Average Time Analyses of Simplified
Putnam-Davis Procedures

by
Paul W. Purdom, Jr, and Synthia A. Brown
Computer Science Department
Indiana University

Bloomington, Indiana 47405

TECHNICAL REPORT No. 101
AVERAGE TIME ANALYSES OF SIMPLIFIED
PutNnaM-DAvis PROCEDURES

PauL W. PurbDom, JR., AND CYNTHIA A. BROWN
ApriL 1981

This material is based upon work supported by the National
Science Foundation under Grant NSF MCS 7906110

Average Time Analyses of Simplified Putnam—Davis Procedures

1. Introduction

The Putnam—-Davis procedure {4] is a powerful method for solving
satisfiability problems. Satisfiability is NP-complete, and the worst
case time of the procedure is exponential. In this paper we study the
average time. Since the full Putnam-Davis procedure is difficult to
analyze, we consider simplified versions of it, After correcting scne
errors in 2 paper of Goldberg's, we confirm that the average time o7 a
simplified version of the Putnam-Davis procedure is pelynomial over
certain NP-complete sets of satisfiability problems, and we give 2
formula for the degree of the polynomial invelved, Ve also comsider :he
average time of other versioms, to illustrate the sensitivity of the
analysis to small changes in the recurrence for the average time and to
Lelp clarify the contribution of various portioms of the procedure to :he
final results.

The Puinam-Davis procedure, which is used to determine whether 2
conjuctive normal form (CHF) predicate is satisfiable, may be stated as
follows:

Putnam—Davis Procedure

1, [Satisfiegble] If there are no clauses the predicate is
satisfiable.
2. [Unsatistiable] If any clause is empty the predicate is aot

satisfiable.

LEM]

. [Unit clause] If there is any clause consisting of a sinjgle
literal, select z variable associated with such 3 clause. Jet

the variable so that the clause is true, simplify the predicate

(see below), and apply the Procedure. The original predicate is
satisfizble iff the simplified predicate is.

4, [Pure literall If any variable appears only mnegated or oxnly
unnegated, choose it as the mext variable. ©Bet it so that its
literals are true, simplify the predicate, and apply Lthe
Procedure. The original predicate is satisfiable iff the
simplified predicate is.

5. [Splitting] Select any variable, Form two predicates by setting
the variable to ecach value and simplifing the resulting
predicates, Apply the Procedure to both predicates. The
original predicate is satisfiable iff at least one of the
simnplified predicates is satisfiable.

The procedure igrores any variable that does not appear in Lhe
predicate, Simplification of a predicate is performed as follows: drop
from the predicate all clsuses containing a true literal and drop from
each clauvse any false literals,

Goldberg [5] simplified the Putnam-Davis procedure by omitting the
unit clause rule, by modifyving the unsatisfiable rule to say tkat if all
the variables have been set without finding a solution then the predicate
is unsatisfiable, and by modifying the pure literal rule (see below). [e
also selected the variables in a2 fized order. To simplify slightly, he
analyzed the performance of the simplified algorithm on ramndom [CNF
predicates with t clauses and v variables. An arbitrary literal
{(either a variable or its negation) occurs in an arbitrary clause with
probability p. (Notice that with this model some variables may not
occur anywhere in the predicate.) Ie presented the follcwing recurrence

for the average time:

joe)

Att,v) = atv +2) (Hp! (1-p)tE A(t-i,v-1) for t, w1,
i1 ()
A(t,0) =6, A(0,v) = 0.

This recurrence was intended [6] to describe the behavior of the
version of the simplified algorithm where the variables are alwaiys
selected in fized order but the pure literal rule is used to generste
only one predicate when the selected literal is pure. Actually, however,
Eg. 1 describes an algorithm with one additiomal ’''feature’': when the
selected variable does not appear im the predicate, investigation of the
predicate stops without determining whether it is satisfiable,

The algorithm actually stated in Goldberg's paper is the simplified
algorithm with the pure literal rule omitted emtirely. The recurrence for

this algorithm is

Ate,v) = atv +2) (Dot 1-p)t7F Alt-i,v-1) for t, w21,
i>0 (2)
A(t,U) = 03 A(Orv) = 0.

This differs from Eq. 1 only by the limit on i.

The recurrence for the algorithm Coldberg intended to amalyze is

Ale,v) = atv +2) (Hpl (1-p)t7F AGt-i,v-1) + (1-p)2F At,v-1),
i1 (3)
A(t,0) =0, A(0,v) = 0.

The solution to Eq 1. is bounded by a function that is linear in v
and polynominal in t [5]. Ve will show that the solution to Eq. 2 is
linear in t and exzpomential in v, An examination of the coefficieats
of the terms in Eq. 2 suggests that its solution is between tkat of Eg. 1
and Eq. 2. We will show that its solution is essentially the same as
that of Ig. 1., A careful comparison of these recurrences helps show Wwhy
the pure literal rule reduces the time for solving some random sets of

CHNF predicates from expomnential tc polynomial average time.

2. Solution of the Recurrences

Goldberg [5] cliaims that the solution for Eq. 1 is less than eviX,
where k = [-1/1g(l-p)7] and c¢ is a constant that depends on p. (Ve
use lg for the logarithm base 2.) le gives the proof for the case p =
1/3. Ue intended k to be given by [e-1/1g(l-p)7 for any & > 0 [7].

To selve Equation (2), define the expomnential gemerating function

2t

Gylz) =)} Alt, V)T - (4)
t20

Hultiplying Ea. (2) by z%/t! and summing over t (see Knuth [8, pp.87-

881) gives

5 (1"'_{))5'21 t"izt"i
GV{Z) = avze” + 2) b S e A(i,v-1) =0T
t20 0KiLt
= avzeZ + 2¢Z% G,-1(z(1-p)) . (5)

Iterating Equation (5), we obtain

i : r . ¥ = 7
Gv{z) = 7 2la(v-i)z(1-p)? ezp{z(l-p)l + 7 zp(l-p)Jj
0Ligv 0¢jgi1

= } a[Z(l—p)]i(v—i)zez

G0Ligv
_ (pD)v + [2(2-p) 1V - 2(1-p)
= aze” = (s)
(20-1)<
Exzpanding Gv(z) in a power series gives
[2(1-p)1V*L - 2(1-p) + (2p-1)v
Alt,v) = at " (1

(Zp-l)z
This solution can be checkeé by substitution into Equation (2)}. This
result is linear in t and expomential in wv.
See [7] for the generating function for Eg. 1, znd for the reaspas
why it is difficult to use gemerating functions to obtain an explipit

solution to Eq. 1, Similar difficulties cccur im Eg. 3.

Eq. 3 can be sclveé using essentially the same technigue that
Goldberg suggests for Eq. 1. It can be proved by induction that A(t,v)
is increasing in v, so

Ae,w) € atv +2) (Dpd (1)t AGe-1,v) + (122t AGe, V). (B)

izl
Now, A(t,v) £ A(t), where A(t) 1is the solution tc the recuzrrence
(1-(1-p)25)A(e) ¢ bt + 2) (ol -p) 71 A(e-1), (9

i>1
where b = av. The solution to Eq. 9 is linear in b, ané kence in v,
because Eg. © is linear in the A's. Ve will now show that A(t) € eit®,
where =x > —-1/1g(l-p) and c¢ is independent of ¢t but is a limgar
function of v and depends on x.

First note that for any given t0 we can choose ¢ so that
ct® > A(t) for t tge. Assume the claim is true for A(r) where

r £ t-1. Then

(1-(1-p)25)A(t) < bt + 20t%) (hp! -t a1 - HE, (10)
i>6
Using the binomial theorem and Stirling numbers of the second king [8,

v.65], the summation can be writtea as

P22 GG dd s ettt nd . a0
ijk
UEing e TorauTe (E)(é) = (i)(gzg), the sum over i cam be done using

the binomial theorem, giving

> Dy xr ok (i (12)

e

.

@
;

L

J

The guantity (%) k! can be expanded using Stirling numbers of the first

kind [§, p.65]. A change of variables gives

th

) L k 2
222 G ™E pF R (12)
j

o

n
The coefficient of the =n = 0 term is (1-p)*. The coefficient of + %

in this formulia is a power series in p. For p = 1 this coefficient is

LS

22 G Eaen®k -0 (14)
j k

[&, p.67]. Bince the power series converges for p = 1, it comverges Iox

y ot (et 2 - HE = -p* + o™, (15)

This shows that
(1-(1-p)2%) A(t) < bt + 2¢t® (1-p)% + 6(t* 1), or (16)

2
&(1‘) $ thx (1 P)L s O(tma:&(l,x—l))- (1;7)
(1-(1-p)2%)

To complete the proof the right hand side of EBg. 17 must be less
than or equal to c¢t*. This is true for x > -1/1g(l-p) and| t
sufficiently large, Dbecause then 2(1-p)*¥ < 1, the quantity (1-p)2% is
insignificant, and the difference between ct¥ and 2ct* (1-p)* will be
iarger than the O(t%2%(1:271)y torn. Choosing t sufficiently la-ge
establishes the value cof ty for the basis step.

The same proof tecknique applies to Eg. 1 and gives the szue
results. It is interesting to notice why this technigue does not apply
te Egq. Z. Corresponding to Eg. 9 one obtains

(1-2(1-p) %) A(t) ¢ bt +2 » (Do (-p)t7E ACe-1). (13)

i1
Fer t=1 and p < 1/2, (1-2(1-p)t) is negative, sc Eg. 18 gives a

lower limit rather than an upper limit on A(1).

3. Conclusion

The solutioms to the recurrences for the average time of the Putninm-—
Davis procedure are guite seusitive to changes in the coefficients.
Correcting the minor errors in [3], Goldberg's method can be used to
show that the Putnam-Davis procedure takes polynomial average time on
problems with a fixed value of p. Using a fixed value of p describes
sets of problems where the clauses increase in size as v becomes large.
If p wvaries inversely with v then the simplified version of the

Putnam—Davis procedure regquires exponential time. For such problems, we

th

have shown [2,3] that simple backtracking (which uses Steps 1, 2, angd
of the Putnam—Davis procedure) takes subexponential time (asymptotically
less than e°Y for any c¢) provideé¢ ¢ increases more rapidly than |v®
for o > 1. Ve are now studying the effect of combinimg backtracking
with the pure literal rule.

Using the uwnit clause rule to change the search order greatly
reduces the time reguired to solve some problems [1,9]. The use of the
pure literal rule to control search order is likely to khave a2 similar
effect. The aralysis of the full pure literal rule, however, is probably
difficuvit, So far no theoreticzl work has been done on the effect of
stopping (in wule 3) at the first solution,

Conputation of the average running time on difficult problem sets is
a useful way to compare the efficiency of various searching algorithms.
Such analyses help identify the features in an algorithm that permit it

to solve many difficult problems rapidly.

=]

The research reported herein was supported in part by the National

Science Foundation under grant number IICS579066110.

o

References

1. James L. Bitner and Bdward M. Reingold, "DBacktrack programming
tecknigues®, Comm. ACH 18 (1975) pp. 651-665.

2. Cynthia A. Brown and Parl Walton Purdom, Jr., 'An average time
analysis of backtracking', SIAM J. Comput., (to appezr).

(4

. Cynthia A. Brown and Paul Valton Purdom, Jr., "Iow te searckh

L8]

efficiently’, Incdiana University Computer Science Technical Report

No. 105 (1981),
4, lartin Davis, George Logemann, and Donald Loveland, '"A Machine
Progran for Theorem Proving”, Comm, ACM 5 (1962) pwm. 39%4-397.
5. Allen Goldberg, '"Average case complexity of the satisfiability
problem” , Proceedings Fourth Annual Vorkshop on Automated
Deduction (1979) pp. 1-6.

€. Allen Goldberg, private communication (1981).

7. Allen Goldberg, "On the Complexity of the Satisfiability Problem

Courant Computer Science Report No., 16, MNew York University (1979),

€. Donrald E. Emnuth, The art of computer programming, v.1l, Addison

Wesley, Reading, lass. (19273).
9., Paul Valtozn Purdom, Jr. and Cynthia A. Brown, "Arn acalysis of
backtracking with search rearrangement' , Indiana University

Computer Science Department Technical Report No. 8% (1980).

