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Given a dataset of images containing different objects with different features such as shape, size,

rotation, and x-y position, and a Variational Autoencoder (VAE), creating a disentangled

encoding of these features in the hidden vector space of the VAE was the task of interest in this

thesis. The dSprite dataset provided the desired features for the required experiments in this

research. After training the VAE with combinations of a Generative Adversarial Network (GAN),

each dimension of the hidden vector was disrupted to explore the disentanglement in each

dimension. Note that the GAN was used to improve the quality of output image reconstruction.

Professor David Crandall, Chairperson, Computer Science

Professor Zoran Tiganj, Computer Science

iv



Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Methods 3

3 Experiments 6

3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Discussion and Conclusion 13

4.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Bibliography 14

v



Chapter 1

Introduction

Truly understanding data might require identifying its generative factors — a concept that is more

formally known as disentanglement. Classical approaches such as Principal Component Analysis

(PCA) (Zietlow et al. 2021) have been developed for this purpose using linear algebra. In addition,

Variational Autoencoder (VAE) (Kingma & Welling 2013) is a learning-based architecture that

aims to represent the data in its disentangled latent space. In other words, VAEs were developed

for learning a latent manifold in which the axes align with independent generative factors of the

data. Zietlow et al. (2021) argued that VAEs recover the nonlinear principal components of the

data. In addition β-VAEs (Higgins et al. 2016) are a modified version of VAEs that when β > 1,

weigh in more for disentanglement by sacrificing reconstruction quality. In this project, the goal is

to explore the capacities of β-VAEs for learning a disentangled representation, specifically to what

degree the position of a moving object in the input frames can be encoded in the latent space.

Learning the posterior distribution of continuous latent variables in probabilistic models is

intractable. Kingma & Welling (2013) proposed a Variational Bayesian (VB) approach for ap-

proximating this distribution that can be learned using stochastic gradient descent. This approach

can be used in different settings where latent variables of a model required to be learned e.g. in

supervised models with latent variable and learning complicated noise distributions. One example

of using this approach for noise identification and removal is presented in (Wan et al. 2020). In this

work VB is used in an encoder-decoder setting which is known for Variational AutoEncoder (VAE).

In VAEs, the goal is learning the latent variables for input reconstruction. The loss in this setting

is consisted of a reconstruction loss and a disentanglement loss. One variation of VAE is β-VAE

(Higgins et al. 2016, Burgess et al. 2018) where the second term in the loss function of VAEs can

be controlled using a parameter β. This parameter can be used to establish a trade-off between
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the reconstruction accuracy and disentanglement of the learned representations in the latent space.

Thus, there are two measures that are of interest in this setting: (I) the amount of disentangle-

ment (II) the reconstruction output accuracy. Factor-VAE Metric (FVM) (Kim & Mnih 2018) and

Mutual Information Gap (MIG) (Chen et al. 2018) are developed for quantifying disentanglement.

In addition, Frechet Inception Distance (FID) (Heusel et al. 2017) was developed for measuring

the generated output quality. Note that, at some point in the project, I also used a GAN module.

Details of relevant previous works on GAN are mentioned in Chapter 2.

2



Chapter 2

Methods

β-VAEs (β > 1 ) showed to have higher performance in disentanglement representation learning and

generation quality compared to their peers such as VAEs (β = 1), InfoGAN (Chen et al. 2016), and

DC-IGN (Kulkarni et al. 2015) on the dSprite dataset (Matthey et al. 2017). In this project, first

I aimed to reproduce the output of β-VAEs for various learning configurations such as the number

of latent dimension, β parameter value, and the learning rate. This phase of the project required

understanding of β-VAEs loss function and auto-encoders structure, and their implementation.

Essentially, the objective function in β-VAE is to optimize a modified lower bound of the marginal

likelihood as follows:

Ex∼p(x)[log p(x)] ≥ Ez∼qϕ(z|x)[log pθ(x|z)]− βDKL(qϕ(z|x)||p(z)) (2.1)

where x is a data point and the first term aims for a higher generation quality and the KL

divergence term (Burgess et al. 2018) forces the posterior to be closer to the prior p(z) which

results in a more disentangled representation. Note that higher values of β sacrifices the generation

quality in favor of a more disentangled representation in latent space.

Throughout the first phase of the project, I observed that even by setting the value of β

to values < 1, the generation quality was far from the ground truth. This was observed even

though the experiments were performed on a synthetic dataset in a controlled manner and without

complications of a real-world dataset. This poor generation quality might arise from the fact

that; (I) some factors of data might actually be at least partially dependent, so our simplifying

assumption does not fully hold (II) the generator is usually a simple decoder and not capable of

rendering complex patterns in output. To alleviate this problem, (Lee et al. 2020) proposed ID-

GAN that feeds the latent space of VAE to a GAN (Goodfellow et al. 2014). The GAN module is
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employed in order to generate an output with high fidelity. This approach combines the strengths of

the two modules; disentanglement representations form VAEs and high-fidelity synthesis of GANs.

The disentangled factors acquired by the VAE module form the distilled information that will be

the input to the GAN module.

A GAN module consists of a generator G and a discriminator D. The input to the generator

is a noise variable z, and it aims to generate a fake sample from z that maximizes the probability

of the discriminator to make a mistake in identifying the true sample from the fake sample. The

objective function V is as follows:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.2)

where x is a data point as before (Goodfellow et al. 2014). Note that, here is no constraint on z in

this formulation. In InfoGAN (Chen et al. 2016), this noise vector was decomposed to two parts; (I)

a noise vector z (II) a latent code c that aims to represent the salient semantic features of the data

distribution. Essentially, in InfoGAN a regularization term was added to the objective function

for maximizing the mutual information between the latent code c and the generator distribution

G(z, c) (Chen et al. 2016). Thus, the InfoGAN objective function is:

min
G

max
D

V (D,G)− λI(c,G(z, c)) (2.3)

The mutual information term I(c,G(z, c)) includes a posterior p(c|x) (similar to VAEs), which

cannot be optimized directly. Therefore, a lower bound can be calculated for this term by intro-

ducing an approximate posterior qϕ(c|x) for p(c|x). Using this assumption, the lower bound is as

follows:

Ez∼p(z)[DKL(p(c)||qϕ(c|G(z, c)))] (2.4)

Note that in this formulation, the latent code c is computed as part of the whole GAN module

which can degrade the disentanglement performance. In this project, I used the formulation devel-

oped in ID-GAN (Lee et al. 2020) that learns the latent code separately using β-VAE. Using this
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formulation, I can use the latent space of the β-VAE models I trained for the first phase. Note that

in the ID-GAN formulation, the regularization term is as follows:

βRV AE(q) + λRID(G) (2.5)

RV AE(q) = Ex∼p(x)[DKL(qϕ(c|x)||p(c))] (2.6)

RID(q) = Es∼p(s)[DKL(qϕ(c)||qϕ(c|G(z, c)))] (2.7)

The architecture of the ID-GAN network is shown in Figure 2.1. In Step1, the β-VAE model is

trained. The latent code of the trained β-VAE is concatenated with the input noise vector to the

generator for training in Step2. The variable s in Figure 2.1 is written as z in the equations above.

Figure 2.1: The ID-GAN network. The β-VAE model is trained in Step1. Then the latent space of

the trained β-VAE model is concatenated with the noise vector as input to the generator, and the

GAN module is trained. The variable s in this figure is written as z in the equations above. The

schematic was taken from (Lee et al. 2020).
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Chapter 3

Experiments

In this chapter, I explain the properties of the dSprite dataset. In addition, I describe the exper-

iments that have been done and the obtained results. Note that the implementations have been

done in PyTorch.

3.1 Dataset

For the experiments, dSprite dataset has been used. This synthetic dataset consist of 737, 280

binary 2D shapes. The dataset contains all combinations of 3 different shapes (oval, heart and

square) with 4 other attributes: (i) 32 values for position X (ii) 32 values for position Y (iii) 6

values for scale (iv) 40 values for rotation. The images in this dataset are of 64 × 64 resolution.

For each of these attributes we have equal number of labels as the number of distinct values. Using

these labels a subset of the dataset can be selected.

3.2 Results

In the first phase of the project I trained several β-VAE models with different settings for the

number of dimension of latent space, value of β, learning rate, and the number of epochs. Figure

3.1 shows the decoder/generation output of a frame for models trained with different settings. The

numbers in the title of each output are latent dimension, β value, learning rate, and threshold

for excluding some of the x-axis positions from training data, respectively. I chose the settings to

be all of the combinations of |z| ∈ {3, 5, 10}, β ∈ {0.5, 5, 100}, learning rate ∈ {1e−4, 1e−5}, and

position threshold ∈ {5, 16, 32}. A position threshold t means that only the samples with x-axis

position label ≤ t will be considered in training. I used this threshold parameter since I wanted to

exclude some of the positions from training, and see if the learned latent space can be generalized
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to produce a sample in an unseen position during training. This hypothesis can be evaluated by

traversing the latent space in a systematic manner (I have done this for ID-GAN that I talked about

later in this chapter). As can be seen in Figure 3.1, all of the models could capture the position

of the object in the frame, i.e. the circle with high intensity, however the generation quality is far

from the input frame. Note that, all of the models were trained for 100 epochs and the batch size

for all of them was 256. It is worth mentioning that training the same experiments for 1000 epochs

did not change the output, so I included the ones for 100 epochs here.

3_0.5_1e-05_16 3_0.5_0.0001_16 3_5.0_0.0001_16 3_100.0_0.0001_32 3_5.0_1e-05_32 3_0.5_0.0001_32

3_100.0_0.0001_5 3_0.5_1e-05_32 3_0.5_0.0001_5 3_5.0_0.0001_32 3_0.5_1e-05_5 3_5.0_1e-05_5

3_5.0_0.0001_5 3_100.0_0.0001_16 3_5.0_1e-05_16 3_100.0_1e-05_5 3_100.0_1e-05_16 3_100.0_1e-05_32

5_0.5_0.0001_5 5_0.5_0.0001_16 5_0.5_0.0001_32 5_5.0_0.0001_5 5_5.0_0.0001_16 5_5.0_0.0001_32

5_100.0_0.0001_5 5_100.0_0.0001_16 5_100.0_0.0001_32 5_0.5_1e-05_5 5_0.5_1e-05_16 5_0.5_1e-05_32

5_5.0_1e-05_5 5_5.0_1e-05_16 5_5.0_1e-05_32 5_100.0_1e-05_5 5_100.0_1e-05_16 5_100.0_1e-05_32

10_0.5_0.0001_5 10_0.5_0.0001_16 10_0.5_0.0001_32 10_5.0_0.0001_5 10_5.0_0.0001_16 10_5.0_0.0001_32

10_100.0_0.0001_5 10_100.0_0.0001_16 10_100.0_0.0001_32 10_0.5_1e-05_5 10_0.5_1e-05_16 10_0.5_1e-05_32

10_5.0_1e-05_5 10_5.0_1e-05_16 10_5.0_1e-05_32 10_100.0_1e-05_5 10_100.0_1e-05_16 10_100.0_1e-05_32

Figure 3.1: The reconstructed frames obtained by feeding a frame to a trained β-VAE with the

setting in the title. The numbers in the title of each output are latent dimension, β value, learning

rate, and threshold for excluding some of the x-axis positions from training data, respectively.
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Notice that the generation quality in Figure 3.1 is better than others for some of the settings

for example when |z| = 3, β = 0.5, learning rate (lr) is 0.0001 and the x-axis threshold (tr) is 16.

However, still the shape boundaries are not sharp. To improve the generation quality of this model,

I chose four settings from Figure 3.1 and used the latent code of their model as input c for Step2

of training ID-GAN. In the following I discuss the output of ID-GAN for each setting.

General note about all of the settings below. For all of the settings Step2 is trained for 100

epochs. In addition, one way for evaluating the disentanglement is by traversing the latent code

and evaluate the output qualitatively (Kim & Mnih 2018). For example traversing one of the latent

dimensions in a range and keeping the rest fixed might change the position of the object in different

frames. This is a sign that this dimension is representing the position of the object. Furthermore,

in all of the settings the generation quality is much higher than β-VAE alone, i.e. the boundaries

of shapes are sharp, and the background is more clear.

The first setting. |z| = 3, β = 0.5, lr = 0.0001, tr = 16. I traversed the latent code in the

range [−2, 2] with steps 0.5. That means I tried all the combinations of nine numbers for different

dimensions (the combinations are generated using three nested for loop). Figure 3.2 shows the

output for these latent code values. There are 27 columns in this figure which means for the

outputs in each row while two of the dimensions are fixed, the other one can take three consecutive

values. Looking at the first column of this figure, it seems the first latent dimension is controlling

the vertical position of the shape (this dimension is changing only vertically). Although, following

the rows we see that the position, shape, scale, and rotation of the shapes are changing periodically

and that can be a sign that not just one dimension is controlling one properties. Overall, looking

at these output, different patterns can be discovered; for example looking at the few last rows I

do not see any small scale shapes which can indicate that a combination of larger values for latent

code can prevent from generating small shapes. Also, some shapes are generated at the second half
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of x-axis that the β-VAE network did not see during training.

Figure 3.2: ID-GAN output by traversing the latent code in the range [−2, 2]. The settings for

β-VAE: |z| = 3, β = 0.5, lr = 0.0001, tr = 16.

The second setting. |z| = 3, β = 5.0, lr = 0.0001, tr = 16. In this setting, the β value was

higher than the first setting (also > 1) with everything else unchanged. I see more disentanglement

at least for scale. However, higher value of β degraded the generation quality. Similar to the first

9



setting, it seems still a combination of latent dimensions can change the properties of generated

output rather than one dimension.

Figure 3.3: ID-GAN output by traversing the latent code in the range [−2, 2]. The settings for

β-VAE: |z| = 3, β = 5.0, lr = 0.0001, tr = 16.

The thrid setting. |z| = 5, β = 0.5, lr = 0.0001, tr = 16. I traversed the latent code in the

range [−2, 2) with steps 1. So, then latent code can take any combination of 5 numbers. In this
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setting, I see that the scale is changing less than previous settings that can be a sign of higher

disentanglement. Also, it seems the y-axis position of shapes is only changing on certain values

for a specific dimension (the shapes were generated at the top of the frame and periodically their

position were changed to the bottom of the frame).

Figure 3.4: ID-GAN output by traversing the latent code in the range [−2, 2). The settings for

β-VAE: |z| = 5, β = 0.5, lr = 0.0001, tr = 16.
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The fourth setting. |z| = 5, β = 5.0, lr = 0.0001, tr = 16. Similar to the previous setting, I

see scales are limited in Figure 3.5 which can be a sign of disentanglement. Also, the generation

quality is higher in this case. Also, the shapes and y-axis positions are periodically changing.

Figure 3.5: ID-GAN output by traversing the latent code in the range [−2, 2). The settings for

β-VAE: |z| = 5, β = 5.0, lr = 0.0001, tr = 16.
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Chapter 4

Discussion and Conclusion

4.1 Discussion

In this paper I explored the disentanglement and generation performance of β-VAEs. At this stage,

I observed that generation quality is not as good that I can even investigate the disentanglement

performance. So, I used an architecture called ID-GAN to improve the generation quality. The

output from ID-GAN has a much higher generation quality, also I observed some degrees of dis-

entanglement. I evaluated the performance using latent code traversal which can be subjective.

There are some metrics developed for quantifying both generation quality and disentanglement that

I mentioned some of them in Chapter 1. A caveat about these metrics is that the ground truth

disentangled representation of the dataset is needed for being able to calculate them.

4.2 Conclusion

I evaluated the performance of β-VAEs for disentanglement and generation. Furthermore, I looked

for ways to improve the β-VAE performance which led me to some works that discuss the correspon-

dence of β-VAE with PCA (Zietlow et al. 2021), how to alleviate the generation output of VAEs

(Lee et al. 2020), also, is β-VAE somehow prioritizing in retaining information (or any information

is equally good) (Fertig et al. 2018). I also realized it is possible to improve the generation quality

of β-VAEs by using a GAN module.

Quantifying the disentanglement and understanding the number of required dimensions for

encoding a feature could be a task of importance as a topic of interest for future research. Although,

using a GAN helped with having a closer image reconstruction to the input, that might have an

effect on obtaining disentangled features. In this regard, simplifying the network for the main task

13



could result in a precise answer.
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