AN INTERPRETIVE MODEL FOR A LANGUAGE
BASED ON SUSPENDED CONSTRUCTION#*'
by
Steven D. Johnson
Computer Science Department

Indiana University

Bloomington, Indiana 47401

TecHNICAL REPORT No. 68
AN INTERPRETIVE MoDEL FoR

A Lancuace BAaseDp ON SusPENDED CONSTRUCTION

STeven D. JoHNSON

¥Submitted to the faculty of the Graduate School
in partial fulfillment of the requirements for
the degree of Master of Science in the Department
of Computer Science, Indiana University.
tReseareh reported herein was supported (in part) by the
‘National Science Foundation under grant number
MCS75-08145,

An Interpretive Model For A Language Based On Suspended Construction

Steven Dexter Johnson

Abstract:

An interpreter for a purely applicative algorithmic language whose
record constructor is based on suspended computation has been implemented
in PASCAL on the CDC 6600, Suspended construction provides a model for
the execution of algorithms in a multiprocessor environment without

burdening the programmer with the scheduling of processes.

The syntax of the language is presented and a detailed discussion

of the implementation establishes the semantics of the language. The
presence of suspensions in the system and the applicative control structure

make possible the creation of nondeterministically ordered data structure.

Submitted by: Accepted by:

Steven Dexter Johnson Daniel P, Friedman

David S, Wise

TABLE OF CONTENTS

Introduction ...

Chapter One. Survey of the Language

Chapter Two. Some Demonstration Programs
Examples :
Suspended Construction

Section
Example
Example
Example
Example
Example
Example
Example

wilbe
2
.3. General Application

.4, Infinite Structures

.5. Multisets ..

.6. More Multisets ...

.7. A Guarded Conditional
.8. A Recursive Conditional

NN NN

Chapter Three
Section
Section
Section
Section
Section
Section
Section

Program Notes
Introduction

Stacks and Assignment
Memory Management
Evaluation

Output and Input
Multiset Evaluation

LWL WWWWe
. . s .
SNy BPw N

Chapter Four. Multiprocessing with the Model
Chapter Five. Hardware Considerations

Chapter Six. Implementation Notes ..
Section 6.1, Introduction e.eesesceocsces
Section 6.2. Cells csesevsvooonnensons
Section 6.3. Memory Managemente.... sebsbsseneess
Section 6.4, Stacks and Assignment .. e oo o A s
Section 6.5. Evaluationco.
Section 6,6, INPUL.....e000000000000cc00ss
Section 6.7. OUEPUL ..coecvaseccscscans
Section 6,8, Multisets ..cececeecsecnsrcscvsssssss

TABLE OF CONTENTS (cont.)

00

Suggestions for Continue
. Optimization
. Cell Representation .

Memory Management ...

Storage Reclamation

Chapter Seven
Section
Section
Section
Section
Section
Section
Section
Section

° .
el sl
N WO oo

NN

P~

=

TALUALION seevvenss

N I A N R
. N

[& oIy

' IR S——
(.«'-.IL’:',‘-_‘_L s see0

®

b e e
W w NN
A

~J ~l
.
< }

~J
=

.

=
w
(&

References .

Appendix A,
Section
Section
Section
Section
Section
Section

Section

> >
I
=

ser Manual for the
Introduction
Data iieniie
Evaluation

—

RN =
> 1
I i

I

W

W W
o N L~

™~

£

Program

Program

Introduction

The programming language LISP [14] enjoys
increasing popularity as a modeling tool and as an educational vehicle.
Some of the reasons for this are obvious. Its generalized structure and
symbol orientation, and automatic storage management relieve the programmer
of the responsibility to maintain his data space. Its uniformity of program
and data, interpretive execution, and informative error recovery facilitate
debugging. Its applicative control structure induces modularity of thought
and program.

With each of these benefits comes cost in both time and space and
because of this, LISP and languages like it see little use beyond academic
circles. Yet as the price of computation grows to depend ever more greatly
on the human interface, and as hardware costs diminish, machine resources
become less of an issue and demand increases for more expressive languages.
Applicative languages are profoundly expressive, even though they lack the
plethora of control structures found in current iterative languages.

This expressiveness comes from a close similarity to the language
of formal mathematics, developed over the last several centuries without
regard to the limitations of electronic technology. The research which
led to this paper is motivated by the desire to create a natural, human

oriented algorithmic language, and at the same time to address the issues

of efficiency that confront the user of computers, '""Efficiency" has two
y ¥

aspects: space and time. A reasonable decrease in space-efficiency can

be absorbed

reflect the physical
constructs do, it
narrowed,
of several computers
ith "smart"
semantics

its test nise 2 practical level:

e i T e o, S s Oy
change in relationship between

dat builders, like LISP's CONStructor function,
structure involves no
1. :17 cransparenc

to produce

Computation takes place when suspensions are accessed by the

compute effort is not expended on structures

continued study, a model for
strategy was img
of the next year
onsibility

is suspended. This paper, in part, is a report on the state of the

program, which runs in interactive or batch mode on Indiana University's

CDC6600 computer,

Chapter One is a cursory introduction to the interpreter's syntax.
Familiarity with applicative programming is assumed. A more thorough
introduction to the language is found in Appendix A, of which Chapter
One is a review, Chapter Two contains a number of example programs
demonstrating features of the language.

In Chapter Three the program itself is described in general terms.
The details of the implementation are taken up later in Chapters Six and
Seven. The third chapter also lays the groundwork for discussiomns of
multiprocessing in Chapters Four and Five.

This paper has several purposes. It serves as a user manual for
those interested in exploring the applicative approach to programming.
Toward this end the sections of concern are Chapters One and Two and
Appendix A, The interpreter's program is an ongoing project. TFor those
inspired to take part in its further development, Chapters Three, Six and
Seven provide detailed code documentation. These chapters contain parallel
discussions of the program, with respect to general behavior, implementation
specifics, and ideas for improvement. For example, the evaluator is
summarized in Section 3.5, a rather involved example is traced through its
execution in Section 6,5, and suggestions are made about changes in the
evaluation strategy in Section 7.5. By making three passes at describing
the program as a whole, the programmer should gain a better understanding
of its overall behavior,

My interest in this project is fueled by the conviction that sus-

pensions provide a way to implement large scale general purpose multi-

processors. Fro ‘ i f nterpreter, as described in
Chapter Three,
are made concerni

1

multiprocessor

Jennifer Rae

Four and

guidance in my research, and to the National

my work

Chapter 1. Survey of the Language

This chapter is an introduction to a programming language now being
developed at Indiana University. The language is implemented with an
interpreter, and is in some ways similar to the programming language LISP.
Since it has no name yet, the language is referred to as the Interpreter,
Appendix A is a more detailed discussion of the ideas presented here, written
for those who are not familiar with applicative languages -- languages in
which the only control structure is the application of functions to arguments.

[12] Experienced LISP programmers will find that this
chapter contains the information necessary for use of the Interpreter.

Others should read Appendix A first and use this chapter for review.

The purpose here is not to teach how to write programs. There are

other places where applicative programming skills can be learmed; The

Little Lisper [3] is an excellent place to begin.

Interactive LISP interpreters are also helpful. The student must bear one
inconvenience, though; LISP syntax, the form in which statements are made
and programs are written, differs slightly from that of the Interpreter,

The language is data oriented, and data is divided into two categories.
Atoms are elemental data consisting of numbers (integers only) and literals
(finite length* character strings of digits and letters, starting with a
letter). Data which are not atomic are called ferns; for the moment we

are concerned with a restricted kind of ferns called lists. A list is an

.*In the current implementation, numeric atoms are restricted to have
an. absolute value less than 65000, and literal atoms must have fewer than

nine characters. Atoms of excessive length or magnitude are truncated by
the Interpreter.

by en

ressed

evwnTr

g

The Interpreter
follows the convention that everything presented to input is evaluated,
The user can suppress automatic evaluation by preceding forms with the QUOTE
character, ''"'. QUOTEd data should be pure:
"AUTUMN -=y AUTUMN.

TRUE -=)» TRUE.
"12 @Y O)-=> 12 EY) O).

Applicative forms have the syntax:

function : argument

The colon is a data transformation operator called APPLY; the form F:A

"

might be read "APPLY the function F to the argument A. The function part
of an applicative form may be a list (ferm)*;when it is, the argument is

treated as a rectangular array. Each element of the function-fern is

APPLY'd to the corresponding column of the argument-fern

[8]. ' In example (i) of Figure 1-1, the function part of the applicative

form is the atom ADD1, the argument part is the number 1, and the form

evaluates to the number 2, 1In example (ii) the function is PLUS and the
argument is a list of two numbers. The result is the number 4. PLUS is
called a "binary function'; it acts on two elements of its argument list

(fern). In example (1ii) the function PLUS is enclosed in brackets making

*The current implementation severely restricts second order applica-
tion of functions. The form <F:A>:{p:ﬁ) is not allowed because the
function part of the form contains an applicative form, F:A. Likewise,
direct calls to EVAL are not available, unless the user has defined this
function explicitly,

columm. The result is the list (4)

has two elements, the argument array

"irst element of

- ;
sramelia
Example

elements.

the nesting.

Binary functions, 1like PLUS in the examples above, may be given an
argument structure of any length, but they act only on the
ositions. Thus, PLUS:< 2 2> -=7 4 and PLUS(2 2 2 2) -= 4 and PLUS:
posit Thus, PLUS:< 2 2) : PLUS {2 2) -~

<PLUS: {112 TRUE) -= 4. fact, it may be stated as a rule that:

ALL FUNCTIONS TA

As we show above, the argument to a function can be a complex structure,

The system provides nine arithmetic functions: ADD1, SUBLl, PLUS, DIFF,
TIMES, DIV, MOD, GREAT, and LESS. ADDl and SUBL are '"unary", they take a
single Numeric argument; the rest are binary. PLUS, DIFF, TIMES, and DIV
do integer addition, subtraction, multiplication,and division. MOD produces
the remainder of division. LESS and GREAT are integer comparison predicates,
The results of predicate functions ar uth values, falsity is represented
by the empty fern, {), or the Atom FALSE. / her structures may be

said to represent truth.

FLUSS< TIMES$<10 10 ADDL:d

& MODs<4

GREAT &+ I vd G =1F

= TRUE

LESS S« MOD$<3 4x -333:
()

Atoms=*

AT O
FALSE

The last kind of form that the Interpreter accepts is a definitional
form, used for the definition of functions and the declaration of program
constants, Definitional forms are the only means of adding information to

the Interpreter's top-level data base, The syntax is:

DEFINE function name formal parameter function body.

DECLARE constant name value.

The period is part of these forms. TFunction names and constant_names are
literal atoms.

When the Interpreter is given a nstar lecl it evaluates
the value part of the form, then binds the constant name to the result
in the top-level environment., Constants may not be re-DECLAREd,

The formal parameter part of a function definition is a pattern for
the argument the function accepts, expressed as pure data. The function
body is a statement of what the value of the function is when it is APPLY'd
to a particular argument. The Interpreter finds this value by '"executing"
the function body, that is, the function body is evaluated, and the result
is returned as a value for the application.

When it is given a function definition, the Interpreter binds the
function name to the parameter-body pair in the top-level environment.

At application time, the formal parameter is retrieved and compared with

the actual argument in the applicative form. During comparison, substructures

of the formal parameter are matched in the argument, and the formal parameter's

atoms are bound to the data in the corresponding positions of the argument.
Then the function body is evaluated in this newly created environment.

The binding operation is actually suspended, or postponed by the Interpreter;

a condit

odd number of

to be conditional

2.l

winere
behavior is
expressions

fail, the last form is evaluated and returned. If no final alternative
is given in the definition, that is, if the user defines a function with
an even-length list of forms, and if all the predicates fail, then () is

returned by the Interpreter.

O T
310G

M
I
P

i LISTNUMS
ILLELISTNUME THEN O
o

USSFIRSTILISTNUMS SIGMAIRESTILISTI

et 4 R
e

LDEFINE BSEARCH (RKEY (ROOT INFO LSUBTREE
TF 8AMES<ROOT Ox THEN "(ENTRY NOT
SELF SAME<ROOT KEY: N
FLESS S EIRO0T KEY: TH
B EARCHS=REY REUBTREE:

Figure 1-5
In example (ii) of Figure 1-5, a binary search algorithm, the structure
of the search tree is specified in the formal parameter; it is a list
containing a ROOT, the INFOrmation associated with the root node, and
a Left- and Right-SUBTREE, BSEARCH is applied to a tree whose ROOT is
3; the root node contains the information "A, The subtrees of this

structure are also binary trees. For example, the left-

m

]
I3
3

[

ru

t1

turned

re

onstructor

“

T1

SuSpeNnsio

Example:

DEFINE INTEGERS N CONS:(N INTEGERS:ADD1:N) .

If the Interpreter encounters the applicative form, INTEGERS:1, the
execution of the function body, CONS: (. . .), causes a new

created. This list contains two suspensions

form: INTEGERS:ADD1:N

environment:

environment:

N=1

Figure 1-6

The suspensions are shown as clouds in the figure. Suppose that
somet ime later, REST were applied to this list. The righthand suspension is
coerced (evaluated); it contains the form INTEGERS:ADD1:N, which means
another call to CONS is necessary. The suspension is replaced by a

second new list cell which contains two more suspensions (Figure 1-7).

b o P W

r

‘ l - INTEGERS:ADDIN)

—

\

= |
i 1
|
L__+_
!

N=A D [i‘iiix" =2

pam

Now if FIRST

suspension whose form is N In the suspension’
the form Al
the atom N is bound in the first cell's envir

.ronment to

evaluates to

The Interpreter replaces suspensions with their values so that repeated
probes on a cell won't cause repeated evaluation.

Two generalizations on a pure-LISP Interpreter are immediate: since
the only necessary calls to suspension-coercing probes result from the need
to print answers on the output device, only computation essential to finding
those answers is carried out., The computer does a minimum of work. Second,
suspensions make it possible for the Interpreter to manipulate structures
which appear to be infinitely large. The list created by INTEGERS:1 grows
longer with every call to REST. A standard LISP Interpreter fails to build
even the first cell of INTEGERS:1. LISP's constructor evaluates both arguments
before fetching a cell, (unsucessfully in this case),

Multisets are '"unordered" when they are created. FONS too, does not
evaluate its arguments, but turns them into suspensions to be coerced
by the probes. When the probes evaluate suspended elements of a multiset
they select an order for the structure at the same time. In short, lists
are ordered at construction time, multisets are ordered at access time,

Consider the form:

FONS:(ADD1:1 FONS:{ADD1:ADD1:1 FONS: {1l <>»

Evaluation of this form creates a multiset of three suspended elements.
If FIRST probes this structure it coerces all of the suspensions at the
same time., The first suspension to converge becomes the FIRST element of

the structure., The form can evaluate to any of the lists:

(123), @32, (@13),

(231), ((312),o0r (321),

Now consider the form FONS:

of this form results in a multiset
the suspensions contains an illeg
erroneous or divergent comput
fern toward the
when
on a multiset returns a value

convergent element.

The

user has a shorthand

notation,
{1 2 3» = CONS:{1 CONS:42 CON

Square brackets* are

= FONS: (1 FONS:{2 F

\

Finally, some special characters are

A few have been mentioned already.
evaluation. The
APPLY

is the

nfinite structures:

*In the works o
Int(':‘rp rEterj Squa}_‘-a
Square brackets were

braces (lower case

ADD1: TRUE

two suspended

operator in applicative form

ONS:<7 {»77 .

elements,
second property of

are forced away from the

argument arrays. The

star is used to denote

colon

7% -=> (7%), which means (7 777 . . .).

{56 7%» -=» (56 7%), which means (56 7 7 7

{PLUS*) :<

<12 .32

123> -= (246)

{PLUS*Y :{

{2%7

2%) -=> (4%)
Stars may be used in the function part of an applicative form; the
Interpreter applies the starred function as many times as there are columns
in the argument array.

The slash character has two uses. When multisets are built using
the square bracket, a slash indicates that the preceeding element is to be
CONSed into the structure. CONSed elements act as a fence in multisets;

probes cause no evaluation beyond these fences until their suspensions have

converged,

[1 2/ 3] = FoNs:{1 CONS:(2 <3))) -= (12 3) or (2

[A/ B/ c/ D/1 =<ABCD.

No form may contain two consecutive slashes, '//'. 1If this string appears
in the input stream, the Interpreter rejects the form it is buildiﬁg,
skips to a new line, and starts again. If a typographical error is
noticed during a lengthy definition, typing two slashes is a way to start
over, The Interpreter prompts the interactive user for more input with

a question mark, '?'. A semicolon, ';', in the input stream causes the
Interpreter to skip to the next line for more characters; this provides

a way to add comments to programs. When the user is at top level, the

special form "EXIT." causes the Interpreter to halt, returning control to

the host system.

REVIEW OF CHAPTER 1

Data is of type atom or fern. Atoms may be literals or numerics.
Ferns may be lists or multisets,

The Interpret

-) a7 1 numerics. Numerics e ue themselves.
(1

close list sir*:tu:es; square brackets
enclose n iset A fern evaluates to a fern of evaluated elements.
Apollbah’vu g syntax is function:argument. The function
part contains no .-'7 e forms, the argument part may have
any complexity. > applied to the columms of
the ﬂTgum&ﬂt ar
Defin L*lon forms. 1iction finitions have the syntax:
DE hh name formal-parameter body.
Constant declarations have the syntax:
DECLARE constant value,
he body of function is a list of forms
F, THEN, F
4, The system provides functions for thmetic operations and data
manipulation,
. Unary arithmetic functions: ADD1, SUBI.
. Binary arithmetic functions: PLUS, DIFF, TIMES,
. Binary comparison predicates: LESS, GREAT, SAME.
Data examination predicates: ATOM, NOT, NULL .
Data probes: FIRST, REST, numeric functioms,
Data comnstructors: CONS, FONS,

5. All evaluation is suspended by the constructors.

6. Special purpose characters:
3, "." -- end of form; end of definition,
i

" place holder in argument arrays.

The Interpreter's prompt character.

comment, rest of line is ignored.

insert a list cell i; this multiset,
reject the current form in input.
the APPLY operator,

tomatic evaluation, "XYZ -=> XYZ.

7. The atom, fiIl e i T Interpreter to stop, and
returns the t

Chapter 2, Some Demonstration Programs

Section 2.1 Examples

My primary responsibility as a research assistant for Dan Friedman
and David Wise was to maintain an interpretive program for the language
presented in Chapter One. The interpreter is a means to demonstrate
their ideas about computation, about programming languages and style,

As the language evolved and the semantics of constructors was embellished,
the program has been altered; its behavior is an objective verification

of their ideas as well as a tool for continued development of the applicative
approach to computation.

In this chapter a number of examples are given
of the language. All were run on Indiana University'

Corporation 6600 computer under the KRONOS operating system. Most of
the examples were submitted from a terminal in batch mode, with the
source program on file, but they could have been executed interactively.
The interpreter requires a core field length of 30,000 octal words; this
includes an array of 7,000 cells. The programmer can, upon entry to the
program, restrict the number of cells that the interpreter can use by

supplying a size parameter in answer to the prompt:

-=) MEMORY LIMIT?

Resources are limited in some of the examples to show how gpace some

algorithms use.

Example 2.2 uspended Construction

writing the interpreter
builder, CONS,
uate its arguments
effort. The fiel f iew record are filled instead with suspen

sions which serve as proxies

[5]. . One consequence

brought into existence

section, such lists

structure to write

The interpreter's s ge reclamation system
discrete reference count scheme; every data cel
set aside in which references to that cell are tabulated. Cells are
returned to available space when theilr last reference is removed.
Because the last reference to the lists in these examples is made
by the PRINT routine, the structures are comsumed and
they are traversed A

created, printed, and returned in consta

a list of integers is printed in Figure 2.2-1 while memory is constrained

to 350 cells. Program initialization uses about 300 cells leaving

50 for the construction of the infinite 1i The program is allowed

to print enough of

creation. In addition, concurrent storage reclamation enables the
1ist to be traversed and disposed of without any computational pause
for garbage collection [1L; 2.3.5].,

The example in Figure 2.2-2 shows that the memory constraint
actually works by making it impossible for the interpreter to compute

the next integer. The INTEGERS algorithm runs in about 330 cells

which means that around twenty cells are used to create,suspend, and

evaluate each element of the list structure.

The consumption of an infinite structure by printing depends
on two things: there must be no additional references to the printed
structure from within the interpreter, and there must be no recursive
"buildup" of environments maintained in un—-coerced suspensions.
Figure 2.2-3 shows a program in which a computationally simpler
structure than INTEGERS is constructed. The print algorithm is
unable to recycle this structure completely (the list structure
itself is returned to available space), because the unused formal
parameter's binding is never coerced into existence. The atom n
is bound in each recurrence to the number 1, but the binding is
suspended and the suspension contains a reference to the value of
n in the previous environment. The excess baggape 1s carried along
with each recursive call to ONESTAR , even though it 1Is never to
be used, and because of this memory is totally consumed.

The purpose of this example is to show that suspensions consume
space, The problem of un-coerced arguments in this algorithm problem is

solved when the interpreter is made sensitive to tail recursive forms

[16].

n ENTERING

> MEMORY LIMIT

sl
S

1

J

33
13

261

303 304

v ey

453 454
0 471 47
88 489 490
506 507 508 509 510
524 525 526 52 :
1 542 543 544 545 546 547 548 549 550 551 ¢ 4 555 556 557 558 5
562 563 S64 :
580 581 582
598 S99 600
15 616 617
30 631 632 633 634 635 . :
648 ¢ 651 652 653 654 655 656 657 658
666 667 668 669 670 671 67z 74 675 676 677 &) 680 681 482 68
: 37 688 689 690 691 { 3 694 695 496 & 3 699 700 7

705 706

= ENTERING VERSION O.1

=3 MEMORY LIMIT
T 320

T defime INTEGERS n consi<s o intedersisddlin

MEMORY IS EXHAUSTELD.
-z YOU HAVE SFECIFIED 320 NOIESy
AND THE LIMIT I8 7000,

Figure 2.2-2

s ENTERING VERSION 0.1

== MEMORY LIMIT

2000

T defime ONESTAR () const< 1 onestari<l>

s €

—-==0ONESTAR
T oonestarsali,

¢l 4+ 04 1 & & &4 d 3 & 4
L 4 + 43 4 ¢ 133224133 1 1 1 1 !
14 4 11344234 3F 408 4433 4% %4
1 14 3232 2 1234 3d 19331 31903
1111111111111 11311413114d 311
i 11111111

=p—-= MEMORY IS8 EXHAUSTED.
== YOU HAVE SFECIFIED 2000 NODES:»
ANDI THE LIMIT IS 7000.

Figure 2.2-3

o e
cnatc

hich enables

L app.

ENTERING VERSION 0.1

MEMORY L.IMIT

(TRACE 1)

FINE QSORT (LIST)
THEN

1 QSORTH LCSHUFFLES S FIRSTILIST

DEFINE SHUFFLE (HEAD TAIL)
IF ' : v
ELSETF GREAT!<HEAD FIRSTITAIL: THEN < CONS
S1ETATL

ELSETF LESSt<HEAD FIRSTITAIlL> THEN < 1 !
< I
SHUFFILE < HEATD
1 CONS ik
S LiTATLL f
SHUFFLE$<HEAD REST{TALL:
=z GHUFFILE
DEEINE AFFENDZ (A B C) AFFENDICA AFFENDICR Ok
wez PP ENTTS

DEFINE AFFEND (A 1)
IF NULLEA THEN B
CLGE CONSECFIRSET A AFFEND<REST
HFENT

4 2 Bl
(8 8))

1 6 7 285 12 11 10
4 5 67 8% 10 11 12

= LEAVING.
1ZELDly 94931
NODES RECYCLENy. 8083
AVAT L~ 12250
7

u

tructures

rred

Sta

ENTERING VERSION 0.1

> MEMORY LIMIT

(TRACE 1)

INE INTEGERS N CONS!<N INTEGERS:ADDL N,
~=:>INTEGERS

LDEFINE FRODUCT (L1 L2)Y <FRODL1X>:<L1 <L2XEr.
—==FRODUCT

DEFINE FROUL (A L) <ORDFATRX::<<AX: L.
R RODNL

NEFINE ORDFAIR (X Y) =X Yo,
FORDFAIR

DEFINE RATNLS NIL FRODUCT!CINTEGERS:IL INTEGERS 1.
-z RATNL Ej‘

DEFINE AFFEND (L1 L2)
IF L1 THEN CONS!+ FIRSTILL AFPENDI<REST LI L3>
ELSE L2.
~==AFFENTD

DEFINE SLICE (N L)
IF SAME!<N 0> THEN =l
ELSE CONS$<1:1tL SLICEI<SURLIN RESTIL>>.
~w= =G TCE

DEFINE SHAVE (N L)
IF SAME <N 0> THEN L
FELSE CONSI-RESTIFIRST!L SHAVEI<SURLIIN REST x>,
—=BHAVE

DEFINE ENUMRATE (N L)
AFFEND!ISLICE t =N L» ENUMRATE $-<ADIL: N SHAVE <N | =ms
~=SENUMRATE

ENUMRATE $<1 RATNLS -,

-= ((1 1) (1 2) (2 1) (1 3) (2 2) (3
(2 4y (3 3) (4 2) (5 1) (1 6y (2 3) (
(3 5) (4 4) (5 3) (6 2) (7 1) (1 8
Y (8 1) (1 92 (2 8) (3 7)) (4 46) (5 8) (6 4) (7 3y (8 2) (2 1) (1 10) (2
@) (3 8) (4 7) (5 &) (6 3) (7 4) (8 3> (% 2) (10 1) (1 11) (2 10) (3 9
(4 8) (5 7)Y (& 6) (7) (8 4) (% 3y (10 2 (11 1) (1 12) (2 11) (3 10
(4 92) (5 8) (&6 7)) (7 &) (8 5) (% 4) (10 3) (2) (12 1) 1 13y (2 12

) 1

) 11

Y (3 11) ¢4 10) (35 9) (6 8B (7 7)) (8 &) (2 5) (10 4) (11 3) (12 2) (13
1

1

1Y ¢1 4) (2 3) (3 2) 4 1) (1 %)
4

3 4 3)] (6 1) (1 7) (2 &)
(

)
27 (3 6) (4 5) (3 4) (6 3) (7 2

Y (1 14) (2 13> (3 12y 4 11) (35 10) (6 92) (7 8y (8 7)) (9 &) (10 &) (1
4) (12 3)
¥TERMINATELRK

Figure 2.4-1

e

W o
IND

F

ructor,

cons

i

cione
OIls

suspen

ENTERING VERSION 0.1

MEMORY LIMIT

ASTANGO (L1 L2)
FOSAME <Ll L2» THEN <<"IS "EVERY "RODY “"HAFFY:
MULLtL1 THEN <<tWall "FLOWERS L2k
NULL L2 THEN =<*WAlLL "FLOWERS L1
. FONG:<LEFIRSTILL FIRSTIL2] LASTANGOI<RESTILL RESTILZwE.
-z ASTANGOD

NEFINE BROTHER FERSON
IF SAME:=FERSON "SAM> THEN "TONY
FLSELF SAME <FERSON "TONY> THEN "S5AM
FLSETF SAME$<FERSON *JILL> THEN "DAVE

DEFINE SISTER FERSON
IF SAME:<FERSON "MARY> THEN "CLEQ
FIF SAME:<FERSON "CLEOX THEN "MARY
TEF SAME <FERSON "DAVEX THEN "JILL
SE "RITA.

EROTHER ¢ BROTHER : BROTHER § "SAM,
~= s TONY

BROTHER$SISTER?S "DAVE ,
i DAVE

SISTER¢BROTHER S "TONY.
~= 3 RITA

LASTANGO §

“CBROTHER:SISTER S "DAVE $YSAM "TIAN
[SISTERSBROTHERS "TONY "CLEO SISTER?: "CLED y
—=n (CCLED DANY (MARY TONY) (DAVE RITA) (I8 EVERY EODY HAFFY))

LLASTANGO S
SEPIAVE "TONY "DANI
C*RITA "CLED "MARYI:,
((DAVE RITAY (TONY CLED) (DAN MARY) (I8 EVERY BODY HAFFYD))

NODES RECYCLET
AVATL -~ 632
/

Figure 2,5-1

B
‘

nitive

PT

7en

J

ax

on
L

un

func
Nues

monstra
rel
.;

5
cont

i

ENTERING VERSION 0.1

MEMORY LIMIT

(TRACE 1)

IECLARE ROARD <<FALSE FALSE FALSE FALSE =
FALSE TRUE Fal.skE TRUE
S TRUE FALSE FALSE FALSE =i
CCCy () () () (<) TRUE () TRUE) (TRUE () () <))

DECL.ARE BOHEIGHT 3.
i3
NECLARE BIOWINTH 4.
i 'j .(}

LEFINE MAZE (START GOAL FATH)
IF SAMESFOT!<S8TART GOAL> THEN FATH
1IMOVESI<START GOAL FATH:,

DEFINE (START GOAL FATH)
CMOVE MOVE MOVE MOWEDS <
L FATH FATH FAaTH FATH
SOTART START START START =
GOAL GOAL. GOMAL. GoOAL. =
40 1> 20 =Lk ol Ok el Qi
—==MOVES

DEFINE MOVE (FATH (SX 8Y) GODAL (MX MY))
MOVEHELF $ <<FLUS:<SX MX> FLUSI<SY MY:: GOAL FATH:.
s MOVE

NEFINE MOVEHELF (S8TART GOAL FATH)
IF NOTIBLOCKED?START
THEN MAZE!<START GOAL CONSIESTART FATHI
ELSE UNKNOWN .
-z MOVEHELF

UEFINE EBLOCKED (X Y)
OR$<LESS:<X 1> LESSI<Y 1x
GREATI<X BOWIDTH:> GREATY BOHEIGHTX
X 1Y 1ROARD .
-=>RLOCKED

DEFINE OR LIST
IF NULLILIST THEN FALSE
ELSEIF FIRSTILIST THEN TRUE
ELSE OR!RESTILIST.

OEFINE SAMESFOT ((8X 8Y) (GX GY))
IF SAME$<8X GX> THEN SAME!<8Y GY> NIL.
-z GAMESFOT

Figure 2.6-la

Example 2.7 A Guarded Conditional

In A Discipline of Programmingr[2], Dijkstra proposes that

two nondeterministic programming constructs; a guarded conditional statement
and a looping statement, are sufficient for algorithmic control structures.
FONS provides an immediate implementation of the first, in which one of a
collection of routines is executed if its associated predicate '"'guard"

is true,

The function GCOND (Figure 2,7-1) supplies as many instances of the
auxiliary function GUARD as necessary to test all the guards. The collection
of calls to GUARD is a multiset, and so successful predicate-value pairs
are ordered as they converge. [10].

In addition, this example shows the behavior of the functions AND
and OR on multiset arguments., In calls to these functions, predicates
are included which yield error messages when fully evaluated, but in each
case a value is returned prior to the message because less expensive elements

converged first,

Example 2.8 A Recursive Conditional

Suspensions yield a lesser fixed point semantics for applicative
languages than can be found in LISP (Example 2.2), but a further extension
of the language solves the problem of undefined predicates in conditional
statements [10].

We want the conditional statement:

If P then A else A

to converge to A regardless of the divergence of P, and further, the

statement:

If P then else B

should converge if P is divergent but A and B evaluate to the "same"
structure,

The function PARIF in this example uses multisets to achieve this
behavior. The predicate and two alternatives are evaluated simultaneously;
if the predicate refuses to converge the alternatives are compared and one
is returned if they are equal. 1If the alternatives are both ferns, a
copy is made as long as they are element-wise equal, postponing the
dependence on the outcome of the predicate,

TIwo nearly identical runs of this example are shown. In Figure
2,8-1, the last call to PARIF returns the equal part of the alternatives
before consuming the rest of its space evaluating the divergent predicate,

In Figure 2.8-2, the call to the function UNDEFINED is replaced by

the atom UNKNOWN, a special symbol which stands for a recognizably divergent

computation. UNKNOWN causes the program to act as though an evaluation

error had occurred. In this case, the printed result is terminated with

the error symbol #BOTTOM#, - ing i act to continue,

ENTERING VERSION 0.1

MEMORY LIMIT

1)

(TRACE

N

DEFINE UNDEFIND (XD IF X THEN UNDEFINIDI-CO UNTIEF INIS 20,

—z==UNDEF IND

NEFINE INMTEGERS N CONSI<EN INTEGERSIAUDLING.
—~==INTEGERS

DEFINE AND LIST
TF NULLILIST THEN TRUE
ELSETF NOT:FIRSTILIST THEN NIL
ELSE ANDSIRESTILIST
oz AN

DEFINE PARIF (F T E)
130 SYSIF$<F T E>
SYSTFI« ANDI<ATOM:T ATOMIE SAME$<T Exkx T UNDEFIND<QH:
: © ANDSSNOTSATOMIT NOTSATOMIE:
CONG$< PARIFS<F FIRSTIT FIRSTIE:
PARLF $«F REST!T RESTIE:
UNDEFIND 0% =1
—u P ARTF
NEFINE SYSIF (FRED THENFART ELSEFART)
IF FRED THEN THENFART ELSE ELSEFART.
-~ GYGTF
FARIF$< AND:<1 2 3 NIL> “RETA "“BETAX.
s BETA
FARIF$< ANDS<1 2 3 NIL» "BETA “GAMMAX.
i GAMMA

FaRTF < UNDEFIN

red

030k

3
3.

FARIF$= UNDEFINDE<O-
1 01 1 1x3<INTEGERS 1>
<1 2 3 &> e
23

> MEMORY IS EXHAUSTEI.
= YOU HAVE SPECIFIED 7000 NOIESs
AND THE LIMIT IS 7000,

-~ PROGRAM TER

ENTERING VERSION 0.1

MEMORY LIMIT

INTEGERS N CONSI<N INTEGERS tALDL SN,

CF INE. AND T
IF " THEN TRUE
= RETSLIST THEN NIL

OEFINE FARIF (F T
140 SYSIFIF
SYSIF !« ANLII<ATOM!T ATOMIE SAMES<T Exx T UNKNOWN:
SYSIF ¢« ANII<NOTIATOMST NOTIATOMS
ONS < FARIFECP FIRSTIT F
FARTF <P REST!T RESTIE®:
UNKNOWN =7,

DEFINE S8YSIF (FRED

IF FRED THEN THENFART ELSE
—=x8YSTF

FARIFI< ANDE<1 2 3 NIL: “BETA “BETAX.
=2t HETA

ANDIE<1 2 3 NIL» "BETA "“GAMMA:.

3

24 6 8 10
<1 2 4 6 16 32=

(1 24 68 10)

FARIF: < 103INTEGERS:L

FARIF < UNKNOWN
1 1 1x3<INTEGERS?!1>
2 3 5>

a1
2 3 FROTTOMED

ez LEAVING .
NODES DISFOZEDs 19733
NONES RECYCLEDs 2873
AVAILL —--> 533
p
Figure 2.8-2

Chapter 3., Program Notes

Section 3.1 Introduction

These program notes give an overall look at the interpreter as a
machine independent program. We describe the fundamental data structures
and behavior here, without regard to the implementation language or host
machine, concentrating on basic design variants., As the program is both
a vehicle for applicative programming and a computational model, there are
times when issues of efficiency are ignored, in favor of generality,

This is most obvious in the section on evaluation. A syntax for the

interpreter's language has not been fully established; modeling strategies

are in the beginning stages of development. Discussion of these aspects
are open-ended, to be dealt with more fully in Chapter 7.

The program is divided into four modules, responsible for memory
management, evaluation, input, and output. A subsection is devoted to
each module, and there are additional discussions of the basic storage
constituants, universal structures and operations, and the Fern evaluation
strategy. Chapter 6, which contains implementation specifics, has a
more detailed section for each section here. Throughout the
program notes, the following conventions have been adopted for special
words:

a, Interpreter function names and program variables are upper case;
FIRST, AS50C, LIST . . .

Data types begin with an upper case character;
Pname, Suspension . . .

Data fields are lower case, underlined;
ref, pname, car.numberp . . .

Procedure names are upper case and underlined;
DISPOZE, EVAL

Section 3.2 Cells

The interpreter's memory is a collection of cells (or words, or nodes)
which are of uniform size, Cells may be of type Fern, Atom, or Suspension,
and each of these types is subdivided further as discussed below. With
the exception of certain Suspensions, all cells have three pointer fields
called ref, car and cdr; with each pointer field there is a flag ,
which states explicitly whether the content of that field is to be
preted as a pointer or as an integer (data). These and three more

are used by the interpreter for cell type identification.

there are six flags and three fields in most cells:

atomp -- cell-typing fl
-- cell-typing fl
-- cell-typing flag
ref -- pointer/integer field
.numberp -- field specification
-- pointer integer field
.numberp -- field specification
-- pointer/integer field
.numberp -- field specification

.

1
2
3
&
3,
6
7
8
9

.

The Type Suspension

Suspensions are system structures and cannot be accessed by the
user, There are two kinds, Pnames and Free- (or Linked-) stacks. Pnames
are highly specialized single-cell structures which occur in highly
specific contexts, Because of this, the term Suspension is used to
denote non-Pname Suspensions. Pnames contain the character codes for
literal atoms instead of the pointer fields mentioned above, This is the
only cell type without pointer fields. Suspensions, in the more specific
denotation, have pointers in their ref and cdr fields; the car field may

contain either a number or a pointer, The cdr of a Suspension is either

NIL or another Suspension. The pname flag is the type specifier for
Pnames. In Suspensions, the pname, atomp, and multi flags are usually
false; the type determining characteristic is the existence of a pointer

in ref (ref.numberp = TRUE).

The Type Atom

Atoms may be either Literal or Numeric. All atoms have a number in

their ref field, and TRUE in their atomp flag. Numerics have a number in
car (their value) and do not use the cdr., In Literals, the car and cdr
are pointers: cdr to the Atom's Pname, car to the next Atom in a hash

bucket,

The Type Fern

Fern cells have pointers in their car and cdr fields, a number in
their ref fields. FALSE in the atomp flag specifies Ferns as non-Atomic.
The two subtypes are List and Multiset, differentiated by the multi flag,
The pointer fields may refer to Atoms, Ferms, or Suspensions, but not

to Pnames.

The ref Field

When the ref field of a cell is a number it tabulates the references

to that cell in the system, a reference count. When a pointer assignment

is made, the reference count of the object is incremented. Instead of
using a garbage collector, the interpreter has a cell recycler, sensitive
to reference counts, which reclaims cells when they are no longer referenced.

Atoms and Ferns, that is, user structures, have reference counts; Pnames

and Suspenéions do not. Therefore, system structures must be uniquely

referenced, In short, all Suspensions and Pnames have a reference

count of one.

Graphic Representation

Figure 3.2-1 depicts the Fern structure: (EQUIV (a 5)). 1In the

List representation, the lower case character strings are Suspensions

which have not yet converged. We adopt the convention that the Suspension a

will evaluate to the value A, so that fully coerced, this Fern

(A 5)). In the graphic representation, cells are denoted as boxes;

the way a box is divided indicates the type of the cell. The cells CI,

C2, C4, and C5 are type Fern, divided into three fields, the leftmost field
containing the reference count. The mark at the upper-left of C4 indicates
that it is type Multiset. C3 and C6 in the figure are type Atom, the
Literal EQUIV and the Numeric 5 respectively. C3's associated

excluded. Cell C7 is a Suspension, divided horizontally, so that it
resembles a stack. The lower case form a in the cell shows that C7 will

converge to A. The ground symbol is NIL.

~
~

“w
_ﬁ_t,ré
I E—

T

—

FIGURE 3,2-1

Table 3.,2-2 summarizes cell typing:

Type

General Comments

Subtype

comments

Suspension

a, Pname

b. Sus- pointer pointer
pension or
number

pointer

Uniquely ref-
erenced; no
user access,

pname is TRUE,
cdr is either

NIL or a Sus-
pension.

Atom

a, Literal reference pointer
count

reference
count

pointer

TRUE,
Pname;
next

entry.

value,

reference pointer
count

reference pointer
count

pointer

pointer

3. Pointers may
be to Ferns, Atoms,
Suspensions

multi is FALSE,

multi is TRUE.

Table 3,2-2

Section 3.3 Stacks and Assignment

The most pervasive structure in the interpreter's system is the
stack; stacks are used in all of the program modules. The term "stack"

is used to describe a conceptual entity, an abstract structure

and not to connote implementation features,

contains no sequential stack-like structures:

and free floating in memory, competing with user structures for available
space.

As an abstract data type, stacks admit four operations. The equality
predicate is used to test for the empty stack, NIL; the assignment statement
is used to inspect the topmost stack entry; and procedures are written to
do the elementary operations PUSH and POP. The restriction of inspection
to the topmost entry is strict, to guarantee that stack elements never
have multiple references. This leaves the ref field available for informa-
tion.

The choice of which field to use for stack linkage varies, although
g 3

o

it is usually the cdr field. Each module, therefore, has its own set of

stack operators, tailored to use a particular link, Variables local to
the modules but global to the operators are used to specify particular
stacks, Each stack entry contains two items of information along with
the stack link, Additional information is sometimes placed in the type
flags, when the context makes it possible,

One of the more arduous tasks of the system programmer is to keep
track of all references, and to maintain reference counts. This must be
totally transparent to the user. Local variables are especially bother-

some because they are not always legitimate references, Trailer and

pointer variables are frequently used to simplify algorithms, but gains
in speed and clarity are nullified if every assignment involves an adjust-
ment in reference counts. On the other hand, occasions when a local
variable constitutes the only reference must be tabulated if the cell is
to be recycled at the right time.

To solve these problems, pointer variables are divided into two
categories, each with its own assignment operator. When the program is
viewed as a machine model, these variables play the role of registers,

and are called inspection-registers and value-registers. Inspection-

registers contain very temporary cell references used by the program to

extract decision making information from cells., If the program is to do

one thing if the FIRST:FIRST:REST:cell is Atomic, and something else if

it is a Suspension, inspection-registers can be used to probe the structure
without the cost of changing reference counts. Trailer variables are
usually in the inspection category.

Value-registers are used to hold information. Because their contents
are valid between procedures,the assignment operator for value-registers
adjusts reference counts, It releases the previous contents of the wvariable

and increments the count of the new contents:

VALUE-REGISTER-ASSIGNMENT (register, value)

begin

INCREMENT-REFERENCE COUNT (value);
RECYCLE (register);

register := value

end

In terms of memory access, Value-register assignment is a costly operation.
Its expected speed is improved if a test is included to see if the

register's contents need to be changed.

Equally expensive are field assignments, which also require reference

count adjustments. A cell is effectively a set of three value-registers,

£

for car, cdr and ref assignment e like VALUE-REGISTER-ASSTGNMENT,

Procedures
but in most cases the programmer will prefer to express them in-line,

in the code, subtracting the cost of parameter binding.

Section 3.4 Memory Management
Memory is an array of cells bounded by zero and the constant
MEMORYSIZE. MEMORY[O] represents NIL, and cannot be examined by the
Having a 11 { N simplifies ¢ nt1 st t of traversal
algorithms and may

location 1 to OBLISTSIZE is reserved a hast remainder is

user structures, including

o

e N

sl le] (] e

o

o

\c:o o[oJalo
-

]
&5

n-+m- 1]
ﬂ+ﬁ
0

=] [=] [=] =

MEMORYSIZE

Figure 3.,4-1

The program starts with an initialization phase. At this time,
field contents are cleared and the AVAIL stack is established by linking
free space sequentially through cdrs. All other fields point to NIL;
all cells are type Fern. Next, system Atoms are declared, and a top
level environment is constructed. This consumes some of free space, and
ends the initialization phase.

Four procedures form something of a kernal for a larger set of

structure manipulators. They are NEWNODE, NUDGE, DISPOZE*and RECYCLE,

Beyond this kernal are routines to do assignment, hashing, Fern construction,
and stack manipulation. A few predicates are provided to do cell in-

spection (Figure 3.4-2).

Inspection; Assignment

Memory Management ISATOM
SUSPENDED

SETREG

NUDGE

NEWNODE

Constuctors

DISPOZE CONS INTERN
FONS RBUILD
RECYCLE
VA

T T T VTl ITrTyray

DOTPAIR

Tt T T TTrTT

Stack Operators

PUSHONE = POP
PUSHTWO — LOAD
etc.

Figure 3,4-2

*To distinguish it from PASCAL's procedure DISPOSE.

It is not uncommon to bypass the management routines in order to do
straightforward operations, like field assignments. We describe the four
management elements individually here,

The procedure NUDGE takes one argument, a pointer, The corresponding
cell is inspected, and if it is NIL or a Suspension, nothing is done,
(Suspensions are NUDGEd only when doing so simplifies the code.) If the cell
is an Atom or a Fern, its reference count is incremented.

The "procedure DISPOZE does a push on the AVAIL stack. NIL and Literal
Atoms are ignored; Literals are recovered during hashing. The contents
of the cell are erased, or equivalently, the information pushed onto the

stack consists of two pointers to NIL. DISPOZE does not look at reference

counts, and is called only when the cell involved is known to be unreferenced.

Stack pops, for example, will load the information in the topmost cell
RECYCLE is used to reclaim struct 5 I single argument is a pointer

and if the corresponding cell has a reference count larger than one, it

is decremented and nothing more is done. Atoms are DISPOZEd; with other

structures, cdr links are followed until NIL, an Atom or a reference

count larger than one is discovered, The

AVAIL.l The ref and

DISPOZE. Some discussion thi mat i g tegy is described by
Knuth, [11, Section 2.3.5]. Its primary advantage is that
only one visit per cell returned, thus making up some of the

assignment.

lThis recycling algorithm is linear with respect to the List it is
returning, which violates the requirement that the reclamation primitive
be 0(1l). But see the note in Section 7.7.

NEWNODE is an AVAIL pop. It fetches the top cell from the stack
and RECYCLEs its car and ref pointers. DISPOZE erases its cell to avoid
trouble here. NEWNODE takes no arguments and returns a pointer to the

new cell,

After establishing AVAIL system Atoms are declared

and a top level environoment is created. The function SYSATM is given

a character array, which it HASHes into an OBLIST bucket, NEWNODE is
called to provide free cells and a Literal is created. They are 'given a
reference count of two so that it can't be DISPOZEd. The structure of

the OBLIST is depicted in Figure 3.4-3,

FIRSTHEE®S

————¥>| AIRBEEES

Il TEM558%®

Figure 3.4-3

A Hash Bucket,
The top level environment has two parts, an association table for
constants -- initially binding TRUE to TRUE =-- and one for functions --

initially binding LIS to (LAMBDA LIS LIS) , the LISP-like LIST primitive,

Section 3.5 Evaluation

Structure
procedures, service routines

manipulation & th, and eval-procedures

semantics of the language. Eval-procedure
which receive thei

eers through

op is not outermost res 1 evaluation, however,

"

There are actually two i 2d; the second one, STAQUE, contains
a sequence of contexts consisti of a cell address, a Suspension, and a

field flag:

EVALUATE :

while STAQUE
begin

G, -J.:'O';';

new

Pla

11,

coﬂcewL’s

context's

As an example, suppose we evaluate FIRST:

Figure 3.5-1

Upon entry, EVAL gets a value for STACK:

53
—T>1 I STACK—% Cl

Figure 3,5-2

The eval-procedure FIRST examines cell Cl and finds a Suspension,
The old STACK, S3, is pushed onto STAQUE and the Suspension a becomes the

current STACK.

t is exhausted,

it

until

nsion

Suspe

context

the

d

poppe

- &

1t,

resu

the

Now both STACK and STAQUE are empty, so the result is returned as
a value by EVAL,

EVAL uses ten local registers (see section 3,3), including STACK and
STAQUE. The stack pointers are inspection type, since it is invariant
that stacks be uniquely referenced. Three additional inspection-registers
are used for privileged structure examination. Their values are not
valid between eval-procedure calls. The other five variables are value-
registers, One, (ENVDOT) is reserved, and points to the current Environ-
ment. Another, (REVAL), is used to pass values among eval-procedures.

The remaining value-registers are argument pointers for eval-procedures.

STACK points to active Suspensions. To make the program compatible
with multiprocessing, when STACK is assigned, the corresponding cell field
is "invalidated", (Figure 3.5-3) so that concurrent evaluators can't

access the same Suspension. These invalid fields contain resource

allocations for the evaluator. Every call to FIRST or REST may involwve

a context change and a distribution of resources: some for the old context,
the rest for the new one, It is possible that in a given context, resources
are exhausted before a value is found. When this happens, a STAQUE pop
is forced and the result returned to the cell is a new Suspension, not
a value.

Resources are a recent addition to the model, required to enable
Multiset evaluation. The strategy for allocation is straightforward
(half for each context) and probably too simplistic. Other proposals
are presented in Chapter 4, The invalid cell field is the appropriate
place to hold the resource number; competing processes could adjust each

other's behavior by making changes in the field,

Entries on Suspensions have
number or a pointer., When the

Eval-procedure name; when it

cedures require from two to five arguments, includin

H-

so from zero to three arguments are held on STACK.

L

of a STACK element is always context

called Eval-procedures know the order and number of -~ and

no confusion results from ng two

Behavior

changes.

l interrupt

When a structure probe uncovers a Suspension the current loop stops and
adds a new loop to the top of the tower.

Nearly all functions evaluate their arguments, but some exceptions
are allowed deep within the system. The purpose of these exceptions
is to allow indirect access to Suspensions. Suspensions themselve

be shared but the cells which contain them can; special forms are used

to do this, so that extraneous access environments can be avoided. For

example, the CONS operator might behave like this:

« In the EVAL part of the loop,

the function name is CONS then
EVAluate the argument,.
APPLY CONS to the result,

the APPLY part of the loop,
function is CONS then

Create a new environment
binding #ARG to the argument.
Build the form FIRST:#ARG
Build the form FIRST:REST:#ARG
Construct a suspended List
with the two forms in the

new environment.

A probe on the resulting List causes a context push on STAQUE. Evalua-
tion of either form requires that #ARG's binding be found in the List's

environment., The construction of this environment and the subsequent

searches are avoided by establishing two system functions which access

the proper Suspensions immediately:

the EVAL part of
if the function name is CONS then

result,

When this List

argument i

the ficure-e
figu e

passive
In summary,

sequence of contexts,

communicate through

0

contain pointers to a

probes

the Suspension and

may uncover new

a Suspension does f iarantee it wi be reduced to

it may instead be more advanced suspension.

the distrib

spent on

during context change.

EVAL (form, environment)

if the form is NIL or a Numeric
then return it
else if the form is Atomic
then start an environment search.
else if the FIRST: form is a special
o system function (#FIRST, etc.)
then execute it,
else
begin
1. EVALUATE the argument in environment.
2. APPLY the function to the result.
end

APPLY (function, argument, environment)

if the function is system-defined
then coerce the proper argument fields,
and call the proper Eval-procedure,
else if the function is user-defined
then
begin
1, EVAL the function in the environment
2, APPLY the result to the argument,
end

else if the function is a LAMBDA form

then

begin

1. Bind the formal parameter to the
argument,

2. EVAL the function body in the
new environment

end

else

begin
APPLY FIRST:form to the first colummn of the

argument.
APPLY REST:form to what is left of the argument.
return the CONS/FONS of steps one and two.

Figure 3,5-6

character st

Given

has a common

\oweve

ures can be

nm consumes

costs in some forms of recursion. With minor changes, their algorithm
is used in the model. As a system module, PRINT maintains value- and
inspection-registers just like the evaluator., In the report, every variable
assignment is accompanied by code which inspects reference counts, DISPOZing
cells whose counts are zero. This operation is here subsumed by the assign-
ment operator if these variables are typed as value registers. Nevertheless,
PRINT must be sensitive to references at the point that a decision is made
whether to include a fern cell in the threaded structure. Externally
referenced cells are included; cells referenced only by PRINT are thrown
away. Because the recursive version of PRINT does no threading, recycling
happens automatically; the space inefficiency is more attractive because
no explicit mechanism for reference inspection is

Input is the inverse of PRINT; a sequence of characters is transformed
into a data structure for evaluation. The result of the transformation is
either an atom or a binary list; when it is a list, the first element is
one of a number of special atoms unavailable to the user. TFor example,

the string

FIRST:LIST

is parsed into the list form (APPLY FIRST LIST), but APPLY is actually
written ##:##, an atom which cannot be built by the user.
A number of reserved symbols are trapped by the input scanner. A

semicolon signifies that the rest of the line is a comment. The backspace

and ESCape characters serve their normal functions. A double slash, "//",

signals the input routine to reject the form it is building and start over.

The host system automatically buffers the input fi so READ

£
co

forced to be line oriented, Evaluation is modeled
1 n 15 constructed ut it actually happens after

a ful

schemes is satisfactory; the read

should be susj

Section 3,7 Multiset Evaluation

A multiset is an unordered collection of data. Intuitively, these
collections resemble sets, but they differ from the mathematical concept

in that their elements can be duplicated. Multisets have been added

to the system to provide a way to model nondeterministic program behavior

(See Examples 2.6, 2.7, and 2.8) and real time computation. A thorough
discussion of the semantics of these structures is found in
[10].
While multisets are unordered conceptually, manipulating such collections
(printing them, for example) necessitates that an order be imposed on them
at some point during computation. We shall impose a further constraint:
once a first element is chosen, this order is not allowed to change.
This requirement preserves transparency.

We state as axioms two properties of multisets as regards the probes.

4

If a multiset F contains a convergent element,
then FIRST:F converges,

FIRST and REST are consistent, that is if REST
is called on a multiset, thus necessitating a
choice for F's first element, a subsequent call
to FIRST on F selects the same first element,

+ha fFfavr
cne rermn

itegy used when probing the fern. When

a probe on the result concentrates

single field,

We now choose an for multisets whicl

are not

Divergen

to remove themselves

more promising choice is to create a copy

structure whenever a new element 1s added, and to apply a

o

to the structure whenever it is probe A suspension is

the first element,

consumes its resource

reserve

as shown in the example below), but because the repeated application of
the sort is too expensive. The existence of suspensions makes it possible,
conceptually at least, to evaluate all of the multiset elements at the
same time.

Consider a multiset X with four suspended elements (Figure 3,7-1).

Figure 3,7-1

When FIRST is applied to M1, the Suspensions a, b, ¢, and d are evaluated
simultaneously: whichever converges fastest becomes the first element

of X. Suppose c and d converge and the others do not. One of the values,

say G, is moved to the front of the multiset. The orphaned suspension, a, might

move to the vacated cell, M3. Subsequent calls to FIRST with X would cause

no more evaluation; C is returned. (Figure 3,7-2).

1=

rpose

™
|8

the

t

Now if FIRST is applied to Ml, and if the above sorting strategy is used, Y's

integrity has been violated:

A

Figure 3.7-4

X now points to [C b a D]; Y to [b a D], and we have violated the trans-
parency condition.

To solve this problem,we coulddo a full structure copy with each
call to FONS, as we mentioned above, but we don't need to
waste that much space. Only the cells which are externally referenced
need to be copied, and they can be determined by examination of reference
counts. Furthermore, this copying takes place at evaluation time, not
during construction, so the structure transformation is dynamic. From
the point of convergence, the FIRST-value is moved into each of the multiply
referenced cells, and a new cell is obtained to hold their suspensions.
In compensation for the cost in space, future probes on the internal
structures will not have to look for a convergent element, (See Figure

3 #=5%s

Figures

ion.

~
<

ans form

A probe on X causes the suspension E to converge.

]

Figure 3,7-7

Finally we point out that because it is precisely the externally
referenced cells which are effected by probing, simultaneous fern-wise
transformations are prohibited. 1In a single processor model this means

that the transformation code cannot be suspended unless a provision is

made to lock other probes out of the transformed structure. A discussion

of this constraint can be found in Chapter 7.

JCESS0TE

exist in

machine can be

roblems

At the other extreme are general purpose computers which are more
flexible albeit slower. There is growing suspicion in the industry that
general purpose multiprocessors will not be developed much beyond the
current level of architecture, where a few interdependent CPUs, each for-
tified with adequate defenses against the others, crunch away within well
defined boundries of time and space. The reason for this pessimism is again,
software. Downward compatibility and communication protocol impose great
burdens of the system and the programmer. Expanding current architecture
to permit even a few dozen processors increases this burden profoundly.

To give the general purpose multiprocessor just consideration, program-
ming languages must be developed to reflect multiplicity naturally. 1In
turn, the semantics of these languages gives direction to design. One
purpose of the model described in this thesis is to take a step in that

direction.

Parallelism and Concurrency

There is a need to distinguish between two kinds of simultaneous
computation. TIn a vectored operation, an array of identical arithmetic units
perform the same tasks on a set of argument arrays. One can imagine that
they fetch their instructions from the same wires, that they are driven
by the same clock, and that they present their results at the same instant.
This lock-step behavior is called parallelism. A more general term,
concurrency, describes a collection of processors contributing to the

execution of an algorithm; the members need not be identical or even

similar; they are not necessarily executing the same instruction or even the

same program. Concurrency might be used to describe a process oriented
operating system, but we wish to carry the interpretation farther, to

minimize or eliminate the role of a centralized organizing process.

the same primitives

result and process,

In the model,

to be replaced by

processor
is immaterial

computation

evaluate it

va

be fool-proof

Unlike

lifference

pProcessor,

stack,

uac

sortw

m

ion requires

second processor is assigned to assist in the evaluation, it

needn't dedicate the all its effort to finding the answer: it can
evaluate for a while and replace the original suspension with a more ad-
vanced one. Processors need never be lost on divergent computations. We
impose no hierarchy on processors. A processor can call a second for

help, finish its work, and be called by the second processor. We do

not preclude the existence of specialized processors for particular tasks, but

do require that all processors be capable of fundamental tasks.

Communication

Our goal, ther, is the automation of interprocess communication,
a significant cost in many operating systems and of the hardware of
most CPUs. We have spoken lightly of the "assignment" of processors
and of simpifying the scheduling executive, without mentioning a strategy
for doing these things. It is not fair to appeal to advances in technology

to take care of this problem; it is the critical issue.

Paul Purdom (in'conversations) has suggested that a realistic method

of interprocess communication is a switching network on the order of the
telephone system, permitting bilateral communication between arbitrary
processor pairs. This can be implemented linearly in hardware, and pPro-—
vides sufficient generality. Obviously, much study has been put into this
kind of system, and numerous papers on multiprocessing alude to it, see the
references of Baker and Hewitt [1]. A frame model [17]
expresses communication by means of a continuation link, and could use
such a system.

A more modest proposal is to have no direct communication structure,
and to require that all information be passed through memory. Process

requests are sent to a central queue, containing a cell address and a field

35

descriptions directly from the queue, compt
and return to the available pool. Whether the effort yielded

is determined by the calling proces y examinat no messages

cond proposal has the adva ge of being mpler. A communica-

scribed above requires substantial hard-

less ambitious proposal

for Concurrency

to i1mpose concurrency on our model, but al

pensions. Recall that the evaluation of

does not guarantee that a result will take its place, only that

the subsequent suspension, if there is one, is no further from convergence

than

If the

The result is a fern with the same structu: as the functi

model, struct (the result is supended, but the pregram who uses

1 5 T e

this construct probably intends to coerce the entire result.

rt to build t

function_form is explicit, that is, 1f second order functionals are not
used. In these cases, REST-suspensions are rudimentary; their function
is to copy a definitional structure. Time and space can be saved if
rudimentary suspensions are bypassed. Furthermore, by allowing FIRST-
suspensions to be evaluated, the argument array, which must be sliced
into columns remains in active memory due to frequent access.

We predict that using some standard lookahead strategies, such as
the pipelining described here, increases speed and space efficiency by
reducing environment passing, and ridding structures of rudimentary
suspensions. However, the addition of second order functionals teo the
semantics complicates the issue: REST-suspensions are no longer
straightforward, and environment swapping may increase. The same pipe-
lining can be used on the argument side of applicative forms, assuming
that different processors are assigned to do function and argument
evaluation. Explicit ferns, ferns which are noat recursively defined,
can be copied completely, suspending elements (FIRSTs) but not lengths
(RESTs) .

2. Multisets.

The semantics of multisets requires that a means be selected to
order them as they are coerced (Section 3.7). Given suspensions, a
natural way to do the ordering is evaluate multiset elements concurrently.
The fern probe FIRST distributes i1ts resources among the suspended
elements until a value shows up. The value is then decigred to be the

first element of the multiset. The processor in charge may do the eval-

vation itself or request help from its peers.

Consider this behavior in more detaill, assuming that there are
three processors, A, B, and C available. Processor A is called to

probe a multiset with three suspended elements, and makes four requests

the pool: one for resume its own task.

sors work on A's

four requests, and one of m, say C discovers the probing task. If

no value has converged vet, C makes four more pool requests. This
(=] L b E

continues until : 2ast one multiset element
succ
involves no explicit communication between processo
iteration. The
discussed. The second form results
transformation cannot take place until

problem, a

competitors

ritioned into th > classes: active,
request for each

This behavior,

“ware construct,

The

with the complexity of > communi ce

C

of the model

suspensions are usually easy to evaluate. Thus it may be worthwhile
to add a "branching heuristic" under which all calls to FIRST lend some
portion of their resources to coercing the Rest field of the same cell,
and conversely. Also, processors which reduce their suspensions to
values without exhausting their resources could spend the remainder
their allo“ment on neighboring suspensions. The heuristic may even
user specified -- one way to tune the system to particular needs.

The implementation of call-by-need in outr model yields both
an increase in computational power and a decrease in space when it is
used, but often it is not used; by ridding structures of superfluous
rudimentary suspensions, data can be localized more readily and expen-

sive context changes eliminated.

4. Work Seeking Processors.

The concurrency discussed so far has been instigated by active
processors; little study has been given to the idea that inactive processors
can look around for things to do. In the sense that we describe them
here, some processors are more important than others. The user's top
level evaluator for example, absolutely must come up with something to
deliver to the output file. Such processors are recognizable because
they have a high priority,. Idle processors can be given the
duty to seek out highly ranking processors, find nearby suspensions, and
evaluate them. This swarming effect may do more harm than good, though;
the idle processors are competing for memory access in critical areas,

hindering the active one. Hewitt and Baker have addressed this problem

[1]. ' but further study is necessary to establish a

viable metric for unsolicited helpers.

»ial Purpose

be assumed that

number
system con

data structure

Summary

examined some
model.

he communic

request queue. Most

independent

ftware used

Chapter 5. Hardware Considerations

The interpreter is more than a statement of the semantics for a

programming language; it is a state machine for hardware implementation.

Of course, this can be said of any working program, but in this case the
goal of hardware realization has been a major factor in software design
decisions. While semantic constructs continue to be added and deleted from
the language of the interpreter, its elemental behavior is growing clearer,
and attention should be given to the primitive devices this state machine
controls. In this chapter, a first attempt is made to specify the funda-

mental elements of a multiprocessing machine. Some of the goals are well

known design problems; others have not been given the attention they

deserve, The guiding concept is that the machine must be or appear to be
applicative to the user,

There are several justifications for an excursion into the realm of
electronics. Hardware design is a product of stepwise refinement; the
designer is at liberty to propose any abstract mechanism to solve a
problem, but eventually the conceptual machine is adjusted to meet the
realities of existing components. We have written a model that works,
and further development must in part be guided by physical constraints.
We believe our approach to computation to be sound, but a few software
examples, complete with exhaustive diagnostic statistics are not very
convincing. A concrete demonstration of the principles contained in the
interpretor would help attract the attention and interest of industry,

as well as the academic community,

It is not unrealistic to propose that an effort be put into buildin
a simple multiprocessor; the expense is not prohibitive if the
modest, and may in fact.be competitive with extensive modeling.
we must show only two things: he ¢ ing of individual processors
can be independent of software, and that addit of more processors to

our system speeds computation.

™
Memory

Memory access is the one certain critical section of any multiproce
To program applicative and] ; data structures we requir
that memory be anize sequential As is true of the model, we
dedicating a substantial portion
the external observer, (i.e. a
a collection of stacks, each

arbitrary length, Each memory unit includes a data

monitor which sends cell contents to processors

manages 3torage reclamation and

technology, and possibly the la ph , force us t

memory references are distributed

a particular memory unit or monitor. The architectur

might consist of queue-like structure; each processor contains its own queue
elements, and is supplied by the system with an identification tag, Processors

are plugged into the system by means of this queue, and a MEMORY-READ oper-

ation might have the following steps.

Wait for your queue element to become empty (the system clock
causes queue contents to be passed along).

Present a memory address and identification tag to queue the
request side of your queue element,

Look in the data side of your queue element for your identification
tag.

When your tag appears, fetch the data out of your queue element.
(See Figure 5-1).

o PROCESSOR 4.]

MONITOR 4

Tz

MEMORY

A similar architecture could be used for the available processor pool,
providing rudimentary communication as discussed in Chapter 5. This kind
of mechanism is easily expanded, since processors are connected in parallel,
In addition to fetching and distributing data it is the responsibility

of the monitor to set semaphonres, return : pointer to t

dispose of discar

All monitors, special purpose, and dedicated devices have the same
architecture as the evaluator, (Their routines can be written applicatively),

except that single-task oriented processes do not require
P g

evaluator's power. The basic structure of each processor includ

copy of the m it is to execute; not a formally def
applicative program, but a microcoded sequential routine. Locality
permits instruction fetches to be faster than data manipulation. Microcode
is a halfway measure, restricting the system to specific primitives, but
allowing some flexibility for development. In addition to the processor
executive, there is some local storage, stack caches for example, to reduce
the frequency of memory access. Some manifest structures, such as formal
parameter id function definitions can be paged into this area as read-
only data, so that searches are faster. An appropriate size for both the
executive and the local storage area has not been determined,

In its innmermost regions, each processor is a register machine with

the classic fetch-execute instruction cycle. As a reflection of the model

See Sections 3.5 an following register configuration is sufficient
k=]

for all evaluation

Link.* (one register) When a probe is made on a possibly
suspended structure, the instruction address is saved on the
recursion stack. When the stack is popped, execution resumes
at this point. This is the variable PLACE in the model. As a
consequence, all executive routines are at least partially
reentrant,

Arithmetic operands. **(two registers)

Arguments.* (three registers) Eval-procedure argurents are
retrieved from the recursion stack into these registers.

Values. (two registers) These registers (REVAL and ENVDOT

in the model) pass information among eval-procedures. One points
to the current environment, the other to the result of evaluation.
Inspection., (three registers) These are used to search manifest
structures, and do not constitute valid references. Their
contents are meaningless between eval-procedure calls.

Stacks. (two registers) One for the recursion stack (STACK),

the other for the context stack (STAQUE).

Of the thirteen registers mentioned, fewer than nine are actual
hardware. Arithmetic operands can be held in inspection registers if an
additional bit is included to type-restrict operations. Associated with
stack, value and at least one inspection register is a local copy of the
cell to which they refer. Registers marked (*) above become subfields

of these copies, and are thus logical, not physical entities. Similar to

the CDC6600 architecture, loading the pointer part of these expanded

registers results in a memory/fetch or store. The instruction set includes

conditional branches, determined by cell type or pointer equality loads,
register moves, and integer arithmetic. Non-arithmetic operations are byte,
or pointer oriented, used to manipulate cell fields.

Assignment to value-registers causes reference count adjustments in
memory; all other references are side effect free. Because of the need

to account for all references, register-move operations are destructive.

Two constructor routines are implemented in hardware. The first
places its argument pointers directly into a new cell; the second uses
the first to build suspensions from its arguments, placing them in the
new cell. Both constructors effect reference counts,

Algorithms for I/0, storage reclamation, variable association, and
so on are either part of or modifications of the evaluation process.
In order to keep the local memory requirements small, it is best to separate
these routines into individual executives. A portion of central memory
is used to hold core images of the microcode programs, to be loaded by
individual processors as demands of the system change. Alternatively,
these routines can be made reentrant, and shared universally,

We state in Chapter 4 that elaborate interprocess communication is
not essential to the semantics of the model; an interrupt network can be
replaced by a polling strategy where information is passed through memory.
Process requests are made to and extracted from a central pool in the same
way that memory requests are made, through some readily expandable queue,
or monitor, but in the simpler system, the issue of fault tolerance must
be examined, If a processor subcontracts a portion of its work, and if
the only way to determine whether the job was done is to examine the contents
of a memory cell, then the breakdown of the subordinate processor can
procreate throughout the system. Tasks are assigned by passing suspensions

which are uniquely referenced. The spectre of deadlock appears when a

processor starts manipulating a suspension then malfunctions. The caller

is unable to inspect the result and the callee is unable to let it go.
One solution to this problem requires a privileged supervisor to

keep account of all processors. The supervisor can override normal memory

access protocol, and replace invalidated suspensions with a reserved
"malfunction" value, avoiding deadlock, Alternatively, the system can
provide for large scale duplication of effort. In this case suspensions
cease to be dynamic structures (stacks), and are instead simple function
calls: this makes it possible to share them, but opens the way to consider-
able waste of effort by making it difficult to detach from and resume

partial computations,

Summary

The program presented in this paper is a step in the design of a
structure oriented general purpose multiprocessing machine. Hardware
design begins with the development of a control algorithm, or state machine,
which helps the designer establish the architecture for realization. The
physical constraints of components cause adjustments in the state machine,
This step by step compromise continues until realization is possible,

Our goals for realization are modest; it is sufficient to demonstrate
that processors can be added to or taken from the system with no change
in software and a minimal change in architecture. With this in mind, we
propose a system of independent executives, with communication accomplished
by central queues, Memory is organized as a collection of ferns and a
significant portion is dedicated to the transparent maintenance of these
logical structures. Cell typing is fixed by design and protected from
contradictory manipulation. The system provides real-time continuous

storage reclamation by including reference counts in all cells,

Processors have a uniform architecture tailored to structure manipulation

and simple arithmetic., Each processor may be assigned, at a given time,

to any of a number of specialized tasks by loading a particular executive
routine, The executives are microcoded programs based on primitives

which manipulate generalized binary graphs. Optimization of executives

is directed toward the minimization of memory access

Chapter 6. Implementation Notes

Section 6.1 Introduction

The interpreter/model is implemented in PASCAL on the Indiana Univer-
sity CDC6600. 1In this section the topics discussed in Chapter 3 are
reexamined, with more emphasis on the implementation code and the develop-
mental aspects of the model. The program is not a finished product; as
a vehicle for computation it is cumbersome at points and lacks some of
the standard conveniences of established interpreters; and as a semantic
model it is incomplete at points (most notably, the interface with the
file system is not suspended). Opportunities for optimization abound,
but in anticipation of further development, clarity takes precedence over
efficiency.

Chapter 3, an overall look at program behavior, Chapter 6, an examina-
tion of the current implementation, and Chapter 7, suggestions for improve-
ment, are together a top level document of the program. The code itself
is found in Appendix C. We adopt the following spelling conventions for
keywords:

Specific interpreter function names and PASCAL variable names
are upper case: FIRST, DEFINE, .

Cell types begin with upper case: Atom, Multiset,

Cell fields are lower case, underlined: cdr, pname, . . .

PASCAL procedures and keywords are upper case and
underlined: EVAL, MEMORY,

Section 6,2 Cells

MEMORY is an array of records called NODEs (or cells) which are of
uniform size and designed to fit into a sixty bit word (the CDC6600
word size)., The records have two formats, depending on whether the
cell is to be used as a print name (type Pname) or not. Figure 6.2-1

is the PASCAL declaration.

FTR = O,.MAXFTRS
= -HAXNUM.... MAXNUHE

OF

_“ff;:ckr\r\aFT)i
TF E 3 INNENUM?
END» f$ REFERENCE X))
NODE = RECORD (% FITS IN A& A0-BIT WORI)
MHLY[‘H?UIF&‘? (K MARKS TTQT s (0 o BY CONVERGENCE %)
ATOMF s BOOLEANS Ok REDUNDANT-CHECK CIR.PNAME %)
EXTRAIO. 7§ (% Nll USED SAVE FOR WAITE-SHORR %2

CASE PNQHE

RUE ¢

81 OF CHAR)D
ENDg (k NODE %)

The content of a Pname includes the codes for the characters of a
Literal Atom. A three bit field, length, is set aside to specify the

length of the Atom (Figure 6,2-2

[T II(IE T
| CHAR

|1
A
LLENGTH

ATOMP
MULT Type Indicators
PNAME

Figure 6.2-2

Cells which are not Pnames contain three pointer fields called ref, car,
and cdr., ‘A flag is associated with each field to specify whether it is
to be used as a pointer or a number, A pointer field, together with

its specification bit, form a subtype called a REFERENCE. (Figure

6.2-3).

K—— REFERENCE Sk —k
A [FETCT LTI ETELE T]l/l!i FTT1

REF CAR ﬁpn

17 BITS «‘ /
HEEEEEEEE RN AL |u1kr[11

i %——NUMBERP

NUMBERP NUMBERP

ATOMP
MULTI

PNAME

Figure 6.2-3

All cells have three additional marking bits for type specification,
but their interpretation is context dependent, as summarized in Table
6.2-5, and when the context permits the flags atomp, multi, and pname can
be used for data. As in Chapter 3, cellular representation of data
structures follow the conventions: a Pnames are not shown, and Atomic
values appear in boxes; b Fern cells are divided into thirds, showing
ref, car, and cdr from left to right; and c) Suspensions are divided
horizontally and include the suspended form in lower case. Convergent
field values are sometimes moved into the Fern cell field whicl points
to them,

Figure 6.2-4 shows the cell representation of the fern (3 (BLIND
mice))., Cells Cl and C2 comprise the top level List structure, whose
first element is the Atomic cell C5. The lue of the Atom C5 is 3;
this value could have appeared in the car field of cell Cl. Cell C3
heads a two element Multiset (denoted by the mark in the upper left corner),
The second element is a suspension whose form is "mice', If it is coerced,
this suspension will converge to MICE. The reference counts of Fern cells
is given, showing in this example that there are external references to
the interior of the List.

The PASCAL restrictions on subtype access are not protective.

One may ask for the cdr of a Pname, even though this cell type has no
cdr field. A sequence of three character codes is returned. One is

free to interpret REFERENCE field contents as either pointer or integer,

regardless of the value in numberp, and there are occasions when it is

tempting to do so. The system programmer will avoid these temptations

as a matter of principle. Pointers are not numbers and should not be

treated as though they were; they cannot be added, or negated; the only
acceptable operations on pointers are assignment and comparison for
equality. Neither are numbers pointers. If it becomes necessary to
examine a MEMORY location according to the integer contents of a cell
field, the numberp flag should be changed explicitly to FALSE for the sake

of clarity.

Figure 6.2-4

1

Field assignments are done with the PASCAL operator, ':=', and can

take place on the cell or REFERENCE level, The program initialization

provides templates for cell types (e.g. NEWSUSPEND, NEWATOM) in which the

type specifiers are established. Thus, the fields of an active cell can

be replaced individually, or changed as a whole. For example:

ENODE:NODE; (*working storage¥)
X,Y,Z:PTR; (*pointer variables¥®)

ENODE:=NEWSUSPEND; (*set type flags¥)

ENODE.CAR.RR:=X;

ENODE ,REF ,RR:=Y;

MEMORY[Z] : =ENODE (*cell assignment*)

MEMORY([Z] .CDR.RR:=Z (*field assignment¥)
END

Comments

means numberp.
indicates flag wvalue is
irrelevant,.

A Print Name when the cell is pointed to by an
Atom. In the PRINT algorithm, pname = TRUE

indicates that cdr contains the traversal
thread, 1In an evaluation CONTEXT, pname = TRUE
indicates that the current suspension came from
a car field,

Multiset: ref reference count.
car FIRST element.
cdr = REST fern.

reference count.
FIRST element,

REST fernm.

Numeric Atom: ref = reference count.

car Numeric value.
not used.

Literal Atom: ' reference unt.,
next Atom in hash bucket.
= points to Print

Suspension: g 1 an argument pointer,
encoded eval-
procedure name,
usually the stack link,

Suspension: FALSE in ref.numberp specifies type
Suspension. car can also be a pointer.

Section 6,3 Memory Management

This section looks at the Memory management kernal, the procedures

NUDGE, NEWNODE, DISPOZE, and RECYCLE, These routines lend modularity

to the program, maintain the integrity of cell types, and protect the
legitimacy of the free space stack, AVAIL. DISPOZE and NEWNODE are
essentially AVAIL operators for pushing and popping, CCYCLE does an
extended push operation for returning large structures. AVAIL is linked
through cdrs.

Initialization takes place in the main body of the program (Figure
6.3-1). All value-registers are global and are set to NIL at the outset
to insure that there are no superfluous references at point (a) in the code.
Next, the OBLIST is established, then the remainder of MEMORY is linked

sequentially to establish AVAIL, (c).

%X INITIALIZE REGISTERS %)
EXFi= NILF ENVDOT = NIL$ ASSOCVARS= NILS ASSOCLIST!= NILSREVAL!= NIL3
OMY3$= NIL# DMY1l= NILF FULFILLS= NIL} FRS!= NIL} VARE!= NIL3
VAL = NIL? FNi= NIL? ARGS?!= NILF LST!= NIL{FI=NILS Q= NIL3}
FF&¢= NILF AF&= NIL3 CARFN$= NIL} CORFN{= NILS AEXES$= NIL;STACK:=NIL:
(k INTITIALIZE MEMORY %)
AVATL 3 =0RLISTSIZE+1s
MEMORYLIMITS= MEMORYSIZES
bFUR Ii=1 TO OEBLISTSIZE D0 MEMORYLIJ:= NEWCONS3
‘FOR It= OBLISTSIZE+1 TO MEMORYSIZE~-1 L0
BEGIN
MEMORYLCIZ:= NEWCONS;
MEMORYLCI1.COR.RR$= I+1
END 3
MEMORYLCMEMORYSIZED = NEWCONS;
MEMORY[LOJ = NEWCONS; (¥ ESTABLISH NIL %)

Figure 6,3-1

The procedure NUDGE, (Figure 6.3-2) increments the
of its argument., Cells without reference counts are
side effect. Also excluded is NIL, which is treated

by the management routines.

*ROCEDURE

Figure 6,3-2

DISPOZE (Figure 6.3-3) first insi its argument is neither
NIL nor a Literal Atom, ther lears the contents of the appropriate
cell and pushes it om VAII The reference count is not examined;
DISPOZE is called only when the cell's count is known, for example,
when the cell is a stack element (see Section 6.4). As suggested in
the commentary, further optimization of the program may produce "well-
structured' system objects, such
be traversed and added
such specialized structures.

The procedure RECYCLE (Figure 6.3-4) 1s structure sensitive, and
unlike DISPQZE, considers reference counts. It ignores NIL, at point
(a) in the Figure, then obtains a working copy of the cell to be recycled,
If the reference count of is cell exceeds one, it is decremented and
nothing more is done (b). Otherwise, if the cell is Atomic it is DISPoZEd,

at (e¢). If (a b), and) L, then the cell is either a Suspension
2 s P

or an unreferenced Fern, and in either case its cdr is a pointer. The
cdrs are followed and the same tests, (a'), (b'), and (c'), are repeated
on the next cell in the structure. The process continues until a test
succeeds, and the resulting cdr list is attached to AVAIL. The appended
structure has not been fully recycled; substructures in the car and ref

fields have not been checked, but this is taken care of in NEWNODE,

FROCETIURE DISFOZE(NSFTRY § CHORETURN A NODE TO avallx)
UaR VISITINODE S
BEGIN
TF ON=NIL)Y THEN BEGIN END
ELSE TF MEMORYLINT ATOMP ANIDD (NOT MEMORYLND . AR NUMBERF) THEN
BEGTIN
(X INTERN RECOVERS LITERALS %)
E DRETURNSG 1§

(¥ THERE MaY BE OTHER "SUB-ATOMICY STRUCTURES .
SOME STACKS MAY BE RECOVERAELE A8 A WHOLE.
IS TAKEN CARE OF AT THIS FOINT. %)
ELSE
REGIN
VIGIT = NEWCONSGS
VISIT.CDOR.
MEMORYIND =
AVATL 3= N3
DRETURNS 1= DRETURNS+ I
ENID

Figure 6.3-3

The function NEWNODE returns the top element of AVAIL (Figure 6.3-5),
If AVAIL is NIL, free space is exhausted, and NEWNODE HALTs the program.

Before returning the cell to the calling routine, its car and ref fields

are RECYCLEd, and then reinitialized. This protects the MEMORY structure,

and the caller is free to use the initial NIL pointers.

NOTIE $NO)

ECCURSORy TRUE Y $

B el
(1. %

FUNCTION NEWNODESFTRS (k RETURN THE FIRST NODE ON THE aVall
LIST« IF . L8 EFMETY WE“RE
OUT OF MEMOEY .
IN THE

VAR RESULTIFTRy VISITINODE S
: IN
NOT (AVATL=NIL)Y THEN

! AVATLS VISITi= MEMORYLRESULTIS
AVATL t= UISIT.COR.RRS

IF NOT VISIT.REF.NUMBEFRF

IF NOT VLSIT.CAR, NUMBERF

LN

s MEMORY
: wwz YOU HAVE
TEC"AND THE LIMIT I8 "»MEMORYSIZE$L1s",")5

RITELNSWRITELNsWRITELNSHALT

el NODES, "5

NEWCONS §

ENINS

Figure 6,3-5

Literal Atoms, and their associated Pnames are not reclaimed by the
kernal routines., Literals are chained into hash buckets and removing them
requires a search to update the chain links. However, the Function INTERN,
which is responsible for making all OBLIST entries, is reference count
sensitive, and Atoms with zero counts are replaced by new Literals
when they are found.

One additional procedure is described here because it is mentioned
in the next Section, and while it is not specifically a MEMORY management
procedure, it represents a system primitive of equal priority. SETREG

performs value-register assignment (See Section 3.2), along with the

necessary reference count adjustments. Its argument, REG, is called by
reference, and a test is included to avoid extraneous MEMORY access

(Figure 6.3-6).

INCLUDES

sy e 2

DD ANJUSTMENTS
COUNTS . %)

"yVAL Ly T ") ¥

Section 6.4 Stacks and Assignment

One of the four pairs of stack operations to be found in the program
is discussed in this section, to demonstrate that the abstract type
STACK is not compromised., We use the pair PUSHONE and POP which manipulate
suspensions. These procedures are local to the procedure EVAL, and operate
on the variable STACK, which is treated as a global. STACK is always
assigned to the active suspension in the current context. STACK's entries
may contain either two pointers or a pointer and a number; PUSHONE and
POP are used in the latter case.

This yields a programming invarient for calls to these operations:

POP is called only if the top entry in STACK contains a number
and a pointer item, or equivalently, only if the most recent
addition to STACK was done by PUSHONE.
This invarient can be established by inspection of the procedure EVAL,
Suspensions are implemented by linking type Suspension cells through
their cdr fields. Both operators use a type NODE variable, ENODE for
working space. With few exceptions, the number-item is an encoded

eval-procedure name, and the sequence:

PUSHONE (n,a) ;
POP;

.

is the method used to call the eval-procedure n with argument a.
Figure 6,4-1 is the code for PUSHONE. ENODE is used to construct
the STACK entry; the integer item is placed in car, the argument pointer

in ref. Since ref contains a pointer, ENODE is type suspension, A new

MEMORY cell is obtained, linked to STACK and the contents of ENODE are

copied into it. Containment in a suspension entry constitutes a reference,

so the argument is NUDGEd,

FROCETURE FUSHONE

TR FLJS
& FOINTE
THE 1R

TEMFLATE)

NUM ¢

FNT

STACK
IORYLSTACK ENOIDE 8
(TRACE=SY THEN
BEGIN
WRITEC(" FUSH-1 ¢
WRITENODE (STACKy TRUE)
ENIIs
ENIy (k END OF FROCEDURE FUSHONE %)

Figure 6.4-1
ENODE is used

POP is the inverse operation on STACK (Figure 6.4-2),

to get a working copy of STACK's top; this reduces the MEMORY accesses

To avoid parameter binding, the globals EXP and PLACE are introduced

to one,

to receive the field contents of ENODE, PLACE is type INTEGER and is
VT

therefore an inspection-register. EXP is a value-register,

mist account for its change in reference. Instead of calling the value-

assignment operator SETREG to change EXP, its contents are RECYCLEd

explicitly, and EXP is given its new value directly with a PASCAL assignment.

In this way, the argument reference which was recorded during PUSHONE
is "'stolen" for EXP, and a MEMORY access is avoided. Since STACK is next

DISPOZEd, its contents are erased and there is no inconsistency.

FROCEDURE FOF 5§ (¥ FOFS A FUSH OF

(¥ GLOVAR FLACES INTERGER: EXFr¢ STACK

EEGIN

ENODE &= MEMORYLSTACKI®

FLLACE = ENQOUE.CAR.NNs

RECYCI EXF) 8 Ok REUSE THE REFERENCE FROM THE STACK

EXFi= ENOIDE.REF.RR?S

DISFOZE(STACK) #

STACK = ENOUE.COR.RR?

IF (TRACE:>E) THEN
BEGIN
WRITELNC" FOF:")5
WRITEC(" FLACE: "sFLACEILs "y EXF$ "sEXFIL)F
WRITE("y ENVE "SENVDOTILs "y REVALD "sREVALIL)
WRITELNC"y MODE? "+MOOECODESLs "y STACKE "»S8TACKIL1)
ENITI

ENLs (¥ END OF PROCEDURE FOF %)

Figure 6.4-2

The PUSHONE-POP pair satisfy the normal prerequisites for the
abstract type stack: they agree in the link field and in the item

specifications. However, POP is not a failsafe operation; it does not

verify that STACK is non-empty (not NIL) before it fetches the top element.

When the context does not insure STACK's integrity, it is the programmer's

responsibility to verify the legality of POP. This is true of all

operator pairs,

¥

Section 6.5 Evaluation

The procedure EVAL is large, and its behavior is complex when traced,

but it is highly modular. The macroscopic behavior of EVAL is described
in Section 3.4; here we look more closely at the mechanics of eval-proce-
dure calls. Let us assume that a context has been established, that is,
that STACK has been assigned to a Suspension, and that ENVDOT points to

the Suspension's environment. Further, suppose that the top STACK element

s

is a call to the eval-procedure TOP, which is the analog of the LISP

function EVAL. We begin our observation at the top of the innermost

evaluation loop (LOOP in Section 3.4). igure 6.5-1 shows the code at

the beginning of this loop. At (a) in the figure, the STACK POP takes

place, The inspection-register PLACE receives the encoded eval-procedure

name, in this case, TOP (see Section 6,4). The value-register EXP is

assigned to TOP's single argument; suppose that it is the Literal Atom

FOO. TFollowing the POP, a PASCAL CASE statement is entered; the CASE

labels are the eval-procedure names, and branching is determined by the

contents of PLACE, As a result, execution begins at point (b). If the

global TRACE is sufficiently large (Section 6.8) a message is printed.
EVALuation begins. EXP is compared with NIL at (c), and the test

fails. Next the contents of the MEMORY cell

examined. It is determined that EXP is not a D ric (d), but that it

is a Literal Atom (e). It is found by i i that EXP is 1 special

system Atom, which brings us to the point (£f), where an environment search

is instigated. The environment is saved on the STACK (ASSOC is destructive);

REVAL is set to initialize the search; a recovery routine is pushed in case

the search fails, then ASSOC is called,

CEOFs
WHILE NOT ALLDONE DO
REGIN
CASE FLACE OF
bR 2
BEGIN
TF CTRACE=3) THEN WRITELNC"TOF ")
CIF EXP=NIL THEN
SETREG (REVAL yNIL)
dilLsE 1F MEMORYLEXFI.CAR.NUMBERF THEN
SETREG(REVAL y EXF)
IF MEMORYLEXFI1.ATOMF THEN (XTHE EXPRESSION IS AN ATOMX)
REGIN
IF (EXF=QHSH) THEN SETREG(REVAL sEXF)
ELSE IF (EXF=JAWS) THEN EVALERRORCOyNIL)
ELSE IF EXF=QSFEAK THEN SETREG(REVALMAKENUM(SFEAK))
EOTF EXP=QRSTOF THEN
BEGTN
ALLTIONE 3= TRUES$
FINIS:= TRUE
E NI
FLSE TF EXF=QENV THEN SETREG(REVALENUDOT)
LBE IF EXF=QUNUEFINED THEN SE (REVAL » JAWS)
INSERT OTHER SYSTEM ATC B K

BEGIN CF SEARCH THE ENVIRONMENT FOR A BINDING X)
FUSHONE (RESTORE » ENVIIOT) 5 (X ASS0OC DISECTS ENVDOT %)
SETREG (REVAL » QUNERQOUNID) § (k INITIALLIZE ASSOC %)
FUSHONE(LOOR s EXF) 3 (% IN CaABE OF ERROR X)
FUSHONE (ASSOC s EXF)
EENTI

END

ELSE

BEGIN (% THE EXFRESSION IS A LIST. X0

Fr=MEMORYLEXFD . COR«RR THEN
il (% THE EXFRESSION IS5 BTARRED)
Ty EXFD) 5

FUSHONE (CAR » EXF)
SN

QRYLEXF1.CAR.RRS (k BRAE THE FUNCTION %)
SYLEXF1.COR KRR
THEN

Figure 6.5-1

ASSOC is a collection of four eval-procedures, The first and part
of the second are shown in Figure 6.5-2, The details of association are
discussed later: for now, we will suppose that the formal variable FOO
is found immediately. ASSOC has broken the environment into pieces
which it sends as arguments to ASSOCl, at (a). At (b), ASS0Cl discovers
FOO, and is to return the car of the actual parameter list, but since

this field may be suspended, the eval-procedure CAR is called, at (c).

ASH0C S (K THE ENVIRONMENT IS A LIST OF
FORMAL FARAMETER-ARGUMENT FALRS,
SEARCH EACH FAIR FOR A BINDING.
EXF IS THE VARIAELE NAME.
THE CaAlLING ROUTINE MUST SAVE THE
ENVIRONMENT . %)

3) THEN WRITELNC"ASSOC ")
JNEBOUNDDY THEN

(ENVDOT=NIL) THEN
REGIN
SETREG (EXF
IF MENORVYLE

SEARCH(ALISTyEXF)) s
XFI1.MULTI THEN SETREG(REVAL +CALRCEXF)

ASSOCYEXF) 5

EXF » CAAR (ENVIOT)) 5
SHONE (ASSOC1 » MEMORY EMEMORY LENUDIOT T« CAR. KR . CIIR . RF) 5
TREG(ENVDOT » MEMORYLENVDIOT 1, CIIR o RR)

ASSOCL ¢
REGIN
IF (TRACE>3) THEN ¥ "y}
LOALICASSOCVAR s FF) § (% EXF I8 w:f mCTumL FARAMETER LIST %)
IF (FF = ASSOCUAR) THEN EL
ELLSE IF) THEN
E IF ISATOMCEXF) THEN

CAR is shown in Figure 6.5-3. We are concerned with the case in
which the desired result is suspended, at (a) in the figure. Suspension
sensitivity is confined to the Fern probes. Upon finding a suspension,
CAR calls itself, then does a context push on STAQUE. The current
suspension is set aside, replaced by the new ome. If that computation

succeeds. its result will be returned as a binding for FO0O.

CAR: (KTHIS IS THE USER CAR EXF HAS THE NODE
WHOSE CaAR TO BE RETURNED., i CK
FOR A SUSFENSION. RETURN THE CAR
IF IT ISNT SUSFENDEDy FLSE EVALUATE IT. %)

BEGIN

IF (TRACE>3) THEN WRITELNC('CAR ")3

IF ISATOMCEXF) THEN EVALERROR(SyEXF)
LLBE TF RESERVEDCEXFY THEN

BEGIN

FUSHONE (CARyEXF) $

MODECODE $= MODECODE -1

ELNIT Xok)

BEGIN

FTi= MEMORYLEXFI1.CAR.RR?

ITF (PT=JAWS) THEN
BEGIN
IF MEMORYLCEXFI1.MULTI THEN KICKLIS(EXF)
ELSE EVALERROR(OsNIL)
ENTI

ELSE IF NOT SUSFENDEDC(FT) THEN
BEGIN
SETREG(REVALyFT)Y S
(k% CANCEL (EXF) k)
END

ELSE IF NOT MEMORYLEXFI.MULTI THEN
BEGIN
FUSHONE (CARyEXF) 3
CONTEXTFUSHC(EXF s TRUE s ALL.OCATE (L)) 5
(kX CANCEL(EXF) Xxx%)
ENII

ELSE
BREGIN
IF (TRACE>3) THEN WRITELN("-m3m=mbem> MULTI
KRICKLIS(EXF)
END

END

ENT 7

Figure 6.5-3

This brief and superficial example of evaluation is included to give

a flavor of EVAL's behavior, Three features are noteworthy:

Evaluation is qccomplished through a series of eval-procedure
calls, made by pushing the procedure name on STACK, (PUSHONE).

Arguments are passed either directly with the value-registers
REVAL and ENVDOT, or by STACK references. In the later case,

the value-register EXP is assigned automatically by POP, which
does the procedure calls. Additional arguments are pushed in

pairs by PUSHTWO and retrieved into value-registers by LOAD.

Only the eval-procedures CAR and CDR are Suspension sensitive.
Other eval-procedures do field access only when the data
structure is known to be manifest; otherwise the probes are
called in case coercion is necessary.

two sets of eval-procedures,

r recursion, ASSOC

vited to follow
the descriptions
All user List structures are implicit calls to EVLIS, whose formal
definition is:
DEFINE EVLIS (LIST ENVIRONMENT)
i 3 NULL:TIST th:n NIL
else : L:{FIRST: LIST ENVIRONMENT)
T ENVIRONMENT)7 .
Since CONS is suspended, ‘ VLIS results in the creation of a
single cell. If EVLIS was user defined the resulting cell would have been
dominated by a new environment binding LIST to EVLIS's argument as well
as saving the evaluation environment. To avoid the extraneous environment

EVLIS is broken into two eval-procedure

EVLIS: The list is passed via the STACK push; the environment
resides in ENVDOT. If the list is empty, NIL is returned to
the calling routine via REVAL. Otherwise, EVLIS is called with
one argument, the list, and CDR is called to coerce the list's
cdr field.

EVLIS1: The environment is still in ENVDOT, REVAL now points

to the coerced cdr of the list. REVAL is assigned to
CONS:{FCAR: list EVLIS:REVAL)

under ENVDOT. FCAR is a system function (see Section 3.4),

used for suspension sharing, equivalent to EVAL: 1l:1list

ASSOC does not lend itself so readily to formalism, but as with

EVLIS, the possibility of suspensions causes ASSOC to be broken into a

set of procedures, Because it is not linear, there are four pieces:

1. ASSOC: The environment is a list of pairs. Each pair consists
of two lists, a formal parameter structure and an argument.
ASSOC passes the pairs successively to ASS0OCl, seeking a value
for its argument. As a last resort the ALIST, a totally manifest
structure, is searched.

ASSOC1: ASSOC disects the formal-actual pair into two arguments,
EXP and FP, and passes them to ASSOCl. If a binding is found,

it is returned in REVAL, If the formal structure is exhausted,
the calling routine is informed of failure. Otherwise, there
are two possibilities: if the car of the formal structure is
atomic, the cdr of the actual argument is coerced and ASSOC2

is called; if the car is a structure, ASSOC2 is called to search
the two cars, and ASSOC3 to search the tweo cdrs,

ASSOC2 takes two arguments, a variable and a formal structure,

REVAL contains the coerced actual structure. These three entities

are passed to ASSOCl, This is the recursive call.

ASSOC3 coerces the cdr of the actual argument structure, then

calls ASSOC1.

In summary, the evaluator is driven by two stacks, STACK and STAQUE,

STACK is a current active suspension controlling the order of eval-proce-
dure calls, and containing procedure names and arguments. Eval-procedures

are broken into pieces according to the need to probe suspended structures,

The probes are empowered to replace the current STACK with a new suspension

by manipulating the STAQUE of contexts.

Values are carried between

contexts and eval-procedures in the value-registers REVAL and ENVDOT,.

There are three pairs

PUSHONE/POP
an encoded

first argument.
assigns EXP

eval- pr
POP
to the

PUSHTWO/LOAD --

the second and third arguments to eval-procedures,
rguments are value-registers,
egisters are assigned

CONTEXTPUSH/CONTEXTPOP

chooses the
argument

for manipula

a Fern cell, and a fla
specifies tE suspend
are allocated the
are stored in
resources are
cell field is
control.

Cﬁ

the

assign

vacated
exhausted,
ed to

stack operations local to EVAL:

number,
eval-procedure'
ocedure

proper and

item.
ting STACK. Items: two pointers,
LOAD's
called by reference, These
to the argument items.
-~ for manipulating STAQUE.
'8 5 "nd the current STACK. The
ded field is to take control,.
=1b5“qgc nt conpdtatlon Leftover resources
e ?l field. CONTEXTPOP occurs when
value has converged., The

and the old STACK regains

ce
or whe a

the value

Section 6.6 Input

The procedure MYREAD converts a character string into cellular
data structures. Characters are fed to MYREAD by function GETCH, which
fetches them from the input file, All non-atomic forms are list structures;
the user brackets are macro characters for calls to the function LIST; the
colon is parsed into a call to APPLY, For example:
(A B C becomes (##<## A B C)

ADD1:5 becomes (##:## ADDL 5)
DEFINE TEST X X. becomes (DEFINE TEST X X)

The hashmark is used in macro names because the user cannot construct

atoms with that character. Star formations are better expressed

[65 = becomes VﬁT’T___)
ol o= 17

1
F ue [ot| 1] ss
revliisy | 1

MYREAD is driven by a stack called RSTACK, whose associated operations

are RPUSH and RPOP, and which is linked through the ref field., Whenever

possible, the RESULT of MYREAD is constructed from discarded RSTACK cells,
The architecture of this procedure is similar to that of EVAL (See Section
6.5); a collection of RSTACK manipulators is gathered into a CASE statement.
These read-procedures are selected by the input characters. There are
also a number of service routines; these are discussed first,

The procedure RESTART initializes the parser and RECYCLEs RSTACK. It

is called in the event of a syntax error, or when the user cancels the form

110

he is building with a double slash, "//". When a syntax error is discovered
RERROR is called, It prints a2 message and calls RESTART,
RLOOK does single character lookahead, primarily to determine if

the infix operator APPLY is next in the input. RCOMP is also involved
with the APPLY operator, and compresses successive calls to it into the
proper list form,

RBUILD is a pseudo constructor, responsible for the RSTACK-to-form
conversion. It is called when the current character is a closing bracket.
This bracket terminates a structure residing at the top of RSTACK. The
structure is popped and sent to RBUILD. The new RSTACK top is a partial
structure to which RBUILD enqueues the RESULT. Using RSTACK to build
results directly necessitates the ref linkage.

Each call to RPUSH starts the construction of new substructure., Each
call to RBUILD completes a substructure and resumes construction of the

one above it. The read-procedures, whose calling order

the input stream are summarized here:

1f the input character is a . . .

1. alphabetic character:
a. Construct a Literal Atom; assign RESULT to it.
Tf RESULT is "NIL'" assign RESULT to NIL,
If RESULT is "DEFINE', RPUSH(DEFINE).
RLOOK for a colon, If one is found, RPUSH(APPLY).
RBUILD.

®

o AN o

°

Construct a Numeric Atom.

RLOOK for a colon; if one is found, RPUSH(APPLY).
RBUIID.

uru

or 5!(’![_

\

RPUS*r’ (## ##) or RPUSHGHF[##) or RPUSH (s ()

If unbalanced then RERROR.
Assign RESULT to RPOP, then RBUILD.

Section 6.7 Output

The PRINT routine is contained in the procedure READLOOP, and consists
of a next of WHILE-TRUE-DO loops, whose hierarchy is shown in Figure 6.7-1.
Unmentioned in the Figure is PRINT's sensitivity to starred structures
which is straightforward. The algorithm is essentially that of Friedman
and Wise, presented in Output Driven I/0 [Friedman & Wise, 1976,7],translated
into standard PASCAL. As mentioned in Section 3.6, PRINT maintains value-
registers in order to automate storage reclamation; tt registers are
called P, Q, and STACK for compatibility with the Friedman-Wise wversion,

A recursion stack is avoided by Dback~threading the argument structure.
The strategy is the same as is used in Schorr-Waite garbage collection.

[11, Sectiom 2.3.5, Algorithm EJ], except that no marking takes

place. The thread determining bit (ATOM in [11]) is placed in the pname

field.

The variable name STACK is somewhat misleading, since it refers to a
structure different than the abstract type stack, described in Sectiom 3.2.
STACK's sole purpose is the reconstruction of the argument structure,
which takes place if there are external references. Entries therefore,
have reference counts; they are threaded and not linked uniformly through
a particular field.

In this section we concentrate on the interface between PRINT and EVAL,
a feature not discussed by Friedman and Wise. The problem here is one
of resources and the development of the model with respect to multiprocess-
ing. On the one hand, the evaluator expects to be given a finite limitationmn
on its computation; on the other, PRINT must force coercion in order to

come up with output, and its resources are essentially infinite, But PRINT

READ LOOP.
1. Fetch data from }MYREAD.
2. 1If the result is EXIT, HALT READ LOOP.
If the result is atomic, print it and start

READ LOOP.

PRINT LOOP. Print "(".

result
it and

If the reference count is
more than one, thread the
cdr and start POP LOOP.

Otherwise, restart PRINT LOOP.

POP LOOP.

If STACK is NIL,

restart READ LOOP.

Follow cdrs and recon-
struct the list.

6.7-1
The PRINT algorithm.

should not be so special as to preclude other I/0 routines from the model.
Still, the model is in an early stage with respect to multiprocessing and
the code for PRINT-EVAL communication gives little more than passing

consideration to the question of suspensions:

SETREG(P,Q);
SETREG(Q,NIL);
SETREG (REVAL,PROCESS (CAR,P));
repeat
Q:=REVAL;
REVAL:=NIL;
EVAL(Q,37)
until NOT SUSPENDED (REVAL)
Q:=REVAL;
REVAL:=NIL;

The first two calls to SETREG move the contents of the walue register from
Q to P and clear Q for interaction. PROCESS is called to create a suspension
whose value is FIRST:P: REVAL is assigned to the suspension. EVAL is called
repeatedly on this suspension until it converges, with a finite resource
limit, The direct assignments inside the loop are essential: since REVAL
points to a Suspension, a cell with no reference count, SETREG would RECYCLE
it regardless of the value of Q. Those assignments after the loop have
similar justification. The resource allocation is arbitrary; any positive
integer will do.

In the program PRINT has the last word on computation. But there is
no reason why this algorithm, which is just a character string builder,

cannot be treated like other constructors and suspended. One can imagine,

in the extreme, a coin slot installed on the output display, providing

resources for PRINT to pass on to EVAL.

Section 6.8 Multisets

Five routine

CAR and CDR are cell-ty sitive and call KICKLIS when giver

argument. KICKAR and

uniform evaluation
Briefly, when

a convergent element.

passed to KICKLIS, whicl

TE
i B

stidcture. no convergent element is und, KICKAR is called once

each cell, KICKAR does nothing if the car of its argument has converged.
Otherwise a fixed amount of resources i sUm valuating the suspension
there. When all of the cells have been KICKed, CAR makes another pass.

The transformation algorithm has three phases. In the first, a search
is made for a comvergent elem 1f one is found, the second phase is
executed during which the element is moved to the front
all elements are suspended, the third phase is executed,

KICKAR are made. During the phase one search, KICKLIS reverses the

structure as it goes. The other phases restore the original order, The

disadvantages of this attack are that the code is a bit convoluted, and

that parallel transformations are restricted more than they need be. The
advantages are that lookahead is avoided during restructuring, and that the
Multiset cells are KICKed in the same order as they have in the structure.

4

Assume that CAR has been called on the Fern shown in Figure 6.8-1.

Figure 6.8-1

KICKLIS traverses the Fern, reversing as it goes, until the suspension

f is found: (Figure 6.8-2)

|

|

Figure 6,8-2

Since no convergent element was uncovered, a call is made to KICKAR for

each cell in the structure, as well as one to KICKDR for f: (Figure 6.8-3)

{7

|
K1CKAR | e

—_— =Y.

suspension, say

is searched up to

The Multiset is rest ta : D is moved to the front of the Fern, (Figure

6.8-5)

KICKLIS's search continues until a suspension, a& convergent car,
or a List cell is found (See Section 3.7). It is clear that two copies
of this version of the algorithm cannot be permitted to transform the

same Fern at the same time. This is not currently a problem in the model,

since KICKLIS is not suspendable. If multiple processing is allowed,

however, some provision must be made for simultaneous access to multisets,

Figure 6,8-5

Chapter 7. Suggestions for Continued Development

Section 7.1 Optimization

Issues of code improvement are complicated

dichotomy of purpose. On one level the interpreter is a compu-
an expression of the applicative philosoj
point of view,
and too slow; a good deal of work 1s needed
ostly features

As a programming langua the in preter needs user oriented
facilities 1i those found in LISP: debugging aids, extern
access, an g Bu he program is also a software model,
tribution to
primary purpo In . nge, optin further develop-
ment along the lines of multiprocessing. Minimal cost algorithms
for interpreter primitives do not lead necessarily to optimal
hardware design.

The following sections sotpourri of topics dealing with
the code as it is, and as it might be improved. The issues, and the
projects they imply range from trivial adjustments to abstruse gen-
eralities; the simple goals as a practical introduction
the code for anyone wishing to further this project; the more
discussions are academic in inten attempts to

opinion about proper computat

Section 7.2 Cell Representation

Table 6.2-5 shows that there are seven cell types differen-
tiated by six flags. In fact there are more types than seven, but the
type indicators can still be encoded into fewer bits. At the soft-
ware level, the type decoding consumes time, but in most type driven
algorithms, several flags are checked. By moving all the flags into
an integer field and declaring constant descriptors, alternative
constructs are replaced by faster and more readable CASE statements.
For example, the sequence:

WORKINGSPACE := MEMORY [X];
if WORKINGSPACE.MULTI then ALTERNATIVEL

else if WORKINGSPACE.CAR.NUMBERP then ALTERNATIVEZ2
else if NOT WORKINGSPACE REF.NUMBERP then ALTERNATIVE3;

could be replaced by

case MEMORY [X].CELLTYPE of
MULTISET: ALTERNATIVEL;
NUMERIC: ALTERNATIVEZ2;

SUSPENSION: ALTERNATIVE3
end;

Encoding the type indicators raises no conflicts with the hard-

ware model, it would be done there too, but there is some danger of
programmer carelessness. The NUMBERP flags are a constant remin-
der that References are a subtype and that pointers are not numbers.
Furthermore, in the multiprocessing model, it may become necessary
to manipulate some of these bits individually to lock out conflicting
cell access.

It is unlikely that the PASCAL fied extraction primitives

yield the fastest access to cell fields. While the cells are designed

to fit into a single CDC6600 word, e compiler reserves about two
words for each cell. A relatively easy and extremely important
project is to hand pack the cells and to write customized access
functions.

one-bit semaphore, or busy bit, with

as a way to arbitrate simultaneous access in

multiprocessing environment. All processors should be allowed to

read the contents of a cell at any time, but parallel writes must
be prohibited. M iset transformatio tion € a good ex-—
ample; if raversal j marks h « L 4 isits, others
are informed that they cannot do the transformation themselves, but
with read privileges they can watch the progress of the evalua

A Boolean function RESERVED(pointer) might be added to the mo

which returns TRUE if the semaphore of its argument cell is on.

1

Otherwise, FALSE is returned and the bit turned on. The inverse
operation CANCEL(pointer) releases the cell to other probes. The

state of being reserved constitutes another

programmer must adopt the RESERVED/CANCEL

routines which side affect active cells.

Projects having to do with cell representation

1. Encode the cell type indicators into an integer
This is an easy task but considerable changes i
code are necessary.

Hand pack the cells and write machine dependen
functions. Changes in the code can be made w
editor macro.

Examine the issue of simultaneous writes. Expand the
model to simulate multiprocessing by time-slicing
independent evaluators. Develop statisties concerning

memory access. This is a thesis level project.

Propose and model alternatives to the semaphore scheme.

Write a memory dump routine, and examine the relation-
ships between suspended and manifest structures, the
displacement between a cell and its successors,

Section 7.3 Memory Management

Every call to NEWNODE is followed by explicit field assignments
to the new cell. Until the programmer is confident of the program
behavior, these statements are helpful, but it would be an improvement
if NEWNODE did the assignments itself. Arg “s to NEWNODE 4re:
a type specification for the cell, three refere s, and a code stating
whether the references should be NUDGEd.

PASCAL record fields cannot be called by refere
assignments are made using the assignment operator, ':=', fol

by direct calls to RECYCLE and NUDGE. While the user is not per-—

mitted to make field changes in active cells, the system programmer

does it all the time. Procedures called RPLACA, RPLACD,

analogous to SETREG, should be added to the management kernal since

they are likely hardware primitives.

Since storage reclamation is concurrent with
median evaluation time is slower than it would be
lector was used. Machine level implementation of RECYCLE
should be given high priority. In particular, RECYCLE uses few enough
local variables to fit in the the CDC6600 register file, and its speed
could be greatly increased if it were made machine dependent, There is
more about RECYCLE in Section 7.4,

Linking stacks yields a universality in structure manipula-

tion, but evaluation traces show that a lot of time is wasted by pop-

ping a stack, DISPOZEing the top node, immediately fetching the same

cell, and pushing it back on the stack. Each instance of the
evaluator should have a local array of cells to absorb this inefficiency.
Stack cells could be aquired and returned in batches.

Projects having to do with memory management

1. Rewrite NEWNODE to do field assignments in the new cell.
This is a fairly easy project.

Implement register assigmment, RPLAC- operations, NUDGE,
DISPOZE and NEWNODE at machine level.

Add an evaluation STACK cache to the model. This project
requires sound knowlege of evaluation behavior.

Add a reference cache to NUDGE, which avoids two memory
accesses when a Fern cell or Atom is NUDGEd and then
immediately RECYCLEd »

Rewrite INTERN and DISPOZE to permit arbitrarily long
print names for Literal Atoms. By doing this the cell
type and special format (Section 6.2) for print names
is eliminated; the substructure of atoms becomes a

a normal suspension, interpreted as a list of character
codes.

Change the semantics of Numeric Atoms to allow arbitrarily
large integers or real numbers.

Section 7.4 Storage Reclamation

RECYCLE, the argument is searched linearly (through the cdr
and the resulting list is appended to the

the list may be of any length,the
pause in computation is not eliminated, assuming t
is involved. An optimal RECYCLE must run in constant time even if
doing so involves extra memory accesses. Constant time is realized
with a short search; in practice only a few cells contain three pointers.
All Fern cells and most stack cells have a number in at least one
field; the object of the search is to move part of the RECYCLEd

structure from the cd Fie z] f these numeric fields.

If the argument to RECYCLE is a Fern, its cdr is moved immediately

to its ref, and the Fern is pushed onto AVAIL. NEWNODE takes care of

the substructure. Otherwise, the argument is a Suspension, a stack
element having two or three pointers. In this implementation, it can
be proven by inspection that stack entries with three pointers never
occur in sequences; by following at most one link, a cdr can be moved
to some other field. Program traces demonstrate that RECYCLE rarely
visits more than four cells. For this reasomn, the best algorithm would

search a bit longer than necessary, in the hope that moving a field

will not be necessary.

Section 7.5 Ewvaluation

Substantive changes in EVAL alter the semantics of the language;
they are made only after careful consideration of the consequences. Since
the model was first implemented, EVAL has undergone two complete revisions
and numerous adjustments, but there i1s a great deal more to do. This
section gives some representative examples.

There is a considerable need for more sophisticated error recovery.
At one extreme there are still instances of programmer error that cause
program abortion. They must all be eliminated, but finding them is a matter
of chance. More to the point, a cohesive strategy must be found to provide
to the user sufficient information about recoverable mistakes. Suspensions
make this a difficult problem; in the case of multisets, evaluation errors
do not terminate computation at all, they cause more concentration on other
suspensions, EVAL is, in a sense, desensitized to programmer mistakes,
but when a point is reached where further progress depends on illegal
results, evaluation stops and the programmer should be informed,to as full
an extent as possible, what went wrong and where it happened. The atom

#BOTTOMF represents a noticably divergent computation, and the eval-procedure

TOP makes a test for it just as it does for NIL. One approach to improving

error diagnostics is to associate with every occurence of this atom a
list of function names, or similar messages, which accumulates until
it is returned at top level,.

EVAL dedicates a lot of time and space to functional combination.
When a fern is found in the function position of an applicative form, it
is scanned twice to check for star configurations and null entries. 1If

an infinite list shows up the argument is coerced far enough to determine

if the appropriate vector is starred too; if it is, the result is starred.
The cost of checking for such unusual conditions makes one wonder if they
should be included in the semantics, or if the construct should be weakened
to save resources, One solution is to eliminate functional combination
from the core of the evaluator and to superimpose a system function for
general application, sensitive to ferns, This function is analogous to

the LISP COND which has been absorbed into our language. A reasonable
compromise is to restrict the star configuration to be a lexically defined
entity, that is, to permit the user to build star structures only at top
level from the keyboard. If this is d , infinite functions are constrained
always to be manifest, and their search need not be coercive. Whenever
suspension-sensitivity is avoided, the result is simpler and less expensive
eval-procedures.

The kind of change described above restricts the eventual transition
to second order in the interpreter, In fact, some limited gemeralization
of function application is permitted now: atoms bound to numbers can be
applied, and a special FUNARG form is inecluded in the implementation.

It seems a short step to full generality; provisions for full EVALation

of the function part of a form can be added without much effort (this is

also true of free variables)., 1In general, opinions about such facilities

are not well formed. There is something suspect about unlimited generality
in applicative programming, it clouds structured thinking, and the changeover
should be postponed until it becomes obvious that it is necessary.

Projects having to do with the evaluator.

1. Change TRACE so that error messages are supressed,

Provide the user with a MESSAGE facility. MESSAGE takes two arguments;
the first is not evaluated and is printed directly on the display in

the midst of evaluation, and the second argument is evaluated and re-
turned as MESSAGE's value., MESSAGE permits the user place checkpoints
in his/her program.

Provide the user with a BREAK facility, which permits limited examination
of the environment at any point during evaluation,

Allow the user, by setting a switch, to have free wvariables,

Expand the second order behavior of EVAL,

Devise a more informative error recovery scheme.

Change the semantics of function definition to allow nested conditional
expressions.

Section 7.6 I/O

been paid the input and output

To date, not much attention has
routines of the program, and a great deal of work needs to be done
in this area. Both from the user point of view, and that of the pro-
gram as a model, numerous changes have already been proposed, and
on the whole problem of I/0 requires further study. In the most
general terms, the interpre is j a program which reduce
character string to another; where

where the second goes has been left uj the PASCAL compiler and
the KRONOS operating system. The fact that there will be more
than one input source, that a particular instance of the evaluator
may require more than one input string, and
to several destinations, imposes a need for
routines.

From the user's aspect, there is
manipulation primitives. ould be
sessions, to retrieve function definitions from
to save functional environments for repeated use.

provide such capabilities is to
in the program heading. Much more e s a set of system

request procedures by which fern structures are transformed into
permanent file 2t GETCH and its output counterpart PUTCH

ltered to place i er strings onto variable files.

From the modelling aspect the problem goes deeper. Neither

MYREAD or the PRINT loop use suspended constructors. It is essential

to the semantics of the interpreter that this be changed, particularly
as regards input. The character "string" is instead a "stream'" [Landin,
1966], an infinite sequence of elemental data. The input constructor,
RBUILD, should be strict in its first argument, conceptually. To make
this change requires substantial alteration of the eval-procedure
TOP, where it is currently assumed that the top level form is manifest
in both fields. TOP's examination of input forms must be made coercive.
Similarly, changes are needed in PRINT, which constructs a char-
acter stream from a sequence of ferns and atoms. PRINT Has no explicit
pseudo-constructor, like RBUILD; it produces its result with PASCAL
output statements, and so is not suspendable in its present form.
Furthermore, PRINT, like KICKLIS, restructures its argument as it goes.
Because of this it needs the same kind of lockout provisions as the
multiset evaluator: two instances of PRINT can't have accass to the
same fern.
There is a uniform, if expensive way to put the problems of
MYREAD and PRINT on the same level. The goal is to separate both
functions from any dependence on PASCAL primitives,, to treat the
I/0 streams as ferns by turning them into ferns. To do this, an
intermediary is imposed, via I/0 management routines, between the
file system and the interpreter. The character string is converted
directly to a list structure whose elements are character-atoms.
This structure is cdr suspended in the top level environment, which

is altered to include an association function from logical device

names to physical system files. This additiomal superstructure is

expensive in both space and time, but is a reasonable approach to

I/0 in the model.

It can be expected that I/0 devices of the future won't be
the passive machines that they are today; they will assume the
responsibility to transform raw input into generalized data structures

as proposed here, and that they will have direct access to memory
as independent processors. As we state in the beginning of this
gsection, this aspect of computation needs a lot of study, but for
the present, attention should be paid, in the model, to the problem.
The best way to do this is to implement virtual models of particular

devices, in order to study their behavior.

Projects having t ife} h input and output

1. Create a speciz g)n like TRACE which tak
atomic argument trac the print name from
and load it
file name is t
subroutine, say GETFILE, which makes a system
to the operating system to the named

from the user's permanent file space. The resulti

file is declared be the source of input for

interpreter, which reads forms from it and evaluates
them. When the f input reverts

the keyboard.

Create twoe special a
dump and retrieve the top
or permanent files. thi
of debugged functions is e inat se
Consider encoding strategie vy whick core
can be compressed

speated

m

Place I/0 intermediaries between the interpreter and

the PASCAL I/0 routines which convert character strings
to list structures. Include in the representation a
way to associate - character streams with various virtual
devices, so that the model can simulate the presence of
several keyboards, for example.

Make MYREAD suspended.
Provide

in some legible form.
so that the user can

Expand the multiprocessing model so that I/0 executives
use the same coercive protocol as the evaluator.

Section 7.7 Multisets

The evaluation of multisets is the most recent addition to the
program, and the implementation can be criticized at several levels.
The primary objection so far is that the multiset probe traverses
the entire manifest structure before any suspensions are evaluated.
This is an un-recursive approach; the structure may be long, tying
the probe up when it could be contributing to the convergence of an
element. My contention is that since the multiset is manifest, the
search isn't prohibitively expensive. Moreover, since it is generally
agreed that multiset probes must lock out their peers when they do
the transformation, it is better to confine this phase to a single

period. Once the probe knows what suspensions are involved in evaluation,

it can let go of the Fern; other probes can search the structure

while suspension evaluation is taking place.

In the code of KICKLIS, the double reversal of the Fern is confus-
ing, but comprehensible. There is, however, a more subtle reason not
to do the reversals. If a probe examines a multiset and discovers
that it can't do the restructuring itself, it can at least add its
resources to the element evaluations. In order to do this, the probe
follows the links of the fern and evaluates suspensions as it goes (if
a convergent value is found it can be returned!). If the multiset

is reversed, this cannot be done.

Section 7.8 Miscellaneous Projects

Provide more system arithmetic functions like ADD1 and
Make AND and OR system functions.

Implement tail recursion by associating with each context the name

of the function being applied. In some recursive forms, lookahead
can allow the environment to be altered instead of replaced,

Give the user carriage control ability, so that he can format output.

Add a system function which makes it possible to load and execute
library routines,

Model a memory paging

S

Add two new cell subtyp
in one of the fields.
and Wise, 1977].

Modify the program to model continuation passing. Under this scheme,
contexts contain a continuation link through which they inform their
callers of successful coercions.

Determine the feasibility of adding a heuristic field to multiset
cells, a rule by which the multiset probe distributes resources among
suspended elements.

References

H. G, Baker, Jr. and C. Hewitt. The incremental grabage collection of
processes. Proc, ACM Symp. on Artificial Intelligence and Programming
Languages. Sigplan Notices 12, 8; SIGART Newsletter 64 (August, 1977),
55-59.

E. W. Dijkstra. A Discipline of Programming, Prentice-Hall, Englewood
Cliffs, MJI (1976%).

D. P. Friedman. The Little LISPer. Science Research Associates, Palo
Alto, California (1974).

D. P, Friedman and D. S. Wise. An environment for multiple-valued
recursive procedures. In B. Robinet (ed.), Programmation, Dunod
Informatique, Paris (1977), 182-200.

D. P, Friedman and D, S, Wise., CONS should not evaluate its arguments.
In S. Michaelson and R. Milner (eds.), Automata, Languages and Programming,
Edinburgh Univ. Press, Edinburgh (1976), 257-284,

D. P, Friedman, D. S. Wise, and M, Wand. Recursive programming through
table look-up. Proc. ACM Symp. on Symbolic and Algebraic Computation
(1976), 85-89.

D. P, Friedman and D. S. Wise. Output driven interpretation of recursive
programs, or writing creates and destroys data structures, Information
Processing Lett. 5, 6 (December, 1976), 155-160.

D. P, Friedman and D, S, Wise. The impact of applicative programming on
multiprocessing. IEEE Trans,on Computers (to appear). Also Proc. 1976

Intl, Conf, on Parallel Processing (IEEE Cat. No. 76CH1127-0C), 263-272.

D. P. Friedman and D, S. Wise. Aspects of applicative programming for
file systems. Proc. ACM Conf. on Language Design for Reliable Software,
SIGPLAN Notices 12, 3 (March, 1977), 41-55.

D, P, Friedman and D, S. Wise. Nondeterminism with referentail trans-
parency. Technical Report No. 64, Computer Science Department, Indiana
University, Bloomington, (1977).

D. E. Knuth. Fundamental Algorithms (2nd. ed. 2nd printing), Addison-
Wesley, Reading MA (1975).

P. J. Landin. A correspondence between ALGOL 60 and Church's lambda
notation. Comm. ACM. 8, 2 (February, 1965), 89-101.

P. J. Landin. The next 700 programming languages. Comm. ACM. 9, 3

(March, 1966), 157-162,

References (cont.)

14. J. McCarthy, P. W, Abrahams, D. Edwards, T, P. Hart, and M, I. Levin.

T
LISP 1,5 Programmer's Manual, M,I.T. Press, Cambridge, MA (1962).

J. McCarthy. A basis for a mathematical theory of computation. In
P, Braffort and D. Hirschberg (eds.), Computer Programming and Formal
Systems, North-Holland, Amsterdam (1963), 33-70.

3 3

M, Wand, Continuation-based program transformation strategies. Technical
Report No. 61, Computer Science Department, Indiana University, Bloomington

(1977).

M. Wand and D, P, Friedman. Compiling lambda expressions using continuations.
Technical Report No. 55, Computer Science Department, Indiana University,
Bloomington, (1976).

AFPENDIX A

A User Manual tor The Interpreter

Section A-1 Introducticn

This 1s a tasic manual fcr a programeing language called the
Interpreter. The furdamental features of the Interpreterts
syntax, the rules of the language, are ¢fresented hLere fcr
the introductory student, or for anycne unfasiliar with the
applicative affprcach to frcgramging. The 1interpreter 1is
interactive; users can write short frograms at a terminal
to be executed immediately. The reader should study this
manual c¢nce, then gc cver it again, trying the examples out
on the ccrfuter. The Interfpreter is still very much 1in the
experimantal stage of development. Ycur cosrents aktcut its
behavior, about this document, and atcut arrlicative
programeing in general are gratefully received. WKhen
problenms arise, flease be fatient. Because it is constantly
being modified, there are cften errors in the Interpreter’s
code. Feel free tc ask fcr assistance; 1if a program fails

to work it is not necessarily the fault of the programmer.

Secticn A.Z2 Data

There are tvwo kinds of data and that is all. Atgcrs
numkers c¢r character =strings, 1like S5 and 762 and SIX
WATER. 2As their name indicates, Atoms shculd be thought
as indivisible nuggets of infeormaticn. Ttkey carnct Lbe
broken down into smaller pieces; they are nct ccopcsed «cf
smaller "tuilding klccks™. There is nc special relaticnshig
between the Atcwms COLT and GCLL, for example, because they
rbyme or because they have the same seccnd letter. The Aton
5 cannot be said tc be clcser cr more similar to the Atom
FIVE than is the BAtom &, even though 5 and

the same human concept.

Such relationships can ke expressed, however, by

"gying™ Atces tcgether intc Lists, the other kind of data.

Lists are collections of data put in order. <1 2 2 4> is a
List, whcse elements are the Atcms 1 first, tten 2, then 3,
then 4. Ore cften hears that Sets are cecllections too, but
a List 1is nct a Set, because Sets are nct ordered. There
are other differences betvween Sets and Lists. The same

element car afppear twice in a list,

€2 SWEET 2 BE 4 GOTITEH>

is a List with six elements, two of which are the Atom 2.

Moreover, Sets are said to ke equal if they have the sarwe

elements, and this is not necessarily true cf Lists:

€1 2 3> is nct the same as <1 3 2>.

<5> may not Lke the same as <5>.

There are scme sisilarities, thoujh, between Lists and
Sets. Just as the elements of a Set may themselves Le Sets,

the elements c¢f a List may be Lists.

<<TWC 2> <SEVEN 7>>

is a List with two elements, each of which bas twc elements.
In this 1Iist we <can say that +the Atcmes 2 arnd TW0 are
"related" tecause they are elements of the same element, Lut
sach relaticnshifs are in the mind c¢f the beholder and are

not autcEatic.

The skcrtest kncwn List is <>, which has no elements.
Only one such List exists; we scretimes refer to this

unique empty List by its name, BIL. Lists are menkters cf a

more general collection of structures called Fermns. We have

more tc say abcut Ferns later, but briefly they are
collections of data without specific order. HNost of what we

say about I[ists applies to Ferns as well.

The memory of the Interpreter consists «c¢f cells, ard
wvhen the cccasicn calls fcr it, data structures are pictured
in terms of the cells which form them. Figure A.2-1 is the

cell representaticoc fcr the List <<2 THC> <7 SEVEN>>.

g

Figqure A2-1.
Cell rerresentation
Cells Ci1, (2, C3, C4, C5, and Co6 are List cells. Every List
cell contains two arrows; one {the left cne) pcirts tc the
first element of the List the cell represents, the cther tc
the List that s left when the first element is removed.
The first e€lement cf the List C1 1s the List C3. (C3's first
element is the RJtom 2. The List C3, without its first
ejement is the List C4, whose first element is THC. If TWO

is remowved, the List that is left is <>.

Atcgs are character strings. Bumbers ac strings
consisting only of digits; Atoms which are nct

consists of digits and letters, Ltut they must Legir with

SAH, RZ2D2,

-64(C0,... 0,

REVIEW CEF SECTION k.2

1. The Interpreter is Lkased cn
d. Atcric data consist f Literal Atoms,
character strings starting with a letter,
and Numeric Atoms which are integers.
{See fcctncte)
bE. Lists are elements cf a larger class
cf data structures called Ferns. They
provide a way to gatker data intc
cocllecticns.

Lists are collections data, ktut they
pct Sets.

ray
same element

(Ferr) 1s called NIL.

3. There are twc wWays toc express
a. The tracket notaticon:
b. The cell notation, which
to discuss the Interpreter's
representation of data.

HOTE: In the current implementation of the
Interpreter, Literal Ators are restricted
to have fewer than nine characters.

Secticn A.3 Evaluaticn

The irterfreter is a prcgram which transforms data. At
the top level it receives data from the keybocard, transforms
i1t, and writes the transformation on the display =screern.

Like the interpreter cf

a language, the Interpreter is corstantly trying

determipne what ycu mean by what you Say. And just as the
Same word can mean different things in different contexts,
the "meaning" of data to the Interpreter depends on

informaticn it has received in the past.

The Past, however, dces nct go back indefinitely; for
The Interpreter, time tegins with the first characters
entered on the keykoard. Some things, therefcre, rust have
meaning Lty themselves. Numeric Ators have this property;
when the Irterfreter reads a number from the keykcard, its

"translaticn" of that number is the number itself. We say

NUMEERS EVALUATE TO THEMSELVES.

The symbcl "-=>" expresses this nction. The statment
"5 evaluates to 5" is written "5 -=> 5%_ S¢ acccrding tc

the rule:

To get a feel for the Interfpreter as a fprogram and as a
manipulator of data, we descrike hcw the evaluaticn cf
numkbers haipens. The Interpreter is a ccllecticn cf small
programs, called [frccedures, vwhich «communicate with each
other by passing data cells Ekack and fortkt. The wmcst
important procedures are PRINT, EVALuate, and READ. PRINT
1s alvays looking for things to type cn the display =screen.
When there is nothing to type, PRINT askes READ tc get
something. BEAL lccks at the characters ccming in frcor the
keyktcard. It it ¢finds a digit, it cbtains a new cell and
starts kuilding a Numeric Atom, As lconyg as digits keep
coaing, READ keefs building. When the Atom has Leen Fbuilt,
READ gives it to PRINT. Eecause eyveryting 1is evaluated,
PRINT bands the cell directly to EVAL, for examination and
Fossibly transformaticn. EVAL 1inspects the «cell, first
asking 1if it is the emfty Fern, <>. It is not. EVAL then
asks 1f the cell is an Atom; in this examfrle the cell is a
Numeric so the answer is yes. Because it is a Numeric and
not a Literal, EVAL gives the same cell tack tc PRINT, Ncw
that the data is evaluated, PRINT is free to write its value
on the disflay. Seeing that it is a Numeric, ERINT extracts
the numker frcm the ccntents of the cell, and prints it out.

Having nothing more to do, PRINT asks REAL fcr mcre data.

The Interpreter resgcnds to RNumeric input by returning

a Numeric value. It behaves differently with Iiteral Atonms.
When EVAL discovers that its Atomic argumert 1is not a

Numeric, it tries to find a wmeaning fcr the Atom in the

Epviroprent, which is scmething 1like a dictionary. The

Environeent 1s small when the Interpreter starts; it

contains a seaning for cnly twc Literals:

FALSE -= {), and
TRUE -=> TRUE.
As 1t recieves npore information frcm the user, the
Interpreter enlarges the Environment. We descrikte hcw this
happens in more detail later. Since Nuwmerics tave intrinsic
value, the 1r1est c¢f the examples in this section will use

thenr.

When a List is EVALuated, the Interpreter EVALuates

each ot its elements and returns a lList of the values:

<12 3> -=> (12 3).

When the BEAL procedure sees the character "<", it tuilds a
structure vith List cells, and notifies the cthier prccedures
that the structure's elements are to Le EVALuated. The
result 1is F[printed wusing farentheses instead of Ekrackets.
The difference between brackets and parentheses is discussed
later. Fcr ncw, assume that brackets are how pegple write

Lists, and that parentheses are how ©®machines write Lists.

It's like an accent. Parenthesized Lists are called Pure

dgta. BHere are a few more examples:

<> -=> ().
<1 <2 <3 <U>>>> ==> (1 (2 (3 (8))))-

<=1 €<<=1.0>> 1> ==> (=1 {11 C)) D).

As a review, exarine the

cellular representaticnh.

~<+——+—0

(

|
9 | o
1

Figure A.3-1.

Inspect each cell in Figure A.3-1, and determine the 1cle

each plays in the structure.

A special character provided bty the Interpreter permits

the user to bypass the automatic evaluaticp cf all input.

1f a Literal Atcm is preceeded Ly a doukle-guote mark ("),

the BVYALuatcr returns the Literal as a value:

"EARTH -=> EARTH
"y -=> 5

“LCATA —-=> DATA

List structures can also te When they are they must

be expressed as Pure [ata:

(12 3) -=> (12 3)

"({1) ATOH) -=> ({1) ATCH)

1.

REVIEW CF SECTION A.3

The Intergreter is a READ-EVALuate-PRIKT progranm.

de

3

de

+
L

The PRINT procedure gets input data frcm
READ, sends it to EVAL to be transformed
into output data, and prints the structure
EVAL sends back.

Numeric Atoms evaluate to
THRUE =-=> TRUE; FALSE-=> () a
If the EVALuator is given a
it searches the Envircorent
meaning.

themselves.

T
L
f

ructures are evaluated element ky element.
User structures are enclcsed in ktrackets,
Pure data structures are enclosed in
parentheses.

<> ==> ().

Section 2.4 Functions

One way tc describe a mathematical functicn is to say
that 1t is an abstract mechanisn. This concert can ke
depicted as a Lbox with an "in" slot and an "cut" =lct. A
valid argument 1s T[resented tc the 1in slot; the tcx
produces a result acccrding to some rule, and sends it

through the cut slct:

This descripticn is even more fitting for the Interpreter;
the mecharise 1is a physical entity, a ccmputer. The
difference between the mathematical noticn cf "functica®

the Interpreter mechanisnm, "a functicno," is that the
aktstract functicn is an 1deal machine wshich requires no fuel
or raw pmaterials tc create its answer, while Interpreter
functions reed both tire and space to produce their results.
The difference ray be ¢f little concern te the programmer at

first, Lut eventually the fact that ideas expressed through

the machine are constrained Lty physical and termpcral

boundaries Lbecomes more important.

and

System—-defined functicns are analogous to

Bumeric Atcrs; the Ipoterpreter knows hew tc eXecute them
trom the FCeginning. User defined functicns are created Ly
the user, Ly giving The Interpreter a demconstraticrn c¢f hcw
they work. Since the realm of the Interpreter is data, the

arguments and results of all functions are data.

In this section, ve demonstate scre c¢cf the systen
defined functiomns. At the same tise, the reader will be
learning the syntax cf function invocaticn. Scee cf the
functions shcwn argjuments are
numbers or lists of numkters, and tteir results are nurbers;
other exangles are whose results are
trath values. The third kind cf furncticn, data

manipulators, are demcnstrated later.

Arithretic functions act on Numeric Atoms ard return
Numeric results, but the values returned by by predicate
functions are less intuitive. In a languagye oriented toward

data, the notions of truth and falsity must be represented

as data. In predicate terms, the Atoms FALSE and NIL, and

the structures () and <> represent falsity. Everythirg

else, including the Atom TRUE represent truth.

AIL1, SUE1

These functicns take a single argument which
must ke a Numeric Atom. The result i=s a
Numeric whose value 1s cne mcre (ALD1) cr
cne less (SUB1) than the argument.
Examples:

ALTL1:2 -=> 1.

ACD1:-1 -=> 0.

SUE1:100 -=> 69,

2. PLUS, DIFF, TIMES, DIV, MCT

These are "tinary" arithmetic functicn
Each takes one argqument, a List, whcse
first twc elements are Numbers. The
rTesult is a KBumeric whcse value is
the sum (PLUS), difference (LIFF),
product (TIMES), integer quotient
{(L1V), or modulo reducticon (MOL) cf tke
elements. If the argument toc cne of
these functions has more than twc
elements, the third, fcurth, and
S0 on are ignored.
Exanfles:

ELUS:<2 2>

DIFF:<1 3

TIMES:<4 2> —=>

LIV:<U 3> -=> 1.

MQOD:<4 3> —-=> 3.

3. GREAT, LESS, SAME
These fredicate functicns compare
numeric values. Like the binary arith-
metic functions, the arqument to apny cf
these functicns should be a List with
at least two Numeric eleEents (SAME is
more deneral, as shown below).
Examples:

GREAT:<203 200> -=>
LESS:<5 =10> -=> {).
SAME:<6 6> - E.

TRUE.

4. NOT {(or NULL)
NCT returns TRUE if its argumernt is
false, and () if it is nct.
Examples:
NOT:<> =-=> TRUE.
BOT:<1 2 3> ==> ().
NOT:<NIL> -=> ().

In the section on EVALuation, we shcwed hcw the

Interpreter seeks a meaning for all ipput. We lcck at this

kebhavior ¢ g showing what hafprens when

function «calls are EVALuated. We are kuilding a vccabulary
of forss the Interpreter accepts as grasmatically
correct. bumeric Atoms are the simplest fcres, and EVALuate
to themselves. List forms are not wmuch rcre difficult;
they are sequences of forms enclosed in trackets. &ke have

already seen scre examfples of a third kind of form:

argument

The colcr is the AFPLY cofperator. When the prccedure EVAL 1s
given a structure marked with the APPLY cperator, it first
EVALuates the arguument part of the structure. Then the
function is APPLYed to the result accocrding to the system-
or user~definiticn. If the form PLUS:<2 2> is given to EVAL

the follcwing things hapfgen:

EVAL reccgnizes that PLUS:<Z 2> is an
applicative form. It makes a note

of the function name, PLUS, and EVAL-
vates the argument.

The argument is <2 2>, a list form.
Each element is evaluated, and the
result is the Pure List (2 2) .

EVAL retrieves the functicpn it ncted
in step 1, and APPLYs it tc the
EVALuated argument.

The result, 4, is Teturned.

The fact that EVAL EVALuates the argument part
applicative tfcrtm first, enables the froyrammer to

number ot function calls tocgetker, that is; the

part of an applicative fcrm may itself be an applicative

form. As an exanfle, consider the form ALCLC1:PLUS:<2

EVAL recognizes that ALC1:PLUS:<2 2>
is an afflicative form. It nctes the
functicn rame, ADD1, and begins to
EVALuate the arqument, PLUS:<Z 2>.
As in the examfple abocve, the fornm

is ELUS:<2 2>. EVAL notes the PLUS.
The argument, <Z 2> is EVALuated,
returning the fure List (2 2).

ELUS 1is APPLYd to the argument

List, returning the Numeric 4.

EVRAL discovers the AIL1 noted in
step 1, and BFPLYs it to the

result, 4.

The value 5 is returned.

The stringing together of function calls like this

called ccmpcsiticn. Of ccurse, it is not necessary for

programmer to keep track of the details of hcw EVAL

ansWer; the essence of the process can ke stated in

RULE: When an APPLICATIVE FORK,
function : argument
is EVALuated, the ARGUMESNT is EVIALuated
first, and the FUNCTION is APPLYd tc the
result.

ticns:
{mentioned 1in the ' m d d functicons), ATICH,
FIRST, REST, CCNS, and FCHNS. e tli mcst important
functions 1in the Interpreter; they are used tc investigate
and manipulate data structures. We wish tc erphasize here
that all functicos,] especially these, accegt
general kird cf ta strud r Lists, namely
Recall that s like Lists, excert that they

have order.

SAME ar redicat ! e t examine

and compare structures. ATOM returns TRUE exactly when its

argueent is an ARtom. SAME's argument is a List whese first

tWo elewents are compared. TRUE 1s returned cnly ¥when bcth

elements are <>, or koth are the same aton.

Examgples:
(1) ATCH:TRUE -=> TRUE.

{i1) ATCM:S5 -=> TRUE.

{1i1) ATCHM:<4> —-=2> ().

{1v) EQ:<FALSE FALSE> —-=> TRUE.
(v) EQ:<% S> -=> TRUE.

EQ:<<1 2 3> <1 2 3>> —-=> NIlL.

The used tc

explore structures. Each takes a Fern argument. FIRSI's

value 1s the tirst elesent cf the Fern. If thke argument is

a List, this value is the lefthand arrow in the List cell.
It the argqgueent 1s an unordered Ferm, it 1is FIRSTI's
responsibility to select a first element and return it.
REST returrs the Fern that remains when the first element is

repoved.

Exanples:
(1) FIRST:<1 2 3> -=> 1.
{ii) FIRST:<PLUS:<2 2>> -=> 4,

(i11) FIRST:REST:<1 <2 <3>>> -=> (2 (3)).

Consider the form EIRS

EVALuates to the Fure List (1

Cell C1, List : : L ‘ the argument.
returns g hand inter cf the Numeric 1.

is called c¢n ti ane List, 1's right hand pcinter
returned. t pcir > Li C C<, and

rest of the the List,

The 1ext system—-defined functicn is Cons,

used tc build Lists. CCHES's argument has
elements, the first may ke any structure, the seccnd
a List (Fern). CCES returns a new Fern, who
is the ftirst argqument-element.

the second arqument-element.

Examples:

Let's dc cne rore example, this time lockinyg at the

cells. Suppose the form is CCNS:<<1> <5>>. EVAluated, the

argument 1s the Pure List { (1) (5)):

ol E— G2
L_ O—"————ﬂ>» ? — >R L
| I

/'/

-

1 =

Cell C1 refresents this List, which has twec elements, C3 and

Cu. These are the elements that CCNS uses. CONS returns a

newly acquired cell, C7, but what are its arrows?

The lett arrcw fcints to the first argument-element, C3.

o—i——n—u—umﬁzzggag_

So CONS

Take

By doing you will

the skiil
behavior

do the evaluation, tkut convert

FIRST:<<1 2> 3>.

REST:FIRST:<<1 2> 3>,

FIBST:REST:<<1 2> 3>.

BEST:CCNS :<TRUE <TRUE <>>>.

FIRST:CONS:<TRUE <22 33>>.

CCNS:<FIRST:<1 2 3> REST:<1 2 3>>.

EQ:<CORS:<FIRST:<1> <>> <1>>,

ABSWERS:

(TRUE {())

TRUE

{1 2 3)

)

The last systen

called FCh5.
constructcr.
structures called
Lrsts because they

more detail in

ect

Fern protes.
argument that
Exanfles:

(1) 1: <1

Intertretexr’s
computaticr tc t

ve will alsc be

defined function we shall

relative CEONE:
tuilding Lists,
which are more ¢

FCNS 1s

part cof
a comscn

the

iCs

functions

a universe of

As we describe how this

xplaining how

mention

to the
meaningful

is done,

Environments are created.

These two concepts go hand in hand, and instead cf tryirg tc
express their interelaticnship all at once in a sinygle rule,
Wwe fresent several examples and discuss then. The reader
will develcp a feel fcr what is gcing cn by studying the
examples ard and fpracticing with the Interpreter. Functicn
definiticn is the last additicn tc the semantics of the
Interpreter; once it is understcod the reader Leccres a

tully competent programsmer in the Intergreter's langjuage.

Example Cne
CEFINE ALDDZ NUMBER

ACL1:ACCT1:NUMEER. -=> ALLZ
ADLZ:% —-=> 1

Discussion

We wish tc define a function which acts like BLL1, FEut
returns a value twc greater than that of its Numeric
argqument. The Atce DEFIBNE is a signal tc the Interpreter
that a functicn definiticn fclleows. The nezxt thing in the
input 1s thke funciticp pname which must be an aAtcm. In this
example, the functicn pame 1s ADLCZ2. ©Fext comes a pattern of
the argument which ADD2 will expect. 1In this example, the
Atom NUBMBER 1is the pattern; it 1is «called the formal

Following the formal parameter is
bgdy, a statement cf what the function doces. 2 function

definition is a kind cf form:

LEFINE name forual*paraﬁeter becdy.

Except tor a few special cases, functicn definiticrs are the

last ot the Interpreter's form tygpes.

REs

BApplicative forms
Definiticnal forms

when a difinitional torm is presented tc the Interrreter,

the function body and the formal paraweter are added tc a
section ¢f the Environment, called the | S indexr the
function ranme. Later, if AL] 10V 2 g EVALuator
will lcck wuf the functicn i the FLIST. The formal
parameter will be ccmpared with the actual argument (after
EVALuation). This is called Etinding As a result cf he
comparison new @meanings for Atoms in tl fcrral parameter
are added tc the Ervircnment, and under the influence of
these new meanings, the function becdy is executed. Consider

the forw ALLCZ:5.

The evaluator recognizes that ALL2:5 is an
applicative form. It notes the function
name, ADD2, and EVALuates the arqument, 5.
5 is a Numeric, and EVAluates tc 5.

The BEVARLuator discovers that the functicn
is user-defined. It lcoks the definition
up in the FLIST.

The fcimal parameter is the Atcm NUMBER.
BUMBER is bcund to the argument, 5.

EVAL now executes the function Lkcdy,

vwhose form is ADDI1:ADD1:NUFEER. It

nctes the functicn name, ALL1 and
EVALuates the argument, ACC1:NUMEER.
ADD1:HUMBER is another applicative form.
EVREL notes the functicn, AIL1, and
EVALuates the arqument, NUMEER.

NUMBER is an Atcmic form, tut not

a numker! So EVAL lcoks for a nmean—

ing fcr NBUMBER in the Environment.

NUMBER's meaning is its binding in

the environment (stepr 4) the Rumeric, 5.
5 is returned as the (step €) argument
value.

The AIL1 noted in step & is APPLYd tc

5, returning b.

The ALL1 noted in step 5 is APPLYG

tc 6, returning 7.

7 1s returned as a value of the forn
ALLZ:5.

We are now beginning to understand hcw the meanings

Literal itoms are created. Literals are

user—defined fupncticns are_invcked.
Example Twuc
CEFINE SUMUP L.IEST
IF BULL:LIST THEN O
ELSE PLUS:< FIRST:LIST SUMUP:REST:LIST>.

—=> SUNMUE
SUMUP:<1 2 3 4 5> —-=> 15.

Discussion

We wish tc define a function whose argument is a List
of Numeric Atcms. The value of the functicn is the sum of
the wvalues <c¢f the elements of the List. The formal
paraseter ¢f SUMUP is an Atom, like ALCL2's. The body of
SOUMUF has two striking features. It returss cne value if
the argusent-List is empty, another if it is nct. When LIST

is not empty, ELUS is <called; the elements cf PLUS's

argument iIist aré two numkters: the first elesent cf LIST

and the SUMUP of the rest of LIST. Functicns whcse LEkcdies

contain a call to themselves are rLecuUrLS1VeE.

Examgle Three
CEFIRE MERGE (LIST1 LISTZ2)
IP NULL:LIST2 THEN LIS
ELSEIF NULL:LIST1 THEN LIS
ELSE CONS:< FIRST:LIST1
CONS:< FIRST:LISTZ
MERGE:< REST:LIST1 BREST:LIST:>>>.
-=> MEEGE
MERGE:<<1 2 3> <4 5 6 7>> -=> (1 4 25 3 ¢ 7)

Discussion

The function MERGE takes two Lists and creates a third
vhose elements are those of the first twc. It's definiticn
is similar to SUNUP's; it returns alternative results,
depending <n the structure of its arqument—elements, and 1t
is recursive. Fut there are differences tcc. The result o3 i
BERGE 1s a List 1instea yf a numker. Mcst user—-defined
fynctions d¢ =structure manipulation and not arithmetic.
MERGE has more alternatives than SUNUE. In general a
functicn can have as many alternatives as it needs. MERGE's
tormal rarameter 1is nct Atomic. When the time comes
parameter tindings, the formal parameter is compared
the argurent. 1t acts as a template; the forwmal
parameter's structure is superimposed cn that of the
EVALuated argument; its Atomic elements are bcund tc the
correspcrding structures in the argument (for this Treason

formal parameters are expressed as Pure data). 1In the

example, when MERGE:<<1 2 3> <4 5 6 7>> is called, LIST1

will be bound to (1 2 3) and List2 to (4 5 6 7) —— at first.

These examples give just a flavor cf rfrcgramming with
the Interfreter. In subsequent sections, more involved
exarfples helfp develcfp a taste. The next secticn reccrds a

sample session with the Interpreter; the reader should

follow this session at a terminal, interacting with the

progranm. Bfter that, try the proklems cn the rnext paye.

PROBLEHS

[eiinﬂ a ftunction whose arqument has twc
eleren a number and a List cf numters.
The nurl 1s ttb length cf the List. The
value tha function is the average cf
thke numbers ln the List
[efine a function whose argument is a Lis!
cf numters. The value of the function is
the average of the numters in the List.
Finish this difinition:
CEFINE EALANCE (ACCOUNT TRANSACT)
IF NULL:TRANSACT THEN EALANCE

The argu

ACCCURN1T

is a Li

of TRAN
(“anCK

vhere 'n' is a nunker ; o= cf the

the fupcticns 1is t s amnount of

checks, and add th deposit ' COUNT.
fcr exargle:
EALANCE:< 50
<<"CHECK 10>
<"LEPOSIT 12>
<"CHECEK 162>>

REVIEW CF SECTION A.Y

The EVALuatcr is a function whose arjument has
two elements: a form and an e€nvircnment.
a. If the fcorm is a Numeric Atom,
that Atom is returned; if it is
a Literal, the Environment is
searched for its meaning.
It the form is a List, eact
cf its arguments is EVALuated
and a List of results is returned.
If the form is applicative, the argument
is evaluated first, then tte
tuncticn is AEPLYd to the result.
It the torm is definiticnal,
the functicn definition is added
to the F¥LIST.

Fcrms have the fcllewing syntax:
a. Atcms —- Numerics cr Literals
b. List —- <form form form...>
c. Applicative forms --
function : argurment
d. [Cefinitional forms --
DEFIRE name formal-parameter Lody .
The Interpreter has system-defined
functicns for arithmetic and data
manifpulaticn.
a. Unary arithmetic functions
ALL1, SUEB1.
Binary arithmetic functicns --
pLUS, L[1FF, TIMES, CIV, MOL.
Einary ccmpariscn fpredicates --
GREAT, LESS, SAHME.
Truth fpredicate -—- NCT.
Lata inspection predicates --
NULL, NOT, SAME.
Data frches -—- FIRST, KEST, and
positive Numeric Atcrms.
g. Data ccnstructors -- CCNS, FONE.

The fcrmal parameter part cf a user functicn
definitico is used to bind Literal Atons
to their meanings during functicn executicr.

Functicn bcdies are a statement of the Lehavior
of the functicn. They may contain a single
form, or alternative forss, in which case

the meaning cf the function deprends on
conditional predicates.

A Samele session

T bhis sectiamy an inltersclblve @e@s8s100 Wwith the Intersre

SIOW Y Uriversiby Log-on 2rocedaulre.

77708724,

UNTVE]

TERMINAL S
STEMS Fuall
FEATY .

HATCH moie .

some COore

Interrretar.

ERING VERSION 0.1
MEMORY
7000

campernh
Intersreter
¥ 3 e 4
of dirsut. The Intevsreter
delivers & sromely i wWier @b
warnts more irnsual.

Heres bthe Interereter is loolins ahead for

Lhe AFFLY orerastor. To
prometsy terminate asll

forms

TRUE evalusltes
Lo the eme]
Nave mesrir
SN CIiNi »
wap e EUALUATION ERRORS UNEBEOUND UVARIARLE»
SOMEATOM
FROTTOMS

The intersreter

FEOTTOME

]
gLt
7

v
1001 . § Numeric Atoms evaluasle

w001
1Ge 20, 3 4 v Beveral Torms maw P T me e,

evalusted element-bv-element .

"somealtom The QUOTE characlher susred s automasltlic evalustion.
w e SOMEATOM
"l Cmean (mister mustard)) ()2) s QUIOTEG lists should be sak s

COOMERN (MISTER MUSTARDD) ()

Numerics which are Ltoo |
literals which are btoo long
i orrs!l g mistale. tLhe
1234567890
DS BOUNDS .,

v 12345467890 evalustes Lo bLhe biggsest mumber

velwlsr al.om sLime Intersreter can handle.

LITERAL OR NUMERIC EXCEENS BOUNDS.

-XECESGIY

e

A-34

i Here are some of Lhe ¢ slem-daetirned Ffunctions:

UNRBOUND VaRE

Birnasry s E funchians can be divern Loo mans

plus st rae = B i ardument-elemarits. The srgument-elts. must

EVALUATION ERROR NON-NUMERTC

| B I X -
Corme GO

furnction sart of
e @ L. (fermn). The Limert g Lhern
amernls

licative form

M3k
Lalkern Lo De arn arras

are AFFLY ‘4 to its columns.

Furnction elemarnts
ardgument must
grealts

.y

300
[+

Somelimes tnere
some rosibions
smark is
rll sreastsia
oo

4

TRUE
50 e iorns must De o
FREORS UNBALANCED

averadges<d4 Fl, §
E

QT TOM:
e AVERAGE (m w cliwv e lus i

=+AVERAGE

-4

SVETIEE .

doLet’s make AVERAGE more sSemoerasl.
define AVERAGE list
ciivi<esumasilist lemgthilists.

-z CAVERAGE
define SUMUF
it orallilist thern ©
elee slusifiretilist sumuslirestilist>,
=xGUMUF
defime LENGTH list
it orall?
13

else add

ist thern ©

engtiitrest: list.,

1
1

—z =L ENGTH
T oaveradgeidd Fx.

Toaveraded 7 8 3 0 100 3000 4 &6 V3
averadets4 7 8 3 0 100 3000 4 &6 7 3 4

P22

Loak now al EONS .

pgd ladng anag starlt asgasin.

clef i re i Clistl lits: ¥ i arnlted FdrkaEITITN N T
il s list

fanotner mists

interestin ol ems o Lowd b
shructure arng not aritimedic.

i LEAVING .
NODES I VZED, 13188
NODES RECYCLEDy 1773
AVATL——2 1098

S/
7

Section A.€&€ CONS Revisited

In this section we take another lcck at the functicn
CONS. The tebhavicr <¢f the Interfreter's constructor
functions 1s nct as direct as we have implied, and while 1in
most cases, the difference is not important tc the user, the
subtle change we descrite here gives himr pcre pcwer than he

could have assumed.

The EVALuator as a function regquires an argument List
with two elements, a form and an Environment. It gets the
form frcos tcp level input, cr trom a functicn definiticr;
it gets its Envircnment through the [frocess of binding
formal parareters tc functicn arguments. As the EVRALuator
proceeds through the the definiticn cf a function, the
Environsent grcws and diminishes as more parameters are

bound and as unneeded tindings are discarded.

We ncw f[Icfcse a change in the descriptior cf the

constructor. Instead ot evaluating its arqument—-elerents

and putting arrcws to the results in the pew CONS-List cell,

and the arrows point to it. A suspensicn ccntains
enough information to enakle the EVALuator tc find the
value if it needs to. The required inforsatiocn, as we

often said, is a fcrm and an Environment.

Consider the function call

CCNS:<ADD1:1 <PLUS:<2 233>

The jot cf the CChHStructcr is to create a new List whcse
FIRST elenent is the value of the form ALC1:1, and the RESTI
ot which is the List <PLUS:<2 2225

argument-elepents are fully EVALuated, the resultiny new
List is {Z 4). But 1t is wasteful to dc this EVALuation;
we may never need the FIRST or the REST cf the new List.
For exapfple, surgcse the form is rfpart of lar jer

applicative fcrm:

BULL :CCBS:<ALC1:1 <PLUS:<2 23>

The value c¢f this forw is (), that is, FALSE, regardless of

the outccme of the EVALuation of CONS's argusents.

Now sufppcse that instead of doing the EV2Luaticn, two

suspensions are created and placed in the new cell's fields

{Figure A.€-1).

\

ENVIRONMENT- E

FORM-ADDI:]
ENVIRONMENT-E

Figure A.6-1
Suspended constructicn.
The result is a List just as tefore, except that instead cf
keing the FIRST and REST c¢f +the List are just
Promises: CCHS
no longer causes any computation tc take place. If this
structure is probed ty the functions FIRST <¢r REST, ‘the

Suspensions are cgoerced into values, as thcugh they had been

there all alcng.

FIRST and REST are nc lcnger passive data examiners,

dutifully returning the ccirect arrows, they are EVALuation

drivers coaxing suspensions into values as they explcre

structures. If the form is:

FIRST:CONS:<ADD1:1 <ELUS:<2Z 2>>>,

1. The EVALuator notes the call tc FIRST and
EVALuates the argument, CCHS:<ce=2>

2. No EVALuaticn takes place! CCNS immediately
builds a suspended List frorm the current
Epvironzent and the forms ALCT1:7 and
<ELUS:<2 2>>, (Figure A.6-1)
FIRST {stef 1) is APPIY¥d tc the result.
The left hand suspension is fcund ard
coerced, that is ALCLC1:1 is EVALuated,
returning the value 2. (R.B. this
value replaces the suspension in the
List cell o that nc wcrk is wasted
by repeated calls to FIRST cn the
sage cell)

4. The value 2 1s returned.

In this example a frcbe of the suspended List structure
yields the same result as would be returned if CCNS had
evaluated its argurments in the first F[lace. However the
evaluaticn cf the REST of the List never takes place; akbcut
half ot the work of constructicn is eliminated if that value

is never referenced by a prote.

How ccnsider a definition:

CEFINE INTEGERS N CCNS:<N INTEGERS:ALC1:R>.

Assuming that the CCES in the definitico evaluates 1its

arguments, the form INTEGERS:1 is evaluated like this:

The form is applicative; the functico
INTEGERS is ncted and the argument is
evaluated.

1 -=> 1.

INTEGEES is locked up on the FLIST;
the Atce N is bcund tc 1; the form
CCHS:<N INTEGERS:ALLC1:N>, 1is e€xecuted.
This tco is an applicative form.

CONS is noted and <N INTEGERS:ALL1:N>
is evaluated.

This is a List fcrm. Its first element
is N, tound to 1 in step 3.

The seccnd argument-element 1s the
applicative form INTEGERS:ALL1:N.
The function INTEGERS is ncted and the

argument 1is evaluated.
7rT21 01

No constructicn ever takes fplace. The Interfpreter consunes
all i1ts time evalvating arguments to CCKS and never executes

CONS once. But if CORS susfends its arguements:

INTEGEFS:1 an applicative forwm. The
functicn INTEGERS is ncted and the
argument 1s evaluated.
1 -=> 1.
the formal paramenter, B is bocund tc
1, and the tody of INTEGERS is executed.
K¢ evalvaticn takes place. The
argument forms N and INTEGERS:ALC1:N,
alcng with the environment binding R
to 1, are turned into suspensicns.
a new cell is retrieved, its arrows
made to point to the suspensions.

S. The new List cell is returned (Figure A.6-2).

1f FIRST probes this structure it finds the susgended form N

which evaluates to 1. If REST prokes the structure, the
form INTEGEES:ALLC1:N 1is wevaluated, returping a List «cf

integers, starting with tuc.

form: INTEGERS:ADDT:N

N ‘_‘{. environment:
J —ri*\‘itj/ﬁ-f//

form: N

environment:
N=1 /

Figure A.6-2
The suspended List INTEGERS: 1.

Suspersicns are introduced tc save the EVALuator fron
doing @Deecless WCIk. It is possilkle tc kuild structures
whose elerents are partially computed, even though the user
can never see them; if she probes the structure to look,
the suspension is automatically coerced tc a value. We
introduce a second constructor, FCRS, which goces even
tarther. FCHS creates structures just as CONS, fetching a
new memcry cell, and filling its fields with Suspensions.
But unlike Lists {(CONSed structures), HMultisets {FCNEed
structures) are not ordered when they are tuilt. If the

argument tc a prcbe 1is a

value rTeturned

Multiset. The form

FONS:<1 FCHS:<2 FONS:<3 <35>,

when fully coerced may evaluate to any cf the fcllcwing Pure

Lists:

{12 3) (Y32 (2 1 3)

{2 3 1) (3 1 2) {3 2 1)
depending cb the cider in which suspensicns return values.
The eventual c¢rder c¢f a Multiset <can and should not ke

predictatle tor the user; if order is needed, use CCNS.

The user's trackets are a shorthand notation for

repeated calls to CCNS:

€1 2 3> —=)> CONS:<1 CONS5:<2 CCHRS:<3 <O>>>>.

Square brackets are used to build Multisets:

[1 2 3) -=> FCNS:<1 FCNS:<2 FCNS:<3 []>>>.

In this section we have introduced elements o¢of the
Interpreter's sermantics, almost as an afterthought. In
fact, the rcticn that computation is nct carried out by the

structure bujlder, but through exploratiomn cf the structure

by probes, is one reason why the interpreter was written;

few programming languages exist which explcre this agprcach

to coaputation.

Coetion f.7 A Samele srosram

Frrograms osn rur mon-intberactively with tLhe Intersreter.

ar oexamele.

77/708/24, 12.34.45,
INDIANA UNIVERSITY - LEVEL 9. KRONOS
USER NUMERERS 3397hrsdds
TERMINAL ey TTY
RECOVER ;
REATY .

Get irnto BATCH mode.
Get tLhe Interere

Get the

Wwith source as

ENTERING VERS!

LM LT

(TRACE 1)

THIS I8 A FROGRAM TO FIND A FATH THROUGH A X3 MAZE.

THE MAZE I8 A MATRIX OF QITH VALUESS ORDERED BY ROWS.

THE VALUE "TRUE® INOICATES THAT THE FATH TO THE GOAL. CANNOT

GO0 THROUGH THAT FOINT. THE TOF-LEVEL FUNCTION "MAZLE

18 GIVEN A GOAL FOSITION AND A LIST OF FOSSIELE FATHS.

FOR EACH FATH IN THE LIST "MA "OCHECKS TO IF THE MOST

RECENT FOSITION THE GOAL3S IF IT ISy THE FPATH I8 SUCESSFULL

AND "MAZE® RETURNS IT AS AN ANSWER. OTHERWISEy THAT FATH IS
BY FOUR FATHS» ONE FOR EACH MOVE. PFATHS WHICH

IN FAILURE ARE ELIMINATED ALONG THE WAY.

’ZZ
l:f

wEs MR TR NI ER IR IR sap NEF MP SR aR GRS Ay e

DEFINE MAZE (GDAL FATHS?

'F ONULLIFATHS THEN <"NO "FATH "TO "GOALX
NULLSFIRSTIFATHS THEN MAZE - GO0AL RESTIFATHSE
SAMESFOT:<G0AL 1213 1IPATHSE: THEN 1:1IFATHS
MaZE $-GOAL

AFFEND: <MOVES:FIRSTIFATHS RESTIFATHS .

e M E

DEFINE AFFEND (LISTL LISTE)
IF NULLSLISTL THEN LISTZ
s CONS$1tLISTL AFFENUICRESTILISTL LISTIEH .
= NI

X1 X2k THEN SAME <Y1
~ﬁMP‘F

LDEFINE MOVES
< MOVE O 1= BTATE FATHX> i MOVE UFvy
HEBW-: STATE FATHX: [OWN »
U[:i | < STATE FaTH: oLEFTY
(UY° STATE FATH:
HUUL&

OEFINE MOVE (DRECTION STATE FATH)
§ "MOVE » " "MOVELs " AND "MOVERZ" ﬁTTEMPT T0
P ADD ANOTHER FOSITION TO & FATE
7 IF THE NEW FOSITION IS Hﬁhfm" s
5 THE FATH I8 ELIMINATED FROM CONSTDERATION.
M”UE1.=UhP[FION STATE 13FATH FaTH-,

NEFINE MOVEL (DX DY) STATE (FX FY) FATH)

MOVIERZ
MOVE L

DEFINE MOVEZ ((HX %T) “TﬁTE FAOTH)
IF ORI L 54 Ly LESSIES
; "TanuA 3= GF gl
MARKED §-<<8X 8Y» STAT ps THEN

FUUF-
ODEFINE OR LIST
TF NULLILIST THEN FALSE
FLSEIF FIRSTILIST THEN TRUE
LSE DRIRESTILIST.

DEFINE MARKED ((X Y) STATE)$ SEE IF A FOSITION HAY

IF SAME$<Y 1% THEN MARKHELF3<X FIRSTISTATE:
ELSE MARKED?!<<X SUBLSY: RESTISTATEX,
~ == MARKED

DEFINE MARKHELF (X ROW)
IF SAME:<X 1> THEN FIRSTIROW
ELSE MARKHELFI<SURLIX RESTIROW
-z e MARKHELF

DEFINE MARK (%TﬁTE (X YY)y & MARK A FOBITION,

TF SAME <Y 13> THEN CONSI< MARKROW:<FIRETISTATE

CONS t8X 8Y: FATH> MARKICSTATE LIFATH=.

COXL Y1) (X2 YiE)) i SEE IF TWO FOSIT

STATED STRY A MOVE IN EACH DIRECT

SFLUS DX FXE PLUSTIDY PYRR STATE FATHX.

BEEN

¥

AL

TONS

TON .

REST

ELS LDNbo,TIRSTlﬁTﬁTE MARK $CRESTISTATE <X BURLIYREE

- r’i 1-”-] *\' l\

ARE THE

MAaRRKET

STATE =

a

Sl

HEF TNE
IF
SELF

51

SAME S

WE “L.L
U F B e
FATHS

(1y3) ARE

Lk

Here is &

shoulc be dusli
rewindymazed
Joordrmaze

7000

(TRACE ©

THIS &)
THE MAZE 185
THE ValUE
GO THROUGH
IS GIVEN A
KTERMINATEIN

¥

A
¥y
]

¥

L

The srecil

tLhe insat is to

“ledd A

MAaRKROW

LEFT
THROUG

CCRL RZOR3)
13 THEN
g th

”RI RE

WITH @A
AND A

FOINTS

AZE

H THE THE

S ALSE

2 PﬁTH Tan

GOmLLD

AVING .
J"

X

el

cory of the source

cated in all srodgrsa

FIND A
OF TRUTH
CATES
THE
AN

FROGRAM TO
8 A MATRIX
“T}UL" INDI
THAT k(li:o
GOoal. FOSITION

al form ‘{(trace 1)°

he echoed Lo Lhe

tie eoxecube comman

g

GOAL

EXLST .
FALSE
F il

Fal.SE

iles Lwo

Mmish +

FATH

THAT
TR

3

ottt i

THROUGH
VAL UES ¢
THE

A OAXE MA
ORDERED RY

FATH TO THE G
NCTLON»

informs the

Lo, Ourbeat

[

THE

AN

Lines

ZE:s
ROWS .
OAaL CANNOT

"MAZE"

Intersreter

| PR A » | ey peny gl
ot dreal @nd

cory of Lne 1

ENTERING

MEMORY LIMIT

1)

HTERMINATEDX

Firmallwy tne Intersreter (i v crm

wreeubed @ Lo

Appendix B

Program Traces.

Several levels of tracing are exhibited here for runs of the same

program on the interpreter. Level 1 is the normal trace of a submitted

job; input is echoed to the output file, As the value of trace increases,

the behavior of the evaluator is more explicitly showm.

GNTLSIT 40 QN3 NRAEZITQS ~“9%°Lg° 61l

G&¢d <==T1IVAY

€ ‘03724234 S3IAON

€L “03S0dSIQ S3AO0ON
ONIAY¥ 3] <=-<=-<=-<=-
“LIX13

000L<=-
“<00Cg¢ (G0 CCUL>=1S¥Id

(L 3Ivyl) <=-

JLIIWIT AHOW3IW <=-

L*C NCISH3IA SNIY¥Y3ILANI <==<K===g====

—==z=>=-=-=>-=> ENTERING

-=> MEMORY LIMIT"
LOOP.
LO0P.
LOOP.
LOOP.
FIRST:<1000 2201 3300>.
-=>==>-=> ENTER READ LOOP.
-=>1000
EXIT

== D =D ==>
EXIT

ENTER READ LOOP.

-=>-=>-=>-=> LEAVING.
NODES DISPOSED, 18
NODES RECYCLED., 3
AVAIL-=-> 286

15.32.18. SDJZBVN END OF

VERSION 0.1

CAR OF P IS
COR OF P
CAR OF ©°

CbR OF F

TRACE=33

T45TRACE

IS 275C0aC?21C?33(?31]1

1s DCcC?203C*'03C°313

@ IS 2740CC?01C*2573(0*27711]

LISTING

L5 &/SLEL?3IL%2752L*0]1]

—===>-=-=>-=> ENTERING

-=> MEMORY LINIT"™

-=> (CAR

=D =D ==
TRACECDR

—Z D ==D=-=>
CAR

== D ==D ==

=S ==>==>

FIRST:<1
—=>-=>-=>
TOP
TOP
EVLIS
CDR
EVLIST
ANB

APP
CAR

CONTEXT
RESTORE
TOP
TOP

CONTEXT POP:

RESTORE
CAR

~-=>1000

EX1T.

-=>-=>-=> ENTER READ LOOP.

EXLT

VERSION 0.1

IS T45TRACE

P IS 2750CLC?31C0*27510'01)

LOOP. CAR OF P 1S 275[AL221)(251(?2071]

LOOP. COR OF P IS 3CcC?201C*N3L"N]]

HiD 2003 3000>.

ENTER READ LOOP.

LY 169 T0 292

€

IS 2740CC203C"2571(C*27711]

PUSH: 294 --> ['29310'2921C*011, PROCESS-CAR.

-=>-=>-=>-=> | EAVING.

NODES DIS
NODES REC
AVAIL-->

153 0a2]

POSED., 18
YCLED, 3
2386

£¥2933L Y2923 *D11+ FILL=CAR.

@ IS 243

SBJZ3AA END OF LISTING

~===>===>-=> ENTERING V

-=> MEMORY LIMIT”

ASSIGNMENT:
ASSIGNMENT:

ASSIGNMENT:

ASSIGNMENT:

==>-=>=-=>PROCESS CREATED:

-=>==>=-=> EVALUATION.

POP:
PLACEs £» EXP:
CAR
ASSIGNMENT:
ASSIGNMENT:
ASSIGNYWENT:

ASSIGNMENT:

==>==>==> IN CAR LOOP. C
TRACE

==2>==>-=>PROCESS CREATED

-=>=-=>-=> EVALUATION. PR
PGP

PLACE: 9, EXP:
CDR
ASSIGNMENT:
ASSIGNMENT:
ASSIGNMENT

ASSIGNMENT:

-=>==>-=> IN (DR} LOOP.
ASSIGNMENT :
ASSTGNMENT:

-=>-=>-=>PROCESS CREATED:

==>==>-=> EVALUATION. PR
POP:
PLACE: 7, EXP:
CAR
ASSIGNMENT:
ASSIGNMENT:
ASSIGNMENT:

ASSIGNYENT:

s>==>==> IN CAR LOOP. C
(j) ASSIGNMENT:

-=>=-=>-=>PROCESS CREATED:

ASSIGNMENT:

ERSION 0.1

274 .
0.

274.
0.

[sC'2743027130%3]1]

PROCESS STACK IS NODE 277.

274, ENV: 0O, REVAL: 0O, MODE: 37,
145.

145.

0.

0.

1S 145TRACE

AR CF P

0.
¢ DSC"27430292310*)117

OCESS STACK IS NJDE 277.

274, ENV: 0, REVAL: (0, MIDE: 37,
276 .

276.

0.

0.

CDR OF
276.
0.

P 15 R275LCCR3TE2753C07]

CsE*276JC?271E'0]1]

OCESS STACK IS NODE 274.

276, ENV: 0, REVAL: 0O, ™MODE: 37,
275.

27 5.

0.

0.

AR OF P IS 27S5[CAC?21C0?71(?01]]
0.

LsC'27630?93C'01]1

STACK:

STACK:

STACK:

0

0

EVALUATION. PROCESS STACK IS NODE 274.

PLACE: 9, EXP: 276+ ENV: (U, REVAL: 0, MODE: 37, STACK: U

ASSIGNMENT: 0.
ASSIGNMENT: 0.
ASSIGNMENT: 0.
ASSIGNMENT: 0.

CDR OF P IS OCcC?201L*N3('011
276.
FIRST:<1000 2302 3200>.
-=>»==>=-=> ENTER READ LOOP. 3 LS 27¢46CCC2aTLv25730"27733
-=»>-=>-=>PROCESS CREATED: [sC'"2741C?113C'011
-=>==>-=> EVALUATION. PROCESS STACK IS NODE 2E5.
POP:

274, ENV: 0, REVAL: 0, MI)DE: 37, STACK:
TOP

PUSH=-1: 28%--> [¢ £?253C'a11
PUSH=1: 287--> L[S [?713[°%28511

POP:
PLACE: 1, FXP: 278+, ENV: 0, REVAL: 0O, MODE: 37, STACK: 286
-=>TOP
PUSH=-1: 2&87=-=> [SC"28010727130"28611

POF:
PLACE: 71, EXP: 28), ENV: O, REVAL: 0, WMODE: 37, STACK: 286
-=>EVLIS
PUSH-1: 287--> [SC®280D1[?723C*2%5611
PUSH-1: 274-=> [SC®°2801C7?31(C"28711]

POP:
PLACE: 9, EXP: 280, ENV: 0, REVAL: 7D, MODE: 37, STACK: ¢B7
-=>(CDR
ASSIGNMENT: 282.

PO
PLACE: 72, EXP: 283, ENV: 0, REVAL: 282, MODE: 37, STACK: 285
-=>EVWLIST
ASSIGNMENT: 2972.

PLACE: 25, EXP: 167, ENV: 0, REVAL: 292, MODE: 37, STACK: U

ASSIGNMENT: 169.
ASSIGNMENT: 292.
APPLY 1569 T0 292
PUSH-1: 28%--> [S['2923C?271C"011

POP:
PLACE: 7, EXP: 292, ENV: 0, REVAL: 292, MODE: 37, STACK: O
-=>CAR

PUSH-1: 285--> [s[C'2921C271L"011]
PUSH-1: 293--> [S['03C7301C°*28611

CONTEXT PUSH: 294 --> ['293]1[*'2%2]1LC'N)], PROCESS-CAR.

POP:
PLACE: 80, EXP: 0, ENV: D0, REvAL: 292, 9%0ODE:
-=>RESTORE
ASSIGNMENT: J.

POP:
PLACE: 1, ExP: 287, ENV: 0, REVAL: 292,
-=>T0P
PUSH-1: 28B8--> [S['27913C211(*013

POP:
PLACE: 1, EXP: 279, ENV: 0, REVAL: 292, MODE:
-=>TOP
ASSIGNMENT: 279.

CONTEXT pPOP: ['29310°2921("03]17 FILL-CAR.
ASSIGNMENT: 293.

-=>-=>-=> EVALUATION. PROCESS STACK IS NODE 293.

POP:2
PLACE: 83, EXP: ENV: O, REVAL: 0.
RESTORE
ASSTGNMENT:

PLACE: 7, EXP: 292, ENV: O, REVAL: 0, MODE: 37,

ASSIGNMENT: 279.
ASSIGNMENT: 279%.
ASSIGNMENT: O.

-=>1000

EXIT=
-=>-=>=-=> ENTER READ LOOP. Q2 IS 243
EXIT
ASSIGNMENT: O.
ASSIGNYMENT: O.

-=>==>-=>-=> LEAVING.
NODES DISPOSED., 18
NODES RECYCLED, 3
AVAIL--> 286

15.32.54. SDJI3VN END OF LISTING

———=>-==>

-=> MEMQORY

==> ENTERING V

LIMIT®

ASSIGNMENT:
ASSTGNMENT:

ASSIGNMENT:

ASSIGNMENT:

—=>-=>-=>PROCESS

-=>~-=>=-=> EVALUATION.

POP:

EXP:
CAR
GNMENT:
GNMENT ¢
GNMENT:
GNMENT :

[%0 B ¥ B 7 I 7]
bt bt bt b

—=>-=>==> IN
TRACE

CAR LOOP. C

-=>=-=>-=>PROCESS CREATED

PR

ASSTIGNMENT:
ASSIGNMENT:
ASSIGNMENT :
ASSIGNMENT:

-=>==>=-=> [N CDR LOOP.
ASSIGNMENT:
ASSIGNMENT:

-=>-=>-=>PROCESS CREATED:

-=>==>==> EVALUATION. P
POP:
7,

EXP:

PLACE: 3
CAR
ASSIGNMENT:
ASSIGNMENT:
ASSIGNMENT:
ASSIGNMENT

CAR LOOP. C
ASSIGNMENT:

CREATEDS

ERSION D.1

274,
.

27h.

0.

CsC*2741C?273C*011

STACK IS NODE 277.

274, Js REVAL: O, ™MDDE: 37,
145.

145.

0.

0.

AR OF P IS 145TRACE

ASSIGNMENT: 0.

z EBL*2%43E?93E0%33d

OCESS STACK IS NODE 277.

274, ENV: 0, REVAL: 00, MIDE: 37,

276.
276.
s
0.

COR OF P 15 2760CL231C"27531L"01]

276.
0.

[sC*2761L2?271LC"D11

OCESS STACK IS NDDE 274

276, ENV: 0, REVAL: D, MODE: 37 »

215 &
25
0.

0N
U=

15 275CAL0722]072931(7011

AR

n
J

OF P

STACK:

STACK:

STACK:®

0y
u

0l

-=>-=>=-=> EVALUATION.

POF :

PLACE: 9, EXP:
CDR
ASSIGNMENT:
ASSIGNMENT:
ASSIGNMENT:

ASSIGNMENT:
-=>-=>=-=> IN CD LOOP.

ASSIGNMENT ¢
)

FIRST:<100D 2000 3000>.

-=>-=>-=> ENTER READ LOOP.

-=>=-=>-=>PROCESS CREATED:

-=>=-=>-=> EVALUATION.

POP:

PLACE:z 1, EXP:
TOP
28 5~-=->

287 —=->

PUSH-1
PUSH=-1 £sc®
POP:
PLACE: 1.
-=>T0P
PUSH-1: 2B7-=-> [SC®
POP:
PLACE: 71.
~-=>EVLI1S
PUSH-1:
PUSH=-1:

egr~-> [(S[C*
27 4——> L[SL"

POP:

PLACE: 9, EXP:
-=>(DR

ASSIGNMENT:

POP:
PLACE: 72»
-=>EVLIST

ASSIGNMENT:

PLACE: 25-.
ASSIGNMENT:
ASSIGNMENT

APPLY 159 T0 272

PUSH-1:

POP:z
PLACE: 7.,

-=>CAR

PROCESS

PR

tsC*

EXP:

EXPz:

EXP:

EXP:

286=-=> [SC"

EXP:

STACK 1S NDDE 274.

276, ENV: 0, REVAL: 0, MODE: 37, STACK:

D
0.

0.
0.

CDR
26

OF P

Is QECL?01E*21('011]

2 IS 274[LcCC?21C*2571(0*27711]

CSC'2741C?213C*D21]

OCESS STACK IS NODE 286.

n

274, ENV: 0, REVAL: D, MDDE 37 -

16FJ 22 5ILY013
278307211(%2861]

276, ENV: 0, REVAL: C MODE: 37, STACK: /286

' 4

2801C2711C'28611]

280, ENV: D, REVAL: 0, MODE: 37, STACK: 286

2803077210 "28611
28010293 ('28711]

280, ENV: D, REVAL: 37, STACK: 787

282.

280, ENV: D, REVAL: 282, MODE: 37, STACK: 286

29¢.

169, ENV: 0O, REVAL: 292, MODE: 37, STACK: 0

169.
292 .

292102?273C'D11]

292, ENV: D, REVAL: 292, MODE: 37, STACK: {

PLACE: 7, EXP: 276, ENV: | REVAL: fl, MIDE: 37,

ASSTIGNMENT: 275.
ASSIGNMENT: 275.
ASSIGNMENT: [
cfalf?3]JE07211
ASSIGNMENT
E23)E Y275

L o T

O REVAL: 0o

I=
D

I I I
oy U g
MWV LWL oW

=

~

P IS QCCC?03C*03(0'033

FIRST:<1000 200
-=>-=>-=> ENTER READ LOOP. 3 S 2740CL?2013C*25711L

74102110213

STACK 1S NODE

MODE: 37, STACK:

PUSH=-1 285-~> [S[*1691[?2
PUSH-1: 87 [*27830721

RECYCLE 274 cC?21]f%2571C%27711
-=-> AVAIL
POP:
278, ENV: C REVAL: D, MIDE: 37, STACK
-=>T0OP
PUSH-1 287 > [SC'2801C?713C"'28611

RECYCLE 278
POP:

ENV: O, REVAL: O, MODE: 37, STACK: 28¢

==>EVLIS
PUSH-1: 8 SCL*2801C272]L" 28610

RECYCLE 257:

E*2803 0233 Y2870

RECYCLE 230:CcC?5]C*2793(*28213
POP:
PLACE: 9, EXP: 2280, ENV: 0., REVAL: (i, MODE: 37, STACK: 287
-=>(CDR
ASSIGNMENT: 282.

RECYCLE 280:0CL[?243['2791("2621]
POP:
PLACE: 72+, EXP: 280, ENV: D, REVAL: MODE: 37, STACK: 286
-=>EVLIS1
ASSIGNMENT: 292.
RECYCLE 282:LcL?241C"*2811(%28411]

RECYCLE 2%0:CCL24]C"2791["2821]1
POP:
PLACE: 25, EXP: 1567, ENV: 0, REVAL: 292, MODE: 37, STACK: (
-=>ANB
ASSIGNMENT: 169%9.
ASSIGNMENT: 292.
APPLY 159 TO0 292
PUSH-1: 28%--> [S['2921(?73(°01)

RECYCLE 167:FIRST
POP:
PLACE: 7, EXP: 292, ENV: 0, REVAL: 292, MODE: 37, STACK: 0
-=>(CAR
PUSH=-1: 28%==>» ESL['292]3[7710'013
PUSH=1: 295==>» LSL*Q1L23081L"286313

CONTEXT PUSH: 294 --> ['2931["'2w21[*011, PROCESS-CAR.

RECYELE 292:0cC353091830"29111]
POP:
PLACE: 8), EXP: 0O, ENV: 0, REVAL: 292, MODE: 19, STACK: 28«
-=>RESTORE
ASSIGNMENT: 0.

POP:
PLACE: 1, EXP: 287, ENV: O, REVAL: 292, MODE: 19, STACK: 0
-=>Top
PUSH-1: 288--> [S['2791[?11L"011]

RECYCLE 287:LCLCL?211C*16310C"281211
-=> AVAIL
POP:

PLACE: 1, EXP: 279, ENV: 0, REVAL: 292, MODE: 19, STACK: 0

-=>TOP
ASSIGNMENT: 279.
RECYCLE 292:CCcC?41L07?181L"'29111

CONTEXT POP: ["2%3]J['2921["013; FILL-CAR.

RECYCLE 292:ECC23JL*2791L"'29113
ASSIGNMENT: 293,

RECYCLE 279:CAL?241071000102011]

-=>-=>-=> EVALUATION. PROCESS STACK IS NODE 293.
RECYCLE 279:0A023107210001C20113

POPe
PLACE: 80, EXP: 0, ENV: J, REVAL: O, MODE: 37, STACK: 2%b

CLE 2792 [
NOORECYCL

—_—— -

NODES DISPO
NODES RECYC
AVAIL==>

-—-=>=-==>=-=> ENTERING VERSION 0.1 1-7

-=> MEMORY LIMIT"™

ASSTGNMENT: 274.
ASSIGNMENT: 0.
RECYCLE 274:LCL?310%1453('27611]

-=> (ASSIGNMENT: 274.
ASSIGNMENT: 0.
RECYCLE 2F4=-CCE?3TL 14651 27611

-=>-=>-=>PROCESS CREATED: [S['2741[7?71[*211]

-=>=-=>=-=> EVALUATION. PROCESS STACK IS NJIDE 277.

RECYCLE 276:[CC?2310%1451["27511
POP:

PLACE: 7, EXP: 274, ENV: 0, REVAL: 1),

CAR
ASSIGNMENT: 145.
ASSIGNMENT: 145.
ASSIGNMENT: 0.
RECYCLE 1T45:TRACE
ASSIGNMENT: O.
RECYCLE 274:LCL?21L*1451L%2751]

-=>=-=>=-=> IN CAR LOOP. CAR OF P IS 1T45TRACE
TRACE ASSIAGNMENT: D.
RECYCLE 145:TRACE

-=>=-=>-=3PROCESS CREATED: [SC*"2743[?%3C"'01]

MODE: 37,

-=>-=>-=> EVALUATION. PRQCESS STACK IS NODE ?277.

POP:

PLACE: 9, EXP: 274, ENV: 0, REVAL: 0.,

CDR
ASSIGNMENT: 276.
ASSIGNMENT: 276.
ASSIGNMENT: 0.
RECYCLE 276:[CC?2430'2751("01]1
ASSIGNMENT: O.
RECYCLE 2764:0CL?2]1C"14510'2751]

-=>-=>=-=> IN CDR LOOP. CDR OF P IS 276[CL?3]
ASSIGNMENT: 276.
RECYCLE 274:LCC?11IC*14530"'27511
-=-> AVAIL
ASSIGNMENT: 0.
RECYCLE 276:ECE23XL'2751L"03]
RECYCLE 145:TRACE

-=>=-=>-=>PROCESS CREATED: [SC*2761C7?710°*31]

MODE: 37,

v27sd (4013

-=>=-=>-=> EVALUATION. PROCESS STACK IS NODE 274.

B-16

0, REVAL: ", MODE: 37, STACK:

C
"

<z

=

—
W mmm
=~
o

vy
RSN I I e e I

WG WG Lo

> X I
wr U WD
= =

« e e
D N R
-~

7]
~ —
¥
~
=
- !
.|
[

~J
i
we

(o B = B

-y C

m

RECYCLE

? - &2

.
M e D
O w o
e 2 Wl £ £ 2
< m

m

™ W

™)
~J
(@]

v
S
- =
1 e
-
oo
—
e

RECYELE

—=>=-=>==> IN CAR LDOP. CAR OF P IS 27S[L[AC?21C?2171[?201]
(;) ASSIGNMENT: O.
RECYCLE 275:[aC221C?2171(?01]

L OCESS CREATED: [sC'?27461073%10"'3]]

O, REVAL: 0O, MODE: 37, STACK: U

$1
IGNMENT
IGNMENT:

S IGYMENT:

RECYCLE 276:0CL2310'275

B 5 B

FIRST:<1000 5300>
E

- =D ==

NTER READ LOOP. Q IS 274LCC?D1L0*2571("2771]1]

-=>»-=>-=>PROCESS CREATED: [sC'274][2113['01]

EVALUATION. PROCESS STACK IS NODE 2865.

b 274, ENV: O, REVAL:

re

1621E22513C°011]
"27810?2130*28511

ENV: 0, REVAL: 0, MODE:
-=>EVLIS
PUSH-1 87—~ > 603077230 "2861]
RECYCLE 257
7222

PUSH=-1: 274 9010291028711

RECYCLE 28D:LCL?5IC%27910"28271
POP:
PLACE: 9, EXP: 280, ENV: 0, REVAL: U, MODE: 37, STACK: 287
-=>CODR
ASSIGNMENT: 282.

RECYCLE 2&0:[0cC?241C'27212["'25821]
POP:
PLACE: 72, EXP: 2%0, ENV: D, REVAL: 282, MODE: 37, STACK: 246
-=>EVLIS
DOTPAIR=--> 287--> [[]1[01531C2821].
DOTPAIR--> 274--> [[1201513028233.
CONS[2921-->[CC?2030"25930"2911]
ASSIGNMENT: 292.
RECYCLE 2%52:[CcC?641C"2%110"2841]

RECYCLE 280:(C[?6430%27930"'2%21]1
POF:
PLACF: 25, EXP: 149, ENV: U, REVAL: 292, MODE: 37, STACK: (.
-=>ANB
ASSIGNYMENT: 169.
ASSIGNMENT: 292.
APPLY 169 T2 292
PUSH-1: 28%--> [sC'2v21C?71('013]

RECYCLE 169:FIRST
POP:
PLACE: 7, FEXP: 292, ENV: 0, REVAL: 292, MODE: 37, STACK: O
-=>(CAR
PUSH-1: 285--> [s['2v21(7?71('011]
PUSH=-1: 293--> ([SC*01C?301C*286]1]

CONTEXT PJUSH: 294 =--> ['293]3[*'2921C*'03], PROCESS-CAR.

RECYCLE 2%2:CcC?51C7?181C"29111]
POP:
PLACE: 20, EXP: 0O, ENV: D, REVAL: 292, MODE: 19, STACK: 288
-=>RESTORE
ASSIGNMENT: O.

POP:
PLACE: 1, EXP: 287, ENV: 0, REVAL: 292, MODE: 19, STACK: O
-=>TOP
PUSH-1: 28R--> [S['27%3C?11('311]

RECYCLE 287:CCC[213C0"1631[*2801]
-=> AVAIL
POP:
PLACE: 1, EXP: 279, ENV: D, REVAL: 292, MODE: 19, STACK: O
-=>TO0P
ASSIGNMENT: 279.
RECYCLE 292:0CC263021810'29111

CONTEXT POP: ['2931('2921C"0]3]; FILL-CAR.

RECYCLE 292:CC[?231["2791('2911]
ASSIGNMENT: 293.

RECYCLE 279:[AC?2410?21000302011]

—=>==>=-=> EVALUATION. PROCESS STACK 1S NODE 293.

RECYCLE 279
POP:
REVAL: J, MODE:

RESTORE

o
W

v

\ S

5
\ S
[A

KECYCLE 280:LCcC?530"2791("'2821]
POP:
9, EXP: 250, ENV: 0, REVAL: (U, MIDE: 37, STACK: 287
-=>CDR
ASSIGNMENT: 282.

RECYCLE 280:0cC?2410"27210'2%21]
POP: L4

PLACE: 72, EXP: 2%0, ENV: D, REVAL: 282, MODE: 37, STACK: 286

-=>EVLIS1
DOTPAIR--> 287--> [[JC1631028311].
DOTPAIR--> 274--> [[I015110232]1].
CONS[2921-->[C[?D10"*2523["'231])
ASSIGNMENT: 292.
RECYCLE 252:[CC?43["2%110"2841]

RECYCLE 280:L[cl[?43C"%27923C%'2821]]1
POF:
PLACE: 25, EXP: 149, ENV: (U, REVAL: 292, MODE: 37, STACK: {
-=>ANB
ASSIGNMENT: 169.
ASSIGNMENT: 292.
APPLY 1569 T2 292
PUSH=-1: 285--> [SsC"2921C?71C*'03]

RECYCLE 16?:FIRST
POP:
PLACE: 7, FXP: 292, ENV: 0, REVAL: 292, MODE: 37, STACK: 0§
-=>CAR
PUSH=-1: 285--> [s['2%21L?71C*'0]]
PUSH-1: 293--> [SC'01C2301C"2861]1]

CONTEXT PJSH: 294 --> ['2931["2923C"011, PROCESS-CAR.

RECYCLE 292:L[CL?51C?983L"29112]
POP:
PLACE: 80, EXP: 0, ENV: D, REVAL: 292, MODE: 19, STACK: 288
-=>RESTORE
ASSIGNMENT: 0.

POP:
PLACE: 1, EXP: 287, ENV: 0, REVAL: 292, MODE: 19, STACK: O
-=>TOP
PUSH-1: 288--> [S['27%1[?11['3]]

RECYCLE 287:LCcC?11C"16310°28011
-=> AVAIL
POP:
PLACE: 1, EXP: 279, ENV: 0O, REVAL: 292, MODE: 19, STACK: O
-=>T0P
ASSIGNMENT: 279.
RECYCLE 292:0cC?410?21810"'2911]

CONTEXT POP:z ['2931["2%21C"011/; FILL-CAR.

RECYCLE 292:0C[?2310'2793C0"'2911]
ASSIGNMENT: 293.

RECYCLE 27%:CAC?2430210003072011

~=>==>-=> EVALUATION. PROCESS STACK IS NODE 293.

RECYCLE 279:Cal?233C?210001L072011
POP:

PLACE: 80, EXP: 0O, ENV: D, REVAL: O, MODE:

RESTORE
ASSIGNMENT: 0.

TR =

rms«smimm

~

LEAVIN
18

I«

z

OF LISTING

FASCAL COMFILER - E.T.H. ZURIC

FASCAL 48600 - 2.2
INDTANA UNIVERSITY WRUREL COMFLU

000006 FROGRAM SLISFCOINFUTyOUTFUT)

SWITZERLAND
R2r08/208. 22

TING CENTER

Hy

+ 914393,

(7670672

1.

000464
000464

THIS I8 AN INTERFRETER FOR

A FROGRAMMING

LANGUAGE BASED

(X
- ON SUSFENDIED

CONSTRUCTION,

GENERAL COMMENTARY

IS FOUND

FOR A LANGUAGE BASED
BY STEVEN Ile JOHNSONy
CONE COMMENTS SUCH AS
FAFER %)

IN *AN INTERFRETIVE MOIEL
COMFUTATION®"? M.5, THESIS
UNIVERSITYy AUGUSTy 19277.
REFER TO DISCUSSIONS IN THAT
LAREL 1e2y3vds
CONST MAXFTR 13107%5
MAXNUM = &
INFINITY
MEMORYSIZIE
ORLLISTSIZE =
HASHCONST =
BLANK = " "3
NAMELENGTH
INFUTSTZE =
QUTFUTSIZE =
NIL Qv
LPREN = 1%
LANGLE = 2
LERAC = 3%
noT = 4y
QUOT = 53
ST %
TDE 1
ISFOUND

ON SUSFENDETD
INIITANA
‘HBECTION

00464
Q00464
Q00464
000464
0004564
000464
000464
QO0ALA
000444
0004564
0004464
000464
000464
200464
000464
Q004464
000464
0004464
QOOASA
000464
Q004464
Q00464
000464
0004464
0004464
2004464
000464
0004564
Q004464
000464
000464
Q004464
000464
000444
000464
000464
0004464
000464
000464
0004464
0004464
000464
000464
000464
0004464
000464
000464
000464
0004464
000464
000464

Redy

(2%%1 731 FOR 17-BIT
(k%161 TO FERMIT
TO N0 WITH RESOURCE

FIELINK?
NEG. NOS XD
ALLOCATION %0

(XTHIS
(XTHIS
(%X HAG

Is
D335 ¥ LS
D535
70005
1285
B73

73
723

72

(X MAX THAT FITHS IN ONE NODEX)D

(XCOUES FOR READI FUSHES %)

(CXEND READ CODESX)

(k CODES FOR EVAL PFUSHES Xx)

(¥ SOME OF THESE EVAL-FROCEDURES
HAVE BEEN MODIFIED OUT OF THE

oy oA

fol

(SEE
FROGRAM.

SECTION 3.4)
*)

ASSOC = 33

ASSOCL = 4
ASSOC2 = 5
ASSOCS

CAR = 71
KICKAR =
COR = 93
KICKDR =
LOOK

TSTAR

EQL

ATOM

FRINT

FUTCAR =
FUTCDR =
AFFLY1=2
LASTLINE=215%
STARRED = 2253
COND

CONIL
ANEB = 207
NE = 267
DEL = 27%
AFFLY = 2893

233
= 243
.

WFHEN.hHi EE AR |

ETERNAL, = 307
30 { ne = 31s
U)Oﬂuv FNSTﬁH
Q00454 £ N S5TAR 1
0004464 'Ffﬁr
Q00464 LIWE
0004454 FNST hﬁ} = Bhy
Q004864 ALLSTAR = 37y
0004584 ALLSTARL = 3894
Q00464 ANYNULL 7
0004464 ANYNULL 1L
6004464 ANYNUL.L2
000464
Q004454
RO0A64
Q004464
00454
0004464
000464
Q00444
000464
G004464
0004464
000464
000464
0004464
000444
000444
000444
OOO”&Q
0004464
0004464
0004464
Q00464
Q00464
Q00464
DO046L4
Q00464
000464
Q004464
Q00464
000464
000464 rH%[hO
000464 ANYNULILO
00046464 SURL=78¢
0004464 RESTORE = 8O3
0004464 TYFE FTR = OyeﬁﬁXPTR§ (% SEE SECTION &.4 FOR DISCUSSION
000464 NUM = ~MAXNUM, « MAXNUM?
0004464 REFERENCE = IﬁiKEP RECORD
000464 CASE T RERF ! ROOQLLEAN OF
0004464 FALSE S (RRIFTR) §
0004464 TRUE T (NNINUM)
Q004564 =Ny (k REFERENCE X)
Q00464 NODE = FACKED RECORD (% FITS IN A &O-RBIT WORD X
000464 MULTI tBDOLEANS (% MARKS FERN ORDER BY CONVERGENCE %)
Q00464 ATOMP I BOOLEANS (% REDUNDANT~CHECK CHR.PFNaME X
00454 EXTRAIOQ e 77 (k NOT USED-SAVE FOR WATLTE-SHORR X)

000464 CASE FNAME ¢ BOOLEAN OF
000444 FALSE : (REF $REFERENCE

0004464 CARIR RENCE

000444 CIRREFERENCE) 3

000444 TRUE S CLENGTHIO. 75

000464 EXTRAALO, 73

000464 CHRIFACKED ARRAYL1..81 OF CHAR)
000464 ENIG (% NODE %)

000464 FUTCONTROL = (TERFRI»FRINC) 3

000464 QRQ = FACKED ARRAYL1l..81 OF CHARS

0004464 MEMORY : ARRAYLO. .MEMORYSIZEJ OF NODES (X SECTION 6.3
016215 NAME ! ARRAYLO..NAMELENGTHI OF CHARG

016252 INIMAGE ¢ ARRAYLLl..INFUTSIZE] OF CHARS:

016335 OUTIMAGE $ ARRAYL1..0UTFUTSIZEI OF CHARS

016445 (% CELL TYFE TEMFLATES X)

016445 NEWSUSFENINs NEWNUMy NEWATOM » NEWFNAME » NEWCONS »

016445 REALFUSH STACKFUSHy FRINTFUSH RECOVERFUSH »

0146445 SCRATCHNODE » FNODE ¢ NODE$

0146460 VALUE- AND INSFECTION-REGISTERSS SECTIONS 2.3y3.456.356.4
016460 HEAFEOTy STACKTOF y AVALL y REVAL y ASSQCVAR »

016480 ASSOCLIST s FULFILLsEXFyENVIOTy ENVIRONs ALIST s FE AF »
0164460 DMY s OIMY Ly FOINT s FOINT Ly OLDFOINT vy FTL e FT2eFT3y

0164460 FNyARGS » MEXFy MENVDOT» FLIST» FRS »

016460 UARE s VAL » TEMy CARFNy CIIRFNy LET »

016460 LISyAEXFySTACKyFyQ ¢ FTRS

D146526 GLORAL INTEGERS %)

016526 IsJy SFEARK» NLENGTHy INFOINT y OUTFOINT » Ny NER »

016526 CHARCOUNT » CALLRECLAIMy ANSWER y RETURNS » DRE TURNS » TRACE »
016526 MEMORYLIMITS INTEGER;

014545 GLORBAL FREDICATES %)

014545 LISTsFINISs DONE» READACHAR y CARRATIGERETURN s DORECLATIM: BOOLEAN
016553 THISCHyYCHICHARS

016555 (¥ SYSTEM ATOMS. INITIALIZED IN THE MAIN EODY %)

016555 QANTIL » QENV s

016555 QEVCAR» QEQ s QATOM» QCAR » QCIR » QCONS » QFDNS » QUONIy QS TAR y QEVL TS 5
016555 QFAIRLISy QCARLISyQCIRLISy QOBLIST» QANDy QORy QNULL s
016555 FCARsFCADRy FCUR» FCIAR »

016555 QUE» QUIC»y QETERNAL»y QEFHEMERAL, ONOTy QFLUSs QTIMES,
016555 QUIVyQMOD» QSUBL s QDIFF y QADDL y QUNDEF INEI s QLFREN » JAWS 5
016555 QREXFy QHSHy QSPEAK » QSTOF » QARGS » QFUNCTIO » QQUOTE » MACROQUOTE |
016555 MACRODOT y QFUNARG » QLAMEDIA » QREDEF y QAR QUOLONy QUNEQDUNI ,
Q16555 QIFyQTHEN» QELSE » QELSETF »

016555 QAF y QFF s QSTARRED » QLAREL y AL ISy QLESS y QGREAT S FTRS

016664

Qlé6H4

016664

Qlé&béd4

0166464 FROCEDURE FUTATC(FIPTR) FORWARIDG

000004

000004

000004

000004 FROCEDURE WRITENODE(FIFTRS ENDLN:EBEOOLEAN)§

000005 (x DERUG AID. QUTFUTS & NODE IN
000005 THE FORMAT LL REF I CAR I CDR 121 %)
000005 REGIN

000005 IF MEMORYLFI.ATOMF AND (NOT MEMORYLFI.CAR.NUMRERF) THEN FUTAT(F)
000021 ELSE

000023 REGIN

000023 IF MEMORYLFI1,ATOMF THEN WRITE(YDA®)

000034 ELSE IF MEMORYLEFILMULTI THEN WRITEC"CM")

000044 ELSE IF MEMORYLFI.REFNUMBERF THEN WRITEC*LC®)

00060 ELSE IF MEMORYLFI1.CARNUMBERF THEN WRITEC'LS")s

200072 IF MEMORYLFI,REF . NUMBERF THEN WRITEC" D4 y MEMORY P REF GNNSL)
000113 ELSE WRITE('C™® yMEMORYLFILREF.RR31) ¥

Q00130 TF MEMORYLFI.CARCNUMBERF THEN WRITE (*I0F" s MEMORYLFITLOARGNNI L)
000151 FLLSE WRITE(*IL™" s MEMORYLFI.CARWRRI1D S

Q00166 IF MEMORYLFI1.COR.NUMEE THEN WRITEC"ICE" » MEMORYLFD . COR LGNNI LY
Q00207 WRITEC*IL" y MEMORYLFPI.CORLRREL) 5

Q00224 WREITESC" X152

000231 ENIIs

DOO231 IF ENDLN THEN WRITELN

000232 ENIS

Q00253

(% THE NEXT SIX ROUTINES COMPRISE THE MEMORY MANAGEMENT KERNAL
DIGCUSSED TN SECTIONS 3.3y 6.3y AND 6.4. SEE ALS0 THE
FROCEDURE ‘SETREG’ . X)

DISPFOZE(NIFTR) 5 (% RETURN A NODE TO AVATL*)
VAR VISTTINODE
REGIN

000005 TF (N=NIL) THEN BEGIN ENI
Q00010 FLSE IF MEMORYLNI.ATOMF AND (NOT MEMORYLNI.CAR.NUMBERF) THEN
000020 BEGIN
000020 (% INTERN RECOVERS
000020 ORETURNS $= DRETURNS
000022 MEMORY NI, REF o NNT=
Q00023 END
000026 (¥ THERE MAY BE OTHER ‘SUB-ATOMICY STRUCTURESs E.G.
000024 SOME STACKS MAY RBE RECOVERABLE AS A WHOLE. THIS
0000246 16 TAKEN CARE OF AT THIS FOINT. X)
000024 ELSE
000027 BEGIN
DO00ZE7 VISITS= NEWCONSS
000030 VISIT.COR.RRI= AVATL S
000034 MEMORYLNI &= MISIT#
Q00037 AVATL S= N
000041 NRETURNS 1= DRETURNS+I1
000041 ENL
000042 EENI#
000047
000047
000047
000047 FROCEDURE RECYCLE (FIFTR)3 (k FOLLOWS CIORS UNTIL A HIGH
000004 REFERENCE COUNT. THE RESULT
000004 Go TO AVAIL. NEWNODE
000004 RECYCLES THE OTHER FIELDS %)
000004 lLLABEL 1+27%
000004 VAR CURSORy TRAILER$FTRS CNODEINODES
000007 REGIN
000007 IF (F=NIL) THEN GOTO 2%
Q00010 IF (TRACE>10) THEN WRITE(*RECYCLE "sF31s"2"%)53
Q00025 CURSOR:= F3§ CNODE$!= MEMORYLFI?
000034 IF CNODE. CRF AND (CNODE o REF GNN=L) THEN

Q00037
200046
000055
eTolelokrig
000040
QO00&E
000067
000067
QOO0O70
000070
000071
000101
000104
Q00113
Q00116
Q00122
000122
200130
000133
Q00134
Q00134
Q00136
Q00134
000140
000140
Q00144
000153
000154
000160
000161
000161
000162
000172
Q000202
000202
000206
000222
Q00222
000222
000222
000004
000004
Q00014
000017
000034
000034
000034
000034
000004
000004
000011
000022
000022
000022
000022
000004
000004
000011

IF (TRACEX>10)

CNOIE . REF + NN
MEMORYLF 3=

ENII

THEN WRITENODE(CURSOR s TRUED §

= CNODE REF o NN-1 3
CNODE

ELSE IF OCNODE.ATOMF

ELSE
BEGIN
WHILE

T

RUE I

BEGIN

RETURNS =
TRACE:

IF

TRATLER$ =

CURSOR 3 =

IF
IF

END

CNODE . REF « NUMBERF ANII CCNODE « REF o NN

BEGT

0

+10

THEN DISFOZE(F)

RETURNS+13

THEN WRITENODE (CURSORs TRUE D) §

CURSOR S

CNODE.CIOR.RRS CNODE = MEMORYLCURSORTS
(CURSOR=NIL) OR (CURSOR=TRALLER) THEN GOTO

N

CNODE +REF NN 2= CNODE REF o NN-1 §
MEMORYLCURSORI:= CNODES

GOTO
NI S

1

CNODE . ATOMF THEN

BEGI

N

IF (TRACEZ=10) THEN
BEGIN

WRIT
WRIT

ENIS

ENOUECCURSOR » FALSE D §
ELNC"ATOM:")

DISFOZEC(CURSOR Y §

GOTO
ENI

(% WHILE LOOF X)

MEMORYLTRAILERIT.COR.RR = AVATILS
] THEN WRITELNC"--> AVAIL") ¥

IF
AVATL
ENIIs
ENI§

® -
P

FROCEDURE NUDGEC(FIFTR) S

BEGIN

=13 THE

(X UFS THE REFERENCE COUNT OF

IF (NOT (F=NIL)) ANDO MEMORYLFI.REF.NUMBERF
MEMORYLFI1.REF «NNt= MEMORYLFI.REF.NN+1

ENID#

FUNCTION SUSFENDED(X:FTR) :BOOLEANY
BEGIN
SUSFENDED
ENID

L
+ =

NOT MEMORYLXI.REF .NUMBERF

FUNCTION ISATOM(FIFTR) IBOOLEANS

REGIN
ISATOM: =
END§

(F

w=NTL)

OR

MEMORYLF1.ATOMF

THEN

& %
Ly

N

FERN CELLS

X))

000024
000024
000024
000024
000003
000003
Q00003
000003
000005
QO000E
000007
000007
200016
000020
DO00R2E
000033
000034
00003G
QO0O03E
000037
000045
000064
000077
000102
000103
000107
000107
000131
000131
000131

000131
Q00003
Q00003
000003
000014
000021

000032
000032
000034
000032
000032
000032
000032
000032
000032
000005
000005
Q00005
000005
000006
000006
000011
000013
000013
000014
000016
000017
000017

FUNCTIO

VAR
BE(
IF

MEM
NEW
ENTI

EnU

REG
WRI
WR I
ENTD

(k THE
INFU

N NEWNODE SFPTRS (k RETURN T
LIST.
ouT OF
IN THE

RESULTIFTR: VISITINODES

IN
NOT (AVAIL=NIL) THEN

REGIN

RESULT:= AVALL: VISITI= MEMORY
AVATIL = VISIT.CHOR.RRS

IF NOT VISIT.REF.NUMBERF THEN
IF NOT VISIT.CAR.NUMRERF THEN
END

BEGIN
WRITELNG WRITELN:
WRITELNCY w=ihempe-=2 MEMORY IS
WRITELNC" = YOU HAVE SFEC
WRITE("AND THE LIMIT I& *»MEMO
WRITELNFWRITELNFWRITELNFHALT
ENIIs
DRYLCRESULTI = NEWCONS?
NODE $= RESULT

&
n

RE WARNINGS (X THIS FROCEDURE
MESSAGE AROUT

IN

.r _::“ e e W) ;

TELNC*LITERAL OR NUMERIC EXCEEID

A
9
7

FOLLOWING ROUTINES FOR ATOM INT
T-OUTFUT ARE ESSENTIALLY WRITTE

HE FIRST NOUIE ON THE AVAIL

IF AvATL IS
RECYCLE
CaAR AND REF FIELDS X)

FRESULLTI

RECYCLE(VISTIT REF RR) ¥
RECYCLE(VISLIT..CARRRD

EXHAUSTED. ")
e "y MEMORYLIMITSL "
RYSIZE:Ly "o ")

FRINTS AN WARNING
EXCESSIVELY LARGE ATOMS.

S BOUNDSG . ")

ERNALIZATION AN
N EY BROWN IN 1976y

WITH MINOR MODIFICATIONS FOR RECENT REFRESENTATIONAL

CHAN

GES %)

FROCERURE FUTCH(MODE tPUTCONTROL § SYMBOL. :CHAR) §
(XTHIS FUNCTION MAINTAINS AN OUTFUT BUFFER WHICH IS WRITTEN
OUT WHEN FULL OR WHEN THE FUNCTION IS CalLLED WITH THE

MODE
VaR
BEGIN

SET TO TERFRI.¥)
I3 INTEGERS

IF MODE=TERFRI THEN OUTFOINTS=
IF OUTFOINT=0UTFUTSIZE THEN
BEGIN

WRITELNS

WRITE (BLANK) 7
QUTFOINT =15 (XALLOWS FOR ONE
ENIS

IF MODE=FRINC THEN

OQUTFUTSIZE

LEAIING BLANKX)

NODES »

*)

BEGIN
QUTHEOQINT $=QUTFOLINT4§
WRITECSYMBOL) ¥

ENILs

0OO037

QOO037

QOOQSY

Q00037 PROCEDURE FUTEFNAME CFOTINTLIFTR)

Q00004 (XTHIS FROUCEDURE FALSBES THE CHARANCTERS OF THE FNAME OF THE ATOM
200004 FOINTED TO RBY FOINTL TO FLYCHSO

200004 VAR Jo3 TNTEGER§

Q00005 FOINT ¢ FTHS

000006 NAMERUF & ARRAYLO « o NOMELENGTHI OF CHARS
Q00016 TEMP 3 FACKED ARRAYEL. 801 OF CHAR$
000017 REGINM

QO0017 = LTI aMEMORYLFO ﬁ”"\Vﬂﬁoﬁﬁﬁ

”0”01” [F NOT MEMORYLFOINT aME THEM

|“||\F'I 21
o

000021 Mﬁh”!NHF

QOOO22 FUTCHCFRINCG e BLANK) §

QOO030 N

QOOO30 FLSE REGIN

QOOO3 TEMF $=MEMORY LFOLMTT « Gl #

QOOO3E INFAGK lLﬁlsNHHlF“Ft”UJ

Q00040 JieMEMORYLFOTIN GTH#

QOO044 TE COUTHFUTSIZE] 'J'" o b THEN FUTCHSTERFMIRL y BLANK) §
QOO05S FOROL e 'T'w ; "1*

QOO0S7 L CFIIMNC e NAMEBRUF L LY @

Q00075 :

QGO0

000104

00010&

000106

Q001L04& FROCEDURE FUTNUMONIINTEGER) ¥

Q0004 \MTHLh FROCEDURE CALCULATES THE CHARAMCTERS FOR A NUMBER TO
Q00004 BE DUTPUT AND SBENDS THEM JOTHE FUTCH ROUTINEX)

000004 VAR Ty JVINT 5

000004 NUMRBUF ¢ RAYLL .. 2001 0OF CHARS

AO0032 BEGIN

Q000X

0O00LO

QOO010 s

Q00011 F lJ] : il(FRINGs *="}3

QOO014 NIy

QO001é IF N=0 THEN FUTCH{FRINCy "Q

OO00R2S FILSE BEGIN
QOO027

Q00030

QOOO32 \
Q00032 Tr=N MOD 1<
QOO037 N$=N ﬂi” 1
000045 NUMRUFL2
000054 B

g
v

\/

]
O
=il

Tts CHRCOLAORDIC"G"Y)5

00005 COR LE=20-J40 TOD 20 DO
000057 FUTCHCPRTNG s NUMBUE LT §
OO 74

000074
000105

000105

00010%

000105 FUNCTION GETCH:CHARS (X FETCH A CHARACTER FROM INFUT %)
000003 VAR VALUE tCHARS

000004 BEGIN

000004 IF CARRAIGERETURN THEN (k NOW AT END-OF-~LINE %)
000007 EEGIN

000007 IF TRACE>0 THEN WRITELNS

000011 READLNS$

000012 CARRAIGERETURNS = FALSE$

000013 READ(VALUE)

000020 ENII

000020 ELSE IF EOLN THEN Ok AT ENIN OF LINEsy SET FLAG AND RETURN A BLANK X
000022 REGIN

000022 CARRAIGERETURNS:= TRUES$

000023 VALUE t= BLANK

000023 ENI

000024 5.SE (k. NORMALLY JUST GET A CHARACTER %)
000024 REAINCVALUE)

000031 IF (TRACE>0) THEN WRITE(VALUE)S$

000037 GETCH!= VALUE

000037 END

000047

000047

000047

000047 FUNCTION READNUMINUMS

000003 (KREAINUM EXFECTS THE FIRST CHARACTER OF THE NUMEEER IN THISCH.
000003 IT RETURNS THE NUMERIC VALUE OF THE NUMEEFR %)
000003 VAR EXTRAINUMS

000004 EBEGIN

000004 I1:=03

000007 EXTRA $=0RDI("O") 3

000013 WHILE THISCH IN L*0".,*9*1 DO

000016 REGIN

000016 I = IXKLOFORDCTHISCH)-EXTRAS

000021 THISCH $=GETCH;

000025 ENID§

000025 IF I=MAXNUM THEN BEGIN

000027 WARNING

000030 I = MAXNUMS

000031 ENID3

000031 READNUM =13

000036 ENII

000044

000044

000044

000044 FUNCTION MAKENUMC(X3$NUM) SFTRS

000004 (XMAKENUM CREATES A NUMBER NODE CONTAINING ITS FARAMETER AND
000004 RETURNS A FOINTER TO IT %)

000004 VAR FOINT ¢ FTR;3

000005 EREGIN

000005 TF (X>MAXNUM) THEN BEGIN

0000190 WARNING$

000011 $=MAXNUM§

000012 ENIIG

000012 TF (X<-MAXNUM) THEN

00001E
000015
000016
QO00L4s
Q00023
000027
D00030
000035
000040
000043
QOONSEE
DO00S2

000052
000003
000003
000003
000003
000005
QO000G
Q00007
000011
Q00013
000014
000020
000021
QOO022
000026
Q0003
000035
000035
000035
000003
000003
Q00003
000003
000006
000007
000010
000010
000012
000017
000020
000021
000025
000025
000030
000036
000036
000036
Q00047
Q00057
0000L7
000040
000061
000061
0000863
000063

BEGIN

WARNING§

X $=-MAXNUM
ENIlS

FOINT $=NEWNODE

SCRATCHNODE &= NEWNUMS
SCRATCHNODE « CAR NN 2= X3
MEMORYLFOINTI $= SCRATCHNOIE S
MARKENUM & =FOINT#

FUNCTION

HASHIFTRS

3 THE CHARACTERS OF THE ATOM ARE IN NAME
bR e NLENGTH . IT RETURNS A FOINTER TO
THE OBLIST BUCKET.*)
VAR '
BEGIN

NLENGTH DO

JHORTDONAMELTLD) 5
JX HASHCONST ¥
J MOD OBLISTSIZES

ENIES

INTERNIFTRY
(X INTERN THE
NAME AND THE LENGTH ~1 I8 IN NLENGTH.

ATOM NODE IF NE SARYy AND RETURNS A FOINTER TO
FFRFOINTs OLUFOINTNEWFOINTIFTR?

SQUASH: PACKED ARRAYL1..81 OF CHARS
FOUND:ROOLEANS

FUNCTTON
CHARACTERS OF THE ATOM ARE IN THE
THE
VAR

BEGIN
THE FROFER ORLIST
FOR THE ATOMX)

FOINT $=HASHS (XTHE INDEX OF
FACK (NAME » 0 » SAUASH) § (XSEARCH
FROINT $= NIL3
FOUND $=FALSE
WHILE (NOT (FOINT=0))
BEGIN
OLDFOINT $=FOINTS
FOINT $= MEMORYLFOINTI.CAR.RR}
IF NOT(POINT=0) THEN
BEGIN
1' EZ."
ELSE
END
ENIIS
IF FOINT = 0
REGIN
IF PROINT =
BEGIN

FOINT =

ANDII (NOT FOUNID IO

MEMORYLMEMORYLCFOINTI . CORRRTCHR sSQUASH

ITF MEMORYCPOINTI.REF NN = O THEN
THEN
NTIL THERN

NEWNODIE §

Buc

PROINT =

ARRAY
A NEW
ATOMXD

RETX)

THEN FOUNIDZ$=
OLUFOINT S

TRUE

000067
000073
000075
000103
000103
000103
000111
000113
000116
000120
000124
000127
000131

000135
00137

000142
000142
000146
0001461
000161
Q00141

FEREOINT $= NEWNODE §
MEMORYLOLDFOINTI CARcRR = FOINT
ENII
EILSE
BEGIN
FOINT = MEMORYLFFOINTI.CAR.RR?
FFROINT = MEMORYLFOINTI.COR.RE
ENIIS
SCRATCHNQODE $= NEWATOMS
SCRATCHNODE .CORRR = FPFPOINT
MEMORYLFOINTI = SCRATCHNODE §
SCRATCHNODE $= NEWFNAME $
SCRATCHNODE LENGTH = NLENGTH:
SCRATCHNODE CHR = SQUASHE
MEMORYLFFOINTI = SCRATCHNODE
ENIIS
INTERNI=FQINT 3

0001461 FROCEDURE FUTAT (X FIFTR X)3§ Ok SELECTS FUTFNAME OR FUTNUM

G00004
Q00004
000013
Q00023
000027
000034
000042
Q00042
000042
000042
00004%
000042

BEGIN
IF P=NTIL THEN FUTFNAME (GNTL)
IF MEMORYLEFI1.ATOMF AND (NOT MEMORYLZFD.CAR . NMUMBERF)
THEN FUTFNAME(F)
ELSE FUTNUMMEMORYLFI.CAR.NN)
ENTI

Q00042 FUNCTION MYREADIFTRS (¥ FARSE INFUT INTO AN S-EXFRESSION #0)
Q00003 TYFE TTYFE = (TLETTERs TOIGITy TWEIRDy TRFRENs TLFRENy TCOL.ONy

Q00003
000003
000003
000003 VAR
000004
000007
Q00007
000011
000012
000012
00012
Q00012
000004
000004
000004
000004
000011
0000135
000021
000023
000027
000033

TRANGLE » TLANGLE s TRERAC » TLERACy TELGN s TETAR »
TAUOTE» TOOT » THSH» TCOMMENT » TCANCEL » THL.ASH ¢
TCOMMAY §
CHTYPE & TTYFES
RETACK RESUL T TEMFE FTRF (X RSTACK AND RESULT ARE
GLOEAL TO THE READI PROCEDURES,

RESTARTINGy DOTTING: BOOLEANS

RNODE S NODE §
(k A LINKED STACK (BY REFERENCE-COUNT FIELDI) OF SUBLISTS IS
RUILT. CLOSING PARENTHESES CAUSE THE TOF LIST TO BE INCLUDEID
IN THE NEXT. THE RESULT I8 THE INTERNAL FORM. X))
FROCEDURE RFUSH(VALIFTR) S CkFUSH A NEW SUEBLIST
ONTO THE READ STACK
LINKED IN REF %)
REGIN
RNODE = READFUSHS
RNODE REFsRRE= RETACKS
RNODE . CAR RR$= VAl s
NUDGE (VALY ¥
RETACK = NEWNODES
MEMORYLCRSTACKD t= RNODE S
ENING

A
X)

000040

000040

000040 RFOF# (k FOP THE READ STACK X

QDO003 (* hl[”ﬁR RESULT « FUT THE TOF OF THE READ STACK INTO
200003 ll%ULr; AND FOF THE STACK. ¥

000003 G

Q00003 R

000011 RNODE $= MEMORYLRSTACKDG#

Q00015 RSTACK = RNC REF s KRy (X% FIRST THE FOF %)

Q00020 RNODE . | Cs NLIME P = TRUE § (% CHANGE REF-CNT TO A NUMBER %)
Q00022 RNODE « REF + RR (

Q000 WLMURY[hEHU|Tl‘$ RINO Lk

DQ0026 ENIy

Q00031

000031

000031 FROCEDURE RESTART @ (¥ ON ERROR OR CANCELLATION RY THE USER
000003 RETURN THE STACK TO aVAILABLE SFACE
DO0003 AND NOTIFY THE MAIN LODOF %3

DOO003

000003

000012 I CR 3=

000014 LE NOT CARRAIGERETURN DO THISCH:= GETCHS

QOQO22 RTING = TRUE

QOO0022 ENT

0000.

Q00027

QOQO27 CROCEDURE RERRORCERRTYFE$ INTEGER) (k QUTFUT MESSAGE AND RESTART X))
200004 3.

000004 s

000010 RITE (®==m-n>=GYNTAX ERRORS: %) 5

Q00015 CASE ERRT E OF

000022 1 WRITELNCYINAFFROFPRIATE DOT. ") 5

000031 2 UR”T[iN{uUNHﬁlﬁNCED SQUARE~BRACKET + "

000040 33 WRITELNC UNRBALANCED ANGLE-BRACKET.")

000047 4 wFthIN('%ESU%LP STAak. ") s

Q00056 3 RITELNC("MISFLACED AFFLICATION (73

Q00065

Q00072 WHILE NOT (THISCH=",.") DO THISCHI= GETCHS

000100 CARRAIGERETURNt= TRUE?

000101 RESTART #

000103 ENDs

000127

Q00127

Q00127

Q00127 FROCEDURE RLOOKS? (% INFUT LOOKAHEAI. GET THE NEXT NON-EBLANK
Q00003 CHARACTER IN THISCH. NOTIFY THE READ
000003 LOOF THAT THIS HAS RBEEN DONE. XKD
Q00003 BEGIN

000003 R EF "~”]HlbLHeﬂ GETCH UNTIL NOT ((THISCH=BLANK)OR(THISCH="y
000016 = FALSE

000016 : LNM;

000022

000022

000022

000022 FROCEDURE RBUILDGS (XTAKE THE CURRENT RESULT AND Al IT TO THE
Q00003 END OF THE TOF-MOST STACK ELEMENT.

Q00003 THIS IS THE READ ROCESSOR S SF uno

200003 CONSTRUCTOR + SEE SECTION b.59v

000003
000003
000003
000003
0000035
000005
000010
000010
000010
000016
000016
000026
DOOOZ0
000034
CO0036&
Q00043
000045
Q00047
000053
000062
000065
000064
000071
NOOO72
Q00074
000100
000105
000113
000120
000120
Q00123
D00136
000137
000140
000140
000142
000152
000154
000167
Q00173
000202
000205
000205
000212
000212
000221
000221
000221
000221
Q00003
000003
Q00003
000003
000003
000003
000007
000011
000013

THE DISCUSSION 0
SEVEN %)
LAREL 1%
VAR TEMF1» TEMF22
BEGIN
IF RSTACK =
ELSE
REGIN
WHILE MEMORYCRSTACKI.CAR.RR
BEGIN
MEMORYLRSTACKI . CAR . RR 1=
NUDGE (QRUOTE) §
RECYCLE(MACROQUOTE) §
RNODE 3= NEWCONSS
RNODE . CAR.RR = RESULTS
RNODE . REF oNNi= 17
NUDGE (RESUL.T) §
TEMFL = NEWNODES
MEMORYCRETACKT, CDR . RR =
MEMORYLTEMF L= RNODES3
RFOF § Ck RESULT GETS
IF RSTACK=NIL THEN GOTO
END s
IF RETACK=NIL THEN GOTO 1%
TEMF1:= RETACKS
WHILE NOT (MEMORYLTEMF11.CDR
TEMFL =
IF MEMORYLTEMFLI.CAR.RR = QL
BEEGIN
RECYCLE (QLFREN) #

FTRS

NIL THEN EBEGIN END

MEMORYLTEMF11.CAR.RRI= RESULTS3

ENI

BEGIN
RNODE = NEWCONSS

RNODE.CAR KRR 3= RESULTS N
RNODE REF o NNt= 1%
RNOQDE . MULTI = (MEMORYLRS
RESULT = NEWNOIIE S (% IN
MEMORYLTEMFLI.COR KRS =
MEMORYLRESULTI:= RNODES?
NI S

NUDGE (RESULT) #

END

ENII 5

(% WE'VE ENCOUN
TERMINAT

FROCEDURE RCOMF»

LOOK FOR

FOINFUT-0OUTFUT IN

= MACROQUOTE Ti0

QAUOTE$

(k CREATE A CaAll

TEMF 1§

THE TOF
1

NODIE IN THE

SRR = NIL)Y Do

MEMORYLTEMFL1.CIORRRS

FREN THEN

NUDNGE (RESULT)

UDNGE(RESULT) 5

TACKD , CAR « RER=QMI.IET) 35
CasSE OF SLABH X)

RESULT#

TERELD A LIST
OR (77 0OR 7372,
A ‘7. IF FOUND

FUSH ANOTHER CALL TO AFPLY.
OTHERWISE FOF ALL CALLS TO AFFLY.¥X)

BEGIN

RFOF 5

RI.OOK $

IF THISCH = *2®
BEGIN

(k THIS

THEN

IS THE LIST STRUCTURE %)

000013 RFUSHC(QRCOLON) 3
000020 READACHAR = TRUEY
000021 REUILD
Q00021 END
000023 2L BE
000024
000024 L [t
000026 WHILE MEMORYLCRSTACKID.CAR.RR=QCOLON IO
000034 PFMLN
000034 RFOF s
000035 REUILD
000035
000037
000040
000043
000043
Q00043
SECTION 6.9+ %)

UOOO?O RS = TL

Q00010 WHILE RESTARTING OR (NOT (RSTACK = NIL?)) IO

000014 BEGTRN

000014 IF 1 yOACHAR OR (THISCH=BLANKYORCTHISOH="» ")) THEN RILLOOKS

000023 v = TRUE?

000024 A1LLSE

000025 (X SIGN TYFES TO CHARACTERSX)

000025 Cask THISCH Of

000031 Gy "RBY sy "Ly "L e "E*y *"F "y "B "y "H" " » " T "2 J" ¢+ " K

000031 i (LR o L Q% e "P e @ s K" y"‘“-"T“:"U‘ “U‘u
5] . lUI(Fb t= TLETTER

000033 LR AR LPEk CP P LY. DR L Sage, o
000033 CHTY = TOIGI

000035
,’\{)f\r\ "'r’
000041

4444
< € < <

000043
Q00045
Q00047
000051
000053
Q00035
0000&7
000061
Q00043
Q00063
Q00067
000071
Oe0073"

TLERACS
TCOLONS

o o e i dkam
= A = = =

’ $ CHTYFE $= TWEIRIDS?

000075 ENIls

000174 (k% THE READ LOOF MANIFULATES THE READ STACK ACCORDING

000174 TO THE CHARACTER MUV' f[(iNTL{ INFUT. SURFRISINGLY
000174 2 Tf E S'QTMENT I8 USED 70 DETERMINE THE ACTION X)

000174 CASE Ch

000201 T xfw“ ETTER: RBEGIN CRINTERN ATOMSy ADD TO SUBLISTX)
000201 NLENGTH $= —17%

000203 FOR I $= 0 TO NAMELENGTH N0 NAMELI1:i= BLANKS

000214
000214
000216
000216
0o0217
000226
000226
000227
000234
RO0236
000236
000242
000242
000245
000251
000252
Q00254
000263
000273
000275
000275
200300
000302
000302
0003064
000310
000310
DO0311
Q00312
000312

000323
000323
000325
000326
000326
000327
000327
000327
000331
000331
Q00335
000342
000346
0003350
000350
000354
000340
000364
000344
000374
000375
200400
000402
000402
000406

REFEAT
IF IENAMELENGTH THERN
BEGIN
WARNING §
WHILE THIGCH IN L*A®.."9"1 DO THISCH
ENI
ELSE BEGIN
NAMELLI 3= THISCHS
NLENGTH 3= NLENGTH +15%
I 3= T41%
THISCH := GETCHS$
ENID§
UNTIL NOT (THISCH IN L[*A*,."9"1)s
RESULT I=INTERNS
READACHAR = FALBES
IF RESULT=QNIL THEN RESULT?I= NILS$

¢

=

GETCH?#

IF (RESULT=QIE) ANI (RSETACK=NIL) THEN RFUSH(QUE)

IF (RESULT=QDCY AND (RSTACK=NIL) THEN

ELSE

BEEGIN

IF THISCH=BLANK THEN RLOOKS

ITF THISCH=":" THEN
BEGIN
RFEFUSH(QCOLON) §
REUTLI?
READACHAR = TRUE
ENII

ELSE
BEGIN
REULLIS

WHILE MEMORYLRSTACKI.CAR.RR=QCOLON

BEGIN
RFOF 7
REUILD
END
ENID
ENI
ENIy

TSIGNy TOIGITE BEGIN (XNUMBERX)

IF THISCH = "-* THEN
BEGIN
THISCH:= GETCHs
RESULT &= MARKENUM(-READIINUM)
END
ELSE IF THISCH = ®"+" THEN
BEGIN
THISCH:= GETCHS?
RESULT!= MAKENUMC(READINUM)
ENID
EL.SE
RESULT &= MAKENUMC(READNUM) 3
REAIACHAR = FALSE?
IF THISCH=RLANK THEN RLOQOKS?
IF THISCH=":" THEN
BEGIN
RFUSH(QCOLON) &
REUTLIG

REUSHCQRC)

juls!

00041 READACHAR = TRUE
000410 =N

000411

0004

00041

5004 STACK D CAR - RR=GCOLO
00043

0004

000423

Pl

00¢
000440
00044(

000440

000454
000461

000461

OOV YA A A
00044646

0004466

000466

Q0047

000474

000474 ’ = MEMORYLRSTACKD
GMLIST) AND (NOT (RNODE
SULTI MULTI 3= FALSE

000515
000522

O005

PAV RS

0005

Q00537
000544

Q00544
QOOH47
000547
000551
Q00533
000553
Q00554
Q00GH4
Q00554
Qo0856
200564
000E66
Q0066
000574
000574
000575
000575
000600
Q060
000610
Q00K11
000612
000612
000612
000&614
Q00622
0008624
Q00624
000632
Q00632
000633
Q00633
Q00636
OO04643
Q004646
Q00447
000450
Q00450
000652
000655
000655
000657
0006464
000664
Q00667
0004674
QO0702
000710
000710
000712
000713
000736
000737
Q00737

UNTIL (RSTACK=NIL)j
TRFREN?

NIL THEN RESTARTING!= TRUE

BEGIN
RFOF 5
REULLING
END
ENIG
TRERRAC:
REGIN
IF RSTACK=NIL THEN RESTARTING!= TRUE
ELSE IF MEMORYLRSTACKI.CARRR = OMLIST THEN RCOME
ELSE
EBEGIN
WHILE MEMORYLRSTACKI.CAR.RR = QCOLON DO
EEGIN
RFOF s
REUILD
ENIDs
IF MEMORYLCRSTACKI1.CAR.RR = QMLIST THEN RCOMF
ELSE RERROR(2)
ENII
ENIDs
TRANGLE ¢
BEGIN
IF RSTACK = NIl THEN RESTARTING!= TRUE
ELSE IF MEMORYLCRSTACKI.CAR.RE = QCLIST THEN RCOMF

BEGIN
WHILE MEMORYLCRSTACKI.CAR.RR = QRCOLON IO
BEGIN
REOF §
REUTILD
ENID#
IF MEMORYLRSTACKI.CAR KRR = QCLIST THEN RCOMF
ELSE RERROR(3)
END
ENIs
TSTAR?:
IF RSTACK = NIL THEN RERRORC(4)
ELSE
BEGIN
RLOOK #
IF (THISCH= "=%") 0OR (THISCH= *J*) THEN
BEGIN
RESULT:= RSTACKS#
WHILE MEMORYLCRESULTI1.CDR.RE<S:>NIL 00
RESULT = MEMORYLRESULTI.CIOR.RRS
MEMORYLCRESULTI1.COR.RR = RESULTS
ENII ’
EI.SE RERROR(4)
ENIi
ENILi§ (X 0OF THE CASE STATEMENT X)
ENDF
CREND OF THE WHILE LOOF %)
MYREAD:= RESULT

000737
OQOY&E
OOO?

DOO?K

L-‘(J 7 ({\\j
000763
000004
000004
000005
QOODO0ST
000015
D000
000
Q00032

000005
D000
000015
000022
000024
DOO033
000004

000005
000005
000015
000022
000031
000004
000005
000005
000015
000022
Q00027
000031
000040
000004
000005
0000035
000013
000024
Q0QO03E3
000004
000005
000005
000015
000024
CO0033
000033
000033
Q00003
000005
200005

(¥ ENI OF

ARY FIELD
SECTION 7.2,

SEE SEC
SHOULYD RE MADE

FOLLOW SEVER
STRUCTL

ANII

(% HERE
MANT

CAR

AUXTLT
AND ChR

FUNCTION CADRCEXFIFTR) $FTRS
(X THIS IS A :CADRX)
VAR TEMF IF TR

=MEMORYLEXP 1, CIR RF
EMORY L TEMF 1. CAR RRS

TEMF
TEMF
CAAR

=MEMORYL
EMORYL

;\ 3t(,1‘i' rl ,’\)‘

E
TE®

MP1.CAR RV

ENDI
FUNCT ION
VAR
BREGIN

CooF TRYIFTRS

TEHP&F]&-

ENIE

FUNCTION

VAR

BREGIN
TEME $ =MEMORYLEXFI.CARRR
TEHP::MFMDRYL'"M?Jo‘DHvPR
TEMF = LMUhY"kr *1.CAR
CAIAR :=TEMF

END 5

FUNCTION

UAR

CADDR =

CADDDR (EXF
TEMFIFTRS

YLEXFI1.COR.RKY
IR CTEMF) ¥

TEMF $ =MEMOR
CAIDDR:=CAL

FROCEDURE SETREG(VAR REGIFTRIVALIFTR) S (X

FROCEDURE

ACCESS FUNCTIONS
TH Es ALDNG
MAC INE :

THIS
STATEMENT
THE
IN

*)

FOR
WITH
SFECIFIC %)

I8 A SYSTEM
WHICH
ALKSOCIATED
REFERENCE COUNTS.

ASSIGENMENT
INCLUDES
ANJUSTMENTS
X0

Q00005

000005 IF (TRACEZ>S) THEN WRITELNC® ASHIGNMENTS: "wVALIL»", ") 3
200025 IF NOT (REG=VAL) THEN

000027 BEGIN

QQO027 NUDGE (VALY 5

00033 RECYCLE(REG)Y 5

000040 REGI= VALY

000044 ENI

000044

000056

000056

0000ES

Q000%ES FUNCTION FROCESS(FNAME INUMS ARGUMENTIFTR) IFTRS

Q00005 kX THIS WILL CREATE nA
Q00005 STACK FOR EVALUA-
000005 TION FROCESSORS X))
000005 VAR STACKIFTRS FNODE: NODES

000007 BEGIN

000007 FNODE : =NEWSUSFENI

000011 STACK = NEWNODE$

00001S FNODE . CAR « NUMBERF 3= TRUE #

000017 FNODE « CARNN3 = FNAME?

000025 FNODE . REF s RR = ARGUMENT 3

000031 NULDGE (ARGUMENT) 5

000033 MEMORYLSTACKI] ¢= FNODE#

000037 IF (TRACEXS) THEN

000041 BEGIN

00G041 WRITELNY

Qo0042 WRITE(" =mimmb-=RRROCESS CREATEDY "5

000047 WRITENOQDIE(STACK TRUED

000054 ENIDE

000055 FROCESS 1= STACK

000055 ENDF (XFROCEDURE FROCESSX)

Q00075

Q00075

000075

000075

000075 FUNCTION CONSC(UAREXFyCHOREXF yENVIRONMENTIFTR) IFTRS

000006 (k THIS I8 THE SUSFENDING
000006 CONSTRUCTOR. X)
Q00006 VAR FTIFTR: CNODE CNODEL s CNODE2 INODE §

000012 BEGIN

000012 CNODE = STACKFUSHF CNODE.CAR.NNI= TOFS§

000013 CNODEL = STACKFUSH? CNODIEL.CAR.NN?= RESTORES

000016 CNODEL.REF sRR$= ENVIRONMENTS§

000022 CNODE2 &= NEWCONSS3 (X THESE ARE FUNCTION RODY CONSTANTS X
200023 IF NOT(CAREXF=NIL) THEN

000024 (% BUILI AN EVALUATION STACK TO STICK IN THE CAR FIELD X
Q00024 BEGIN

000024 NUDGE (ENVIRONMENT) §

000027 NULGE (CAREXF) §

Q00033 CNODE . REF +RR$= CAREXF§

000040 FTi= NEWNODES MEMORYLCFTI?= CNOQDE$

000047 CNOLEL.COR.RRI= FT#

000052 FTi= NEWNODEF MEMORYCFTI:= CNODEILS

000061 CNODE2.CARRR= FT

000061 ENII 5

000065 IF NOTC(CHREXF=NIL) THEN

Q000&7 (¥ BUILD AN FOR O THE CIDR FIELD X
000067 P}D;N

Q000867

000073

Q00077 ;

Q00104 FT e NEWNQOIE ME M LT D= CNODE §
000113 CNODE COR KRR S =]

000116 T & NEWNODE § M!:Uh.i*”; = CNODELS
0001 Q“L COR.RR$= FT

Q00125 5

000130 PT‘@ me“ﬂﬂxf MEMOR

000137 IF (TR -12) THERN

Q00141 k4)

000141

Q00146

000184

Q0172

000172

000172

000215

OOO21LE

FUNCTION DOTFAIR(XyYSFTR) $PTRG
000005 (KOTHERWISE KNOWN AS $CONSX)
000005 VAR FTLsFT23FTRS
000007 TNODE $ NODE
000010 REGIN
000010
000011
000015 .
000017 NUDIGE (X) §
000022 NUDGE (Y) §
000026 FT1:=NEWNODE
000032 MEMORYLFTL13$=TNODE ;
000035 IF (TRACE:12) THEN

EE N
OOOOQ; WRITEC(® DOTPATR~=3% “»PTiil s =—5"07
000055 WRITELNC LIy XE1 e " A0 » Y231 T047)
000104 ENI#
0001035 LDOTFATR =T
000111

000133
000133
000133 FUNCTION STAR(AEXFsENVIOTIFTR) IFTRS (kA CONSTRUPTUR FHR
O0000T STARRED
000005 VAR TEMIFTRS
000006 REGIN
000004 =
000011 ”iﬁ:“\ $ ENVDOT) 8
000024 ;\ ”H‘“a :nTEﬁ;
000032 M7
Q000034 END¢F
000045
000045
000045
00004% FUp TON LISHELFEXFIFTRIIFTRS
000004 (KTHIS FUNCTION CONSTRUCTS THE LLIST ($CONS (LLIST (ICONS

Q00004 TEXF EXF))Y ()) USED IN CARLIS AND CLRLISX)
000004 VAR FOINTsFTLI:FTRS
0000046 BEGIN
QOO006 FOINT:=DATFATR(QEXFyEXF) ¥
000021 FOINT :=DO0TPATR(FOINT e NIL)
QO0032 FOINTI=00TFATR(FOINT y NIL)
LISHELFI=FOINTS
0000435 ENDs
Q00056
0O00S

000056 FUNCTION MAKEENV(ARGSIFTR) (PTRS

000004 (X LIKE LISFHELF WITH ARGS INSTEAD OF

200004 RBEGIN

QOO0 FOINT = DOTFAIRCQARGSyARGS) §

000021 FOINT &= DOTFATR(FOINTeNIL)YS

000032 MAKEENUV = DOTFATR(FOINTyNIL)

000043

Q00050

000050

QOO0SE0

000050 FUNCUTION SYSATM(LETTERSIQARAFLEN:INTEGER) (FTRS

000003 (XTHIS FUNCTION SETS UF THE SYSTEM ATOMS IN THE ORLIST.
200005 THEIR ADDRESSES ARE USED TO CONTROL FROGRAM FLOW.¥)
DOO00E VAR TNODEIFTR S

Q000046 RBEGIN

Q00006 UNFACKOLETTERS s NAME s Q) 3

Q00013 NLENGTH = LENGJ

Q00014 TNODE S =INTERNS

000020 MEMORYLTNODED . REF SNN$=25 (k80 SYSTEM ATOMS

000025 ARE NEVER GARRBAGE COLLECTEI)
g SYSATMI=TNQIE 3§

000036
000036

000036 FUNCTION SEARCHC(LISTy TARGETIFTR) IFTRS

000005 (X THE FLIST AND ALIST ARE FULLY MANIFEST
000005 STRUCTURES» S0 SEARCHES AREN'T SUSFENSTON-
000005 SENSITIVE. LOOK FOR A BINDING EY SEARCHING
000005 TWO LISTS IN FARALLEL. RETURN DOTTED
000005 LIST CELLSsy SO CALLING ROUTINE CAN REFLACE
000005 VALUES WITHOUT ANOTHER SEARCH. SET

000005 ‘MULTI’ FLAG TO INDICATE SUCCESS. %)
00000%

000007 BEGIN

000007 NAMES t= MEMORYELISTI.CAR.RRS

000014 VALUES $= MEMORYLLIST1.CIOR.RRS

000022 WHILE (MEMORYLNAMEST.CARLRR <> TARGET) AND

000027 (MEMORYLVALUEST.CORLGRR <> NILY DO

000035 . BEGIN

000035 NAMES = MEMORYLNAMEST. CIR KRS

000042 VALUES = MEMORYLUALUEST . CIR . KRR

000044 ENIIG

0000%0 VALUES ¢ =

000062 MEMORYLVALUEST MULTI = (MEMORYLNAMESI.CAR.KR = TARGET)
000076 SEARCH:= VALUES

000076 ENIT

000114
QO0NI114
000114
000114
000114
QOO01 14
000114
QQ0l14
Q00114
000114
200005
DOO00S5
200005
000005
000005
GOO005
000011
000014
000016
000017
Q00017
Q00005
QO00Q0S
Q00005
D0000G
000005
Q00005
COO00%
QO000%
000011
000013
Q00020
000024
00002646
000033
QO0037
000043
000045
000045
000063
000071
000072
Q00104
000104
000104
000005
Q00005
000005
QO000S
000011
OOO01E
000021
Q00023
Q00027
000034
000040
000044
000044

FROCEDURE EVAL (STACK :PTRRESOURCES ! INTEGER) §
AKES A STACK AN

TO FORCE FULL E

g CROCESSOR LOGICALLY .

THE WAY TO LIMBO-CAR. %)

: FGERS ALLDONEROOL
0CaAL iInLL‘}h NAMES: REVAL s ENV
ENODE: NODESs

FROCEDURE FUSHONE (NUM: INTEGERS FNTD PTR)§
[i E - TWO 3TﬁFh |l:H
f LS |[._ 9 M

(COD . IHE qlﬁCK

LD %)

I FRESE
VaLUATL
NOTES

EAN
norTy &7

ROUTINE
call. C

NTLY
(ON .
(XK

e X

<
e

AR

SNCEDY 5 GLOCON NEWSUSFEND

%)

ENUU! = NEWSUE

NUNrﬁthoN“’* NUM #
ENOQDE « REF s R &= FNTy¥
NUDGE (FNT > #

ENOUE CORRR 2= STACKS
STACK = MFMWUHE?
VLMUHV£i ,\Jim ENOXIE 5

EN n,rnw,Nnmnnh“'
E
I

WRITE(® FUSH-13 "ySTACK:L "
WRITENODE (STACK TRUE)
ENDF

ENDS (k END OF FROCEDURE FUSHONE %)

FROCEDURE FUSHTWO(FNTL1sFNT2: FTR) §

(¥ THIS FUSH FUTS TWO FOINTERS INTO

(% GLOVAR STACK: GLOCON NEWSUSFENIDS
BEGIN

ENQDE = NEWSUSFENDS

ENOIIE « K = PNT

NUDGE

NULGE (1

ENODE . C Ri= BTACKS

STACK = NEWNODES

MEMORYLSTACKI $= ENQODES?

TF (TRACE=S) THEN
BEGIN

GLORBAL

THE
FROC

SUFFICTENT

THIS
XKD

%)

THE
NI

IS LINKEDY BY

(K LEAD

(A TEMFLATE?

NODE %)

NEWNODIE »

NUTIGE

X2

FUSH-2t "eSTACKILy "

Q000445 L TEL
54 I?LNUUI(u1ﬁCﬁpTRUE)E

WH
WH
k

Q00073 ¢k END OF PROCEDURE FUSHTWO %)
'OO I Oq
000105
QO0LOE FROCEDURE FOFS$ Ck FOFS A FUSH OF TYPE ONE %)
000003 (% GLOVAR FLACE: INTERGERS EXFy STACKE FTR %)
000003 BEGIN
000003 ENODE = MEMORYLSTACK]SF
000012 FLACE $== ENODE . CARNNJ
000014 RECYCLECEXF) 5 Ok REUSE THE REFERENCE FROM THE STACK %)
0000“0 EXFE= ENODE.REF.RRS
Q025 HTSFU?F(STQQK)B
000051 ‘Tﬁf i FNODE«CDR.RH?
000034 IF ACEXS) THEN
000040 3
000040 U\LTJLN(" FOF:") 3§
Q00044 WRITEC(® FLACES "sPLACEILs "y EXFI "sEXPt1)s
000070 WRITEC("y ENVI "yENVDOTIL1s"y REVAL: "sREVAL:1):
000112 WRITELNC"y MODE: "yMODECODEILy"s STACKE "»8TACK:1)
000134 ENI
000135 ENID S Ok END OF PROCEDURE FOF X))
Q00150
000150
000150 FROCEDURE LOAD(UAR REGLREG2! FTR) S
00005 Ok FORS A PUSH OF TYRE TWO. ASSIGNS
DO000E THE REGISTERS IT IS GIVEN WITH THE
Q00005 VAL.UE IN THP STACK NODE %)
000005 (x GLOVAKR S8TACKS GLOEAL RECYCLE %)
000005 REGIN
000005 ENOIE $ = MPH]thSTﬁ(th
000014 il]
000020 ' ?Yilt(hlb’)n
000025 thI* ENQDE + REF « RR § ko USE THE STACKS NUDGE X)
0O0O32 REGZ = ENODE.CAR,RRS
POOO3A DISFOZE(STACK) §
000041 STACK = ENOIE,COR.RR$
000046 IF (TRACEZ>E) THEN
000050 WRITELNC® LOAD.: «» REGL IS "yREGLI1»"y REG2 IS "sRFEGR:1.°
QOG074 ENI 3 (X END OF FROCEDURE LOAD %)
000110
Q00110
Q00110 FROCEDURE EVALERROR(I: INTEGERFMESSAGEIFTR) §
Q00005 (X A NOTICIBLE ERROR CAUSES A PEFUUFRY
000005 OF THE STACK TO aAVATLAELE %)
Q00005 (k GLOVAR STACKy AVATLF GLOCON NENSUSPEND *)
000005 LAREL 13
Q00005 BEGIN
000005 RECYCLE(STACK) §
000014 STACKI= NIL#
000016 IF (I=0) THEN GOTO 13
000020 WRITELNS
000021 WRITE ("=l EVALUATION ERROR? ")
000026 CABE I OF
000033 13 WRITEC'UNDEFINED FUNCTIONy ")
200041 23 WRITEC"UNMARKED FUNARGs ") 5
000047 3 WRITEC("SECOND ORDER NOT FERMITTED YET.")s

Q000N
QOONA3
000071
Qo077
Q00105
000113
000121
000127
Q00135
000143
0001866
OO01L70
000200
)§

000207
000210
000213
000245
0002465
QOO246G
Q00006
QOG006
000006
Q00004
000006
000011
000011
000011
000015
Q00021
000030
000032
000032
000033
Q00034
000034
0000346
000042
Q00051
000057
000063
000073
000075
000103
000104
Q00106
0001064
000125
Q00134
000142
000152
Q00152
000153
000153
000163
000164
000170
000171
000171

WRITE (*NON-NUMERIC ARGUMENT ") 5
WRITEC"TOD FEW ARGUMENTSy ") 3§
WRITEC"NON-FOSITIVE NUMERICy")#
WRITE("STRUCTURE MATCH FAILED
WRITEC("NO CONVERGENCE IN LIST.
JRITEC"CAR aAFPLIED TO")s
WRITE("COR APFLIED TO")§
WRITEC"REDIFINED CONSTANTe ") ¥
WRITEC"UNBOUND VARIARLEy "2y
(X CASE Xx)
2 ")
TSATOM(MESSAGE Y THEN FUTAT(MESSAGE)
WRITEC(®
LN
SETREG(REVAL » JAWS)

NI g (X noF FROCEDURE EVALERROR %)

FROCEDURE CONTEXTEUSH(NODEFIFTRF ISCARIBOOLEANF RESOQURCESIINTEGER) S
HE STAQUE IS A LIST OF CONTINUATIONS. WHEN A SUSFENSION
COUNTE 8 A LIST FROBEy FUSH THE CURRENT FRO-
0 STAQUE AaND START PROCESSING THE SUSFENSION XO

RUSY tREFERENCE§ CNODE$NOIIE S

Cx NOUEF 18 CONS-MULTI AND HAS BEEN RESERVEID X)
FUSHONE (RESTORE y ENVIOT) ¢

IF ISCAR THEN RUSY:!= MEMORYLNODEFI.CAR

ELSE RUSYt= MEMORYLINODEPI.CDR

IF BUSY.,.NUMBERF THEN

MONEC

GOTO

END
CNODE ¢ = NEWSUSFENIDS
CNODE = STAQUES
CNODE AR RR$= NODEFs NUDGE (NODEF)
CNODE FFLRR3I= STACK?
CNODE . FNAME t= IS5CARS
STARUE t = NE
BRUSY . NUMBERF
BUSY .NNt= MODNECODEY

: RESOURCES
THEN

CONTEXT PUSH: "»STARUE:1:"
A S FALSED §
3CAR THEN WRITELN("y FROCESS-CAR.")
ELSE WRITELNC("y FROCESS-CIOR.")SF
ENIIS
[SCAR THEN

QT ﬁNZﬁ MEMORYLNODEFRI.CARRRY
MEMORYLDNODEFD . CaR= RBUSY
ENI

ELSE

STACK t= MEMORYLNODERFID, COR.RR§

000201 MEMORYLNODEF 1. COR = RUSY§
000206 ENII;

000206 13 ENDG

000230

000230

000230

000230 FROCEDURE CONTEXTFOF (VALUE$FTR)

000004 (X A FOF OF THE CONTINUATION STACK %)

000004 VaR

000006 (

000006 = MEMORYLSTARUEDS

000013 IF (TRACE»3) THEN

000015 BEGIN

000015 WRITELNGWRITE("CONTEXT FOE: *)3

000023 WRITENODE (STAQUE s FALSE) §

000032 WRITEC("; FILL~")j

000037 IF CNODE.FPNAME THEN WRITELNC("CAR.") ELSE WRITELN("CDR."):
000056 END§

000056 1ITSFOZE(STAQUE) $

000063 =T o= CNODE . CAR KR 3

000047 IF CNODE.FNAME THEN (% THE VALUE GODES IN CAR %)
000071 REGIN

000071 MODECODE $= MEMORYLFTI.CAR.NN3

000075 MEMORYLFTI. CAR . NUMBERF t= FALSE$

000102 MEMORYLFTI.CAR KRS = VALUE

000104 ENII

000112

000112 BEGIN

000112 MODECODE ¢= MEMORYLFTI.CIOR.NN}

000117 MEMORYLF T, COR NUMBERF t= FALSE$

000124 MEMORYLFTI, CORRR t= VALUE

000125 ENIS

000132 NUIIGE (VALUE)

000136 RECYCLEC(FT) §

000142 STACK = CNODE,REF . KRR

000147 STAQUE = CNODE.,CHOR.RR

000147 END

000166

000166 i

000166 FUNCTION ALLOCATE(STRATEGYIINTEGER) $ INTEGER

000004 (¥ ‘CAR‘y ‘COR‘y ‘KICKAR’y OR ‘KICKDR’ I8
000004 DOING A FROCESS SWAF. THIS FUNCTION
000004 DISTRIBUTES THE RESOURCES., NOTE THE
000004 SIDEEFFECT ON THE EVAL-LOCAL MODECODE
000004 VAR N$INTEGER$

000005 BEGIN

000005 IF (MODECODE==INFINITY) THEN Ni= INFINITY

000011 CLSE IF (MODECODE=0) THEN Ni= 0

000013 SE IF (STRATEGY=1) THEN

000015 BEGIN

000015 Ni= (MODECODE DIV 2) 413

000017 MODECODE ¢= MODECODE-~N

000017 ENII

000017 ELSE IF (STRATEGY=2) THEN

000021 REGIN

000021 Nt= (MODECODE DIV 3) + 13

000027 MODECODE $= MODECODE-N

000027 ENDI

000030
000032
000032
000032
000032
000033
000033
000044
000044
000044
000004
000004
000004
000004
000004
000004
000004
000004
000004
000012
000012
000017
000022
000022
000026
000024
000037
000037
000040
000040
000040
000040
000044
000054
000062
000064
000071
000074
000074
000074
000103
000106
000113
000113
000114
000121
000124
000126
000126
000126
000130
000130
000132
000140
000145
000147
000153
000153

ELSE IF (STRATEGY=3) THEN
BEGIN

Ni= 1%

MODECODE 2= MODECONE--1

ENIIG

FOSSIERLE EVALUATION
FOR IR
s, LOOK FOR A VaLUEs
TO THE RBEGINNING 0OF THE
THERE IS NONEy KICK
ENSIONS,. STOF AT NILys
ENDED CIhRy OR A CONS

KNODE $NODE S NOHOFPEIBOOLEANY

BING AS YOU GO. ¥)
COR.RRY THEN

GOTO 1
ENLES
REFEAT

MEMORYLCFTI, COR KRS KNODE 3= MEMORYLFTI1S

YEFT21.COR+RRE= PTL§
FT2y

ANI

CRVEDNCRETY OR %) ISATOMPT) THEN GOTO 35

CNODE . CAR RR=JAWS) THEN

NOHOFE &= F¢ E §
IF NOT &L NIDEN(RKNODE.CAR.RRY THEN GOTO 45
IF NOT KNODE.MULTI THEN GOTO 27
IF SUSFENDED(KNONE.CDR.RRY THEN GOTO 1
ENI§
UNTIL FALSES?
FUSHONE (KICKIRyFT) 5
FUSHONE (KICKARsFT) 5
(kX CANCEL(PT)S XX)
IALUE HAS BEEN FOUND. TRAVERSE-REVERSE
K AS THEY WERE. ¥X)

C
o

'T11.COR KRR

21 CIOR KRS = FT#

RICKARyFT) 3
KD

T0O

000154 IF NOHOFE THEN EVALERROR(OyNIL)
000161 GOTO S
D012 : XKD
000162 HITi= FT$
000166 FOF§ (X THE FUSH AT RBEGINNING OF THIS FROCEDIURE X)
Q00167 SETREG(REVAL y MEMORYLHITI.CAR.RR) §
000177 FT:= PTL1§
000202 FT1i= MEMORYLFT1J.CORRRS
000210 FT21= MEMORYLHITI.CIOR.RR?
000215 IF SUSFENDENCPT2) THEN (X IMFOSE AN INTERMEDIATE SUSFENSION X
000222 BEGIN
000222 Fr2t= DOTFAIR(FCIRsHITY§
NO0R34 KNODE $ = NEWSUSFENID§
000235 KNOQIE «REF.RRE3= FT2F NUDGE(PTZ2)§
000243 KNODE « CAR s NUMBERF ¢ = TRUE§
Q002464 KNODE . CARSNNS= TOF 3§

50 FT28= NEWNODE§

MEMORYLFT21:i= KNOIE
ENIG
REFEAT
7 MEMORYLFTIREF NNt= MEMORYLFTI1.REF«NN-1;
Y273 IF MEMORYLFTI.REF .NN=0O THEN

000277 BEGIN
000277 MEMORYLFTI.CORJRR:= PT2% NUDGECFT2)5
Q00311 FT2t= FT
000311 ENII
000315 ELLSE
000315 BEGIN
000315 KNODE $= NEWCONSS
000316 RNODE « MULTI t= TRUES$
Q00320 FRNODE « REF s NN$= 13
00¢ 2 KNODE.CART= MEMORYLFTI1.CARS
Q00327 RNODE.CIOR.RR$= FT2§ NUDGECFT2)5
0003346 FT2i= NEWNODEs MEMORYLFT21:= KNODES:
Q00345 MEMORYLPTI1.CAR.RR 3= REVAL? NUNGE (REVAL)
Q00357 MEMORYLFTI.CORRRE= PT2
Q003462 ENI#
000367 (k% CANCEL(FT) *%x%)
000367 FTi= FTL1l5
Q00372 FT1t= MEMORYLFTL1.CUOR.RR?
000400 UNTIL FT=NILS$
000401 NUOGEC(LIST) #
000404 RECYCLECHIT) S
D00410 o END 3 (k FROCEDURE KICKLIS %)
000427
000427
000427
000427
000427
000427 :
000427 FROCEDURE AFFPLY(F+AIFTR) S
Q00005 (X CALLED FROM EVAL. F IS A& NUMBERSy
000005 ATOMy OR LIST: A I8 THE EVALUATED
Q00005 ARGUMENT X))
000005 L.ABEL 13 CRTLAMEBDA AND PFUNARG => A SECOND CalLL T0O AFPPLYX)
0000035 VAR FTyFTLsTEM ¢ FTRS (X INSPECTION-REGISTERS X)
00010 (k FN AND ARGS ARE THE VALUE-REGISTERS X))
Q00010 BREGIN

000010 SETREG(FNyF) 3 SETREG(ARGSA) 3
000020 1! IF (TRACE:>3) THEN WRITELMN(® AFFLY "sFN$1s% TO "sARGS:1)
000045 IF (FN=NIL) THEN
000047 SETREG(REVAL s NIL.)
000052 ELSE IF MEMORYLCFNI.CAR.NUMBERF THEN
000060 REGIN
000060 Nt= MEMORYLFNI.CAR.NN;
000064 IF (N<1) THEN EVALERROR(6/FN)
000070 F(N=1) THEN FUSHONE (CAR»ARGS)
000077
000101 |
000101 FUSHONE (N-1 yNIL) §
000105 FUSHONE (NTHy NIL) 3
000112 E
000115
000117
000117 ELSE IF MEMORYLFNI.ATOMF THEN (X FN IS ATOMIC %)
000124 BEGIH
000124 IF FN = QCAR THEN FUSHONE (CAR»ARGS)
000131 (XkMOD3 EEGIN
000131 FUSHONE (ACAR s NIL)
000131 FUSHONE (CAR » ARGS)
000131 ENDBLOMK)
000131 ELSE IF (FN = QCDR) THEN FUSHONE (CDRyARGS)
000140 I
000140 = (ACDIR
000140 CUSHONE (CAR s ARGS)
000140 ENDIZIOMK)
000140 c.SE IF (FN = QCONS) OR (FN = QFONS) THEN
000146 REGIN
000146 PTi= DﬁTPﬁIR(FCﬁPkﬁﬁﬁﬁ)ﬁ
000160 FT1t= DOTFAIR(FCADR s ARGS
000172 SETREG (REVAL » CONS (FT FTT?NIL))V
000211 MEMORYLREVAL I MULTI¢= (FN=QFONS)
000215 ENDI
000223 ELSE IF (FN = QS8TAR) THEN
000226 REGIN
000226 FTi= DOTFAIR(QARGS,NIL)
000237 FT$= [0 (v F It (QCAR QARGS) %)
000251, PT1t= MAKEENVY (AR EE CONS %)
000260 SETREG (REVAL y STARCFTyFT1))
000274 ENI
000275 ELSE IF (FN = QSTARRED) THEN
000300 BEGIN
000300 FUSHONE (ASTARyNIL) §
000305 FUSHONE (CAR » ARGS)
000310 ENIDI
000312 ELSE IF (FN=QRATOM) OR (FN=QADD1) OR (FN=QSUE1) OR
000321 (FN=QNULL) OR (FN=QNOT) THEN
000325 BEGIN
000325 FUSHONE (AL s FND §
000331 SETREG (REVAL » ARGS)
000334 I
000335 SLSE IF (FN = QHSH) THEN
000340 NE (CARy ARGS)
000343 ELSE TF ((FN=QFLUS) OR (FN=QDIFF) OR (FN=QTIMES) OR (FN=QMOD) OR
000355 (FN=QDIV) OR (FN=QLESS) OR (FN=QGREAT) OR (FN=QEQ)) TH
000364 REGIN

IF (FN=QEQ) THEN FUSHONE(EQyAREE)

Bl Sk
000373 EGIN
Q0373 FUSHTWOCFNy ARGE) 5
000402 FUSHONE CFLUSyNIL)
000405 ENIG
000407 FUSHONE (CARy ARGE) 5
000414 FUSHONE (ACARyNIL) 5
Q00421 FUSHONE (CIIR y ARGS) Ok COERCE THE CAR AND CAIR FOR EVAL %)
Q00424 END
000426 ELSE CKINSERT U COMFILED FUNCTIONS HERE
000427 SEARCH FOR USER DEFINED FUNCTION X)
000427 BEGIN
000427 SETREGI(REVAL y SEARCHC(FLISTsFNY Y 5
000445 IF MEMORYLCREVALI.MULTI THEN
000452 REGIN

SETREG(FNy CAIIR (REVALD)) #

0004464 GOTO 1
000487 FND S
000465 FUSHTWO(FNy ARGS) 3
000474 FUSHONE (CHECKL s NTL) §
000501 FUSHONE (RESTORE s ENVIIOT) §
Q00506 SETREG(REVAL y QUNEOUNI) §
000512 FUSHONE (ASS0CyFND
QO05E1LE ENIT
000%H17 ENT (k THIS ENDS CABES WHEN FN IS AN ATOM X)
Q00517 Ck THIS STARTE CASES WHEN FN IS A LIST x)
000520 BREGIN
Q00H20 FTLi= MEMORYLFNI.CAR.RRS
000526 IF (FT1 = QLAMEBDA) THEN
000530 BEGIN
DOOE30 FUSHONE (RESTORE » ENVIIOT) §
000534 SETREG(ENVIOT y DOTFAIRC(IOTFATIR(CADR(FN) s ARGS Y s NILY) §
000563 (¥ FOR FREE VARIARLES» EXCHANGE ENVDOT FOR NIL ¥
Q00563 FUSHONE (CCONDy CTIDR (FND)
000575 ENII
Q00576 ELSE IF (FT1 = QFUNARG) THEN
000600 BEGIN
Q00&00 FUSHONE (RESTORE » ENVIIOT) 5
Q00405 SETREG(ENVIOTy CADDRC(FN)) 5
000820 SETREGC(FNy CADRCFNY) ¥
Q00633 GOTO 1 (K NEW ENVIRONMENTy NOW AFFLY XD
0004634 ENID
000634 (X ELSE IF (FT1 = QLARELY THEN
0004634 BEGIN
000634 A SEMANTICS FOR ‘LLAREL " HAS NOT BEEN ESTARLISHEI., s
000634 GOTO 1
000634 END %)
0005634 ELSE
000634 BEGIN
000634 FUSHTWOC(FNy ARGE) §
000642 FUSHONE (FNSTARyNIL) § (% FNCTNL COMBINATION., CHECK FOR STARS
0004647 FUSHONE (ASTARsNIL) § ¢k SEE IF THE F-C IS STARRED %)
000654 SETREG(REVAL yFN)
000657 END
0006460 ENTI
0006460 E-NINS Ck THE FROCEDURE AFFLY
000700

000700
000700
000700
000700
000700
000700
000700 BEGIN (% RBEGIN THE FROCEDURE EVALHELF %)
000700 MODECODE$= RESOURCES:
000010 STAQUE:= NIL3
000011 ALLUONE = FALSES
000012 IF fhmrr*ay THEN
000014 BEGIN
000014 WRI IF
000015 IRITEL N("w pemem EVALUATION. FROCESS STACK IS NODE *»STACK!
000031 WRITELN
000031 END
FOF 5
000034 WHILE NOT ALLDONE 00
0000346 BEGIN
CASE FLACE OF

000042 TOF 3

000042 BEGIN

DOOO42 IF (TRACE>3) THEI RITELNC"TOP "2 ¥
000052 IF (EXFP=NIL) OR (EXP=QFALSE) THEN
OOOOUQ SETREG(REVALNILD

000062 LGE TF MEMORYLEXFD.CARNUMBERF THEN

0Q007(TUQH[(EVAL yEXF)

000073 FlL.oE MEMORYLEXFI] . ATOMF THEN (CRTHE EXFRESSION IS AN ATOMYO
000101 &) f'_. f.'.- IN

000101 IF (EXF=QHSH) THEN SETREG(REVAL ¢ EXF)

Q00105 ELSE IF (EXP=JAWS) THEN EVALERROR(OsNIL)D

000113 ELSE IF EXF QHFIHK THEN SETREG(REVAL » MAKENUM(SFEAR) D
000130 FILSE IF EXF=QSTOF THEN

000133 BEGIN

000133 ALLOONE $= TRUES$

Q00134 FINIS = TRUE

000134 ENID

000135 FLSE IF EXF=QRENY THEN SETREG(REVALENVIOT)

000142 ELSE IF EXF=QUNDEFINED THEN SETREG(REVAL s JAWS)

000151 (% INSERT OTHER SYSTEM ATOMS HERE X)

000151 ELSE

000153 EG LT (% SEARCH THE ENVIRONMENT FOR A& BINDING X
000153 PUSHONE (RESTORE s ENVIIOT) 5 (X ASSOC DNISECTS ENVIOT ¥)
0001460 SE ﬂ[L(hFUﬁl'lUNBOUNU}v (k INITIALIZE ASS0C X)
0001464 FUSHONE (L.OOK 'f" (k IN CASE OF ERROR %)
000171 PUSHONE(@SSWN

000174 END

000176

000176 LSE

000177 {EGIN (k THE EXPRESSION IS A LIST. XD

000177 IF MEMORYLEXFD].COR.RR THEN

000203 (% THE EXPRESSION IS STARREID X))
000203 f -4

000207

000212

000214

QOO21LS] N

000215 FT3 MEMORYLEXF1.CAR KRS (k GRAR THE FUNCTION

wt

QOOR2E FT1:= MEMORYLEXFI1.CIRRRS
: IF ISATOM(FT)Y THEN
BEGIN
IF (FT=QTRACE) THEN
27 BEGIN
000237 SETREG(REVAL yEXF) §
Q00243 TRACE = MEMORYLMEMORYLFTL1.CAR.RRI.CAR NN
Q00251 ENII
000253 ELSE IF (FT=QEVCARY THEN
000255 BEGIN
QO02ES IF SUSFENDEDC(CADRCEXF)Y)Y THEN
002464 BEGIN
0002&6 FUSHONE(TOF » EXF) §
Q00272 FUSHONE (CAR» MEMORYLEXFI1 . COR . RIR)
Q00301 NI
Q00302 ELSE
000303 FUSHONEC(TOR CAOR CIEXF))
200314 END
000315 ELSE IF (FT=QCARLIEY THEN FUSHONE (CARL]
000323 ELSE IF (FT=FCAR) THEN FUSHONE (CAR
000332 ELSE IF (FT=FCOR) THEN FUSHONE (COR
000341 ELSE IF (FT=FCADR) THEN
000344 BEGIN
000344 FUSHONE (ACARyNTL) 3§
Q00351 FUSHONE (CIIR » FT1)
ENI
000356 ELSE IF (FPT=FCIAR)
000360 BEGIN
000340 FUSHONE CACDRyNTL) §
Q00345 FUSHONE CCARyFTL)
Q00370 ENI
Q00372 ELSE IF (FT=QCHRLIS) THEN FUSHONE(CDORL.ISFPTL1)
000400 ELSE IF (FT=FAFFLY) THEN
000404 REGIN
000404 FPUSHONE (RESTORE » ENVIIOT) §
000410 SETREGCENVDOT » CARDODOR (EXF)Y) §
Q00423 AFPLY (CADRCEXF) » CADDRCEXF))
QO0442 ENI
000443 ELSE. IF = OR (FT=QFONS) THEN
200450 REGIN
Q00450 SETREG(REVAL y CONS (CADR(EXF) s CADDR (EXF) o ENVIIIT))
000500 MEMORY CREVALITMULTI I= (FT=0QF0ONS)
000504 END
000512 ELSE IF (FT=QSTAR) THEN
Q00515 SETREG(REVAL »STARCCADRCEXF) y ENVIIOT))
Q00534 ELSE IF (FT = QCOLON) THEN
Q00540 REGIN
000540 FUSHONE (ANE» CADRCEXF)) ¥
000552 FUSHONE (TOF y CADDR(EXF))
000563 ENID
0005464 ELSE IF (FT=QQAUOTE) THEN
000567 SETREG(REVAL y CADIR (EXF))
Q00&00 ELSE IF (FT=QFUNCTIO) THEN
Q00603 BEGIN
000403 FOINT = DOTFAIRCENVIOTNIL) ¢
000615 FOINT = DOTFATRC(CADRCEXF) y FOINT) 3
000832 SETREG(REVAL yDOTFATROQFUNARG s FOINT))
000646 ENII

000&47 ELSE IF (FT=QDE) THEN
QO0SEE BEGIN
000652 FTL3= NOTFATIR (QLAMEBIGy CODRCEXF)) 5
000671 SETREG(REVAL s SEARCHC(FLISTyCADRCEXF) 2) 5
000714 TF MEMORYLDREVALID.MULTI THEN
000721 BEGIN
000721 RECYCLE(MEMORY LMEMORY LREVAL 1. CORRRD JCAR SRR
Q00732 MEMORYLMEMORY DREVAL D CORCRRT.CARVRRE= PTL1§
Q00746 NUTIGE CFTL) s
Q0750 Fres DOTRFAIRCAREDEF yNTL) §
DOO762 SETREG(REVALyOTFATR(CATRCEXF)Y »FT)
201001 ENI
001002 L SE
001003 REGIN
201003 FTi= DOTFATRCCADR CEXF) s NIL 2§
001020 MEMORY CMEMORY LREVAL T, CARRRI.CORRR = FT
001031 NUNGEC(FT) 5
001034 FTi= DOTFAIR(FPTLsNIL)
001044 MEMORYLMEMORYLREVAL T CORRRILCOR RE = T
001057 NUDNGEC(FT) §
Q01062 SETREG(RENVAL » CADR CEXF)
001074 ENTI
001075 END
Q01075 ELSE IF (FT=0MLIST) OR (FPT=QCLISTY THEN
001102 FUSHONE (EVLYE s MEMORY CEXF DT COR « KR
001111 ELSE IF (FT=QDC) THEN
001114 BEGIN
001114 FUSHONE (DE » MEMORYEFTLI, CARCRR) 5
2 FUSHONE (TOPy CATIRCFTL))
001135 ENT
001134 ELSE
001137 BEGIN
001137 FUSHONE (ANByFT) §
001143 FUSHONE (EVL.IS y MEMORYLEXF D CIR « KRR
001152 ENII
001153 ENI
001153
001154 BEGIN
001154 FUSHONE (ANByFN) ¥
001161
001170 ENID
001171 END
001171 ENI
001171 ENIS
001172
001172
001172 RESTORE S (k THIS CELL OF THE STACK HAS HELD ONTO
001172 THE ENVIRONMENT IN EFFECT DURING A& FREVIOUS
001172 Call TO EVAL. IT CHANGES THE ENVIRONMENT
001172 REGISTER BACK TO THAT VALUE.
001172 NOTE THAT THIS VERSION OF THE IMPLEMENTATION
001172 WASTES SEVERAL ABSITIGNMENT CalLLS TO SAVE
001172 THIS LLIST. WHEN OFTIMIZING, THE CALL TO
001172 SETREG CAN BE REPLACED BY A MACRO THAT
001172 DOES THE FUSH WITH NO NUDGES. X2
001172 AEGIN
001172 IF (TRACE:S THEN WRITELNC"RESTORE "33
001202 SETREGCENVIROT » EEXF)

001205

Q01207

001207

001207

001207

Q01207

Q01207 L.OOK: (% SEE IF VARIABLE SEARCH FAILD. X)

Q01207 REGIN

001207 IF (TRACE>3) THEN WRITELN(®LOOK ®")3

001217 IF (REVAL=QUNROUND) THEN EVALERROR(19yEXF)
EENII S

Ass0c:3 (X THE ENVIRONMENT IS A& LIST OF
FORMAL FARAMETER-ARGUMENT FAIRS.
SEARCH EACH FAIR FOR & BINDING.
001227 EXF IS THE VARIARLE NAME.
001227 THE CALLING ROUTINE MUST SAVE THE
Q01227 ENVIRONMENT . X))

©3) THEN WRITELN("ASSOC *)3
(REVAL =QUNEBOUNI THEN
BREGIN

001241 IF (ENVDOT=NIL) THEN
001243 REGIN
001243 SETREG (EXFy SEARCH (AL ISTyEXF)) §
001260 IF MEMORYCEXF1.MULTI THEN SETREG(REVAL»CADR(EXF))
001276 ENII
001277
001300 BEGIN
001300 FUSHONE (ASS0C s EXF) §
001305 FUSHTWO CEXF » CAAR (ENVDOT))
001322 FUSHONE (ASS0C Ly MEMORY LMEMORY LENVIOT 1, CAR KR, CIR « KRR) 3
001335 SETREG CENVIOT » MEMORY CENVIOT 1, CIR KR
001344 END
001345
001345
001346
001346
001346
001346 ASSOCT §
001346 REGIN
001346 IF (TRACE>3) THEN WRITELNC"ASS0C1: *)3
001356 LOAD (ASSOCVAR s FE) § (k EXF IS THE ACTUAL FARAMETER LIST %)
0013641 IF (FF = ASSOCVAR) THEN SETREG(REVAL sEXF)
0013467 ELSE IF ISATOM(FF) THEN SETREG(REVAL y QUNEOUNI)
001401 ELSE IF ISATOM(EXF) THEN EVALERROR(7yASSOCVAR)
001413 ELSE
001415 BEGIN
001415 FT$= MEMORYLFFI.CAR.RRS
001424 IF (FT = ASSOCVAR) THEN FUSHONE(CARyEXF)
001431 ELSE IF ISATOMCPT) THEN
001440 REGIN
001440 FUSHTWO (ASSOCVAR s MEMORYDFF 1. CDR KR §
001452 FUSHONE (ASSOC2 s NIL) 3
001457 FUSHONE ¢ CIIR y EXF) (% COERCE, AND CONTINUE SEARCH %)

ENID

0014464
0014465
001445
OO1W00

001533
001533
001533
001533
001543

00[5&.
OOlUu

QO157C
DO1G73
001575
001576
Q0L577
001602
001602
Q01602
001602
001602
001612
001412
001612
0014612
0014612
001623
0014636
001636
0014637
0014637
001637
001637
001637
001637
0014647
001647
001647
Q014660

Ck FIRSTIFIF IS A LISTy RECUR ON CAR %

BEGIN

FUSHTWO CASSOCVAR y MEMORYLFFI.COR.RR) 7
FUSHONE ¢f CamEXP Y

PUGHTNU(!“ QUVARy MEMORYLFF 1. CAR KRR D ¥
FUSHONE (¢ OC2eNIL)§
deHUNL(LﬁRyEXP)
ENTI

ASS0CE S (k COR OF ACTUAL FARAMETERS I8
CONTINUE ASSOCIATION SEQRLH &)
BEGIN
IF (TRACE:=3) THEN WRITELNC(*ASS0C2 ")y
(% VARIARLE AND FORMAL FARAMETERS aRE ON STACK %)
FUSHONE (ASSOCT » REVALD
END &

ASsSNC3: (k ASS0C HAS RECURED ON FIRST?
LF R E ON \LbTiFP %)
BEGIN
(TRACE=>3) THEN WRITELN{"ASS0CE *)5§
REVAL=GUNBOUND) THEN
BEGIN
FUSHONE: ¢

RKICKARS (X EXFEND

NE UNIT OF RESOUR E ON EVALUATING
E CAR FIELD OF ‘EXP7 X

0
TH
BEGIN
IF (TRACE>3) THEN WRITELN("KICKAR)3
(k% IF RESERVEDC(EXF) THEN REGIN END
ELSE IF MEMORYLEXFI1.CAR.NUMBERF THEN

MEMORYLEXF1.CARNNt= MEMORYLEXFI.CARNNTL
ELSE X%)
IF SUSFENDEDNMEMORYLEXF1.CAR.RR) THEN
CONTEXTFUSH(EXF s TRUEy ALLOCATE(3)) ¥
(X% CANCEL (EXF) XX)
ENTI 3

KICKDRS ¢k SAME AS KICKAR BUT FOR CDR %)
REGIN
IF (TRACE>3) THEN WRITE I
(k¥ RESERVE NODE3S ADD JUR TO FROCESSOR
READY WORKING ON CIR. SEE KICKAR %%
2% JRR)Y THEN
CQNTEXTPUSH\LA!srﬁimhvﬁl'L CATE (3))

001672
QOLE74
Q014674
001674
001674
001674
001674
001674
001674
001674
001704
001714
001714
001714
001714
Q01714
001714
0017146
Q01 71¢

0017
001
Q01734
001740
Q01742
Q01750
001750
001754
001754
001754
0017462
001762
Q01746
002001
002001
002001
002002
002002
002012
002013
002016
002016
002017
002017
002017
Q02017
002017
Q02027
002037
002037
002037
002037
002037
002037
002041
002041
Q02050
Q02050

(KTHIS IS THE USER CaAkR. EXF HAS THE NODE
WHOSE CaR IS5 TO EBE RETURNED, CHECK
FOR $ ENSTON. RETURN THE CaAR
IF 1T ISNT SUSFENDEDy ELSE
BEGIN
IF (TRACE>3) THEN WRITELNC*CAR ")¥
IF ISATOMCEXF) THEN EVALERROR(?EXF)
E ITF RESERVEDCEXF) THEN

MODECQODE $ = MODECODE-1
ENIN kXD
ELSE

BEGIN

F'Tis MEMORYLCEXFI.CARSRRS

IF (FT=JaWs) THEN
BEGIN
TF MEMORYLEXF1.MULLTI THEN KICKLIS(EXF)
EL.SE EVALERRORCOsNIL)
ENTI

ITF NOT SUSFENDEDCFTY THEN

BEGIN
SETREG(REVAL yFT) 3§
(k¥ CANCEL (EXF) XX)
E-NII

ELSE IF NOT MEMORYLEXFI1.MULTI THEN
BEGIN
FUSHONE CCAR y EXF) #
CONTEXTFUSH(EXFy TRUE »ALLLOCATE (L)) 5
(kK CANCEL(EXF)Y %X)
ENII

FELLSE
REGIN
IF (TRACE>3) THEN WRITELN("-=eme=2 MULTI
KICKLIS(EXF)
ENII

END

ENIS

(¥ THE USERS CIR. SEE THE NOTE ON CARs JUST ARQVE
BEGIN
IF (TRACE>3) THEN WRITELN("CIOR *)3
IF ISATOMCEXF) THEN EVALERROR(LOsEXF)
(k% ELSE IF RESERVEDICEXF) THEN
BEGIN
FUSHONE (CORy EXF) 5
MODECODE 3= MODECODIE-1
NI kX)
ELLSE
BEGIN
FTi= MEMORYLEXFI].CAR.RRS
FTLt= MEMORYLEXFI. CORRRS
IF MEMORYLCEXFIMULTL AND SUSFENDED(PT)Y THEM

¥

002067 AR

Q020867 IF (TRACEXx3) TH?V WRITELN (" e s MULT L

DO2077 FUSHONE (CIR » EXF

002104 PUSHUNE(ﬁﬁHrEKP}

002107 ENII

002111 ELSE IF SUSFENDEDC(FTI)Y THEN

002117 BEGIN

002117 FUSHONE (COR y E

002123 CONTEXTRFUSHEXFy FALSE yOLLOCATEC2))

002135 ENTI

002136

Q02137

002143

002143

002143

002144

002144

002144

002144

002144 STARREL:

002144 BEGIN

Q02144 TF fTPﬁCF“K) THIQ WRITELNC"STARRED ")

Q02154 3 VAL y STAR(REVAL » ENVDIOT) 3

002171 NI

002173

002173

002173 COND: (¥ THE 'ﬂﬁ” f’NU!I’UQﬁIr THE KE

002173 i @ my =R GETF=y AN

002173 {EN THEY ARE ENCOUNTERE

002173 If THL LUIuUM LINE. RETURN NIL

002173 LIST OF FAIRS I8 EMPTY. IF THERE IS

002173 THE LLAST ARGUMENT IS NOT A FAIR: RETURN

DO2173 IT. OTHERWISE EVALUATE THE FREDICATE

002173 FaRT OF THE FAIR.

002173 EXAMFLE

002173 IF =NULL CPRSI1- ?HIH NI

002173 IF <MEMBER [<CAR LFRS ?‘IF THEN ELSEIF EL

002173 THEN < CONI Tk S []

002173 ETCe +» X

002173 BEGIN

Q02173 IF (TRACEX*>3) THEN WF LNC"COND ") 5

002203 IF EXP=NIL THEN SETF (REVAL ¢ NTLD (k EXF IS THE LIST OF FAIRS

002210 ELSE

002212 REGIN

002212 FTi= MEMORYLEXFI.CAR.RRS

002221 IF ((FT=RIF)0OR(FT=ATHEN) YOR((PT=RELSEIF)OR(FT=QELSE)) THEN

002230 FUSHONE CCONDy MEMORY CEXFT . COR . RED

009337 ELSE IF MEMORYLEXFI1,COR.RR=NIL THEN
FUSHONE (TOF «FT)

002253 USHONE (CONDL s MEMORY CEXF1 o CIR L RRD 3
002263 LuHuHL(IUPng>

002266 ENn

002270 ENI

002270 ENII

Cc-37

CONINL 3 Ok REVAL HAS THE FREXDICATE FART OF A COND
FAIR, EXF HAS THE REST THE COND LIST
AGAINy SKIF HELP-WORDS L!n THEN ETC. ¥
BEGIN
IF (TKACE>3) THEN WRITELNC("CONDL ")3
IF EXF=NIL THEN BEGIN END (% THIS SHOULD NEVER HAFFEN %)
ELSE
23 BEGIN
002303 FT3e= MEMORYLDEXFD.CAR RIS
@0”31” IF ((PT=QIF0R(FT=QTHEN) YORC(FT=QELSEIF)OR(FT=QFLSE)Y) THEN
FUSHONE(CONDL » MEMORYLE PI.(U\.Ef‘
ELSE IF REVAL=JAWS THEN EVALERRORCOyNIL)
(kX IMFORTANT oo THE SEMANTICS OF
CONDITIONAL STATEMENTS MAY RE
Q02! CHANGED TO HANDLE THIS CASE.
002337 SEE SECTION 2.8.%)
002337 ELSE IF REVAL=NIL THEN
002342 FUSHONE CCONDy MEMORYLEXF D, COR KRR
002351 ELSE
002353 FUSHONE CTOF 7))
: ENI
ENID§
002360
002360
Q02360 ANE S (X REVAL I8 THE EVALUATED ARGUMENT %
QO23&0 REGIN
002360 IF (TEACE>3) THEN WRITELN(YANE ")5
002370 AFFLY (EXFy REVAL)
002376 ENDy
002400
002400
002400 NE 2 (X CONSTANT DECLARATION.X)
002400 REGIN
Q02400 IF (TRACE:>3) THEN WRITELN(*DE ")j
002410 SETREG(AF s SEARCH(ALLISTsEXF)) §
002426 IF MEMORYLAFI.MULTI THEN EVALERRORCI8.EXF)
0024364 ELSE
002440 BEGIN
002440 FTi= DNOTFATR{EXF»NIL)§ NUNGEC(FT) §
002455 MEMORYLCMEMORYLAFI.CARRRI.COR RR = PTS
Q02470 FTi= DOTFAIR(REVALyNIL) S NUDGE(FT) 3
J03304 MEMORYLCMEMORYLAFI.COR.RRI.CIOR.RR = FT#
Q0251 END
OO’FJ7 ENIS
002520
002520
OOLJJO CHECK13: (X AN ASSOC-SEARCH WAS JUST DONE. IF IT
TURNETD UF NOTHING: THEN UNDEFINED FUNCTION.
AFFLY THE RESULT OF THE SEARCH TO THE ARGS. %)

BREGIN

IF (TRACE>3) THEN WRITELNC"CHECKL ")5
LOADCFNy ARGS) §

IF (REVAL=QUNEBOUND) THEN EVALERRORCLsFN)

ELSE
BEEGIN
; IF MEMORYLREVALD.CARNUMBERF THEN AFPLY (REVAL s ARGS)
00255 ELSE
DORESS REGIN

002555 FUSHTWO (REVAL » ARGS)
; FUSHONE (CHECK2 yNTL)
FUSHONE (CARy REVAL) § (X LOOK FOR ‘FUNARG %)
ENII

7 8 L (X ARE AROUT TO APFLY. LOOKING FOR A& FUNARG.
DORG76 REVAL I8 (CAR (COR (ASS0C FN ENVIRONMENT)) %)
DO2GH76 BEGIN
QO2E7 6 IF (TRACE=3) THEN WRITELNC"TEST2 ®)§

0024606 LOADIICF Ny A 3) ¥ (x EXF IS NIL %)

002611 Ik (HEUQIT”!'NQPF‘ THEN aAFFLY (FNsARGS)

002621 ELSE EVALERROR(ZyREVALD

Q028626 ENIIs

002630

0024630

002630 FNSTAR: (% CALLED FROM AFPFLY. WHEN THE FUNCTION IS
002630 " T AND 1T IS STARRED SEARCH DEEFE
002630 TO SEE IF all IT8 MEMBERS ARE STARREI.
002630 IN THAT CASEy THE STAR WILL BE DOUBLED X)
002630 [

002630 IF (TRACEZ3) THEN WRITELNC*FNSTAR ")

202640 % IMEORTANT ... AFPFLY ALSO FUSHED FN AND ARGS ON THE STACK

I
002640 THEY ARE LEFT TO EE USED LATER UNIER CERTAIN CONDITLONS X

“O”:QG IF (REVAL=NIL?» THEN
002464
DOE&QJ
002647
0028647 L /1)i
DOR265H2 & TWOCF ARGS) § (k THIS I5 PPUHQHLY A SUFERFLUOLUS ASSTGN
002641 FUSHONE (FNSTARL » ARGS) (¥ THE CONOITION FOR FNSTAR X
0024664
0026466
002667
0026467
0028687 FNSTARL: ¥ SEE FNSTAR. %)
002667 REGIN
0026467 IF (TRACE>3) THEN WRITELNC*"FNSTARL ")
Q02677 (% FN AND ARGS ON THE STACK X)
002677 (k EXF I8 THE ARGUMENT LIST. IF THE F-C I8 STARRED AND
002677 THE ARGUMENTS ALSD, PULL THE STAR QUT ONE LEVEL X2
0024677 IF (EXF=NIL) THEN
Q02701 BEGIN
002701 FUSHONE (ALLSTARy NIL) (KCHECK FOR ARGS X))
002705 SETRLE\LLUALFQT)
002710 END
002711 ELSE
002712 Blb N
002712 JUPUN (fN%lﬁhdeVlﬁy
Q02716 3 NE (’
002723
002726
Of})).’
002730
002730
QOR7I0 (¥ CHECKING THE ARGUMENT LIST FOR ALL 8T

BEGIN

IF (TRACE>3) THEN WRITELNC"FNSTAR2 ")3

Ok EXF I8 THE LIST WE ARE CHECKING. FN AND ARGS ARE ON THE STAr
Q02740 TF (REVAL=NILY THEN
002742 FUSHONE (FNSTARZ » EXF)

ELSE

FUSHONE (ALLLSTAR s NIL) 5

FUSHONE (ASTAR»EXF) $

FUSHONE CCARy EXF D

ENIs

FNGTAR3

3 ¢ (X SEE FNSTAR X)
BEGT

N

IF (TRACE:>3) THEN WRITELNC*FNSTARZ *);
(X EXF IS THE LIST WE ARE CHECKINGy FN AND ARGS . ON THE STACK

7 IF (REVAL=NIL) THEN
1 FLUSHONE CAFFLY Ly NIL)
003004 ELSE
Q03006 BEGIN
0030046 FUSHONE (FNSTARAsNIL) 5
003013 FUSHONE CCDR s EXF) (x RECUR X2
y ; ENT)
ENIG

003021 FNSTARAS S (% SEE FNSTAR %)

003021 BEGIN

003021 IF (TRACE>3) THEN WRITELN("FNSTAR4 ")

003031 0k EXF I8 NILy FN AND ARGS ARE NEXT ON THE STACK %)
003031 FUSHONE (FNSTARL y REVALD

003034 ENIS

003037

003037

03037 ALLSTAR? Ok WE HAVE A STARRED F-U AND STARRED ARGUMENTS,
003037 FULL THE STAR QUTSIDE OF THE AFFLY %
003037 BEGIN

003037 IF (TRACE>3) THEN WRITELNC("ALLSTAR ")

003047 (X FN ANl ARGS ARE ON THE STACKy EXF IS NIL %)

QOA04T IF (REVAL=NIL) THEN FUSHONE (AFFILY1sNIL)

003054 ELSE

Q03054 BEGIN

003056 LOADCFNy ARGS) 5

0030461 FUSHTWOC(FN ARGS) 5

003070 FUSHONEC(ALLSTARLyNIL) 3

003075 FUSHONE (CARL ISy ARGS)

003100 END

003102 END 5

003103

003103

003103 ALLSTARL S Ok SEE ALLSTAR. REVAL I8 <CARLIS ARGS:> %)
003103 REGIN

003103 ITF (TRACE>3) THEN WRITELNC("ALLSTARIL ")3

003113 LOAINCFNy ARGS) §

003116 FTi= NOTPFATRCOENVIOT NIL) 3 (x BUILD A CALL TO AFFLY %)
003130 FTi= DOTFATIRCREVALFTY S

003142 FTi= DOTFATR(MEMORYLFNI.CARZRRyFT) §

Q03157 SETREG(REVAL y STARCDOQTFATIR(FAFFLY s FT2 yNIL)) k 5TaAR IT Xx)

(¥ FIRST STEF FOR AN F-C. STRIF [’5 ANDI CHECK
FOR EMFTY FUNCTIONS. X2

»3) THEN WRITELNC"AFFLYL ®)3
LXP la NILy REVAL IS NOT USED ¥
LOATCFNy ARG
F*Tis MEMORYLFNI.CAR.RRS
(RkMODLIF (PT=QMLIST) THEN AFPLY (MEMORYLFNI.COR.RRyARGS)
ELSE IF (FT=QCLIST) THEN EVALERROR(3,NILY1DOMX)
CKMOD2%)IF (FT=QMLIST) OR (PT=QCLIST) THEN
Q0. AFFLY (MEMORYLCFNI,COR . RR s ARGS)
005“4] ELSE IF (FT=QCOLONY THEN
003245 EVALERRORCEyNIL) (X2D0MX)

REGIN
FUSHTWO(FNyARGS) 5
FUSHONE (AFFLY2yNIL) ¥
FUSHONE (ANYNULL » ARGS)
END

ENIs

OOJJYJ
003273 ANYNULIL ¢ (X SEARCH AN F-C LIST FOR NIL X
003273 BEGIN

003273 IF (TRACE>3)
DO3303 (kx EXF IS THE

HEN WRITELNC"ANYNULL "3
I8T X0

TH
|
003303 IF (EXF=NIL) THEN SETREG(REVAL «NIL?
003310
Q03312 REGIN
003312 FUSHONE (ANYNULLO s EXF) ¥
003316 FUSHONE (CIOR s EXF)
003321 ENT
B2 ENIS

005534

003324 ANYNULLO S (X SEARCHING A LIST FOR NIL. SEE ANYNULLy JUST AROVE.
003324 LOOK FOR & STAR HEREy THEN GO ON. X)
Q03324 REGIN

003324 IF (TRACEX>3) THEN NRITELNf”ﬁNYNULLO)5

003334 (kX EXPF IS THE LLIST» AND IS THE CDR OF EXF X2
003334 IF (EXF=REVAL) THEN SETHLD(RLLﬂLvNIL)

003341 ELSE

003343 BREGIN

003343

003343 FUSHONE CANYNULL Ly EXF) ¥

003347 FUSHONE (CARy EXF)

003352 END

003354

OOS%@;

ANYNULL L3 (k NOT A STaRy LOOK AT THE CaR %)
BEGIN
IF (TRACE>3) THEN WRITELNC"ANYNULLL ")9¥
(k EXF IS THE IYQTv Rrvﬁl THF CAar X
IF (REVAL=NIL) ALy QT

003372
003403
003405
003405
003405
003405
003405
003405
003415
0034135
003420

Q03430
003435
003440
003442
003443
0034446
003450
003450
003450
003450
003450
Q03450
003460

003554
003557

003567
Q03572
0034504
003616
003633
003645
Q034664
003671
003700
003700
003700
003700
003700
003710
003710
003710
Q03712
D03714
003720

AFFLY3:

AFFLY 43S

ELSE
ENLE

AFFLYZ23 (¥ THE F-C LIST WAS TESTED

THE RESULT OF THE
REGIN
I (TRACE=3) THEN WRITELNC"AFFLYZ2
(k EXF IS NIL %)

LOADCFNy ARGS) §
IF (REVAL=NIL)
BEGIN
FUSHTWO(FNy ARGS) 5

FUSHONE CAFPLY3» NI} §
FUSHONE (CARLIS» ARGS)
ENII
ELSE
SETREG(REVAL »NIL)
ENT S

THEN

(k A NIL

(k APPLYING AN F-(C.

EXF IS5 ARGS.
REGIN
IF (TRACE>3) THEN WRITELNC"AFFLY3
LOADICFNy ARGS) §
FT:= LDOTFAIRCENVIIOT yNIL) §
FT= DNOTPAIR(REVALyFT)§
FTi= DOTFATR(MEMORYLFNI.CAR.RRFT
FTi= DNOTFALIR(FAFFLYsFTY5
FUSHTWOC(FTsFN) #
FUSHONE (AFFLYAsNIL) §
FUSHONE (CIIRLTI S » ARGS)
EENI S

(k AFFLYING AN F-C. REVA
REGIN

IF (TRACE=3)
LOADCAEXF yFND §
| DOTFATIR (ENVIOT »NIL) 5
DOTFATR (REVAL s FT) §

NOTFATR (MEMORYLFNI, CIOR o RRy FT
DOTPAIR(FAFFLY »FT) 5

THEN WRITELNC*"AFFLY4

T¥es
T

g REG(REVAL » CONS(AEXF s FTyNIL) 2 3

]

W}
oy
-

;
f
;
SE
E
ENII
(¥ NUMERIC FUNCTION CALL

REGIN
IF (TRACE>3) THEN WRITELNC"NTH *)
(k REVAL IS THE LIST. THE FLACE
SEE FOF FOR SIDE-EFFECT ON GLO
IF (REVAL=NIL) THEN EBEGIN END
ELSE IF (FLACE=1)

Ok AEXF=(AFFLY CARFN

(k (APFLY

o
MORYLCREVALT MULTI = MEMORYLFNI.MULTI
Il

FOR A
TEST

W W
Hy

FUSHONE CANYNUL L y MEMORY LEXF o L . KRR

NULIL
IS ¥

IN THE F-

L L8

noy oA
i

) ¥

L. IS

")

)y

“CAR
AND)

(k (AFFLY CARFN (

TCARLIS

CIORFN <

+ COERCE

~
¥

INDICATOR
vak FLACE %)

THEN FUSHONE(CAR s REVAL)

ENTRY
N REVUAL %)

C LIST %)
LIS ARGS:.

ARGS ON STACK %)

CARLIS ARGE) ENVDOT)

SCORLIE ARGS:>. %)

ARGS: ENVIOT) %)

CORLIS ARGS:> ENVIDOT)Y %)

N CIORS THEN Cak %)

ON TOF OF STACK IS N.

z ECFLLACE=L s NIL D) 5
"UbHHNE(NrHyNIL}v
FUSHONE (COR » REVAL)
ENID

Q03742 ACAR 2 (¥ RETURN THE CAR 0OF REVAL %)
003742 BEGIN
{ gt LE Tth““hf TH EN WRITELNC"ACAR ")
FUSHONE
ENIIs
on 274

S

THEN WRITELNC*ACIR ")

e KEVALD

OOq;/L E [N
Q037764 IF TRACE>3) THEN WRITELN("ASTAR ")5§

DOA400& IF NOT UAL=NILY THEN

004010 N

Q04010 (INE: STARL s REVAL) ¥

Q04014 SHONE (CIR sy REVAL

Q040 /

004021

3040

Q04022

Q4022] RO

004022 BEGIN

004022 IF (TRACE>=3) THEN WRITELN(*ASTARL ")

004032 (k REVAL IS THE CIDR 0OF EXF X)

Q04032 IF (REVAI XF) THEN 7ETREG(REUQL9QTJ

Q04037 ELSE SETREG(REVAL ¢ NIL

OO/‘(‘],} "5 " 'A [

004046

004046

004046 =03 (k EXF IS THE ARGUMENT LIST. THE CAR AND CADR HAVE
004044 BEEN COERCED X

Q040446 2 GT

0040446 [F (TRACE>3) THEN WRITELNC("EQ ")

Q04056 T 3= MEMORYLEXFI1.CAR.RR?

004065 'T1i= CADRCEXF) 5§

004074 IF (FT) QNH FT1i=NIL) THEN SETREG(REVAL

Q04103 ELSE ! (NOT ISATOMCFTY)Y OR (NOT 'HﬁT W\Ifuij

004121 THEN SETREG(REVAL yNIL)

004124 SLLSE IF MEMORYLFTI.CAR . NUMBERF THEN

004133 i LN

004133 N EMFVVFPTﬁ.FﬁP NN ¥

004136 IF ¥ .' [I!Ll,‘nu<NUMEERP AN (MEMORYLFTLI.CARNN=N) THEN
004146
004152

’ "%ETRED(HEUﬁLyNEL)

0041460 ENTI
004161 CLSE TF MEMORYLFTLI1.CARGNUMRBERP THEN SETREGCREVAL »NTILD)
(FT=FT1) THEN SETREG(REVALQT)
SETREG(REVAL ¢y NILD

004211
004211 AL (k REVAL 18 THE ARG %)

004211 1
004211 IF (TRACE:>3) THEN WRITELNC'ADDL *)3
004221 IF (EXF=QATOM) THEN
004 TF ISATOM(KEVAL) THEN SETREG(REVAL»QT)
004233 ELSE SETREG(REVALyNIL)
004740 ELSE IF (EXP=QNULL) OR (EXF=QNOT) THEN
REGIN
IE (REVAL=NIL) THEN SETREG(REVALsQT)
ELLSE SETREG(REVAL yNIL)
24 ENII
00424 ELSE IF (REVAL=NIL) THEN EVALERRORC4sREVAL)
004247 Al IF NOT THEN EVALERROR(4yREVAL)
004301 AW
004303 BEGIN
004303 Ni= MEMORYLREVAL D, CAR . NNG
004307 IF (EXF=QANNL) THEN Ni= N+1
004310 ELSE Nt= N-13
004312 SE SUAL » MAKENUM (N)
004324 ENII
004325 ENI
004326
004324
004326 FLUS S (X THE ARGS HAVE BEEN COERCEI, AS IN EQ. THE CALL
004324 TO FLUS IS IN FROCEDURE APFLY. SELECT
004324 THE FROFER BINARY OFERATION %)
004326 EEGIN
004326 IF (TRACE>3) THEN WRITELN("FLUS *)3
004336 (k ON THE STACK: FUNCTION-NAMEs ARGUMENT LIST %)
004336 LOADCFNy ARGS) §
004341 (XREVAL IS THE CAR OF ARGS %)
004341 EFTt= CADR(ARGS) }
00435 IF (NOT MEMORYLREVALZ.CAR.NUMBERF) THEN EVALERROR(4yREVAL)
004357 ELSE IF (NOT MEMORYLFTI1.CAR.NUMBERF) THEN
004366 BEGIN
004366 SETREG(REVAL yPT) $
004372 EVALERROR (45 FT)
004375 END
004377 ELSE
004400 BEGIN
004400 Ni= MEMORYLFTI1.CAR.NNG
004404 Ii= MEMORYLREVALI.CAR.NN;
004407 IF (FN=QGREAT) THEN
004411 BEGIN
004411 IF (IxN) THEN SETREG(REVAL
004415 ELSE SETREG(REVALyNIL)
004422 ENTI
004427 ELSE IF (FN=QLESS) THEN
004425 BEGIN
004425 TF (I<N) THEN SETREG(REVALsQT)
004432 ELSE SETREG(KREVALsNIL)

004440
004441
Q04442
004442
004444
004447
00445]

004473
004505
WC@“O’

(‘qu;)V
004507
204507
0043507
004507
004517

004540
004540
0043540
004540
004540
004;40

004mfé
0044607
004621
004633
004644
004654
0046465
004701
Q04702
004703
Q04703
004707
004714
004717
004721
004722
004722
004722
004722
Q04722
004722
Q04732
004743

ELSE

NI

BEGIN
I (F N

URNS THE
IS THE ARGUMENT

=3

QFLUS

) OTHEN Ni= N+l

(FN=QUIFF) THEN N2:=
(FN=QTIMES) THEN N3

EXF

NIL) THEN SET

(TRALC

(REVAL =

(k REV

al IS

THEN WHR

= XF)

THEN

AMIYV) THEN Ni=
THEN Ni=

FIRST ARGUMEN

THE COR OF EXF
" THE CAAR O

ITELNC"CARL.IS1

MARKIN

A I P\ (N 1 Ly NILD)#

ﬂDTFﬂ[h(F

TiyPT2)5 (X

UﬁlrJrﬁR(PTyPTE)) @

Ex3) TH

AHSH?

THE

EN WK
THEN

STARRED CASE X

ARE IN EXF
REMVAL HAS

ITELNC"CARLIS2
FUSHONE (CARLIS

LN
= TKN

I DIV N
N MO Is

ARKAY %)

’ CHECK FOR

F THE LIYIST.

")

T FOR AN F~C

A STAR
X)

G (CAR (CaAR (QUOTE

MAKING AN ENVIRONMEN

SUSPENDED
)

ANDT THEY ARE
THE CAAR OF

il\;

y MEMORY LEXF

STARRKED

NOT
ARGS %)

TJ.CORRRD

EXF))2

T %)

CALL

*)

X

00 L]
005012
005013
005013
005013
005012

Q05036
005041
Q05043
005044
005044
005044
005044
005044
Q05054
003066
005103
005105
00531035
005123
005141
005142
005143
005143
005143
005143
005143
D0G143
005143
005143
005143
005153
005153
005153
003160
005162
0035162
005166
003171
WOS173
005174
005174
QOS174
005174
005174
005174
005174

BEGIN
F
IZ

=0 & -
o N

T ¢ &
MEMORYLFTI.CAR RR &=

REVAL §= FT3 (¥ REVAL ‘S REFERENCE FOR

NUNGE (REVAL)
END
ENIs

CORLIS: Ck WORKS LIKE CARLIS JUST ABOVE %)
BEGIN
ITF (TRACE>3) THEN WRITELNC("CIDRLIS ")
IF (EXP=NIL) THEN SETREG(REVAL NIL)
ELSE
BEGIN
FUSHONE (CORLIST s EXF) §
FUSHONE (COR » EXF)
ENI
END 5

CHORLIS (% CHECK FOR A STARy THEN GO ON %)
BEGIN
IF (TRACE>3) THEN WRITELNC"CDORLIS1 ")
FTi= DOTFAIRC(FCOAREXF)
IF (EXF=REVAL) THEN
ELSE
REGIN
PT1$= DOTPAIR(QCORL ISy MEMORYLEXFD. COR, RR) 3
SETREG(REVAL y CONSCFTyFTLyNIL))
END

(X THIS IS A TYFICAL RECURSION.
START HERE T0O UNDERSTAND HOW MOQST
OF THESE CASES WORK. CHECK FOR THE
BRaSE CONDITION HERE: THEN COERCE THE
CIORE AND RECUR X
BEGIN
IF (TRACE>3) THEN WRITELN(YEVLIS *)§
Ok THE POP WHICH FOUND THIS CASE aALSO LOADED THE
REGISTER "EXF*, ITS VaALUE HERE IS THE LIST Xx)
IF (EXP=NIL) THEN SETREG(REVALsyNIL)
ELSE
BEGIN
FUSHONE (EVLIS1sEXF)§
FUSHONE (CLOR v EXF)
END
ENILS

EVL.ISLS (% DO THE SUSFENDED CONS. REVAL IS THE
COERCED CIR OF THE 1.I8T. CHECK
FOR A STAR CONFIGURATION: THEN DO THE
CONG. %)
BEGIN

EY

IF (TRACE>3) THEN WRITEL EVLIS1 "23
PT** DUTWﬁ!idethhp"".
IF HEN SETREGOREVAL STARCFTyENVIOT 2

= DOTRFATROAMLIST y REVAL) §
’h'h‘“mi y CONSCFTsFTLy ENVIIOT))

MEMHHY[REUQLJfHUL?fiM MEMORYLEXFT . MULTI
ENDy

: - TATEMENT %)
0014’”
005423
Q05 433 IF

THUE

ALLIOONE =
END
END

00!45h ELSE
00"ﬁ/ REGIN
IF (8STACK=NIL) THEN CONTEXTFOF(REVAL?}S
OOb44L HILE (MOL Onk: ANDL (NOT (STAQUE = NIL)) D0 CONTEXTFOF(STACK)§
Q05456 IF (STAQGUE=NIL) THEN
OOSaDﬁ . -
QOS45
OOJlﬁA ﬁLf”“N'\
0054464 END
005465 NI
0054465 IF NOT ALLDONE THEN
003447 GEGT N
Q0TE4467 I THEN WRITELNS
005472 = OF
005474 IF (TRACE>5) THEN WRITE("—=3x")
00550‘ -

05503
O Q5503
005503
QOEHO3 END (k END OF THE WHILE STATEMENT %)
Q005503 FENDF (¥ ENI OF FPROCEDURE EVAL X
Q05630
005630

03630
0054630
OC”&WO
O O w4 (a SK
Q0563 f.) FROCEDURE READLOOFCINDEVICE yQUTIEVICE S INTEGER)Y §
Q00005 Ck A TRANSCIENT VERSION OF THE READ-EVALUATE
Q00005 WRITE FROCESS %)
000005 1] 2v3 5]
Q00005 Ly
000010 (% F AND Q@ ARE FROCESS REGISTERS.
000010 STACK INUVARIANT ! NUDGE \CH ONODE WHEN IT IS FUT ON THE

Q00010
000010
300010
Q00010
000010
000010
000011
200012
Q00012
Q0013
Qo0014
000020

O)O

f;k)(*‘141(7
000041
000044
DO00AK0
Q00O 65
0000AG
0000 f}

OOOO75
000106
Q00130

O)OIMH
000144
Q00181
000152
000157
000163
000164
Q00164
000200
000201
Q00201
000202
000202
000212
000226
000233
Q00233
Q00237
000241
000243
000254

000260
Q002462
000262
000263
000274
000301
000302

BEGIN
Fross NIL

AND REDUCE ITS REF-CNT
‘8TA
ThLﬁTEU LIKE @& LoCAL REGISTER

REMUUEDe THE VARIARLE

TO AVOID SOME NUDGES X)

FoQi= NILy STACKI= NIL7#

WHILE TRUE 00 Ok READ LOOF X2

BEG
WRT

IN
TELNS

QUTFOINT = OQUTPFUTSLZES

L‘J]
L

MYRE

(TRACE.:

BEGIN

WRITELMNS

WRITE (" —=memz-m ENTER READ LOOF.
WRITENQIE (Qy TRUE)

E NI e

{(A=Q8TOF) THEN GOTO 55

EVAL (FROCESS(TOF Q) v 37) #

WH LL

E SUSPENDED (REVAL) IO

REGIN

@t= REVALJ REVAL = NILF

EVAL (Qy37)

END

NILF SETREG(QsREVAL) S SETREG(REVALyNIL)S

: “") 5 PUTCHOFRINGy *=")5 FUTCH(PRINCGS
THEN

THERN
IN
FUTCH(FRINCG " (") 5
FUTCH(FRINC "2 ")
ENI
ELLSE FUTAT(Q) s
RECYCLE(Q) 5§
GOTO 4
ENIIs

FUTCH(FRINCy BLANK) § FUTCHC(FRINCy " (")
WHILE TRUE DO (k FRINT LOOF %)

REG

IN

WHILE TRUE O (k CAR LOOF X)

REGIN
GETREG(FsQ) ¢ SETREG(QyNILDY S
EVAL (FROCESS(CARyF)Y v 370§
WHILE SUSFENDED(REVALY IO
BEGIN
Q= REVALF REVAL=NILS}
EVAL(Qs37)
ENITS

Q= NIL} SETREG(QyREVAL)$ SETREG(REVALsNIL)?F

SETREG(EXFsNIL) ¥
IF (TRACE=1) THEN

L\;’?\J TLI N 3§
WRITE(" =mrems—-m [N CAR LOOF. CAR OF F
WRITENODE Qe TRUE)
ENIS
TF (Q=NILY THEN

WHE N
CK*

(NO

#)

Q00304 FVGTH
000304 *UTCHCFRINCy " (") 5 FUTCH(FRINGy ") ") 6
Q00320 GoTo 1
Q00 L f-. NIIg
000321 TF O CQ=F) THEN
000323 E IN
0003 FUTCH S FI
000

000 2

000332 IF

000337 REGIN
000337 FUTATCRD) §
Q00343 GOTO 1

FUTCH(FRINGy " (") 3
MEMORYLF 1. CAR . RR
3673 STACK = F3 NUDGE(
000367 ENIG (% CAR ;
000370 13 WHILE TRUE DD ¢ CURLOOF %)
000371 R
000371 C a
000375 (FROCESS (CIRs F) 5 37) 3
000411 SFENDED (REVAL
000414 “BEGI
000416 Q3= REVALF REVALI= NILj
000422 52
000424

Y@

F
&2

T Al %)

0004:

000

QO044%

000445

Uﬁﬂ?;u RLT e N QIR LOOF .

DOV424 Q3= NIL? SETREG(ResREVAL) SETREG (REVAL

OOOﬂmw =

G046 IF (A@=NIL?> THEN SETREG(QyF)

0004772 LS E

000474

Q00474

Q00473 .

Q00475 FUTCH(FRINCS 35 FUTCHOFRINC "%") 3§
000511 e

000512 N[

ﬁOOqiﬁ E COAMEMORYEFISREF NN < 1) THEN
Q00517 SIN

Q00517 MEMORYLF1.CORRR$= STACK?

Q00525 -:!‘* F3 NUDGEC(F)#

Q00532 WEvlei?joPﬂﬂﬁﬁﬁﬁ TRUE

OO053S

0001 J‘J{O

Q0054¢

0008
FUTCH(FRINCs ®

X
i)")(‘)."j?"ﬁ

000574 63 FUTCH(FRINGs ") ")5

QO0&602 TRUE 110 (k FOF LOOF %)

0004603 REGIN

0004603 IF (STACK = NIL) THEN GOTO 4%

QO0A0G MEMORYLSTACKT s REF «NN$= MEMORYLSTACKD W REF « NN-1§

TE (NOT MEMORYLFI.FNAME) THEN GOTO 25

3 MEMORYLF 1. FNAME t= FALSES

000641 GTACK $= MEMORYLFI.CIR, RRS

000647 MEMORYLFI . CIR G RR = Q3
SETREG(QyF)

4 ENDG Ok FOF LODF %)
000661 2 STACK t= MEMORYLFI,CAR.RRS
00670 MEMORYLF.CARRR$= (6
000677 ENIG (% CDOR LOOF %)
000700 3 ENDG Ok FRINT LOOF %)
000701 ¢ ENDG Ok READ LOOF %)
000707 5t SETREG(QsNIL) S SETREGCFsNIL)
000711 ENING (X PROCEDURE READLOOF %)
0007473
000743
000743
000743 (kt++++t++ MAIN FROCEDURE ++++t+t%)
000743
000743 BEGIN
000743 LINELIMIT(OUTFUTy=1)3
000026 (% INITIALIZE FPATTERN NODES %)
000026 WITH 1o
000026 REGIN
000026 ATOMF =
000031 MULTI &= %

000032 FNAME $= FALSE
000034 REE « NUMBERF $ =
000036 CAR s NUMBERF § =
000040 COR » NUMBERF § =
000041 CAR KRS =NIL
000043 CIIR o RE S =NTL
000044 REF o RFe3=NT
000046 ENDS
000046 WITH NEWSUSFEND IO
000046 REGIN
000046 ATOMF i= FALSE
000051 MULTI$= FALSE
000052 FNAME $= FALSE]
000054 REF . NUMBERF § =
000056 CAR « NUMBERF § =
000040 CIR o NUMBERF $ =
000061 REF (KR $= NILS$
000063 CARRR$=NIL3
000065 CORRR$= NIL3?
000066 ENDIS
000066 STACKFUSH:= NEWSUSFENDS?
000067 GTACKFUSH. CAR . NUMBERF $ = TRUE§
000071 STACKFUSH. CAR NNt= 03

WITH NEWCONS DO

REGIN
000072 ATOMF t= FALSES
000075 MULTI3= FALSES

000700 AARGH I=0YSATM("ARGE Y9305
0007085 QFUNCTIO:=8YSATM("FLUNCT !HN"
000712 QFUNMRG ATMC"FUNARG "y
Q00717 QL. HMNIIH.- SEYSATMO"L faMUl (I
000724 QRE =SYSATM O RETIE
00731 QASQE ——'ﬂi‘ SATM("SAQR
5 QACOLONT=8YSATM " 34 2 40
QAF T =8YSATM (" AF
‘I .‘iﬁ]rﬂi hl ‘

WEYT AT
1171\“ HTARRK

QO0744 FEOLNT TROATyNIL Y ?

000775 ALTST = DOTPAIRCQAT o NI)¢

001006 HEE | ATROALTISTyFOINT) 5

Q001020 NUTICG AL ¥

001023 - N g

001024 < ACHAR = TRUES CARRAIGERETURNI= FALSES
0010z : R

Q01 JA

Mlll ELI1:=RBL \‘u\’l

I H. P =BLANK Y
() O 1 () -4 0O SOINT = I'\ U T'"ﬁ 'f yNTL.Y#
001052 FOINT:=DC (R \' L :: SyFOINT) S
001 } FOLINTS == f ".' A TR CG MBLG e FOINT) §
001076 FOINT ¢ = \ *OINTeNIL D) #
001107 FLIST e= NOTHF JISTeNILY#
001120 FLIST = DOTFA .|A i”. { j |.. TeFOINT) ¥
201132 FCFLISTY s NUDGEC(FLLIST)§
001141 .Sk
001142 CALLRECLAIM:=0 NG =03 IRETURNS =03
001144 WRITELNC" T;ww“}mﬂ} ENTERING VERSION 0.1")5%
001152 WRITELNS?
Q01153 DORECLAIMS= TRUES
001154 WRITELN(®—=> MEMORY LIMIT)s
001162 READ(MEMORYLIMIT) §
001165 MEMORYLCMEMORYLIMITI.CORHRi= NIL?
001173 READLOOF (OO 5
001174 (x++++++++++++44 44 +OERUGGING HERE++++++++4++++++++4++ 4444044080
001174 WRITELNG WRITELNC®"- » e | EAVINGS ") ¥
001203 MRITf:Ni”NUF”“ NISFOZET » ‘?LP TURNG 1) 4
Q01215 WRITELNC"NOD RECYCLEDy "y RETURNSIL1) S
001227 WRITE N" AVATL—-> " m-'-)UPI:l.'L.:J. >y
001241
001241
001241
001241
001241
001241 END.

Curriculum Vitae

Steven Dexter Johmson is currently with Bell Laboratories in Holmdel,

New Jersey. He was born in Billings, Montana in 1948. Mr. Johnson received

his Bachelor's Degree in Mathematics and Russian from DePauw University in

1970. He received a Master of Arts Degree in Mathematics from Indiana

University in 1972. He has been a member of the Association for Computing

Machinery since 1975,

