powerful distributed
systems using Styx is to design and construct new types of virtual files that exhibit the correct behaviour.

In this section of the tutorial, you will learn how to create customized virtual files. In essence, this simply
involves creating a subclass of the StyxFile class and overriding key methods such as r ead() and
wite().

Custom file 1: WhoAml

For our first example, let's create a file that, when read, will return the IP address and port number of the
client that is making the connection. This file will therefore return data that is different for each client
that is connected. This will be a read-only file. We'll call this class "WhoAmIFile". (See the full source
code of the WhoAmlFile class, including full comments, here .)

As always, we need to subclass the StyxFile class:

public class WioAm Fil e extends StyxFile

Note that the StyxFile class is not abstract: it provides methods to give (not very useful) default
behaviour. Now we need to create a constructor:

public WhoAmM File() throws StyxException
{

super ("whoam ") ;
thi s. set Per ni ssi ons(0444);

The call to the superclass constructor sets the name of the file. Note that the superclass constructor
throws a StyxException if the file name is illegal. We know that this is not the case here, but we will
simply re-throw the exception anyway. Then we set the permissions of the file: we will not allow writing
to this file, so we give it read permissions only (0444,ie.r--r--r--).

Now we must override the r ead() method so that the IP address and port are returned to the client.
This is very easily done:

©2004 READING E-SCIENCE CENTRE « ALL RIGHTS RESERVED

1.5.3 3. CUSTOM FILES 16

public void read(StyxFileCient client, long offset, int count, int tag)
throws StyxException

{
String clientAddr = client. getSession().getRenoteAddress().toString();

t hi s. processAndRepl yRead(cl i ent Addr, client, offset, count, tag);

In the first line of this method we get the client's IP address and port as a String. Then we call
pr ocessAndRepl yRead() to return the data to the client.

Replying to the client

In the above example, we used the pr ocessAndRepl yRead() helper method to process the read
request and return the data to the client. This is a very useful method that is used when the ensire contents
of a file can be represented as a String, byte array or ByteBuffer . If the file cannot be represented in this
way we have to work a little harder, as we shall see in the example below. In this case, we have to work
out exactly what data we need to give to the client (based on the client's read request and the contents of
the whole file) and call one of the r epl yRead() methods.

A read/write file

The above example implemented a read-only file...

©2004 READING E-SCIENCE CENTRE « ALL RIGHTS RESERVED

http://directory.apache.org/subprojects/network/xref/org/apache/mina/common/ByteBuffer.html

154

1.5.4 4. NEXT STEPS 17

4. Next steps

Next steps

In the first section of this tutorial, we created a very simple Styx system which exposed a single file, an
InMemoryFile that simply represented a section of RAM. In this tutorial we will create a more complex
namespace that includes many different resources that are exposed as Styx files.

More file types

Files on disk

As you might expect, it is easy to represent a file on the local filesystem as a Styx file. We do this using
the FileOnDisk class that is provided with the JStyx library. As with all files that can be exposed in a Styx
namespace, the FileOnDisk class inherits from the StyxFile class. Creating a FileOnDisk is very easy: the
source code contains all the possible constructors, but the easiest way is simply to use the full path of the
file, for example:

Fil eOnDi sk local File = new Fil eOnDi sk("C:\\nyfol der\\nyfile");

Directories on disk...

©2004 READING E-SCIENCE CENTRE « ALL RIGHTS RESERVED

155

1.5.5 5. ASYNCHRONOUS FILES 18

5. Asynchronous files

Blocking files

An important concept in Styx is that, when a client sends a message to read from (or write to) a file, the
reply need not be sent immediately. TO BE CONTINUED.

©2004 READING E-SCIENCE CENTRE « ALL RIGHTS RESERVED

1.5.6 6. STREAMS 19

156 6. Streams

Data streaming using JStyx

TO BE CONTINUED

©2004 READING E-SCIENCE CENTRE « ALL RIGHTS RESERVED

2.1

2.1 TUTORIAL 20

Tutorial

What are Styx Grid Services?

Please see this paper for an explanation of what SGSs are and how they are used. More details to follow.

Getting Started

Download the software
Install the software

My First Styx Grid Service

©2004 READING E-SCIENCE CENTRE « ALL RIGHTS RESERVED

2.1.1 TUTORIAL 1 21

211 Tutorial 1

©2004 READING E-SCIENCE CENTRE « ALL RIGHTS RESERVED

2.1.2 TUTORIAL 2 22

212 Tutorial 2

©2004 READING E-SCIENCE CENTRE « ALL RIGHTS RESERVED

3.1 JAVADOCS 23

3.1 JavaDocs

©2004 READING E-SCIENCE CENTRE « ALL RIGHTS RESERVED

3.2 SOURCE CODE 24

32 Source code

©2004 READING E-SCIENCE CENTRE « ALL RIGHTS RESERVED

