An Analysis of Backtracking with Search Rearrangementx
by
Paul Walton Purdom, Jr.
and

Cynthia A. Brown

Computer Science Department
Indiana University

Bloomington, Indiana 47405

TECHNICAL REPORT NO. 89

AN ANALYSIS OF BACKTRACKING WITH

SEARCH REARRANGEMENT

Paul Walton Purdom, Jr. and Cynthia A. Brown

Revised: September 1982

*Research reported herein was supported in part by the National Science Foundation under grant number MCS
79-06110.

An Analysis of Backtracking with Search Rearrangement
by
Paul Walton Purdom, Jr.
and

Cynthia A, Brown

Abstract. The search rearraFgement backtracking algorithm of Bitaer and

Reingold introduces at each level of the backtrack tree a variable with a

minimal number of remaining values; search order may differ on different

branches. For conjunctive normal form formulas with v wvariables, s
a

literals per term (s»3), and v“ terms (% {a{s), the average nunber of

nodes in a search rearrangement backtrack tree is

s—a—1
exp [G(v 7%)] (I.e., for some positive comstants ay, a,, 2nd v,

s—o~—1
when v2v, the number of nodes is between exp (ayv £) and

s—a—1

exp (a, ° °).) For 1<a < 5 the average number of nodes is between
2 \ z

s—a—-1 s—1 s—g-1
exp| 6(v &) and exp [‘6((1n v)sﬂz ¥ E2 ?] . This comparzs with

s—a
exp[e(v s-1)] for ordinary backtracking. For 1<a{s, simple search
rearrangement has approximately the same effect on speeding up
backtracking as does reducing the problem complexity by decregsLng the
number of literals per term by one., Thus simple search rearrangement
backtracking leads to a dramatic improvement in the expected running

time.

This research was supported in part by the National Science

Foundation under grant number MCS 7906110,

1. Introduction

Many problems can be regarded as a search for all the solut.omns to
an equation of the form E(xl Sives xv) = true, where P is a v-ary

predicate over an ordered set of variables § = {xi] and eiach X

1ikv
has finitely many possible values. A straightforward, but expomeatially
costly, way to solve such a problem is to generate and test each
combination of values of the variables. For most problems, backtr:-acking
can reduce the amount of time required to find the solutionms.

To perform backtracking it is necessary to have, in addition to the

problem predicate P , an iﬁtergediate predicate EA for each subset A
of S . The predicate BA must have tﬂe valuve true for any assignnent of
values to the variables in A that can be extended to a solution to P .
An intermediate predicate is powerful if it is false for most other
assignments of values, Powerful intermediate predicates that can be
calculated efficiently eliminate false starts quickly, naking
backtracking feasible for large problems.

In backtracking each variable starting with the first is set to its
initial value. As each variable is set, the appropriate intermediate
predicéte is tested. If it is true, the next variable is set, If it is
false, the current variable is reset to ifts next value; if the current
variable has no more values, it is removed from the set of variables with
values, and the previous variable is set to its next value. Knuth [4]
gives a good introduction to backtracking.

Bitner and Reingold [1] consider a modification of backtracking

which we call (simple) search rearrangement backtracking. (For other
nodifications, see [6].) Instead of setting the variables in a fized
order, the unset variables are tested at each step to select one that
procduces the fewest true values for the corresponding interm:diate
predicate. Bitner and Reingold showed experimentally that this search
rearrangement process improves the efficiency of backtracking. In this
paper we study search rearrangement backtracking amnalytically, and
compare its performance with that of ordinary backtracking, which we

analyzed in [2].

2. lodel and Notation

To compare backtracking methéds, we analyze their average
performance on the problem of finding all solutions to conjunctive normal
form formulas having t terms and S' literals per term over a set S
of v wvariables. Duplication is permitted in the terms for a predicaﬁe
and in the literals within a term, so there are (2v)S! predicates in
the set., For each predicate P and set of variables A € S , the
intermediate predicate EA is the conjunction of those terms of P for
which all the variables are in the set A. (If there are no such terms,
then P, is by definition true.) These intermediate predicatss are
natural and efficiently calculable. The set of predicates .s NP
complete (for s2»3, t>v, and v increasing), so some problems in the set
are hard. Ve find that the backtrack trees for most of the problams in
this set are similar to those encountered in realistic problems, ard this
set of probléms is suitable for analysis. We therefore believe these
problems are a good model for our study of backtracking.

For purposes of illustration we use the predicate E = T1 A'TZ.N'Ta N

wes A'E“ll’ wiere Tl = (Vl \/ vq \ = V:;_}, TZ = (Vl AV V1 V= Vg), Ts = (‘v‘l \Vi
= V:-}V \’5), Ty = (Vl \ Vo V - \’6), Lo = (= VIV - Vl\}' \:2), Tg = (= "1V vy

-~
i
a

Vva), T = (=viV vaV vg), Tg = (= viV v3V vg), Tg = (= viV = vgV + v3),

Tig = (= v1V = v3V vg), and T3 = (v vV vz V vg). Notice the duplica-

tion in the literals within a cliause (as in (v4V v3V = v3)) and in the

cilauses in the predicate (T, = TS). Intermediate predicate E{l 2.5}
- 5 »

e
v

T{ANT,ATsA Ty intermediate predicate Lgy, 3} is the empty predicate,
which is identically true,

Cimple search rearrangement backtiacking is done as foilows, Let S
be the set of variables without values (the unset variables) and &' the
set of variables with values. Let w range over the problem variables;

denote the value of problem variable by Valuel[w] for 1 { w (v. Tle

—

set 5" is maintained as a stack.

Siwple Search learrangement

Sten 1. (Initialize.,) Set £" to empty and ' to £.

Step 2. (Solutien?) If &' is not empty, go to Step 3. Otherwise,
the current values in Vaiue constitute 2 sclution, Gec 'to
Step 6.

Step 3. (Findé best variable,) For each variable w in £' do the
rest of this step. (The order im which tle variables are
tested is immezterizl for our purposes.) Fer both Vaiuwelw]
“ false and Value[w] ¢« true, compute Pomyy) » If the
result is false in both cases, exit the loop for w and go
to Step 6. If it is false in one anéd true in the other,
renember the valve of w that gives true and exit the loop

£y

for w eand gec to Step 5.

Sten 4. (Dinary node,) Let w be the smallest elemert of §'. Set
8" « 8"w{w} and €' < S'-{w}. Set Valuve[w] ¢ false, mark
w as binary, ancé go to Step 2.

£tev 3. (Unary node.) Set Value{w] to the unigue value that 1:2kes
ES"U{w}true- (This value is remembered from Step 2).
Set 8% & 3" VU {w} and &' ¢« 8'-{w}, Hark w =&as unazry,
and go to Step 2,

Step 6. (Next value,) If £ s enmpty, stop. Otherwise, set w
~ top (8"). If w is marked as binary anc Valuelw] =
false, set Valuefw] ¢ true and go to Step 2.

Step 7. (Dacktrack.,) Set 8" « 8"-{w}, & & S'v{w}, and go tlo

Step 6.

4ol

IFigure 1 shows the backtrack tzree obtazined by applying the simple
search rearrangement algorithm to L, with the comvention that unset
variables are tested in numerical order according tc their subscripis.
Initially, no variables are set. The first time Step 3 is executed it
does not find a variable with zero or one values, so in Step 4 vq is
selected and set to its first value (false). ZHeturming to Step 3 by way

-
w

of Step 2, testing 3{1’2} = 1 N Ts N Tg hows that setting v, fo
truze makes the predicate talse., Therefore v, is selectec and set to
false in Step 5. In a similar way, Vs, Vg, and Vi oare forceé to assuae
the value faise. The only remaining variable, Vi is not constrained and
so is not selected in Etep 3; it is selccted as a binary variable in
Step 4, lecading to two solutions, The remainder cf the backtrack tree is
nroduced in a similar way,

We wiall coﬂcentrate on the number of binary nodes in tle average

search rearrangement backtrack tree, Let N be the number of bimary
& P

nodes in the backtrack tree for predicate P. The total number of nodes

in the tree is between NE and (2v-1) HE . Assuming that for each ASS,
Py can be evaluated in constant time, the total running time of the
algorithm is between clﬁz and czvaE for some constants cy and c) .
Ve compute N, the average value of NE. The average values for both
the total number of nodes and the total running time are N times some

polynomially bouncded function of v .

solution salEeion. solution

Figure 1. The backtrack tree obtained by applying a simple search
rearrangement backtrack algorithm to predicate E. Each interior node 1is
labelled with the name of the variable that is set as that node. At
nodes where a variable is forced to take on a particular value, the
clause or clauses that cause the forcing are shown in parentheses. At
the leaf nocdes where a variable with no values is discovered, the clauses

that eliminate both values are shown.

In [3] we give the results of a statistical study of the ratio of
the number of binary nodes to the number of unary nodes and to the number

of predicate evaluations.

3. The Averapge Number of DBimary Nodes

Ve now derive an exact formula for N , the average number of binary
nodes. he exact formula has an exponential number of terms, so we also
derive upper and lower limits‘with a polynomial number of terms.

Our method is to consider each possible binary node and to count the
predicates that have that node in their backtrack trees. Sumnirg over
all binary nodes and dividing by the number of predicates (2v)s%) gives
the average number of binary node;'in a tree,

Ve begin by counting the predicates for which a particular variable
w occurs as a binary node withiall the other variables in S’ set to
false, (Later we multiply by an appropriate factor to allow for other
settings of the variables,) For this to occur, the algorithm must reach
Step 4 with every variable less than w set to falge, with the wv:zlue of
w unconstrained, and with none, some, or all of the variables greater
than w set to false., Any variable y>w which is set to false must have
been set in Step 5: it must have been forced to assume the value false by
a clause made up of literals with truth value false, the literal -y,
and nothing else. The variables less than w may have been forced to
false in Step 5 or may correspond to a bimary node where the false branch
is being explored; the step at which these variables received thei: val-
ues does not affect the analysis.

Let aq equal the number of wvariables that precede w (recall that

they are all set to false), Let q; equal g5 plus the numoer of

variables whose values are forced to false when just the first g
variables are set., Let q; be Q51 plus the number of variables whose
values are forced to false by the 951 variables. Let m (0{m{v) be
the smallest value of i such that Q41 9 - Ve call mn the number
of rounds of forcing.

To illustrate, consider the binary node for V4 on the left branch of
the backtrack tree in Fig. 1. Variables Vis Voo and \£ precede V4 in the
ordered set of variables, so 99 = 3. With these variables set to false,
vs is forced to false by T, and vg is forced to false by T, .
Thus q; = 5. Setting vs and vg to false does not force any more
variables, so m=1, (A second round of forcing would have occurred if the
predicate had contained a term such és 1vsV vgV 5 vg).) Notice that
the rounds of forcing used in the analyses do not necessarily cor:espond
to the order in which variables are %et by the aigorithm. They are a
device to facilitate counting the predicates that have a particular
binary node. The analysis starts with the assumption that a node such as
Vg is binary and counts the number of ways in which this can happen.

Assume that the variables forced during rounds 1 through m are
consecutive variables. (We later multiply by a factor to account for the
number of ways of choosing these variables.) For.the rest of this
section let the variables be renumbered so that the variable for the
binary node is gqp, so that the forced variables start with q0+1
Recall that each predicate in the class we are considering has t clauses.
For purposes of counting we divide these clauses into two classes. Given
m and Qs Gps wee Qpy» the predicate must contain clauses that force the
variables from qg * 1 to q, to the value false., Ve call these required

clauses., For 1{i{m and 1£x{q.-q._4, let j._ > 1 ©be the nunmber of
v S i Jix

clauses that force variable q;_1tx to false, given only that the first
q;_q variables are set to false. Notice that for (i,x) # (i’,x’) the

clauses counted by jix are disjoint from those counted by j

Jirgr -

Remaining clauses in the predicate are called permitted clauses,
Permitted clauses are any clauses other than required clauses that are
compatible with the assumptions we make about the node we are
considering. Whether a clause is permitted or required depends on the
binary node being considered., The same clause might be a permitted
clause for one node and a required clause for another. In predicate E,
when vy is set to false and w = v4 the variables v,, v, vg and Ve
are forced. Since v, and v precede V4 we do not care whether they
were forced or set, and so the clauses that force them are not'reqfirsd_"
clauses. Variable Vs is forced by T,, and Ve by T4 » S0 jq1 =1
and j12 = 1, The rest of the clauses are ‘permitted cléuses.

The inital counting arguments are summarized in Table 1., First
consider the required clauses for round i of forcing. Variable

Q;1 * X (S RO qi—l) is forced to false by clauses containing

§ =
some of the first gq;_; variables, all unnegated, and the negated literal

for the forced variable. Since clauses containing only the first ¥ K

variables (and not the forced variable) are not suitable, there are Qi-l

= (g1 +1)% - q;_4°

such clauses. The Qi—Z of these that contain
only the first Q-9 variables and the forced variable are also
unsuitable, since they would force the variable on an earlier round than
the ith. Therefore there are Ri—l = Qi—l = Qi—2 clauses that force
variable q; 4 +x onround i. (Use 0 for Q_{ .) For each variable

qQj1+x forced on round i , the predicate contains clauses chosen

jix

(with replacement) from a set of Ri,i clauses;, the sets corresponding

to distinct values of x are disjoint. The total number of required

clauses in the predicate is E Jig -
i,x

The remaining clauses in the predicate (the permitted claus:s) can
be selected from any of the (2v)® clauses except the following. There
are q; clauses made up entirely of false (unnegated) literals for the
first q, variables. A predicate containing such a clause wculd be
false and would not reach Step 4 under our assumptioﬁs. For each of the
(v-qm) unset variables, there are Qm clauses that would forc: it to
true on an (m+l)st round of forcing. This accounts for (-q,)Q,
clauses. Immediately after round i (0£i{m) there are (v-q;) unset
variables and Ri clauses that would force them to false on round i+l .
(Ve exclude the required clauses from fhe class of permitted clauses,
along with unwanted forcing clauses. The required clauses are :counted

explicitly by the other factors of the formula.) This accounts for

2 (v-q.)R. clauses.
i ey
0<1<m

Much of the complexity of our analysis results from dividing the
forcing into rounds., This division is necessary in order to count the
required and permitted clauses-correctly. A variable can only be forced
by being in a clause where all variables for the other literals have
already received values. One of the approximate formulas we present
later was obtained by dropping the requirement that wvariables be forced
in a legal order.

The total number of predicates that satisfy our current assunptions

is

where

Lo =)
1

(29)® = qf - (wq)Q - ¥ (vq,)R,
0%idnm

1]

(2v)S - q; - 2{v-qm)Qm - Z (qi+1 —qi}Qi .
0¢idm

The total number of binary nodes in all the (2v)St backtrack
trees, which is (2v)S'N , can be obtained by multiplying this forrmula by

the appropriate factors and summing. The result is

s T T T

st
Oi'm..j\,’ O£q0<q1{"'<qm<v JI]‘:O".-’Jm’qm-qm“.\
v-q,-]
q t .)
) i sy
2 m(’ ; : t- { J)(Q'q seees @ a J'qu
o [WE T gk TaxdNT] 0 &
1 msq -9 i,X
m ‘m-1 ’
t"i J'IX 131)(
P 'i,X R}.(H
i-1

T<i<m

where the factor ilm accounts for the number of ways to assign values
to the q, set variables, the first multinomial accounts for the number
of ways to order the terms (tlﬂ.tz is different from t, Atl, for t, #
tz), and the second multinomial accounts for the number of ways to select
which variables are forced on cach of the m rounds. The initial gq,
variables and the variable for the binary node at Step 4 aze not
available for selection. The sums over j regquire that there is at
least one term to force each forced variable. The sums over the a;
require that at least one variable be forced on each round.

We adopt the convention that limits on a summation variable zre not
shown explicitly when we intend that the sum.be taken over all values of

the variable that result in a non—zero value of the summand. If, for ex-

anple, the variable appears as the bottom of a binomial coefficiert, the

10

implied range is between the value of the top of the binomial and zero.

The sums over the j,

subtracting the jix=0

is

L

O<mev 0$q0<q]

(2v)5tN =

I (4 _‘qo) (_Uqrqo”r (. t
1

1

v-a, -1

q'l"qO’ LR sqm—q

Summing over all jix

nomial gives

V-g5- 1

(Q]-qD-119---$qm"qm_1"1m,1ls-..91

T b -
O<m<v Osq0<q1<..
The sum T i R equals

T<n=m

term.

<C| <V .]2.3::0

m-1

< <V i s 88 -l
I 1 E

can be done using the binomial theorem and

The sum over all the jlx for 1g<gq1~q0

. g,

M0~ - 1
Jpp0e 3y, g4 o’

= 1 3 i

ix X

i1 ,x% X
v-q, -])(P+ R,) LU

2<izm

and combining the binomials with the second nulti-

11

4, Lower and Upper Limits

Formula 1 is not very useful for v >> 10 because the number of
terms increases exponentially with increasing v . We obtain a lowver
limit on its value by noticing that, for each fixed value of m , :he
corresponding partial sum is positive. (It equals the number of binary
nodes that are immediately preceded by m rounds of forcing.) The k—sum

lower limit is obtained by replacing z in Formula 1 by z .
0(m<v 0<{m<k

In particular, the one—sum lower limit is

(2v)StN)) 2%93 ; (2)
0<qp<v

where FO = (2v)S - qg = Z(V—QO)QO , and the fwo—sum lower limit is

q q,-q,*i ¥ = g =
(20)°"N > 3§ g2yt 0 1 0) P+

t
Z A TN)
Oﬂqosq1<v i] q} qo 11'1]9V q] 1 1

0

where Py =(2v}s—q§—2(qu1)Ql - (q1~q0)Q0. The m=0 and m=1 sams
have been combined.

Upper limits can be obtained by allowing "sloppy counting"” of
required and permitted clauses. If some permitted clauses are
misclassified as required clauses, the total number of predicates that
meet the criteria increases: all the original predicates are still
counted (though some of their clauses are put in a different class) and
some additional, spurious predicates are also included. If some clauses
are classified as both permitted and required, the number of spurious
predicates increases even more, Another simplification that increases
the size of the sum is to disregard the necessity for legal rounds of
forcing. Ve cOmb;ne these approaches to obtain upper limits with

polynomially many terms.

12

(3)

The one-~sum upper limit is obtained by ignoring altogether the idea

of required vs., permitted terms and the idea of rounds of forcing. " All
terms that are not false and that do not force unset variables are used,
and all variables except the one for the binary node are available for
forcing., Once the variable for the binary node is chosen (and choosing
it accounts for the factor of v in Formula 4) there are v—1 variables
available to be set or forced, or left unset (choosing these accounts for

the factor of (v_l)). If 99 variables are being set or forced, th:re

are 2 branches. Finally, a factor PO is needed to count the number
of legal clauses under these assumptions., The derivation of Py is
summarized in Table 2; P0==(2v}s—q8—2(v—q0)Q0, and PS is the number

of predicates made up of such clauses. The final formula is

(2v)*< T 28 (Vc]l) P - ()
- quocv 0

Notice that the factor of v was mneeded here because the 4q
variables that are set or forced are chosen arbitrarily and do not
necessarily precede the variable for the binary node, nor does the value
of g, determine which variable is the ome for the binary node. In all
our other formulas variable g4+l (before renumbering) is the variable

for the birary node and so the factor of v is not needed.

In the two—sum upper limit we have 'ql - qy sets of required

clauses, each with qf - (ql—l)S elements (and zero elements when gy =
0). Here we ignore the different rounds of forcing: each set has all
the clauses that can force a variable if it is the last one to be fcrced
(that is, the clauses contain literals of the other forced variables).

Thus we over—count the actual number of forcing clauses available. These

13

required sets are not disjoint; they contain qf = qg terms in all.

Table 3 summarizes the initial analysis. The final formula is

(2)5tn < E Ez R G RS

O<q04q](V 'i q1~q0-1]’]]’v_q]-1 (5)
[Py + ijlaf - (q-D)°NF, |
where P =(2v)% - 2(v-q4)Q - 2qf + qg. In this formula gq; plays a

role similar to that of q, in Formula 1; the role played by qp is

similar in both formulas,

Another upper limit can be obtained from the analysis in Tabl: 4.

It leads to the following formula:

q,-qntl i A 5
st E E 2%(1)1 R s
(2v)” "N = = (qul—l)l

quo q]<v O<1]_ ...,Osiq]_q0£1

[(20)% - 2(v-a,)Q; 23S+ Q5 + 1 i,

[(ag*iy)° - (agip- 1"

We do nmot, however, analyze the asymptotic behavior of this formula.

The two—sum upper limit can be improved in various ways. For
example, one can treat the first few rounds of forcing exactly and the
remaining rounds approximatgly. Another approach would have an
approximate treatment for forcing the first half of the forced variabl.es,
followed by an approximate treatment for the second half. Ve have not

investigated which of these methods gives the most precise answer fcr a

14

fixed amount of computation.

5. Asvmptotic Analvysis

¥e now consider the asymptotic behavior of the formulas for the one-

and two—sum lower and upper limits (four cases), holding s fixed,

letting t=v® for a fizxed a , and allowing v to become large. We
find only the leading term in the exponential dependence of the resul:.

In each of the four formulas (once the sum over iy is done, if
necessary) the sums contain no mﬁre than v2 terms, where each tern is
positive. Therefore, to the required accuracy (ignoring polynonial
factors), each sum is equal to the largest term., Most details of the
analysis are omitted; they are similar to those in [2]. We assume 523
and 1<a<{s-1. |

Briefly, the procedure is: (1) sum over il (if necessary); (2)
expand multinomials into factorials ;nd use Stirling’'s approximation for
the factorials; (3) take the logarithm of the summand; (4) take the
derivatives of the logarithm (with respect to qy and to ql) and set
them to zero; (5) solve the equations asymptoticaliy to find the values
of q; and qi that maximize the summand; (6) substitute the values of
qp and gqq into the log of the summand to find the log of the maximum
term; and (7) obtain the final value by increasing the error term to
log v (if necessary) to allow for missing polynomial factors and expo—
nentiate the result. Do 40 pages of calculations without error and
obtain the results given below. (Appendix 2 outlines the necessary

steps.)

The one—sum lower limit summand is maximized with

1.5

This_gives
. -a-1 s-2a
1 272 2(s-2).en2 s s-z)
s ol (B Az 57 o) 4 o

The one-sum upper limit summand is maximized with

S—n-1"

| 2
9 (2 - FL%) A @((T F(v) 52 v_;?) Lo,

where F(v) is the solution to the equation

F(v) = 200 yien a(v) = slsm1)(s22) ja-1
In F(v) 2

For any >0 we have for large v

—aly) ¢ i) ¢ _alv) (1+(1+g)inln a(v),

In a(v) In a(v) In a(v) ’

so 1n F(v) ~ (s-1)ln v , where x(v) ~ y(v) wmeans iff; ;E:; =

This gives

N < exp!isg1 (5(5—1)(5-2)), ’ (Eu F(v))s‘ 75
1. 8ep-l
* 2(5—{—:;%-(5_—2) (En F(v)))s-2 y 572 7

16

The leading term in the exponent for the one—sum upper limi: is larger

than the corresponding term in the cne—sum lower limit by the slowly
sl
increasing factor (ln F(v))S72% .
Tihe two—sum cases reguire approximating a sum of the {orm

Hhentanot = (n® phds ared
i J

where a, ¢, anéd t are function of v, 9g and aq t=v®, and where
{g} is a Stirling number of the second kind [4]. Since each term on the
right side is positive, a lower limit is the first nom-zero term (j=a) .
The first non—zero term is also a good approximation for the total sum if
the quantity act approaches zero as v becomes large (in our application
this happens wkhen a)%) . For thé:two—sum lower limit we use

Y

s (D niaria "y (Dare® .

(-n?

(ST

The two—sum lower linmit summand is (approximately) naximized with

(s-1) 7 sl
= 2(s- 2y 5-2
9% " y+s-1-2n 2| s(s-1) v » and

S-a-~1

1
s-2 e
_ 2 5-2
9 = 2 s_(_s‘Lﬂ—T v ,

where vy is the solution of the equation

y+ 1n(1 - 102y 4 (s-2)1n@z + VTI2 2) =
¥ s—1

°
~

The value of y is between 1In 2 and 1n 3 for all 's>3; ¥y

1.0106135875 for s =3 , and y - .5965516271 for s=4, This gives

117

"y In 2. Tais gives

1
N > exp|2 ;?z 2+ X2 (o o otn 2) Y
22| sretyy| Do yigng ¥ A 2) - ey

(8)
. +@(v 5'2) + ® (&n VJ-.

It is difficult to obtain an asymptotic upper limit from linit (5)

due to the problem of approximating the sum over i , for values of Q; 2
s—0

v ® . Combining the derivation of limits.(4) and (5), however, gives

(2v)5E N < 3_h Sta .]fﬁ 9@+ (v 9 - 1)

0sqg<ay<q, 14 L E s i

(9)

_. .
[P, +i1la; -(q;-1)%71" + DI (V1) t

Q=T 9% 7/ 0

Using i’ = ql_qﬁ_il and approximating the sum over i’ gives

q, (v-q,-1)!
(21" § Z 2 10 t

q,-9
(v-q.-1) i S s.'1 0
0<q,<q;<q, v=q;-1)1 (q] qo) [q1 —(q1—1)]

e t-qqt . |
[P, +(ay-a)[a7 ~(ay-1)57 ! q“(1 +o(31-sf)) (10)

v

18

S

q
provided
v

and small, and o> %

conditions the second summation will be small enough to be absorbed in

t

decreases as Vv

increases,

» the approximation is valid.

For Q.. = ¥

S-a

i

5

the final error term. The first sum is maximized with

9%

This gives

= 2(

- o

E%f S-a-1
1__£n 2)(4-£n 2) i 52
S~ s(s-1)
E%E S~a~1
4 fn ? 5=2
m) v : :+ ® (1) F
1
s el
(4 n 2)5"2 L S5Z
s - 1 s{s-1)

N < exp [?(s-z)ﬂn 2

for %ca <s-]

1<acx

rojw
L

while for 1 <a:£-52-

Unfortunately, we do not have a good apprcximation for

and s

N =

+ ® (1) , and

* @(Kn v)

>3 we have shown that

and

19

exp [@ (vs:j;):I ,

s =23 we have

Also under these

(11)

S-a-1 S-a-] s-1
'exp[(v s-2)J <N=< exp[@{(v s-2)(En V)E':'Z_}J :

The coefficient of the Teading term of the two-sum upper limit is exactly

2°7¢ times the coefficient of the leading term of the one-sum lower limit,
so the upper and lower bounds on the coefficient are close for large s .
Table 5 shows the value of the leading coefficients for Formulés 6, 8, and
11 for‘smali values of s . The two-sum lower limit gives only a small

improvement over the one-sum lower limit.

The time for simple backtracking on these problems [2] is

S-a

N = exp[}D (vs"1)} s
o) fhe speed-up from using simple search rearrangement is compirable to that
obtained by switching to sihpler problems with s reduced by cne. (For
%-qu <s the leading coefficient is also somewhat smaller for the search
rearrangement algorithm.) Since this change is in the exponeni the improve-
.ment in expected running ti%e obtained by using simple search rearrangement
is dramatic.

The values of 9 and 9, at the maximum in the two-sum approximations
suggest that in search rearrangement backtracking there is typically a large
number of unary nodes preceding each binary node. This conclusion is con-
firmed by our experimental measurements.

An interesting question for future research is whether there are back-
tracking algorithms (such as perhaps the ones reported in [6]) that use

average timé exp[O V(S‘é'k"] Y/ (s-k)

)1) for each fixed k <s-1 Experimental
results show that the algorithms in [6] perform better than s mple search
rearrangement on very large problems, but they have not been analyzed as yet.

20

wish to thank our referee, Prof, James Fill,

cf this paper and his numerous helpful comments.

21

for

Required terms: jix =1 for lsi=m ., 1=x <q; -4 4
Size of set Reason
Ri—1 = Qi-1 - Q1-2 . Term must have false literals

where Qi =(q1.+1)S - q? | combined with literals for forced variables.
Q_1 =0 . The forced Qariab]e cannot be Torced on

earlier round.

Permitted terms: t -) jix

Size of set i Beason '
3
(2v) . Total number of terms, minus :
_q; terms made of false literals ,
=g)0 terms that force variables to true, and
- Y (v-q,)R. terms that force variables to Ffalse.
3 i’
O<ism
TABLE 1

A summary of the analysis for the exact formula

22

Required terms:

Mone

"Permitted terms:

Size of set

Reason

(2v)®

Total number of terms, minus:
terms made of false literals, and

-tenns that force unforced variables .

TABLE 2

A summary of the analysis for the one-sum
upper 1imit formula

23

Required terms: j]x 21 for 1= x«< 9,-9,

Size of set Reason

q]s_ (q.[-T)s Each forced variable must occur in a term

with all other literals false.

Permitted terms: t- J ‘j]x
X

Size of set Reason
(2\’)5 Total number of terms, minus :
_q]s terms made of false literals,
-2(\1-(1])01 terms that force unforced variables , and
_(q}s qg) total number of required terms.

TABLE 3

A summary of the analysis for the two-sum
upper 1imit formula

24

Required terms:

Iy >1 for g <X <9y

Size of set

Reason

x® = (x--])S

Each forced variable must occur in a term
with all other literals false, where all

other variables are alreadv set.

Permitted terms:

Same as in Table 3

TABLE 4

A summary of an alternate two-sum upper limit

25

| s | ome—sum lower ; two—sut: lower i two—swm tpper
i ! =3 2
! P s —_— _ o
3 : i ; i i
3 | 6.1602 i 0.2465 i 0.32032
. 0.3141 i 0.3922 i C.4442
! : i 5
5 0.4271 ; 0.5226 i 0.5381
] i ;
6 0.5142 5 0.5760 | 0.611:
H : P t
! 7| 0.5840 ; 0.6398 | 0.670¢
f ! : !
: e | 0.6415 6.6524 E 0.726(
i i

10

100 1.2585 i 1.2624

1000 1.36063 i 1.3670 1.3672

21n2%1.3863 | 21n2%1.3863 | 21n2=1.3563

TAELE 5

gepesd,
s=2

Cecefficients ¢ ar M~ ‘exp ov

26

Appendix 1
A nunmber of numerical checks were performed to verify the results in
this paper.

Equation 1 was verified by a computer program that performed direct

enumeration for s =1, 1 (t (4,1 (v

I~

8y = 2y L EF €2 T v &
8 s=2,t=3,1LvL06; s=3,t=1,1<¢{v<{8 ands=3,lt=2,
1 ¢ v 4. A statistical check with one percent accuracy was done for s

=3, t= v3;2

s v=4 and 9 .

Formula 6 was compared with the maximum term in the one—sum lower
limit, At v = (1337)2, s =3, t= (133?)3, the ratio of the logzrithm
of Formula 6 to the logarithm of the maximum term was 1.001%, and
converging.

Formula 7 was compared with Fhe one—sumn upper limit (Formulal4)., At
v = (34)2, s =3, t = (34)3 the ratio of the logarithms achicved a

minimum of 0.988. For higher v it slowly increased.

Formula § was compared with the maximum term in the two-sum lower

limit (Formula 3). At v = 64, s = 3; & -512 the ratio of the
logarithms was 1.5 and decreasing. Roundoff error prevented measurzments
at significantly larger wv.

Formula 11 was compared with the two—sum upper limit (Formila 5).

At v = (11)2 y § =3, t = (11)3 the ratio was 0.805 and erratically

increasing.

27

Appendix 2
In this appendix we give more details of the derivation cf the

asymptotic results mentioned in Section 5. The one-sum Tower limit is
q

0pt

), T

q t
= 1 20 - qf - 2(v-gp)(lagt1)° - ag))

The logarithm of a term 1's. -
G S S Sy
a n2 + t Zn[(Zy_) = 2(v- qo)((qo"']) -4g .

Set t = v, take the derivative with respect to 9 > and set it equal

to 0 .

Assuming Gg<V s the largest terms of the derivative give

2s(s -'I)v‘:"-rI qg'z = (2\!)S B2 4

or

""1'— S=a=1
) 25-1 tn 2 \$72 =%
9% s(s-1)

Substitute this value back into the or‘igina1 derivative; keeping

the largest terms gives

| . *1:-— s-a-1 =(a-1) _(s-a-1) :
9 (22 l;ET 2)8 2 v £aD (1. . @(V s=-2) + @(V 5-2))]

28

Substitute this value into the original formula to get the logarithm of the
maximum term; the most significant terms give

:
S-7 Al 2
vogn (2v)° + (%I;%%) 2 2) (355 v @S @) .

Since all the terms are positive, the value of one term is a lcwer limit on

the value of the sum,

Formula (4) gives the one-sum upper limit. Using Stirling's approxima-
tion for the binomial, the log of a term is va—%— 2}1(2n)+(v-%)£n(v—l)

-(qO +%—)£n qy - (v - 9, —%)_ﬁn(v =Gy 1) + qy Ln 2 * ve gal(2v)® - QDS

s S 1 ek 5 ; :
- - + - —) + . 3 R :
2(v-qq)((ay+ 1) - qy)) + of q{}) o == qo) Take the derivative with
respect to 9 and set it equal to zero. Assuming Gg <V » and keeping
the asymptotically most significant terms, shows that Q9 near the peak

satisfies the relation.

§-2 o« 2571 Vs-a-1 2 _2__}{)
9% s{s=1) : 9% :
To obtain an approximation of 9 at the peak, let a(v)=s(s—l§(s-2) vl'a

and let F(v) be the solution to the equation

F(L) = av) &nF(v)

Then
1

1 '

qg ™~ 2V G0 S % e PN

29

attention to the 0O terms gives the value of 9 given in the text preced-
ing Formula (7). The local maximum at qg = v-1 s even less significant
for this limit than it was for the one-sum lower limit. The value of the
upper 1imit is no more than v times the value of the maximum term, and
this factor is absorbed in the @ (gn v) term.

The two-sum lower limit is given in Formula (3). It canlae rewritten
in the following form by expanding the multinomial:

L E M,)(qtq“)(-an%ﬂ(%+iou)t

Ocqoqq] <V L

Using the transformation J (?)(—1)1(1 +‘ic)t =7 (1P t){ }a‘
_ i

with a = q; -4y » C= 0 , gives, for the sum over i .

1
q,-9 q,-q . Q. *
TG) (-1)1(1“‘?9-)
A 1
%% %"

A lower limit for this sum is (E) (g;-9,)1Q P . We thus ob-

tain the lower limit

o

1

J _ Jpt-J

q, , v-q.~1 t. G.=0; T-g,+q
z > 1(0)(,)(ql -,)1 Q, 1770 P, 1770

05q<qy <V 9% Y h
Using Stirling's approximation, the log of a term is 'q1 Ln 2
(v-q0 --%) Kn(v-q0-1) + (v% 4 -—) 2n v® - %—Zn 2m - (ql—q0+~%) Zn(q}~q0) -

" i
(v-ay =5) tnv-9,-1) - (v®-q,*q, +§)£n(v?‘-q]+q0) + (a1-95) £n ((qy+1)% -q) +

o 5 .5 s s s| s

(V "'Q'I+q0) EI’I[(zV) 'C|] —2(V-q1)((q]+1) "q'l) i (Q1'qO)((q0+]) "qo)] +

1 1 1
Bl = _1) + ® (:; 1 +#8 | a;—ag) ® (V'ql_]) + ®(E;;;:;a) .

30

Take the derivative with respect to 9q » set it equal to 0 , and solve,

retaining asymptotically important terms. This gives

1 s-2

s(s-1) g
Vs-a-1 25-1

S-
2 > %
n

[e

2 1 VS & }(q1-q0)

The same procedure on the 9% derivative gives

-1 s-a-1
2 % (q4-9,) q a-s
0= 4¢n s 1.0 +,E_y12+(5-'|)(_'-[_ _]) . SS
S 4 90 ¢

sz 34
((s-1)ay a5~ = a5 ") .

Use the value of the #£n term from the 9 derivative to replace the term

in the a9 derivative, Identify the asymptotically important terms using

s-a-1 S-a-1 ,
i S
99~ Vv 5-2 and 9~ v 2 . This gives
qdn - s
0 s-2
> 9 o2,
Vs—a—1 25—1 s -1

Substitute this value of a into the formula for the 9 derivative.

5 g 5=2
Changing the variable to x = e gives the equation
25-1 vs*a—]
(s-1)x = 2n X .

(o1 - 897 (- £28)

This equation can be solved for x 1in terms of s . Setting y = (s-1)x
gives the results in the text. We have not calculated the errcrs in the

values for 99 and 9, that maximize the value of a term; this is not

31

necessary since the value of any term in a sum of positive terms is a
lower 1imit on the value of the sum,

The two-sum upper 1imit is given in Formula 5. Because of limitations
of our asymptotic methods, we derive an upper bound by using terms from
Formula 5 over a part of the range and from Formula 4 on the remainder,
as indicated in Formula 8. This is possible because each individual
term in Formula 4 for a fixed 9% bounds the partial sum in Formula 1
with 9 fixed to that same value. Likewise, a partial sum in Formula 5
with 9, fixed to some vaiug bounds the partial sum in Formula 1 with
9 fixed to that value.

To remove the sum over i, in Formula 9, use the transformation

1
(-1)° ;(?)b19(1+hﬂt= (1) atc®(1 + @ (act) , with 2 = q; -q,

a9, - (gy-1)° . S :
and ¢ = 5 . This transformation is valid for a>> and
S-a 2 ' '
S e
q4y <V , where €>0 .

To find the values of 9, and qO that maximize the firct term in
the resulting formula (FormulalO), analyze it as follows. Using Stirling's

approximation, the log of a term is q, in 2 - % Li 2 +

(v-ay+3) Lalv=gy =1) + (V¥ +3)81 v@ = (v-qy -3) 0n(v-q -1) -

(a7 -q, —%—)En(q] -q9) - (v -q, +qq -—%)zn(va-q] *qy) + (a4 -qy)
&ﬂ%SJQr1f)+(Vaf%*ﬂ&ﬁﬂpz+myﬂ@(%s4qV1P)]+(D(Vﬂ%4) +
CD(fa)*‘9(33%?r’*<3(afab)*‘3(33f5235)+

(a3-99)v*(ay° ~(g4-1)°)

= s
P, +a;-6,(a," -(g4-1)7)

©

Take the derivative with respect to 9
and set it equal to zero; the important terms give

32

_-1 - . a 5=2
S . (94-94)(s-1) s(s-1)q,

(ql-q0)25-1 ,Se] A 25-? ,Sme]

1-a -(s-a-1)
so\wS % jsoly 52),

The important terms from the 9% derivative give

: -a-1 1-o -(s-a-1)
(a,-9,)2° v == 2AS

= £fn 5T
S q.l

This implies the log term is of the same order as the (@ ‘terms. Use
this to rewrite the 9, equation and solve it for dq in terms of q, >

giving

s qs-'l §-2a)

. Ln 2 1 : s-2 |

% = 0+ ey - =3 +O(v J +om .
v

Since our approximation is only good for s-2a<0 , the first O term can

be drupped.

Substitute this value into the equation from the a derivative,

exponentiate each side of the resulting equation, and

expand the right side in a power series. This gives

s qS_-—Z -(s-q-1
(_ n 2) + 1 +oly -2 oS Sl

s -1 25-1 vs—a-]

33

s-2

s q, -
Letting x = gy » wWe obtain
2 v
-(s-a-1)
L. 2dg 2 =2
¥=5giT O(V ’
or
ke
A - s-o-1
9 = (Zs =5 w5 & 00 ,
and

- £n 2 '
9 = Al=gegla;d O

By substituting these values into Formula 10and ignoring the second

sum we obtain Formula 11. That sum is small relative to the terms we
retain. The maximum term in the sum is obtained by setting q0 =g,

The sum is no bigger than- v times its maximum term. The log of the
S-0 a-S
sum is 25" 1/S (_g__f_y}_g - 3)

+1+2n2)v> + 0\ For u>—§—,'th1's

can be neglected in relation to the terms in Formula 11 (since, for

example, exp(v2+0(1)) + exp(v) = exp(u2+r7('|)) asymptotically).

34

lleferences

J.i. Bitner and E.E. Reingold, Backtrack programming techmnigues, CACL

18 (1975), pp. 651-655,

Cynthia A, Brown and Paul VW, Purdom, Jr., An average time analysis of

jry

backtracking, SIAM J., Comput. 3 (1981) pp. 583-593,

Cynthia A, Brown and Paul V. Purdom, Jr.,, An empirical comparison

I

backtracking algorithms, IEEETPFANTI 4 (1982), pp. 3095-316.

D.E. Inuth, Estimating the efficiency of backtracking programs, KHath.

Comput. 29 (1975), pp. 121-136.

D.E. Enuth, The Art of Cowputer Prograuming, vol. 1 (1973), p. 65.

Paul V. Purdom, Jr., Cynthia A. Brown, and Edward L. Robertsom, Pack—

tracking with multi-level search rearrangement, Acta Informat. 15

(1981), pp. 95-113.

35

