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An Empirical Comparison of Backtracking Algorithms

E Introduction

An important task of computer scientists is devising general
2algorithms that can be used to solve any problem from 2 large set of
related problems. Such sets of problems can be divided into two classbs,
sometimes called "easy' and "hard' The easy sets are those for which
ezch problem in the set can be solved within a time which is a polynomial
function of the problem size. An example of such an easy set is the
computation of the shortest path between two nodes in a graph. An
individual problem in the set consists of a graph whose arcs have
nonnegative labels, and a distinguished pair of vertices. There are
well-known general methods for solving any problem inm this set im a time
proportional to the number of edges in the graph [7]. For naturally
occurring easy problem sets the degree of the polynomial time bound is
usually no greater than three, so rapid solution of large problems is
possible.

A hard problem set is one for whick the best known algorithm tales
more thzn polynomial time for some sequence of problems in tke set. (Ifor
some hard problem sets there are solution methods with small averzge
time.) llany important hard problem sets are NP compiete. Garey dand
Johnson [8] give a2 thorough discussion of the NP complete class and 1ist
many NP complete problem sets.

An examination of the problems listed by Garey and Johnson shaows
that most of them have 2 natural representation as a predicate of the
form

P = ﬁ Ri(viseoosvy) (1)
1didm
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where eack R is a relation that is simple in the semse that it depends
on only a few of the variables, and each v Las a finite number of
possible values. [oreover, the work of Cook [5] and Earp [15] skows that
solving any NP problem is equivalent to determining the satisfiability of
a2 conjunctive normal form (CNF) predicate with three literals per term,
where the size of the CNF formula is polynomially related to the size of
the original problem. This means that any hard problem in NP can be
represented in the form of (1), using simple relatioms for the R’s, Fast
general methods for solving problems of form (1) would be useful for amy
NP complete set. (See also [11].)

Problems of form (1) wkere each R depends on 2 small number of
variables are calledé constrained labelling problems by some autholrs.
Bach R is then calleé a2 comstraint, eack v a unit, and each possible
value for a unit is called a2 labtel. The problem is NP complete even wien
each R depends on only two variables and each variable has only three
possible values [18], or when each R depends on three variables and
each variable has two possible values [5].

Backtracking is a natural gerneral metkod for solving problems of
form (1) (as well as more difficult problems, such as altermating Turing
machine computations [4], that have 2 similar structure). Ve hive
described cur theoretical analyses of various backtracking zlgoritims
elsewhere [2,191]. Here we report on empirical studies of these
algorithms. The algorithms measured are the most efficient known simple
methods for solving many moderate size problems from NP complete sets.
The results of these studies, in conjunction with our theoretical work,
provide practical criteria for selecting the most appropriate
backtracking algorithm for a particular problem. Tree size estimation

[16,17] can then te used to judge Low long the chosen method will take,



The remainder of this paper is organized as follows. Sectior 2
indicates some of the types of backtracking that have been studied by us
and other investigators and summarizes the current theoretical results on
their average running time. Section 3 gives a more detailed description
of the search rearrangement algorithms whose performance we measured,
Section 4 discusses the model problem set on which the average
performance of the algorithms was measured, Section 5 is a discussion of
cur experimental techmniques, and the results are given in Section 6.

Section 7 presents our conclusions.

2. Backtracking
Consider a problem that is exzpressed as a predicate P in form (L).

A solution of the problem is 2 set of values wl.“.wn for Wiseenwy

that make P true. An intermediate predicate Pj(wlﬂn,wj) for P |is
a predicate such that Pj(wi,.n,wj) is false only if P does not have
2 solution with Wy = Wl seees Wy = Wj. When Pj is true, P still may
not have such a solution.) An obviocus choice for ?j is the conjunction

of all the relations B that depend only on Wq,...,% If the

I
intermediate predicates are frequently false, they can be used to greatly
increase the efficiency of a searck for solutions to P, using simple
backtracking. In simple backtracking, we begin with all the variables
unset (they may be regarded 2s having a special value, "undefined,” at

this point.) Each variable in order beginning with the first is set lto
its first valwe. As variable w5 is set, the intermediate predicate Pj
is tested. If the value of the predicate is false, the variable is set

tec its next wvalue, until a value for which Pj is true is found. If the

variable has no such value, it is returned to the list of unset variables



(set to "undefined”) and the previous variable is set to its next
value. This continues recursively until all the values of wvariable 74
have been tried.

In 2 problem with v binary variables, the number of potential
solutions is 2V , so an exhaustive searck for solutions would take time
expounertial im v. DBacktracking examines partial potential solutions as
well as complete ones, so in the worst case it examines twice as many
sets of values as the exhaustive search method. In practice, however,
backtracking usually performs much better than exhaustive search.

In [2] we analyzed the bekavior of simple backtracking over an NP

complete set of problems comnsisting of conjunctive normal form formulas

€ terms, 1<ads .

over v variables with s literals per term a2néd v
(The parameters s and @ are arbitrary numbers; varying them varie¢s
the characteristics of the problems being considered.) The average time
s—C

for suck problems is exp Q(VE:I) [2]1. (To say that an item g(v) |is
8(f(v)) means that there exist positive constants ¢y and C, such
that Clif(v)i < gv) £ Czif(v)ﬁ for all values of Vv greater than some
vg - The related notation O(f(v)) means that there exists a positive
constant C such that g(v) € Cif(v)! for all values of v greater
than some Vv, .) BSince exhaustive search requires time exp ©(v) , and
since %E%(l , simple backtracking saves an exporential amount of time.
(See also Haralick and Elliot [14] for a non—azsymptotic analysis or a
slightly different problem set). Figure 1 shows2 an example of a
backtrack tree generated by simple backtracking.

While simple backtracking represents a huge improvement over

exhaustive searchk, it can still be extremely slow, This has led to the

development of a2 number of methods for improving the efficiency lof
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backtracking. These metkods can be divided into two categories: basgic

backtracking and predicate amalysis backtracking.

Basic backtracking methods derive all their information through the
eyaluation of intermediate predicates. One advantage of these methods is
their gemerality. Once a program for a particular method is writtem, it
can be adapted to any problem set by adding routines to evaluate the
appropriate intermediate predicates.

A simple, effective basic backtracking technigue was studied by
Bitmer and Reingold [1]. It involves testing each uamset variable to find
one with the fewest remaining values (the fewest values for whick the
intermediate predicate is not false) and introducing that variable nekt.
Thus, instead of following a fixed search order, the order of variables
is determined dynamically, and may vary from branch to branch of the
backtrack tree. We analyzed the performance of a simple search
rearrangement algorithm over the same problem set that we used for the

analysis of simple backtracking [18]. The average time is

s—a—1 s=1 s—g-1
exp €(v s=2 ) for 1(&5% and exp C((in V)EZI v 572 ) forx %(a(s—l i

Thus, search rearrangement represents an expomential improvement over
simple backtracking. To obtain more detailed informatiom on the
performance of search rearrangement we carried out extensive mezsurements
on the behavior of three search rearrangement algorithms, including the
analyzed zlgorithm. This paper reports the results of these measurements,

liore complex basic backtracking algorithms are described by Purdom,
Brown and Robertson [18], In this paper we report preliminary
measurements that indicate that the more complex algorithms are more
efficient for solving large problems. The algorithms that Haralick ¢t.

al. develop using EP [11] can alsoc be programmed as basic backtiracking



algorithms.

The second approach to improving backtracking invelves a direct
analysis of the structure of P. Such predicate analysis methods are
probably significantly faster than the basic methods, although they cam
also be more difficult to use.

The most interesting of the predicate analysis methods is the
Putnam-Davis procedure [6]. Goldberg [10] analyzed the average behavior
of a simplified version of the Putnam-Davis procedure on an NP complete
problem set. For predicates where there is a fixed probability that each
literal appears in a given clause, it was shown that the Davis—Putnam
procedure takes polynomial average time.

Some of the algorithms of Gaschknig [9] and of Haralick and coworkers
[11,12,13,14] are also predicate analysis methods. We hope tc study tke
performance of various predicate analysis methods over the problem set we

have used for our other aralyses in the near future.

3. One—level Search Rearrangement

The search rearrangement algorithm of Bitmer and Reingold [1]
examines each unset variable, and selects for introduction ome with the
fewest remaining values. A more sophisticated search rearrangement
method would consider sets of unset variables of some predetermined size
(say k), and introduce the variable which is the root of the smallest k-
level subtree [18]. Ve call an algorithm that comsiders k element sets a
k—level algorithm. Ditner and Reingold’s methoé is thus a one—level
algorithm and simple backtracking is C-level.

There are several distinct ome—level algorithms, which vary in fthe
details of how ties are broken and in the order in which variables are

tested, but whose general form is the same. Ve present the generzl form



first, and then discuss the individual differences.

To use search rearrangement it is mecessary to have, for each subset
s* of the set 5 of predicate variables, an intermediate predicate PS*.
This predicate must be consistent with P in the sense that it is fal.se
only for sets of values that camnot be extended to a sclution to P. If
P is in the form of Eq. 1, the mnatural choice for ?Sg is the
conjunction of 211 the relations that depend conly on the variables in
S#, In the following specifications let S8' be the set of variables whose
value is " undefined” (the unset variables) and 8'" the set of vari-
ables with defined values. Let w range over the predicate variables
(units). Ve denote the value of predicate variable w by Valuel[w].
The set S" is maintained as a stack. In this specification it is as—
sumed that the predicate variables are Booleans trivial changes are

needed to accommodate a larger set of values.

Cne—Level Search Rearrangement

Step 1. (Initialize.) Set S" to empty and S' to 8.
BStep 2. (Solimtion?) If &' is not empty, go to Step 3.
Otherwise, the current values in Value cconstitute a

solution. Go to Step 6.

L¥M]

Step 3. (Finé best variable.) For each variable w in &' do the

rest of this step. (The order in which the variables are
tested depends on the specific algorithm.) For bcth
Valuelw] & false and Valuelw] & true, compute Pes twl
If the result is false in both cases, exist the loop and go
to E8tep 6. If the result is false in one and true in the

other, remember the valuve that gives true, exist the

=]



loop amnd go to S8tep 5. If the result is true in both
cases, continue with testing the next value of w.

Step 4. (Einary =node.) Choose an element w of 8'. (The metkod
for selecting this element depends omn the specific
algorithm). Set 8" < 8" {w} and 8' < 8' - {w}. Set
Vaiue[w] < false, mark w as binary, and go to Step 2.

(Unary node.) Set Valuelw] to the unique wvalue that makes

[

o

Pan {w} true. {This value is remembered from Step 3).
Set S" & S8" {w}and 8" ¢85 - {w}. Hark w as unary,
and go to Step 2.

Step 6. (MNext value.) If 8" is empty, stop. Otherwise, set
w ¢ top(S*" ). If w is marked as binary and Valuelw] =

false, set Valuelw] & true znéd go to Step 2.

L |

Step 7. (Backtrack.) Set 8" 8" - {w} , 8'¢< 8 {w}, and o
to Step 6.

In our implementations of one—level search rearrangement we found it
convenient to encode the following four states into Valuelw]l: =no value
(w is an element of 8'), urary false, binary false, and true. (There is
no need to know whether a true node is unary or binary, since in either
case it has no next value).

We measured the performance of three ome—level search rearrazngement
algorithms. The specification given above for one—-level search
rearrangement left certain details involving the order of testing and
selecting variables vague. Specifyving how these details are to be
handled completes a precise statement of a particular ome—level search
rearrangement algorithm. In the following paragraphs we provide these
specifications for the three one—level algorithms whose performance we

measured.



We ¢all the best of these algorithms the Fast algorithm. In this
version 8' is treated as a stack with regard to insertions (deletiois
can be done znywhere). Thus in Step 7 all insertioms are at the top, and
in Step 3 the variables are tested from top to bottom. HNormally tle
testing in Step 3 starts at the top of the stack, but when Step 3 is
entered from Step 5 (via Step 2) the search starts just after the formér
position of the newly—-discovered unary node and wraps asround from bottcm
to top if mnecessary, continuing until all variables have been tested, At
Step 4 the top element of 8 1is chosen.

Figure 2 shows a backtrack tree generated by the Fast algorithm.
The moderate improvement in speed obtained by the Fast algorithm (in
comparison with other one—level algorithms) is the result of two factors.
First, starting the searches in Step 3 just after the point whkere 2 umasry
node was discovered often reduces the time to find another unary node,
since the part of the stack that has not been tested recently is more
likely to contain a unary node. Second, using a stack for 8' permiis
Step 4 to select for & binary node a variable that was promising on a
branch of the tree searched earlier. Since there is a slight correlation
among the branches of the tree, this is better than selecting binasry
nodes in an arbitrary order.

The Analvzed one—level algorithm has those modifications to the Fajt
algorithm required to ensure that the number of bimary nodes in a seargh
tree generated by that algorithm will be exactly the same as the number
of binary rodes generated by the ome-level algorithm we analyzed im [19].
To accomplish this, we change the Fast algorithm so that at Step 4 the
variable with smallest index is chosen (i.e., select v, before vy if

i<j). The Anslyzed zlgorithm tests for unary nodes in a different ordpr
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from the algorithm in [19] and usually requires fewer predicalte

il

evaiuations, but it selects binary nodes in exzactly the same order.

i

Figure 3 shows a backtrack tree gemerated by the Analyzed algeorithm.

The Simple one-level algorithm is the same as the Fast algoritam
except that at Step 3 the search always begins at the top of the stack.
This is the first algorithm we mezsured. Since it is slower than tae
Fast algorithm and since no theoretical work has been done onm ilts
performance, we did not study it as thoroughly as the other two
algorithms,

Cur measurements suggest that the asymptotic formula in [179]

s—g-1
(rougkly exp C(v 2 )) for the exponential part of the performance of
the Analyzed algorithm applies to all the ome—level algorithms comsidersd

in this paper. We bkave no mathematical proof of this, however.

4. The Problem Set

Since backtracking is a2 general strategy appliable to a wide variety
of problems, it was necessary to choose a representative problem set on
which to study its behavior. We performed our measurements on the sanhe
problem set used in our theoretical amnalyses: conjunctive normal form
formulas with literals chosen from a set of v variables and thejir
negations, with s literals per term and t = v® terms., The values pf

the parameters v, s, and ¢ determine the nature of the problem set,

Conjunctive normal form formulas are a convenient choice for several

]
=

reasons. They have natural intermediate predicates: for each subset §

of the variables, Po¥ is the conjunction of the clauses of P thit
b

. . e S— . S ; ;
contain only literals of the variables in 8" . For fized c>l, fized

W

s23 , and increasing v the problem set is NP complete. W¥We have done

i1



extensive analytic studies of these problem sets (2,191, ard they Lave
many characteristics in common with problem sets for which backtracling
is typically used. An interesting empirical guestion is the choice of
the parameterization that is most representative of common problems.
Choices that other investigators may wish to consider are t = av or s =
log v. The analysis by Goldberg [10] of a simplified Putnam-Davis
procedure uses a problem set similar to tke one obtained by using a fixed
valwe of t and s = av for fized a. We used the problem |set
parameterized by t=v%, s fixed for our measurements in order to be
able to relate them to our theoretical work. Ve believe this is =

realistic problenm set.

5. Exzperimental Technigues

We studied the performance of the Fast, Analyzed, and Simsle
versions of one—level backtracking. For comparison we zlso made some
measurements on zero—level (simple backtracking) and two-level algorithms
[18]. Ve studied ecach algorithm for s =3 and s = 4. Starting with =n
=1 we set v =n? and t = ns, and increased n in steps of 1. The
upper limit on n was determined by the memory capacity of our computer
(n =16 for s =3) or by our patience. Our 48 bit linear congruential
random number generator, used to generate random literals, was always
started at the same initial value, so the various algorithms were tes:ed
on exactly the same problems when the runs were of the same length.
Individual runs were for 10, 100, 1000, 10000, or 216 problems of each
size. The results reported in Tables 1-5 were obtained by combining the
data from one to three runs,

The measurements were done over several months using a dedicated

TI980 minicomputer. In order to obtain the largest possible number of

[y
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data points, a great deal of effort vas devoted to making the progr:m
fast, For large problems nearly all the time was spent doiag
intermediate predicate evalmwations, so optimization of predicate
evaluations received particular attention. Racktracking proceeds by
setting or changing one variable at a time. For our purposes & clause is
true if at least one literal in it is true or unknown. Ve keep a list
for each literal, Each clause is on the list for one of the literalls
that causes it tc be true. Initially, when no variables are set, zay
literal im a clause causes it to be trve. Wken a variable is set LI
changed, one literal becomes false. The clauses on the list for that
literal are examined. If a clause contains other literals tkhat cause it
to be true then the clauvse is moved to the 1ist for that literal. If all
the Iiterals in a clause are false, then the predicate is false, and it
is time to backtrack. After backtracking the clacse that caused the
predicate to become false is again true, so it is not necessary to mowve
it (or any other clauses remaining on its list) to a new list, Alsp,
there is no need to move any other clauses when backtracking. Since a
clause can be left on the 1ist of any literal that makes it true, there
is no need to restore otker clauses to their former lists., This method
of evaluating intermediate predicates allows us tc evaluate larze
predicates rapidly., For v =256, t = 4096, and s =3, we estimate that
only 335 microseconds are required for a typical evaluation.

We also performed other operations oan the predicate, such as
removing tauntelogical clauses and repeated literals within clauses.
Although our methods examine the detailed structure of the predicate ko
facilitate rapid evaluation, they do so in a way that is compatible with

our aim of measuring the performance of basic backtracking algorithms,
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Ve plan future studies of predicate analysis methods.

6. Results

Tables 1-5 give the results of the measurements. Table 1 shows the
performance of the zero—level algorithm as measured and as calculated
from the formulas in [2]. The theory for zero—level backtracking is
guite complete; the mezsurements were done to provide 2 test for the
statistical methods that were used on the other cases, For zerc—level
backiracking the number of nodes and the number of predicate evaluaticns
are identical.

Tables 2, 3, anéd 4 give the measured performance of the Fast,
Analyzed, and Simple algorithms. For the first two algorithms the number
of binary nodes, unary nodes, and predicate evaluations were measurecd,
For the Simple algorithm "total" mnodes were measured, where totil
nodes are defined to be Z%*{binary nodes + unary rodes) + 1. This
definition corresponds to the one used in [1E8].

The number of predicate evalmnations gives a good indicatior of the
relative speed of the various methods. Even with our very rapid
predicate evaluation methods, over 90% of the time was spent evaluating
predicates. The measurements indicate that the Fast algorithm is indeed
the fastest of the three. The differences, however, are not large, and
they increase only slowly with problem size. For large problems there
are many more unary nodes than binary nodes, and many more evaluaticans
than nodes., For s =3 and problems of 16 variables or more, the ome-
level methods are much faster than zero—level, VWith s = 4 the same
holds true for problems with 25 or more variables.

Table 5 gives preliminary measurcments on the two—level algorithm

published in [18]. It appears to be possible to speed up this algorithm
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by at least a factor of two. We plan to publish more extensive
measurements after we have investigated this possibility, and zfter ke
have developed a theoretical analysis for two-level algorithnms. Even
without improvement the two level algorithm is preferred for very large
problems,

Qur theoretical work [2,19] suggests that the number of binary nodes
for all the algorithms we measured (except perhaps the two-level) is
asymptotically of the form a;v®? exp(a,v®4). For ome-level backtracking
the number of urary nodes must be between zero and v times the anumber
of binary nodes, ané the number of evaluations must be between one and v
times the number of nodes (betweeen one and vZ times the number pI
binary nodes). All four coastants, a1, 85, 23 and ag, are needed to
reliably predict the actvral number of nodes for large values of v. e
attempted to determine these constants by doing a least squares £it to
our data wusing STEPIT [3]. We found that it is difficult to o
extrapolations with data of the type we have gathered. It is presently
impractical tc obtain much data for problems larger than the ones Wwe
studied. The asynptotic formula is not valid for small problems,
Statistical fluctuations make it difficult to achieve high accuracy for
any datz point., Vith a limited range of v and with inaccurate data
many sets of values for 84» 25, ag and ay give nearly equally good fits:
the collinearity problems are severe. For s = 3 our data is sufficient
to determine two parameters when the other two are fixed. In a few cases
it may be adequate for three, but in no case can all four be determined.
For s =4 we have not extended our measurements to large emcegh v [to
obtain reliable asymptotic fits.

The upper part of Table 6 shows the results of fitting ag and 24

i5



when a; and a, are held fixed. (They are set to the natural values
of one znd zero, respectively). For any of the algorithms the values <f
a; and a, should be the same whether binary nodes or evaluations azxe
being measured, because these gquantities are related polymomially. Tlhe
variation in the fitted values gives one indication of the imaccuracy cf
the fittimg process. For zero—level backtracking the theoretical wvaluve
of 2, is 0.75, so the fitted value is low by 0.15. For the Analyzed
algorithn the theoretical value of a2, is 0,50, so the fits are low
by 0.11 to 0.14, Thus, although the fits to cur guite extensive
measurements give a2 rough indication of the upper exponent, the error is
large compared to the range of values (zero to omne) permitted by a naive
analysis,

The middle part of Table 6 gives fits for 2, and ag with g
set to its theoretical value and 2; set to orne. (For the Fast arnéd
Simple algorithms we use the theoretical value from the Analyzed
algorithm), For zero—level backtracking the theoretical value of a5 Is
0.730, so the fitted valeve is low by 06.20., For the Analyzed algorithm
theory gives 0482$a3$0.320 (for m)%ﬂ. A11 fits for the various one-
level algorithms were in this range, although the values for the various
cases spanned most of the range. The measurements were consistent with
ag = 0.320, but not with a, = 0.182 (except for the Simple algorithmn,
for which we don’t have muck data).

We suspect that the true wvalue of ag for one—level backtracking is
equal to the upper limit. The lower part of Tazble 6§ shows the results of
fitting 2y and 2y with 2g and ay set according to this conjecture., The
resulting formulas are probably the most reliable for predicting tle

performance for large v. For zero—level backtracking the theoreticel

value of ay is 3/8, so the fit is low by 0.12.
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The various fits for one—level algorithms suggest that the number of
znary nodes is proportional to vi/2s (binary nodes)., Tables 2 anc 3
indicate clearly that the Fast algorithm is better than the Analyzed, lut
Table 6 gives little indication of the functional form of the
improvement. It is likely that some slowly growing fumction (such as log
v) is involved.

Figure 4 is a graph comparing the performance of the zero—level,
Fast, and two—-level algorithms. Curves for the other omne-level
algorithms would be too clese to the curve for the Fast for convemnieant
display., The scales were chosen so that the function azv22 exp(asv'4)

would approach a2 straight line for large v.

T Conclusions

The experimental studies reported in this paper supplement cur
theoretical results. Ve have established an upper and lower limit for
the size problem for whick the one—level search rearrangement algorithms
are preferred over zero—level and two—level methods, Ve have shown tlat
our theoretical results are compatible with the measured performance of
the various one—level algorithms, including the Fast algorithm., Ve hzve
shown that the Fast algorithm is faster than the Analyzed zlgorithm. Cur
measurements indicate that the number of unary nodes is roughly vlfz
times the number of binary nodes and the number of evaluations is roughly
v times the number of binary nodes. lost of these results would have
been extremely difficult to obtain wusing theoretical techkanigues.

Cn the other hand, these experimental studies are guite limited in
their ability to establish the asymptotic behkavior of any method. When

choosing or developing an algorithm for a practical problem, both the

17



theoretical asymptotic studies and the results of measurements on
problems of reasomable size should be considered. The results in this
paper combined with those in [2,19] should be of help in selecting the
most appropriate basic backtracking algorithm for a particular problim.
The methods in [16,17] can then be used to estimate how lomg the chosen
method will take to solve the probien.

In the future, we hope to perform theoretical analyses and practical
measurenents on two—level backtracking and on various predicate analysis
techniques. Together with our present results, these will provide 2

rational basis for selecting ar algorithm to solve a large problem.
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3 Literals Per Tem

Vor. |Terms| Cal. Nodes| £.73%% Fsun( 62819 esvarsd Nodes|osl. sordeions
1 1 3.00 9. 3.00 1.740
4| 8 24.36 47. 24.29 5.468
| 9| 27 227.08 281, 233. 13.915
16 64 1954.80 2029. 2131. 12.735
25 | 125| 17457.30] 17679. 17557. 1.891
36 ; 216| 183062.69] 134482, 175871. 2.046X1072
| 49 | 343 2275493,18| 2285200, 2075872. 7.232%1976
| 64 | s12]3.326x107 | 3.331x107 3.0X107 3.750x19711 |
| 81 | 12005.675%10° 5.660%X10° 1.280x10718 |
1100 | 1000}1.122x1010 1.119x1010 1.291x10728
i121 ! 1331§2.555x1012 2.542x1011 1.727x19™41
144 ] 1728]6.665x1012 6.619x1012 1.375%16757
169 | 2197]1.981x1014 1.964x1014 2.923x10777 |
196 | 2744]6.683%x1015 6.613%x10%5 7.447x1e‘101i
225 5 3375]2.547X10%7 2.515x1017 1.021x1a"123§
256 5 4096{1.092x101° 1.077x101? 3.378x1161 |
4 Literals Per Term
Var.%Terms Cal. Nodesg4.12v5/12exp(.730v5;6) Heasured Modes|Cal. Solutions
| | ] |
1 é 1} 3.00] 8. 3.00 % 1.815
4 8 28.38 15, 28.24 | 9.548 |
9 27 518.47 980, 523, | 89.638
16 64! 15168.57 20536. 15495, | 1053.517 |
25 | 125{ 607176.45 680632. 617119. | 10523.441 ;
36 | 216]3.297X107 3.51x107 3.26X107 § 60656 .248
49 | 343{2.608X10° 2.76X10° E136967.520
64 | 5123.083x1011 3.26x1011 | 82264.647
|
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Table 1. The calculated and measured performance of O-Level Backtracking,
For 0-Level Backtracking the number of nodes is egual to thke numter of
predicate evaluationms. The measurements consist of 110 rums for each case
except the one variable case. There were 100 runs for the one variable case.
The first colunmn gives the number of variables im the predicates being
measured, and the second columnn gives the number of terms. Column three
gives the number of nodes predicted by the formula in [2] (calculated nodes).
Column four shows the calculateé result using the leading term of am
asyuptotic formula for the number of mnodes [2]. Column five shovws the
average number of nodes obtained in the experimental measurements, and column
six shows tke average number of solutiors per problem precdicted by the

formulas in [2].
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3 Literals Per Term

iVar.%Terr:sj Runsi Binary lodes | Unary lodes Evaluations solutions i
— - !
? 1; 1;65536 0.74921.0017E 0.2508i.0017f 4.49841.00341 1.74921.001?;
4| 8|76536 5.0480+.0081 4.1454i.0053[ 45 .4464.046 5.5087+.0087 |
9l 27 76536; 16.697+.039 27.778+%.041 273.70%.42 13,864+.039 E
16 64176536 | 23.386+.082 81.30+.16 84¢.041.6 |12.738i.0?4 i
25] 125}76536| 19.143+.056 140.76%.7¢ 1800.443.5 1.900+.033 }
36| 21676536 23.849+.0355 226.71+1.49 3666.017.1 0,0237:.0041%
49| 343176536] 33.2665.076 | 392.71.54 7125.414. | o E
645 51276536 46.94+.11 641.341.4 13285.427. 0 ;
81| 729|76536| 66.17+.15 1028.0%2.3 23869 .+49, 0 }
100i 1000{76536] 93.13+.21 1623.2+3.6 41634.+86., 0 i
121 133111000 132.35+.80 2558.%15, 71691.4395, 0
144} 1728]11000§185.4+1.,1 3837 .x224. 1195644 .46175, 0
169| 2197;11000§260.7+1.6 6C47.+36. 197455,.+1109, 0
196; 2?445 1000;365.138.7 9179.4+217, 319591.16943. | 0
i 225| 3375| 1000 526.%10., 14240 .4282. 527596 .19860. 0
256 4696; 10601708.415. 20570.+428. 8107%2.+162917. 0
|

4 Literals Per Ternm

éVar. Termsiﬁunsg Binary llodes 3 Unary Hodes Z Evaluations Solutious
E 1 121000; 9.8803.0105 0.1203.010r 4.760+.021 1,.880+.010
| 4] slw000]  s.75¢x.079] 3.617%.04¢8] 62.96+.33 5.463+.082
i 9 27?10005 95.97%.99 i 69.08+.57 I 246 .4%7.2 90.5441.00
i 165 54?1000: 1164.+16. é 1242 .,412, : 14804.%152. i 3050.%16.
; 25 125;10003 12464 ,%220, % 17892.%222, ; 207279 .%2681., 1¢821.4209. |
i 36 216;10002 781086.42021. g 173078.42570. 2043044 .431322, 61795.+1870.

49 343i1000§251045.16325. i1252922.117575. 16243331.4220762,113€193,+5321,
L i ] i TEi

Table 2. The measured performance of the Fast l-Level Backtracking Algorithm. The
order of variables is controlled by a stack. A circular search is uséd to find the

unary ncdes.
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3 Literals Per Term

Var.:Terms Eunsi Binary Modes i Unazy Modes i Evaluations __?- Solutions E
L L 1 1 i 1
E 1 jlooooi 0.7501.004§ 0.250+.004 E 4.500+.009| 1.750¢.004E
4) s l11000] s.elsi.nzzj 4.148+.014 | 45.57+.12 é 5.495+,023 |
9 % 27 110003 16.59+.10 g 27.87+.11 | 278.541.1 | | 13.732.10 ;
16 | 64 |11000]  23.15%.22 |  81.38%.44 876.6+4.5 | | 12,59+.19 |
25 | 125 {11000  19.09%.15 3 141.34+.81 894,410, 1.353¢.032;
36 ; 216 [11000]  24.06+.15 |  236.8%1.3 3949 421, 0.026+.013 |
[ 49 | 343 110005 33.38+.21 E 390.142.3 |  7755.%+44. 0 g
64 | 512 |11000]  47.51£.32 |  640.8+4.0 | 14730.288. 0 i
81 | 729 111006  67.63%.47 1034.1+6.8 E 26953, +166. 0 i
100 |1000 11000% 94.27+.64 5 1618.+11. E 46999 .+287. 0 3
121 |1231 111000]  134.93%.95 ; 2559.+17. | 81931.+523. 0 ;
144 11728 1000E 189.5+1.5 ; 3946.429. E 137759 .+948. 0 i
169 {2197 [11000] 267.8+2.0 | 6083.x44. | 220475.41554., 0 §
196 |2744 1@002 369.9+9.5 ; 9058.4228. % 367960.+8324. 0 E
225 {3375 | 1000| 518.#12. | 13763.%324. | 595712.%13221. 0 |
256 4096 | 1000/  710.315. % 20172.+495. i 923832.+21182, ) ?
4 Literals Per Term
iVar.ETe:msi Runs. EBinary Hodes % Unary HMNodes Evaluations Solutions |
]
1 1 | 1000 0.880+.010| 0.120+.010/ 4.760+.021 1.880+.011)
4 8 | 1000 8.751+.079| 3.624+.048 63.06+.33 9.463+.082
27 | 10005 95.81+.99 | 69.12+.59 | 965.4+7 .4 90.54+1.00

16 | 64 | 1000| 1166.+16. ; 1239,+13. § 15611.+164. 1050.+16.
25 | 125 | 1000} 12493.+221. | 18026.x241. | 222722.22979. | 1D821.3208. |
36 | 216 | 1000| 78834.+2046. | 178528.43056. | 2259275.+38904. | 61795.41870. |
49 | 343 | 1000{255661,+6531. 21288497.121337. %1872?362.;297333. 135193.45321. E

i i i

Table 3. The measured performance of the Analyzed 1-Level Backtracking Algorithm.

The varizbles have a fixed order.

For s =

binary nodes; 4 variables, 5.021 binary nodesy 9 variables, 16.75 binary nodes.

method was amalyzed in [19].

22

3 the following is the calculateéd number of binary nodes:

A circular search is used to find the unary nodes.

i variable, 0.75
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3 Literals Per Term
Var, Terms |Runs Total Nodes Evaluations Solutions
i 1 1! 100 3.0010. 4,48+.09 1.74+.04
4 8 | 100} 18.58+.47 43.,341.2 5,28+.23
9 27 100i 87.6+3.5 268.+10. 13.44+.79 |
16 | 64 | 100 179.+11. 780.+40. 8.7642.7 |
25 | 125 | 100] 344,421, 2075.+113. 1,54+.52
36 | 216 | 100 637.+37. 4979,+253, 0.01+.01
49 | 343 | 100 927.154. 9068.+476. 0
€4 | 512 | 100 1615.+87. 18501.+899 0
81 | 729 i 100 2520.+139. 34088.+1712. ]
100 1000 | 100 3945,+262. 61052.+3715., 0
121 ;1331 l 100 6021.4415. 105477.+6632. ¢
144 11728 | 100| 9025.+486. 177123 .+8641. 0 ‘
169 (2197 j 100f 12568.1683. 274116.+13353. 0
196 (2744 1 100i 22794.42550. 523414,+51058, F 4
225 (3375 ! 100 33549.+1898. 851603 .+44483. 4]
256 4096 ; 100] 44533.43236. 1232146.+82147. 0 |
4 Literals Per Term
Var.,|Terms [Runsj Total Hodes Evaluations Solutions !
i
1 i1} 100 3.00+0 4.72+.08 1.87%.03 i
4 8 F 100 25.24+.37 61.50+.99 9.21+.26 E
9 | 27 | 100 328.9+8.4 941,423, . 88.8+3.1 I
16 % 64 ; 100 4794.+4181. 15036.%527. E 1022.456. |
25 | 125 | 100 60007 .+2320. 210916.+22339, 10442 .4592. E
36 E 216 | 100| 513737.127591. 2212?28'i100823'. 62927.15764 E
49 i 343 | 100 3089249.1151617.118415912.1?96432. 148034.119859.!
Table 4. The measured performance of the Simple Level 1

Backtracking Algorithm,

by a stack.

4 linear search

is the method published in {18].

The order of

is used to

find the unary nodes.

the variables is controlled

This



3 Literals Per Temm

Var.lTerms Runs Total MNodes IZvaluations Solutions i
| 1 1| 100 3.00+0 4.48+.09 1.74+.04
| 4 | 8| 100|  17.16%.05 150.446.0 5.28+.23
| 9] 27| 100 61.1+3.1 1418.5+7.4 13.44+.79
| 16 64| 100 67.547.2 3435,+434. 8.7642.7
25 | 125 100 51.5+3.8 6107.+54. 1.54+,52
36 | 216 100 57.3+3.1 11803.176. 0.01+.01
| 49 343 100 70.9+3.2 21217.+117. 0
64 512{ 100 89.4+4.3 42143.4224. o
g1 | 720 100] 115.135.1 63582.+350. 0
100 | 1000| 100| 128.1+5.9 70672.+474. 0
121 | 1331] 100{ 161.6+5.4 120407.+597. o
144 | 1728] 100| 182.417.0 166134 .+842, 0
169 | 2197 100{ 234.0+8.3 314029.+1265. 0
%196 2744| 100] 256.+10. 428160.+1816. 0
225 | 3375] 100] 297.+11. 567570.+2194, 0
256 | 4096] 100| 343.+11. 772527.42660. 0
4 Literals Per Tern
- i =
iVar. Terms |Runs| Total Nodes Ovaluations ! Solutions
L
i i 1] 100 3.00+0 4.74+.007 1.87+.03
- 100 24,52+,04 219.5+4.2 9.21+.26
9 27| 100{ 286.1+7.8 5580.+128. 88.843.1
16 64] 100] 3393.+151. 65270.+3476. 1022.456.
25 | 125| 100| 34329.+1655. | 728498.+30133. 10442.4592.
36 | 216 100[204709.+15998. | 5927770.4304356. | 62927.+5764.
49 | 343| 100,|516182.+55303.|27663834.+1509539. [148034,+19859,
Table 5. The measured performance of Level 2 Backtracking. This

is the method publisked in [18].

Refinements can probably reduce

the number of predicate evaluations by a factor of two.
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Algorithm

Binary Nodes

Unary Nodes Evaluations Range

level zero expt1.41v'601) 25-64
x2 = 2.16

fast exp(.763v+387) exp(1.75v-313) exp(3.20v-261)[100-256
X2 = 10.5 X2 = 5.40 X2 = 5,23

analyzed exp(.748v-392) exp(1.75v-313) exp(3.24v-261)|100-255
X2 = 0.907 X2 = 0.873 X2 =1.70

simple exp(2.24V'232) exp(3.29v'262} 100-256
X2 = 6,98 X2 = 5.56

level two exp(2.29v-168) exp(5.43v-165) |160-256
X2 = 0.985 X2 = 0.220

level zero vl‘zzexr(.528v3f4) 4-64
X4 = 6.81

fast v‘397exp(2.71v1{2) vl‘osexp(.ZSTVIIZ) vl‘goex1(1.89v1}2) 100-256
X2 = g8.14 X2 = 6.88 X2 = 23.2

analyzed v‘333exp(.278v1!2) vl'osexp(.258v1!2) vl'glex;{.195v1f2] 100-256
X2 =1.39 X2 = 0.836 X¢ =2.87

simple v1+33exp(.209v1/2) v1-92ex;(.211v1’2) 100-256
X2 = 7.45 X2 = 6.42

level zero 6.88v-256ex; (.628v3/4)| 16-64

X2 = 0.0435

fast 2.27v-113exp(.320v1/2) |3.29v-651exp(.320v1/2) |9.32v1 1304, (.320v1/2) | 49-256
X2 = 15.5 X2 = 14.0 X2 = 41.2

analyzed [2.19v-12%exp(.320v1/2)|3.16v-661cxp(.320v1/2)|8.52v1-17665; (. 320v1/2)| 49-256
X =5.90 X2 = 5,13 X2 =12.1

simple 10.1v-3%%exp(.320v1/2) 8.26v1-233¢x; (.320v1/2) | 49-256

X2 = 17.04

X2 = 6.45

25




Table 6. Various least square fits to the measured number of binary i1odes, unary nodes,
and evalvations for various backtracking algorithms on problems with 3 literals per term,
For the simple and level two algorithm the fits are for total nodes and evaluations. The
first group of fits is of the form exp(alvaz). The second group is c¢f the form
8

valexg(azv where 6 = 3/4 for level zero ané € = 1/2 for level om¢. The third group

is of tke form alva3 exp (yve) where v = 0.730, & = 3/4 for level zero and ¢ =
0.320103, & = 1/2 for level one. Good fits for level one were not obtained with tke form
alv&3 exp(ﬁ.lSZvlfzJ. The "range” column shows the range of number of variables (range

of v) over which the fits were done, Small values of v were omitted because the
asymptotic behavior does not have muck influence on the function value at these points.
The range was chosen to be as large as possible subject to keeping x2 reasonably small
while using the same range for the various level one algorithms. [or most cases the

statistical accuracy of the data was not adequate for stable fits with 3 parameters. For

s = 4 the range of the data did not permit reliable fits to asymptotic formulas,
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Figure 1. Zero-level backtrack tree for the predicate ANB/\C/\D, where
A=2aV-g, B=—=aVcVd, C = =-aVVbVcV-d, D= -bVcV-d. Each node

where the predicate is false is labelled with a term that is falsec.
Under each node the variable that is introduced into the search at thsat

point is given. In each case, the false branch is to the left.
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Figure é. The backtrack tree produced by the fast one-level algorithm
for the predicate from Fig. 1. This tree has 7 binary nodes, 3 una:cy
nodes, 1 zero—degree node, and 7 solution nodes. Notice tke order im
which variables were selected on the right branch. Since ¢ was a good
first variable on the left branch, it was also selected for the rigat
branch (all variables result in a binary node at this point). Tae
algorithm also selected d before b on the right branch. The selection of
¢ before b converted one binary node into a unary node and eliminatec a

zero—degree node. The selection of d before b did not lead to any

savings.
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Figure 3. The backtrack tree produced by the analyzed one—level
algorithm for the predicate from Fig. 1. This tree has 8 binary mnodes,

2 unary nodes, 2 zero—degree nodes, and 7 solution nodes.
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Figure 4. The average number of intermediate predicate evaluations used
by various backtracking algorithms as a function of the number of
variables. For each algorithm the lower curve is for problems with 3
literals per term and the upper curve is for 4 literals per term. On the
evaluation axis linear distance is proportiomal to log evaluatioms. On
the variable axis linear distance is proportiomal to log log variables.

These scales result in curves of the form ajv32exp(agzv2®4) approaching a

straight line for large .
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