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I. INTRODUCTION AND MOTIVATION

The Oxford English Dictionary defines the sci-

entific method as “a method of procedure that has

characterized natural science since the 17th century,

consisting in systematic observation, measurement,

and experiment, and the formulation, testing, and

modification of hypotheses” [1].

Theory and experimentation, the first two pillars

of the scientific method, have stood for centuries.

Scientists have formulated theories and hypothe-

ses and used experimentation to validate or refute

theories. However in recent years, computing has

widely been considered the third pillar of science

[2]. Advances in sensors, imaging, and scientific

instrumentation have led to generation of large

amounts of scientific data. Data generation have

become ubiquitous with science as well [3], to the

point that some researchers consider data-intensive

science to the fourth pillar [4].

Ivie and Thain define scientific computing “as

computing applied to the physical sciences (biology,

chemistry, physics, and so on) for the purposes

of simulation or data analysis” [5]. Within the

computational science research community, Stodden

states “the digitization of science combined with

the Internet create a new transparency in scientific

knowledge, potentially moving scientific progress

from building with black boxes, to one where the

boxes themselves remain wholly transparent” [6].

As the scientific process further leverages both

technology and data, the need to reproduce compu-

tational experiments has become imperative in the

scientific discovery process. However, as a compu-

tational science researcher reading a scientific paper,

it can be challenging to reproduce the authors’

experiments. To fully reproduce the computational

experiment, one must have the same versions of

software installed and configured, have access to the

original data, and leverage the same parameters used

within the original experiment.

In many cases, having access to all these items

is not possible [7]. Even if the original data are not

available, it should be reasonable to expect experi-

mental setup to be reproducible. Specifically, if the

infrastructure setup and the software installation and

configuration can be performed in a reproducible

manner then scientists are much more enabled at

replicating or extending the experiment in question.

Figure 1 models the progression of a computa-

tional science experiment. The three phases: config-

uration, execution, and publication represent logical

constructs where experimental activities performed

and can be replicated. During the configuration

phase, software must be installed and configured and



when necessary infrastructure must be provisioned.

This phase also includes any data preparation or

downloads. Input parameters may be modified so

that the experiment can be executed multiple times.

Within the execution phase, the actual experiment

is performed. Data and metrics are generated from

experiment for use in the publication stage. In the

publication stage, data tables, figures, and charts are

produced for information sharing and presentation

of experimental results.

Fig. 1. Experimental progression

Many computational science disciplines are lever-

aging machine learning or artificial intelligence, in

general, to make scientific inferences from trained

datasets. Hutson [8] discussed the reproducibility

crisis in artificial intelligence research. One of the

most basic contributors to the crisis is researchers’

lack of sharing and publishing software.

Heaven [9] provides reasons why AI is dealing

with issues in reproducibility. He mentions one of

most basic reasons for the crisis is the “lack of

access to three things: code, data, and hardware.”

He continues that the divide between the “haves“

and the “have-nots“ of AI data and hardware is also

contributing to the crisis.

In many cases as part of the experimental progres-

sion highlighted in in Figure 1 a scientific comput-

ing analysis requires multiple sequential or parallel

steps. Scientific workflow software and platforms

have emerged to enable researchers to define and

execute these workflow steps. Reproducibility is also

considered a requirement of scientific workflows

[10].

II. DEFINING REPRODUCIBILITY

The ability for researchers to reproduce the work

of their peers has become imperative in the scientific

discovery process. Researchers from a variety of

scientific fields have called for the experimental data

and code be made available such that published

results can be conveniently reproduced [11].

Replicability and reproducibility have been de-

fined in a number of ways throughout the research

community.

Mitchell et al. define replicability as “the ability

to run a code and produce exactly the same results

as published” whereas reproducibility is referred to

as “the ability to create a code that independently

verifies the published results using the information

provided” [12].

Madeyski and Kitchenham define reproducible

research “as the extent to which the report of a

specific scientific study can be reproduced (in effect,

compiled) from the reported text, data and analysis

procedures, and thus validated by other researchers”

[13].

Drummond argues experimental replicability is

not a substitution for true experimental reproducibil-

ity [14]. He provides an example of true experimen-

tal reproducibility where two researchers separately

discover the speed of light is finite; coming to the



same experimental conclusion using two different

experimental methods.

Hoefler and Belli define the notion experimen-

tal interpretability, which is considered a weaker

concept than reproducibility. An “experiment is

interpretable if it provides enough information to

allow scientists to understand the experiment, draw

own conclusions, assess their certainty, and possibly

generalize results” [15].

Fig. 2. The spectrum of reproducibility from [16]

There is a spectrum when it comes to considering

replicability, and this spectrum applies to repro-

ducibility as well. Figure 2 covers the spectrum.

Publication only is at one end, which indicates a

lack of access to the experimental data and soft-

ware. An experiment is considered not reproducible

at the publication only end of the spectrum. Full

replication is at the other end of the spectrum, which

indicates software and data are accessible and the

experiment is fully replicable. Full replication is the

standard to strive for.

The bare minimum researchers should provide

are the software and data used in the experiments

[16]; however, these two items together do not

truly provide reproducibility. To fully reproduce

a computational science experiment, several items

from the original experiment must be considered.

Initially, one must have the software configured in

the same manner as the original experiment. Access

to the original experimental data may not always be

possible, but its usage also aides in reproducibility.

It is further necessary to provide information on how

to execute the experiment, such as how to run the

software and what the appropriate parameters are.

Within the reproducibility spectrum, accessibil-

ity to data plays an important role in striving for

full reproducibility. Wilkinson et al. introduces the

FAIR principles for scientific data [17]. FAIR, which

stands for Findable, Accessible, Interoperable, and

Reusable, are guiding principles and should be con-

sidered when enabling the reuse of scientific data.

III. CONTRIBUTING FACTORS TO

REPRODUCIBILITY

This section highlights technologies, research ar-

eas, and other topics that contribute to reproducib-

lity.

A. Programming Languages and Software

Two prominent programming languages in scien-

tific computing, Python and R, have introduced tools

and systems to aid in reproducibility.

For the R programming language, Madeyski and

Kitchenham discuss how the use of the integrated

development environment RStudio and the knitr

R package are tools that aid in reproducibile re-

search [13]. Reproducibility and portability in the

R programming language are two of the key mo-

tivations for Packrat [18], a system for package

dependency management. Packrat keeps track of

each installed package and its version.



Python’s package installer tool, pip [19], provides

a requirements file convention that allows for pack-

age dependencies and versions to be specified. The

pip freeze command acts in the same manner

as Packrat with R by producing a listing of packages

and versions, acting to snapshot the dependencies of

the environment. The pip freeze export can be

used with the pip install command to install

and configure a new Python environment with the

same package versions. It is standard practice to

write the output of the pip freeze command to

a requirements file named requirements.txt [20].

Software module systems such as environment

modules[21] and lmod[22] [23] were created by

administrators of high performance computing clus-

ters to manage versions of computational software,

programming language compilers, numerical and

other system libraries. Scientists using these module

systems can load the necessary artifacts, including

specific versions to create an environment to run a

computational set of tasks.

Computational reproducibility at the Texas Ad-

vanced Computing Center (TACC) was discussed in

the following podcast [24]. The use of lmod[22] was

discussed within the podcast as a means to enable

reproducibility on their supercomputers.

B. Virtualization

Virtualization technology has opened the door to

many advances in computing. A virtual machine

(VM) [25] is a running instance of a computer where

resources such as memory and central processing

units (CPUs) are allocated through virtualization

software. Virtual machines are instantiated from a

virtual machine image. It is possible to export the

state of a running virtual machine into an image.

A virtual appliance is an exported virtual machine

image with the pre-installed and configured software

included. Several works [26, 27] have outlined how

virtual appliances can provide a reproducible envi-

ronment for researchers. Dudley and Butte propose

reproducibility as a two step process [26]. First,

by storing scientific datasets in the cloud more

researchers have access to the data. Second, the

authors introduce a concept called Whole System

Snapshot Exchange (WSSE) where the entire com-

puter system, including the operating system, is

copied so that other researchers can fully replicate

the in silico experiment. Howe shares this same

sentiment [27]. The author states that by providing

a pre-installed, pre-configured virtual machine, the

original “laboratory” is provided intact for future

researchers.

C. Cloud Computing

Cloud computing has emerged in recent years be-

cause of advances in virtualization software. Com-

panies such as Amazon, Google, and Microsoft

provide services to customers for use of the virtual

resources owned by them. The definition of cloud

computing has taken many forms in the academic

community and industry. For this work, we use the

definitions and terms discussed in [28].

Cloud computing refers to the software, plat-

forms, and infrastructure services provided over the

Internet as well as the data centers offering these ser-



vices [29].. The hardware and virtualization software

running on top of this hardware is termed a cloud.

Providers of cloud computing services offer applica-

tion programming interfaces (APIs) as means with

which customers subscribe and interact. The lowest

level of service available with a cloud is termed

Infrastructure as a Service (IaaS). At this level,

users provision virtual infrastructure resources such

as a virtual machine or a virtual block storage de-

vice through an application programming interface

(API). A category of software called infrastructure

as code (IaC) software was created to interact with

the cloud APIs. AWS created its own IaC software

called CloudFormation [30]. Similarly, Microsoft

Azure created its own IaC software called ARM

[31]. Terraform is an IaC software tool created in-

dependent of clouds, but provide plugins to interact

with a particular IaaS cloud [32]. All of these IaC

software tools provide the ability to create software-

defined reproducible cloud infrastructure.

The use of cloud computing has been discussed

by researchers as a means to aid in the repro-

ducibility of in silico experiments [26, 27]. Howe

demonstrates how virtual appliances, which are vir-

tual machines with pre-installed and pre-configured

software, can be used for reproducible research

[27]. The concept of a software configuration snap-

shot can be applied across a variety of technology

stacks. Just as a virtual machine appliance preserves

the pre-configured software, containers can also be

considered a snapshot of a software environment.

Containers are discussed in detail in the next section.

D. Containers

Advances in the Linux operating system kernel

provided the underpinnings for containers. A con-

tainer is a packaged set of software and its corre-

sponding dependencies. Unlike a virtual machine, a

container does not need virtualization software to

run, but rather run directly on the operating system

of the host machine.

Docker [33] is the most populate container

ecosystem. Singularity [34], introduced by the high

performance computing community as a container

technology, can be executed without administrator

access and without a daemon process. Both Docker

and Singularity have commands that can be executed

to create the container. With Docker, the conven-

tion is to create a Dockerfile to execute. Similarly,

Singularity has a concept of a definition file which

contains the set of instructions to execute to build the

container. Singularity and Docker were compared in

the context of HPC applications in [35]. The authors

performed several benchmark comparisons.

The Open Container Initiative (OCI) [36] was

created to align container formats and container

runtime environments to an open standard. Initia-

tives such as the OCI allow for further community

conformity and aid in reproducibility.

Using Docker for reproducibility in software en-

gineering research is discussed in [33]. Boettiger

discussed how containers help overcome four re-

producibility challenges associated with scientific

computing: dependency hell, imprecise documenta-

tion, code rot, and barriers to adoption and reuse



in existing solutions [37].

A common process when building the container

is to version it. Both Docker and Singularity pro-

vide web-accessible hosting repositories so that the

versioned container artifact can be downloaded for

future usage. In the next section, artifacts and artifact

repositories are discussed in further detail.

E. Artifacts

An artifact is an individual software or data

product created as part of a process. For software,

an artifact can be a package for a programming

language, a package for an operating system, a

software container, among other possible items. The

artifact may be created as part of compiling and

packaging software into an individual unit. For data,

the artifact

The following properties are important when

defining an artifact. First, the artifact must be ver-

sioned or it must contain a unique identifier. By ver-

sioning the artifact, it is possible to capture a point-

in-time snapshot of it. Second, the artifact must be

accessible. Typically by hosting the artifact from a

downloadable location, it can be accessed. A hosting

location for a set of artifacts, an artifact repository,

allows artifacts to uploaded, stored, and distributed.

Artifact repositories may also contain capabilities

for indexing artifacts, searching for artifacts, among

other advanced and specific functionality.

Programming languages such as Python and R,

host their software packages in public repositories.

For both languages, the package contains a specific

software version. The R programming language has

two main package repositories. CRAN [38] is the

primary and most widely used R package repository.

Bioconductor [39] is another R package repository.

Bioconductor hosts bioinformatics packages and ref-

erence data. Python also has a public repository

named PyPI, short for Python Package Index[40].

The Linux operating system has several different

distributions. Each distribution has created a soft-

ware package format for installation of operating

system libraries. The distribution providers host

packages in web-accessible repositories and provide

software tools for installing, updating, and removing

the packages.

Docker Hub [41] and Singularity Hub[42] are the

container repositories for Docker and Singularity,

respectively. Each host version container images that

are available for software developers to use or from

which to build a new container.

Tools such as Artifactory [43] provide a universal

repository management platform to either proxy the

public repositories or create private repositories.

Public clouds are also hosting cloud-native artifact

repositories. Amazon Web Services’ hosted artifact

repository is called AWS CodeArtifact [44]. Mi-

crosoft Azure’s hosted artifact repository is called

Azure Artifacts [45].

Software artifacts enable reproducibility because

they provide a reusable, versioned, and download-

able software product that is available for future

usage. The artifact provides a point-in-time snapshot

of the software packaged within it.

Data can also be considered an artifact. Providing

unique URLs, versions, or tags allows researchers



the ability to access a uniquely identifiable version

of the data set. The concept of keeping a versioned

copy of data for a machine learning system is

discussed in [46].

The FAIR guiding principles discuss the use of

artifact identifiers for data. For data to be findable,

it must have a “globally unique and persistent iden-

tifier” [17]. Moreover, for data to be accessible,

they must be “retrievable by their identifier using

a standardized communications protocol” [17]. In

general, the FAIR principles “act as a guide to data

publishers and stewards to assist them in evaluating

whether their particular implementation choices are

rendering their digital research artefacts Findable,

Accessible, Interoperable, and Reusable” [17].

F. DevOps

The advent of cloud computing has enabled soft-

ware developers to provision virtual infrastructure

on demand, thus eliminating the need to work

with an operations team to procure or administer

the infrastructure. The portmanteau DevOps was

created from the words developer and operations,

signifying the unification of software development

responsibilities with operational responsibilities. A

key component of DevOps is automation and soft-

ware tools, in particular, have enabled automation

spanning software operations and development.

Configuration management tools such as Ansible

[47], CFEngine [48], Chef [49], Puppet [50], and

SaltStack [51] aid in the automation of installation

and configuration of software and were created as a

result of cloud computing. These tools enable soft-

ware developers to recreate software environments

because the installation and configuration steps are

maintained software automation versus the steps

being outlined in documentation. The use of these

tools enables researchers to reproduce a software

environment setup for a particular experiment.

Git [52] is a popular distributed version con-

trol system, which enables software developers to

version their software. The versioning of software

is a fundamental underpinning to reproducibility

because it provides a specific reference point for

current or future usage. Github [53] is a Git plat-

form that allows software developers to publicly

or privately host their software project repositories.

Automated deployments of infrastructure and ver-

sioned software configurations are now performed

via continuous integration (CI) and continuous de-

livery (CD) [54] pipelines.

G. Computational Notebooks

The notion of documenting ones scientific work is

not new. Documentation can take many forms. One

example of documentation is the peer-reviewed pro-

cess of scientific publications. Researchers publish

the work performed along with the results obtained.

Another form of documentation, is the written step-

by-step process a researcher has gone through to

perform an experiment. The use of a scientific

notebook to document the step-by-step experimental

process is a standard practice.

Schnell discusses ten best practise rules for a

computational biologist’s lab notebook. Rule six:

“Keep a Record of How Every Result Was Pro-



duced” is directly related to repoducibility. Rule

seven: “Use Version Control for Models, Algo-

rithms, and Computer Code” discussed how good

software engineering practices can be referenced

within the notebook [55].

The IPython [56] community created a set of

tools for interactive usage of the Python program-

ming language. The Jupyter [57] notebook is a

popular computational notebook created from the

IPython community. Although originally created for

the Python language, the Jupyter notebook is now

used by many programming languages within the

data science and scientific computing space, such

as Julia and R.

Binder [58] is a project that builds a Github

repository into a Jupyter computational notebook.

It supports notebooks written in Julia, Python, or R.

It is possible for a person to execute code when ex-

porting the computational notebooks or alternatively

to execute code when re-instantiating the notebook.

This flexibility allows for custom scripts or data to

be included in the Docker image or alternatively

for the custom script to be executed or data to be

downloaded at run-time.

H. Clusters

A computing cluster is a set of computers, at-

tached storage, and networking that operates as a

larger logical entity to solve highly complex sci-

entific computing problems. Clusters can be com-

prised of physical hardware, but the properties of

scalability and elasticity have gained much of cloud

computing’s attention, which has led to work in

building virtual clusters. A virtual cluster [59] is

a set of virtual machines and any corresponding

storage, which operate as a whole to create the

presence of a single computational entity. The ability

to quickly provision a virtual cluster within cloud

computing infrastructure is useful in many repro-

ducibility scenarios within computational science

experiments. For example, a researcher can build the

necessary environment closer to the data, especially

as more public datasets are being stored in the

cloud [60]. Both [61, 62] discuss the how as the

size of data sets grow, and if the construction of a

virtual cluster can be performed in a straightforward

manner, then it is possible to move the computing

infrastructure to the data. This is in contrast to

moving the data to the location of a dedicated high

performance computing (HPC) cluster, such as a

research university’s supercomputer.

Other researchers have worked on bridging the

gap between dedicated physical clusters and the

elasticity of the cloud [63].

I. Comparisons

• Programming languages - Languages such

as Python and R both provide mechanisms

to package software as well as replicate the

installed environment. Con: The language and

packages must be installed and configured.

Con: A researcher must install the base lan-

guage along with all of the package dependen-

cies.

• Virtual Appliances - A virtual appliance

prepackages an entire software environment



Category Pr. Co. So. Di. Do. Ve. Pa. Lg.
Programming Languages Y
Virtual Appliances Y
Containers Y
Source Code Management Software Y
Configuration Management Software Y
Infrastructure as Code Software Y
Artifact Repositories Y
Computational Notebooks Y
Clusters Y

TABLE I
PR. = PROVISIONS INFRASTRUCTURE; CO. = CONFIGURES INSTANCE; SO. = SOFTWARE PRE-INSTALLED;

DI. = DISTRIBUTES PACKAGED SOFTWARE; DO. = DOCUMENTATION AND CODE; VE. = VERSIONS SOFTWARE;
PA. = SOFTWARE PACKAGING; LG. = LARGE-SCALE DISTRIBUTED USE-CASES

and operating system. Con: Data are not typ-

ically stored with the virtual machine image,

but can be done at smaller scales. Con: You

need virtualization software or a cloud to run a

virtual machine. Con: It is also more difficult

to make changes, save, and publish a virtual

appliance for others to use.

• Containers - Containers also have software

preinstalled and configured like a virtual appli-

ance. It is easier to build a container provide

versioned, packaged components. Con: Need a

runtime environment such as Docker or Sin-

gularity or a container orchestration platform

such as Kubernetes to run. Con: Data are not

typically packaged with the container, but can

be done at smaller scales.

• Source code management software - In a tra-

ditional sense, source code management soft-

ware is used to version software; platforms

like Github host source code and are adding

more functionality to perform software com-

pilation and builds through continuous integra-

tion/continuous deployment (CI/CD). Con: The

software must be deployed to a target system

(e.g., virtual appliance, container, or cluster).

• Configuration management software - can

install and configure software, including base

programming language and language packages.

Con: does not spin up infrastructure, if using

IaaS cloud APIs.

• Infastructure as code software - used to

interact (e.g., instantiate or terminate) with

cloud APIs, in particular Infrastructure as a

Service cloud APIs. Con: Either configuration

management still necessary to install and con-

figure within a running virtual server or either

a virtual appliance or container is needed with

prepackaged software.

• Artifact Repositories - Artifact repositories

host and distribute versioned, packaged compo-

nents such as programming language packages,

container images. Con: An installation environ-

ment is still needed to run the software.

• Computational Notebooks - Notebooks are

able to mix code and documentation; can ex-

ecute code directly from the notebook. Con:



there are some limitations to code that can be

executed within the notebook.

• Clusters - Clusters are more complex to install

and configure because of being a distributed

environment, but able to reproduce larger scale

scenarios. Con: Still need software installed

and configured.

IV. BENCHMARKS, EXPERIMENTATION, AND

TESTING

This section discusses the role and ties of re-

producibility in benchmarks, experimentation, and

testing.

A. Benchmarks

A computational benchmark brings conformity to

a problem, an experiment, or an analyses. It serves

as a means for performing evaluations, comparisons,

and measurements. The concept of benchmarking is

not new. Two such benchmarks, TPC and SPEC,

have have existed for many years. The Transac-

tion Processing Performance Council (TPCTM) “is a

non-profit corporation focused on developing data-

centric benchmark standards and disseminating ob-

jective, verifiable performance data to the industry.”

[64] The Standard Performance Evaluation Corpo-

ration (SPEC) “is a non-profit corporation formed to

establish, maintain and endorse standardized bench-

marks and tools to evaluate performance and energy

efficiency for the newest generation of computing

systems.” [65].

Benchmarks are actively being developed in the

areas of artificial intelligence and machine learning.

In [66], the authors introduce Deep500, a meta-

framework that is able to support various deep

learning benchmarks. Deep500 was created with

five pillars in mind: customizability, metrics, per-

formance, validation, and reproducibility.

MLPerf[67] is a more recent benchmarking addi-

tion to the machine learning community. Both the

SPEC benchmark for general purpose computing as

well as the TPC benchmark for database systems

were motivations for the MLPerf benchmark [67].

Bourrasset discussed how the concept of repro-

ducibility as an important characteristic of good

benchmarks and metrics [68]. Because of the neces-

sity to execute a benchmark numerous times when

performing comparisons, it is crucial the benchmark

is reproducible. However, benchmarking measure-

ments can be difficult to reproduce, especially in

the area of artificial intelligence. The The time-to-

accuracy (TTA) measurement introduced in DAWN-

Bench [69] is used as an evaluation criteria. This

measurement makes it easier to compare different

machine learning approaches. It also eliminates any

replication issues.

B. Experimentation and Reproducibility

Four properties of good experimentation are out-

lined in [70]: 1) reproducibility, 2) extensibility,

3) revisability, and 4) applicability. An experiment

exhibits the property of reproducibility if another

researcher is able to perform the experiment and

produce the same result. The properties of extensi-

bility and revisability both dictate that changes to

conditions and modifications must be possible for



the experiment. Those changes may be necessary for

future expandability or if a modification is needed

for corrections to the original experiment. Lastly,

experimental parameters must be of realistic in

nature and resembling real-world conditions while

allowing for changes to thus promote applicability.

Desprez et al. discussed experimental complexity

and scalability [71]. In order to answer the most

difficult of scientific questions, an experiment must

meet the complexity and scalability demands of

the problem. Therefore, advancements in managing

ever more complicated experiments will lead to

improvements in reproducibility and experimental

integrity.

C. Testbeds

Testbeds have been created to allow researchers

across a variety of scientific domains the abil-

ity to perform experiments. Several testbeds have

been created across academic institutions to support

experimentation. Jetstream [72] is a cloud-based

environment for researchers to leverage scientific

computing domains. Chameleon Cloud [73] is a

testbed used cloud computing research and experi-

mentation. The FutureGrid [74] testbed was created

for researchers to do complex computer science

experimentation in areas such as cloud computing,

grid computing, and and high performance com-

puting. Overall, testbeds play an important role in

reproducible experimentation [75].

V. LIMITATIONS AND CHALLENGES TO

REPRODUCIBILITY

This section discusses limitations and challenges

to reproducibility.

A. Limitations

There are many technical limitations to repro-

ducibility. The use of stochastic methods, such

as the use of genetic algorithms or Monte Carlo

simulations, can prevent an experiment from being

fully reproducible [76]. The randomness embedded

within these methods make reproducibility diffi-

cult. The finite nature of floating point precision

also limits numerical simulation reproducibility. It

is entirely possible to produce a different results

from a commutative mathematical operation, such

as multiplication, when modifying the order of the

floating point factors. Hoefler and Belli discuss how

performance may not be reproducible in the domain

of parallel computing, but interpretability can still

foster advancements in scientific knowledge [15].

B. Challenges

There are many challenges to overcome in striv-

ing for reproducibility. One of the single greatest

challenges is overcoming the cultural barrier in

sharing one’s code and work [37]. The academic

community is not incentivized to publish code and

data in a manner to make it reproducible for a future

researcher. Figure 2 highlights the reproduciblity

spectrum, and as one moves from publication only

across the spectrum to full replication, the more

time and effort a researcher has to contribute to the

reproducibility efforts.



Access to very restrictive or expensive infrastruc-

ture as well as proprietary data is also a barrier

to reproducibility. Time allocations for computing

and experimentation on world-class supercomputers

and instruments is very limited and very costly.

Thus it can be difficult to reproduce experiments by

another researcher on the equipment. The lack of

access to software, data, and hardware is preventing

reproducibility in AI [9].

VI. CONCLUSION

The ability for researchers to reproduce the work

of their peers has become imperative in the scientific

discovery process. As computing has become a fun-

damental part of the scientific process, so to has the

need to reproduce scientific computing experiments.

There are many factors aiding in the ability to strive

for reproducible computational experiments. Apply-

ing best practices in software engineering, such as

the use of automation, versioning software, among

others enable researchers to build on the work of

others. Advancements in areas of cloud computing,

virtualization, and containers has also enabled re-

searchers access to software-defined infrastructure

and preconfigured software environments, thus en-

abling reproducibility.

Unfortunately, there are challenges to repro-

ducibility as well, starting the foundational barriers

of getting researchers to recognize the benefits to

setting up a computational experiment for the future.

Additionally, data introduces complexity to experi-

ments. Having access to the original experimental

data can be challenging and thus limit reproducibil-

ity.

Overall, progress has been made in recognizing

and tackling the issues of reproducibility in the area

of scientific computing. It is an area of continued

progress and active research.
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