Morris's Garbage Compaction Algorithm

%
Restores Reference Counts

David S. Wise

Computer Science Department
Indiana University

Bloomington, Indiana 47401

TecHNicAL ReporT No. 75
MorRIS'S GARBAGE COMPACTION ALGORITHM
REsTORES REFERENCE COUNTS

Davip S. WisEe
Revisep DecemBer, 1978

#Research reported herein was supported in part by the National
Science Foundation under a grant numbered MCS77-22325.

To appear in ACM Transactions on Programming Languages and Systems 1, 1.

Morris's Garbage Compaction Algorithm Restores Reference Counts*
David S. Wise

Indiana University

Key Words and Phrases: Reference counting, garbage collection,
storage management.

CR Categories: L4.34, L4.1.

Abstract

The two-pass compaction algorithm of F. L. Morris,
which follows upon the mark phase in a garbage collector, may
be modified to recover reference counts for z hybrid storage
management system. By counting the executions of two loops
in that algorithm where upward and downward references,
respectively, are forwarded to the relocation address of one
node, we can initialize a count of active references and then
update it but once. The reference count may share space with
the mark bit in each node, but it may not share the additional
space required in each pointer by Morris's algorithm, space

which remains unused outside the garbage collector.

*Research reported herein was supported in part by the National
Science Foundation under a grant numbered MCS77-22325.

+Author's address: Computer Science Department, 101 Lindley Hall,
Bloomington, IN 47L401.

Introduction

The elegant three-pass, genetic-order-preserving [8]
garbage-collection/compaction algorithm presented by
F. L. Morris [6] may easily be modified to recover accurate
reference counts for a hybrid storage management scheme.
Deutsch and Bobrow [3] describe such a scheme, in which the
garbage collector is invoked only when no space is available
from the previous garbage collection o4 from a constrained
reference-counting scheme that uses only a few bits in each
record and which, therefore, often records its "infinity"
as the count for heavily referenced nodes. Clark and Green [2]
present practical evidence of the power of such a hybrid.
Morris's garbage compactor can restore an accurate count whenever
the count of incoming references to a node agalin drops within
the range of such a limited reference-count scheme. Thus, a
hybrid storage manager may benefit from the reference counts'
postponement of garbage collection, even in instances where
the counts of all nodes temporarily exceed the capacity of the
counters, as well as from the compaction provided by his
algorithm.

Any garbage collection algorithm may be modified to restore
reference counts by zeroing all counts in a first phase and
then incrementing a count during the "marking" phase every time a
node is approached via an active reference. A non-zero reference

count thus plays the role of the mark after the mark phase. The

disadvantage of this scheme is that a count in memory must
be fetched, incremented, and stored for every active reference
in the system. We shall see how Morris's algorithm avoids

this.

Morris's Algorithm

A brief description of Morris's algorithm follows; the
reader iIs directed to his paper
DR .o detat T f 5] Consider the cell in the center of
Figure la. (We use the term "cell" to refer to the smallest
unit of memory which might be a pointer; generally a node contains
several cells.) It is referenced by accessible pointers below
it in memory (at the left of the figures) and by accessible
pointers above it in memory (at the right). The two passes of
Morris's algorithm will compact all this accessible information
in the high end of memory, preserving the relative order of
everything (assuring that genetic order [8] is maintained.)
In the figures a solid rectangle represents a cell which
originally contains a particular datum and a dotted rectangle
underneath it represents the cell--at the same or at a higher
address--to which the compactor moves that datum. A blank
rectangle indicates a cell whose contents are irrelevant to
this discussion, but which may still contain useful information.
It is quite possible that a solid rectangle might coincide with
a dotted rectangle to its left in the figures as a single

memory word.

The "cell" is emphasized here because a pointer must be
large enough to refer to every other pointer in the system with
a "shifted" reference, as well as ever other node with an
"unshifted" reference. "Shifted" and "unshifted" are motivated by
Morris's scheme for tagging pointers, and correspond to dashed
and solid edges in the figures, respectively. For a typical
LISP system with two cells per node, thrice as many possible
shifted/unshifted cell pointers (as possible node references)
require an additional four bits in each node.

Figure la illustrates the original state of affairs before
garbage collection. All edges illustrated are references
accessible from the user's variables. The mark phase has been
run so all accessible nodes are marked and a census of avail-
able space exlists. The first pass of Morris's compaction
algorithm sweeps from the lower end of memory to the higher
and only alters marked, upward-pointing references. (It also
organizes the unmarked cells so that the second sweep may
skip over contiguous groups of them.) As it proceeds it
increments the census for every marked nocde, determining the
relocaticn address of each, and alters upward references. By
the time it reaches the cell at the center of Figure la, it
therefore will know relocation address of this cell and, moreover,
will have inverted all upward references to fthis into a linear
1ist with dashed ("shifted") edges. Figure 1b illustrates this
inversion, which is reminiscent of the transformation used in
another garbage collector [4]1 in a converse manner. The pro-

cessing of this cell revises all upward references to point to

sl

its new location. Although not illustrated, the datum, INFO,
would itself be inverted and chained into such a linear list
if it, too, were an upward pointer. Figure lc illustrates the
state of affairs at the end of the first sweep.

The second sweep 1s somewhat different because it relocates
all data to new addresses, as well as revising all downward
references similarly to the first. (It is simpler in that it need
not sweep through chunks of contiguous, inaccessible cells.) The
sweep 1s from the highest memory address down, decrementing a
census of all memory for each accessible cell encountered to
yield the relocation address of each cell. A "shifted"
linearization of each family of downward references like that
of Figure 1b is performed, so that by the time the second
sweep reaches the cell considered in the figures, the situation
is that of Figure 2a.

In processing this cell, all downward references are
updated to its new address and its content, INFO, is moved
there. Since the destination of the move must be an already-
swept address, no useful information is over-written. Again,
INFO itself may be altered if it in turn is a downward reference,
but we do not illustrate this in Figure 2b; it indicates the
situation after processing that cell and after all of garbage

collection/compaction.

Restoring Reference Counts

The modifications are fairly simple because there are only

two tight loops in the algorithm where all references to a

=l

particular node are forwarded to its new address. In each of
the two updating sweeps we need only count the number of
inverted (or "shifted") references as they are forwarded.
According to Morris's code [6, p. 6641 we count the number of
times that the two compound statements containing the assign-
ment, M[jJl:=n, is performgd for each value of i with iteration
counters on these two while loops. After the first such loop,
that count becomes the initial reference count of M[il; the
count on the second loop is added on to the reference count of
MEil later. Reflexive references (pointers from locations to
themselves) are not treated; they should be ignored in any
reference count scheme [51].

Reference counts are thus reinitialized to the total
number of upward references--possibly zero--during the first
sweep (In Figure 1 there are five of these), and are incre-
mented but once by the number of downward references during the
second sweep (four in Figure 2). The memory access overhead
for this scheme is, therefore, at most two stores and one
fetch per accessible cell. The same bound is achieved when
reference counts are only maintained on nodes when all accessible
references point only to sﬁch nodes.

The space overhead for reference counting remains the same
here as that for the scheme in which the mark phase restores counts.
The mark bit may be located within the reference count field, as
suggested elsewhere [gl, because "accessibility" information can

be moved from the mark bit during the first sweep. We need

-5

only implement Morris's suggestion that the first sweep pass
chain the holes of available space together so that the second
pass may traverse the chain instead of scanning for marked
nodes. (A hole one pointer long can be marked and linked in
the chain, while a larger hole remains unmarked, linked in
the chain, and loaded with an explicit measure of its size.)
His suggestion speeds up the second sweep and releases the
mark bit in accessible nodes for use within the reference count
already in the first sweep. A reference count field must be
at least two bits long in this scheme, however, in order to
provide a distinct zero, an "infinity" and meaningful counts
(one, two, etc.) in between, all of which can occur between
the two sweep phases. In the following strategy, however,
a one-bit count suffices for most nodes.

Deutsch and Bobrow [3] suggest a scheme wherein nodes
with reference counts of two or more have limited counts main-
tained in a short scatter table hashed on the addresses of
those nodes. Reference counts of one are efficiently denoted
by absence of a node from the table, whose brevity is justified
by the plethora of uniquely referenced nodes [2]. TUnder such
a scheme the mark bit itself may be used as a one-bit reference
count [9] in order to avoid unsuccessful probing of the hash
table outside garbage collection by the following procedure.
The scatter table is emptied before the sweeping/compaction
phase of garbage collection. If an accessible node with exactly

one upward reference is discovered on the first sweep then its

-6~

reference count is initialized to 1 and nothing else is done.

If it has zero or at least two upward references, its one-bit count
is initialized to 0; in the latter case an entry is made in

the scatter table hashed on its relocation address (n in Morris's
notation). On the second sweep a reference count is updated after
consultation of the scatter table whenever one or more down-

ward references are uncovered. If the reference count was 1

it is changed to zero and a new entry is inserted into the

table for that (relocated) node: 1its count 1s the number of
downward references plus one. If the reference count was 0

and there already was an entry in the table, the number of
downward references is added to that entry. Otherwise (count

was 0 and there was no entry) there were no upward references,

so the action depends on the number of downward references: if
only one, then the count is merely changed to 1l; otherwise the
number is inserted into the scatter table at the position already
consulted. At the end of garbage collection all nodes with
reference counts of 0 will have valid counts entered in the
scatter table, but the far more numerous nodes which are uniquely
referenced (will not have a table entry and) will have a one-bit
reference count of 1. Outside the garbage collector the scatter

table need only be consulted when that mark-bit/reference-count

indicates that an entry exists.

‘Reducing the Space Overhead for Shifting

In spite of all the extra space required in each pointer

by Morris's collector (the bit for his shift increment [6]

-7

and the ability to address every pointer, as opposed to every
node), there appears to be no way to put it to use within the
reference count between garbage collections. The problem 1is
that M[il--in Morris's notation--may or may not contain a
shifted reference to another pointer at the code where we
would initialize and increment its reference count in either
of the two sweep passes. The garbage collector would break
down if this information were confused.

(This space might be used by a Deutsch-Schorr-Waite marking

phase [7] which maintains its stack with shifted pointers.)

A reduction is possible, however, when every pointer
has a mark bit associated with it. This sort of data structure
occurs in ECL or under linearization (sometimes called CDR-
coding) [1] where nodes may physically contain subnodes. That
mark-bit may be used to play the role of the shift increment
during the sweep phases since the accessibility information
can be moved away into the inaccessible nodes during the first
sweep (as shown above), before a pointer's content must be
"shifted". Because the pointers in such systems are already
large enough to refer to any other pointer in the system,
Merris's compaction may be implemented without any additianal

space overhead 1In such an application.

=8=

References

l.

Clark, D. W., and Green, C. C. An empirical study of 1list
structure in LISP. Comm. ACM 20, 2 (February, 1977),
78_87 o

Clark, D. W., and Green, C. C. A note on shared structure
in LISE. Information Processing Lett. 7, 6 (October, 1978),
312-314.

Deutsch, L. P., and Bobrow, D. G. An efficient, incre-
mental, automatic garbage collector. Comm. ACM 19, 9
(September, 1976), 522-526.

Friedman, D. P., and Wise, D. S. Garbage collecting a

heap which includes a scatter table. Information Processing
Lett. 5, 6 (December, 1976), 161-164. Erratum Information
Processing Lett. 6, 2 (April, 1977), 72.

Friedman, D. P., and Wise, D. S. Reference counting can
manage the circular environments of mutual recursion.
Information Processing Lett. 8, 1 (January, 1979), 41-45.

Morris, F. L. A time-and-space-efficient garbage compaction
algorithm. Comm. ACM 21, 8 (August, 1978), 662-655.

Schorr, H., and Waite, W.M. An efficient machine-independent
procedure for garbage collection in various list structures.
Comm. ACM 10, 8 (August, 1967), 501-506.

Terashima, M., and Goto, E. Genetic order and compactifying
garbage collectors. Information Processing Lett. 7,
1 (January, 1978), 27-32. -

Wise, D. S., and Friedman, D. P. The one-bit reference
count. Nordisk Tidskr. Informationsbehandling (BIT) 17,
3 (September, 1977), 351-359. o

"OpouU B (UL T[990 3SJITJ 9Yj) 03 saouadajad [eULBTIQ B[2andl4

S31583HAAY

a

AdOWNFIN DNISVIHONI

O4NI

Ve
N

*gsvd 3sa1g

--r®

.
.
.Y

‘dssmMs

1SITJ 9Yg JO pus 9Yyj3 3B S90UaI9Jod paemdn pasTAdy ‘o7 8anBIg

?
.
.[/MEZ_

doomMs puooas 8yl JO 3Spru

9U3 UT S90UdJ9Jad Po30BdUIOD PJIBMUMOD PUBR DI3IIAU]

*BZ 8an3dTyg

e

rI:rllL
/b
_-.lllll.\ \
] i \
| ¢ —
-lll.-.llln_ .__. i
) V!
’ |
p———a | rm——
i | \
I ? | \
| CRPE SN | \
R \
’ \
_OH_Z_ |
| Sp_— |

-_—

[o ——

-

-

*doams

puUODasS ayj J93Je S90uUsJIajaa poajoedwiod pur pasSTAldy Qg oJandTyg

