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1.0 INTRODUCTION - A MULTIPROCESS MODEL

The term output-driven refers to a paradigm of

computation in which results are produced only when it is
determined that they are needed. When confined to the
relationship between a function and its arguments, this is
known as call-by-need [23]1. The only "control structure" is
thg dispersal of need from its ultimate source, the printer (s)
-- which absolutely must produce answers [11]. Of course,
these answers are determined by the text of a program. This
approach to computation has lead us to view the "data space"

as a medium of manifest objects in which are embedded

suspensions -- transparent processing entities which converge

to needed wvalues.

This heterogeneous relationship between process and déta
is the foundation for the design of a general purpose list
multiprocessor. Most mechanisms for introducing concurrency
in programs, especially applicative programs, can be described
operationally in terms of suspending constructors. Technigues
ranging from collateral argument evaluation [ 91 to
nondeterminisic computations and explicit mul tiprocessing

operators [ 8,12] have been so described.

Our ultimate goal is to specify the architecture of an
extensible computer whose processing resources are transparent
to the software being run. "Software independence" is
achieved by giving the host system sole responsibility for

allocating processors to suspensions. By "computation" we
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mean the reduction of a functicnal expression to normal form.
More specifically, we adopt the graph reduction techniques
found in Pure LISP [pp] for computing results. Processors

(also called evaluators) traverse lists, some of which are

interpreted as programs. These lists reside in a common store
and may contain suspensions. Once a suspension has been

accessed, some evaluator computes its value.

The overall view, depicted in Figure 1, 1is that of a
self-activating data space. In any foreseeable implementation
technology, the number of stored data objects exceeds the
number of processing components by several orders of
magnitude; there may be far more suspenéions in the data
space than evaluators. This report focuses on the problem of
sharing the store. Tﬁe issue of control, which evaluator
computes which suspension, is not considered here. Access to
the store consists of list processing primitives. Messages
have a fixed format about the size of a memory cell; since
the intended host language is applicative, unconstrained side

effects do not occur [10?1M3-

The global architecture for the system discussed here is
shown in Figure 2. A connection network arbitrates concurrent
access to the store by some number of processors. The crucial
issue ié whether a network can be devised in which processing
power can grow without bound. Numerous .connection networks
have been proposed for multiprocessing. The familiar

extremes, the bus architecture and the full crossbar switch
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exemplify the fundamental tradeoff between extensibility
and complexity in communication networks. The finite
bandwidth of any bus imposes an upper limit on the number of
components that can be attached to it. The poclynomial
hardware cost of a crossbar and the algorithmic complexity of
its control make it almost impossible to extend. Between the
extremes are innumerable "compromise" architectures. A
routing network based on a banyan graph structure [22] has
been chosen for discussion in this report. It is moderately
extensible and has a highly decentralized control algorithnm.
Within reasonable bounds its hardware cost is acceptable [ 6l
and it is often put forward as a candidate for general purpose

mul tiprocessing [ 4, 5,15,17].

Although we concentrate on the role of the connection
network in the overall design, in doing so we are forced to
characterize the behavior of the other components. Assertions
about how processors and memories behave are based on other
studies [ p2,16,181, anqére used to parameterize a simulation
model, documented below. The simulation is part of a more
ambitious design effort [19], but in this reporﬁ it serves
priﬁarily as a tool for isélating the qualitativé effects of

enhancements to the design.

In summary, what follows 1is a cursory description of
communication hardware for the management of data space access
in an output-driven, applicative machine. . It is also a forum

for the discussion of the computational compeonents of such a
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machine. The machine's many processors are geared toward list
processing. Section 2 establishes some vocabulary for the
rest of the report and describes the local behavior of system
components. Section 3 describes the architecture of banyan
networks. Section 4 discusées the expected global performance
cf  the proposed machine, followed 1in Section 5 by a
deSéription of the observed performance in simulation.

Section 6 is a summary.

2.0 DEFINITIONS AND OVERVIEW.

Although "communication" is the main subject of this
report, that term is used in a restricted sense, meaning "the
exchange of digital information among a number of components."”
"Component" too is a base term, meaning "some digital
computing device," which may be of general or special purpose.
At any time, many individual exchanges occur (or are

attempted) concurrently.

1. An agent is any component that communicates.

2. A processor is an agent that initiates communication, an
"active" or a "computing" component.

3. A memory is an agent that responds to communication, a
—2
"passive" or a "storage" component.

4. A switch is an agent that connects processors to memeories,
a "routing" component.
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In the context of this report the terms "component" and
"agent" are synonymous. The ad hoc distinction between
processors and memories, while a bit misleading, facilitates
the discussion. In general, memories are not necessarily
passive; storage components can have :considerable decision
making power [11]. Moreover, it 1is not clear into which

category storage reclamation agents fall.

A system is built by connecting a set of processors to a
set of memories with some configuration of switches.
Processors send fixed sized messages such as "Tell me the
contents of cell 11," that are delivered to the appropriate
memory by the switches. Memories carry out these instructions

as the messages arrive.

5. A transaction is a communication between two agents
(usually a processor and a memory) disregarding the
existence of intervening agents (usually switches).

6. A message is an item of transaction, the abstract unit of
communlication.

7. A packet is the physical representation of a message.

8. A Transfer is the passage of a packet directly from one
‘agent to another. i

9. A Transmission is the sequence of transfers associated
with a transaction.

We elect a "packet switching"™ @ implementation of
transactions: switches are empowered to detain packets in
order to manage confluent message streams. Allowing the

connection network to absorb messages increases throughput,
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and hence gross system performance, provided processors can
handle more than one transaction at a time. This is the case
as long as messages from a given source to a given destination
arrive in the order they were issued; the connection network

must have the "virtual circuit" property [ 3].

" A transaction is a single access to the store, and a
paéket is assumed to hold exactly one message. It is wrong to
say "a processor transmits a message;" transmission is a
physical act, and messages are abstract entities. To maintain
a distinction between objects and their implementations, we

shall say that messages are sent and received, whereas packets

are issued and absorbed.

Computation in .the target system 1is based on the
traversal and interpretation of list Structures. A
processor's observable behavior is a sequence of accesses to
the data space. These transactions fall into threel

categories, analogous to LISP operations:

10. RSVPs (CAR and CDR in LISP) - The sender is "fetching" the
. contents of a cell. The receiving memory responds by
transmitting an answer packet to the processor that issued

the request.

11. BSTINGs (RPLACA and RPLACD in LISP) - are "store"
operations. The <content of the receiving memory is

updated; no acknowledgment is required.

12. NEWs (CONS in LISP) - A processor sends a request for the
address of an unreferenced cell. A memory responds by
allocating a cell and sending its address to the
processor. (Presumably the processor STINGs values into
this cell later)..
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Of concern is the amount of time agents are tied up
during transactions. These delays are measured by recording

the amount of time agents are in various states of activity.

13. An agent 1is active when it is sending or receiving
messages.

14. ; An agent is idle if it is involved in work other than
communication.

15. An agent is waiting if cannot proceed until a transaction
in progress 1is completed. For example, a processor may
have to wait for the response to an RSVP message before it
can continue.

16. An agent is blocked if it cannot issue a packet because of
the state of the connection network.

“Id]é“ means "idle with respect to the communication
hardware", not thaf the agent 1is not computing. Some
transmission cost is associated with each kind of transaction,
and it depends on several factors. Since RSVPs are two-way
transactions and STINGsS are not, RSVPs cost more. In all but
the most extreme architectures, another factor is the locality
of references. The extent to which processors "keep to
themselves" 1largely determines the amount of interference in

transmission.

17. Intrinsic-delay is the amount of time taken to complete a
transaction in the absence of interference.

18. Expected delay 1is the average transaction time in a
"running system", the observed delay in the presence of
concurrent transactiens.
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19. Blockage is the difference between expected and intrinsic
delay.

20. Utilization is the percentage of time an agent 1is active
or idle.

Blockage is a symptom of inter-agent interference due to
lack of locality, differing agent speeds, communication
bottlenecks, etc.. One hundred percent utilization 1is an
impossible goal; even 1in the presence of a high degree of
locality systems fail to achieve intrinsic delay [21+ pg-.

86].

3.0 BANYAN NETWORKS

Figure 3 depicts a connection network with the structure
of a banyan graph [55]. Eight processors (the circles along
the bottom of the figure) are connected to eight memories
(along the top of the figure) by three stages of four
two-by-two crossbar switches. The boxes in the figure, called
ports, are the medium of transmission. "~ Each box can hold a
small number of packets for transfer by an agent. The
switches aré not shown as objects; their connectivity is
implied by the edges in the figure. The network can be

enlarged either by increasing the number of stages or the size

of the switches. Only two-by-two switches are considered
here. The switches are all electronically identical, as are
the ports. Message routing 1is determined by a fixed,

distributed control algorithm, described below. Assume that
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packets are transmitted in both directions; those issued by
processors (travelling upward) are called "outgoing"; those

issued by memories are called "incoming".

3.1 Outgoing Message Routing And Source Recovery.

/' The edges in Figure 3 indicate connegtions an individual
switch can make between ports. Each switch inspects the least
significant bit of the destination address of a packet in its
input pert. If this bit is 2zero (one) the packet is
transferred to the 1left (right) output port. ‘During the
transfer, the destination address is shifted one bit to the
right, so that the next bit determines routing at the next
stage. Regardless of their source, all packets with the same
destination arrive at the same output; no address translation

is needed (see Figure 3).

If an RSVP message is sent, the memory must know where to
return its answer. This "source" address can be constructed
by recording the state of each switch the message packet goes
through. As the outgoing decision bit is shifted out of the
deétination address a new bit is shifted in - a zefo (one) if
the packet came from the switch's left (right) input port.
(It is easier to think of the bit as being replaced.) Since
these new bits encode the path taken during transmission, the

source address results.
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3.2 Address Independence

Its routing capabilities make the banyan network
attractive for multiprocessing. Its control algorithm, while
simple and highly decentralized, transfers packets with
equanimity. Its ability to recover source addresses allows
processors -‘to be added, deleted, replaced, or exchanged
wiéhout keeping track of names. (Alas, the same cannot be
said of memories.) It can be built from electronically simple,

identical components.

To their detriment, banyan networks cannot be trivially
extended. When adding stages there seems to be no way around
the increasing number of crossovers of communication paths.
In some technologies, VLSI for example, crossovers can be the
dominant cost, and the banyan network's asymptotic space
complexity is comparable to that of a packet switching
crossbar [ g]. In addition, 'such practical considerations as
error recovery, which are not dealt with in this report, can

add a great deal of complexity to the network control.

But within bounds, say around a million processors,
baﬁyans offer an elegantly simple means of message switching,
at plausible cost, while 1imposing an intrinsic delay that
varies with the logarithm of the number of processors. Taken
alone, logarithmic message delay doeé not limit the growth of

processing power.
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4.0 BEHAVIORAL ASSUMPTIONS.

A simulation model must address at least three levels of
behavior in the system under study. The highest is the
communicative nature of agents. This is modelled by assuming
that the processors execute indepeﬁdently and comprise the
driving force for the system. Each processor is a stochastic
précess with four states: IDLE, RSVP, STING, and NEW.
Switches and memories respond deterministically to the

presence of packets in their ports.

The next level of behavior is the relative performance of
the agents. Here the switch cycle is taken as the basic unit
of time. This is a consequence of an assumption that agents
are implemented in VLSI, one to a chip. Packets are dozens of
bits long, making it reasonable to conclude that they will be
serialized for transfer; switches are pin-bound.
Serialization cannot be done at memory cycle speed, and
processors, though more complex than switches, can probably be
designed to issue packets at the rate that memories can absorb
them. So the packet transfer rate dominates, and together
with the negligible routing control 1logic defines a switch

cycle.

At the lowest level is the local synchronous behavior of
transmission., Of concern are conditions which 1lead to
blockage and the routing heuristics used to avoid themn.

Section 6 treats these in more detail.
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When a processor issues an RSVP message it waits for a
response before changing state*. Intrinsic delay for RSVPs is
the number of switches an outgoing RSVP packet goes through to
get to the absorbing memory, plus the.number of switches the
incoming response packet goes fhroughv to get back to the

source processor. The sum is 21ogN in the banyan network**,

1
Ft
i

Similarly, STING transactions have logN intrinsic delay,
However, having issued a STING, a processor need not wait for
an acknowledgment. So utilization can approach one hundred

percent where processors are only STINGing.

Since NEWs are two-way transactions, they appear to have
the character and intrinsic delay of RSVPs. But an
enhancement of the switching function makes this form of
communication 1look more 1like a STING. Each port is given

enough capacity to hold the address of one newly allocated

*"Lookahead" schemes to reduce waiting are not precluded, but
they are beyond the scope of this report. In operational
terms, a processor that has to wait W cycles for every fetch
can probably handle W suspensions at a time.

**N is the number of processors. The fan-out of the switches,
in this case two, determines the base of the legarithm.
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cell. When conditions permit, new cells are acquired by the
switches and transmitted in the direction of the processors.
The connection network maintains a reservoir of anticipated
NEW requests acting in a manner analeogous to a capacitor or a
heat sink. Sporadic NEWs are absorbed by the 1lower switch
stages with little or no waiting.

il

/
One goal of the simulation is to study the effect of this

enhancement, called the NEW-sink, on locality. The switch

shouid transmit NEW packets (say) directly across the network
whenever there is a choice, routing new cells to proccessors
from memories in the same relative position. However, if a
processor issues a "burst" of NEW requests, or inversely if a
memory has run out of unreferenced cells, regions of the
NEW-sink are drained. To accomodate the demand for new cells

switches may route them to non-local destinations.

5.0 OBSERVED BEHAVIOR IN THE SIMULATION MODEL

Coding for the simulation is provided 1in Appendix A.
Output from the program was 1in tabular form, and has been

graphed by hand in the accompanying figures.

5.1 The NEW-sink

In the NEW-sink a switch examines its processor-side ports in
every cycle. If one or both are empty, the switch tries to

transfer NEW packets from its memory-side ports. As noted
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above, preference 1is given to transfers straight across the

network.,

Suppose every processor tries to retrieve a NEW cell in
every cycle. Their ports are emptied simultaneously. On the
next cycle switches in the first rank discover the empty ports
and latch NEW packets into them; the processors are waiting.
Tbé ranks of empty ports ripple across the connection network
as more highly positioned switches provide new cells.

Expected delay 1is one, and process utilization is fifty

percent.

Figures # and 5§ show utilization and locality under
varying processor and memory behaviors. To isolate NEW-sink
performance only NEW packets are issued. Processors are given
some probability of requesting NEW packets; memories are
given some probability of generating them. The simulation

contains sixteen processors and sixteen memories. Utilization

does not change in simulations of larger systems.

5.]J.1 Utilization (Figure 4) - Assume processor activity 1is
figed. As memories' reéponsiveness to NEW requesﬁs increases
so does utilization, until the system reaches its capacity to
produce ©packets. When processors are one hundred percent
active the system levels out at expected delay two. This
expected delay 1is achieved when memory is about 75 percent
responsive. As processor activity decreases, stable systems

achieve higher utilization. Both phenomena indicate the
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capacitive nature of the NEW-sink. Anticipated NEW requests
supply processors at a rate better than could be expected from
memory behavior alone. Evidently, memory is asked more often

for NEW packets than 1is accounted for just by processor

demands.
5.1.2 Locality (Figure 5) - The NEW-sink does affect
locality. A uniformly applied switch‘preference associates a

unique memory with each processor. Locality is the fraction
of ﬁEw packets absorbed by a processor that were issued by its
associated memory. If memory responsiveness is figed,
locality improves as processor activity increases. If
processor activity is fixed, locality tends to improve with
memory responsivenesé, except in the case where memory is
unresponsive. If NEW packets are sparse in the network, they
flow directly accross it; although wutilization 1is 1low,

locality is relatively high.

Processor contention for NEW packets is usually resclved
in the first stage of the switching network (the lowest stage
in Fiqure 3). Thus almost all the non-local packets a

processor absorbs come from a single secondary memory.

5.2 RSVPs (Figure 86)

Where processors issue only RSVP messages expected delay

varies negligibly from intrinsic delay, even in the absence of
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locality. Utilization is 1/2logN for each processor, making
"gross wutilization" (the amount of work the system is doing)
N/2logN. 1If processors always wait for the response to their
RSVP messages, blockage 1is negligible. Transactions do not

interfere with each other because the network is almost empty.

5.3 STINGS (Figure 7)

An attempt to model system behavior where processors send only
STING messages underscores the value of simulation as a design
aid. Figure 7 shows the performance of processors that STING
on every cycle, but with varying degrees of locality. With
100% 1locality expected delay equals intrinsic delay and
utilization is 50%, as should be expected. What was
unexpected was that utilization did not approach this limit as
locality improved. In fact, the system performed worse when
half of all references were local than when only a quarter

were.,

The fault lay 1in the switches -- they were poorly
designed! In the NEW-sink preference is given to transfers
stfaight across the network (Section 5). 1In this- simulation,
the same heuristic is used for outgoing STINGS. As a result,

packets that travel wvertically block packets that travel

diagonally; the network becomes congested. Unless there are
enough "holes" in the transmission medium (due to RSVP
transactions -- Section 6.2) to alleviate this problem, the

switch control algorithm must record enough history to alter
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its preference from time to time.

5.4 Mixed Transactions (Figure 8)

Figure 8 shows the result of a series of simulations in which

Processors have the state transition matrix

IDLE NEW STING RSVP
IDLE 0 l-r 0 E
NEW 0 0 1 0

STING 0 (l=r) 2 {(1=g) /2 r

RSVP 0 (1-r)/2 (l-r)/2 r

The form of this matrix comes from the following assumptions:

l. A processor is never IDLE. It is capable of issuing a
memory redquest on every cycle.

2. Bach NEW is immediately followed by a STING. Processors
do not "hoard" «cells for some private purpose such as

buffering.

3. A processor is about as likely to STING a NEW cell as an
old one.

4.  Since computation is driven by list traversal, RSVPs are

the most frequently occurring message.

The steady state vector for this stochastic process is

(0, (A-r)/(3-r), 2(1-r)/(3-r), 2r/(3-r)]
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Figure 8§ shows utility under various values for r.

Of these assumptions the third is the most speculative
and optimistic. 1In purely output-driven systems the only side
effect allowed is the convergence of suspensions to values
Lipl. The only cells that can be ré—STING'd are those that
are uniquely referenced by a process. A modelling effort is
underway to determine, among other things, the proportion of
uniquely referenced cells in the data space. However, at this
time there exists no empirical evidence to support assumption
3. The figure indicates that utility has logarithmic decline
as in Figure 7, but is higher than in the pure RSVP system
since STINGs and NEWs cause 1little waiting. Under the
assumptions of the simulation, with an RSVP-factor of r = R
a system of thirty—twa processors and memories performs with

about eight times the power of one processor.

6.0 CONCLUSIONS AND DIRECTIONS

This report is part'of a design effort £for a computer
based on the relatively high level principle of output-driven
coﬁputation. A multiprocessing host architecture.can exploit
the existence of suspensions, primitive processing entities
embedded in the data space. The evaluators that activate some
of these suspensions must compete for access to a global
store, and some aspects of this contention are investigated

here.



Page 20

Computation takes the form of list processing, and the
microscopic behavior of agents 1is characterized by three
transactions called STINGs, RSVPs, and NEWs. The focus of
this report 1is the conne;tion network which arbitrates these
transactions, and a close look is taken, through simulation,
at banyan networks as an example. This network can be
assémbled from simple, 1identical components. Its routing
capabilities, together with the fact that suspensions are
transparent in the data space, makes it possible to vary the
number of processors independent of software. The simulation
gives qualitative evidence that the banyan network can deliver

increased gross utilization as processors are added.

Utilization is dominated by the most frequent (and most
costly) transaction, the RSVP. STINGs can be issued with no
waiting since a response is not required. By allowing the
connection network to anticipate requests for new cells, and
to buffer them in the NEW-sink, NEW transactions are served in
unit time. The "holes" left in the network by agents waiting
for RSVPs gives switches.time‘to acquire NEW packets and to

transmit them to the preferred destination.

The merits of message switching must be weighed against

its faults; in the shadow of lowered performance
expectations, simpler networks such as the bus are
competative, even in systems with hundreds of agents.

Attempts to increase throughput 1lead inevitably to more

blockage. As the holes disappear in the connection network



rage 21

the NEW-sink becomes less effective and locality suffers.

More quantitative conclusions await refinement 1in the
output-driven model of computation. Processors probably have
more complicated behavior than the simple stochastic model
presented here. We have assumed that in the worst case,
access to the store 1is random. It may be however, that
processors frequently access the same memory locations. Of
particular importance is the way storage reclamation fits into

this processing scheme.
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APPENDIX

The Simulation

The connection network model is . implemented in SIMULA
[ 11 on a DEC System 10 computer. The packet transmission
meduim is a set of PORT objects, able to hold three packets
(PKT objects) each, one Outgoing one Incomming and one New.
AGENT objects (PROCESSORs, MEMORYs and SWTCds) have the
procedural form:

while true do
begin T
detach;
{Perform one cycle's worth of local function}
end

Like AGENTS are collected in POOLs (linked 1lists). In one
step of the simulation a POOL resumes each of its members
once.

A global transition matrix, TRANS, drives state changes
in PROCESSOR objects. By altering the entries in TRANS the
relative frequency of transactions and their conditional
probabilities are varied.

In each cycle MEMORY objects inspect their PORT. STINGs
are absorbed, RSVPs are .transfered to the incomming plane
unless they are blocked. A NEW packet is generated if it is
needed and if no other transfer can take place.

A SWTCH's cycle has two phases. First all SWICHs inspect
their four PORIs, noting the appropriate address bits on the
three planes (recall Section 3.0). Global tables LACT and
RACT encode the decision procedure for packet transfer.
Transfer takes place in the second phase.
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begin

class PKT (A,RSVP); _ .
integer A; comment: Destination address;
boolean R3VP; comment: false ==> sting;
begin
end PKT;

class PR[;
" begin
boolean U,L; comment: true ==> (J)pper or (L)ower right peort:
ref(PKT) I; comment: Latch for Incomming (M --> P) packet;
ref (PKIr) O; comment: Latch for Outgoing (P --> M) packet;
ref (PKT) N; comment: Latch for New-sink (M -=> P);
procedure XFRN(P); ref(PRT) P;
begin
N:- P.N; P.N:- none;
N.A:= (N.A * 2) + (if P.U then ] else 0);
end;
procedure XFRI(P); ref(PRT) P;
begin
I:- P.I; P.1:- none;

if (I.A >= MSB) then I.A:= I.A-MS3;
LA o= (I.A *.2) + (1f P.U ther 1 else 0):
end;
procedure XFRO(P); ref(PRT) P;
begin

O0:- P.0O; P.0:- none;
0.A:= (0.A//2) + (if P.L then MSB else 0);
end;

end PRT;
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class LIST(ELT); ref(PRT) ELT;

comment: Used by the routine BANYAN to temporarily tie
together ports during network construction. All LIST
references are discarded before the simulation begins;
begin
ref (LIST) REST;
procedure CONC(L); ref(LISI) L;
begin
ref (LIST) T;
T :- this LIST;
while (T.REST =/= none) do T :- I'.REST;
IFr.REST :- L;
end LIST.CONC;
REST :- none;
end LIST;

ref (LIST) procedure BANYAN (N); integer N;

comment: Construct an N-stage Banyan network of processes,

interconnected by 2x2 switches. A list of last Stage output

ports is returned. The original caller supplies the
recursively built system with MEMORYs;
begin
if (N = 0) then
begin comment: Base step, build a processor;
ref (PROCESSOR) P; ’
P :- new PROCESSOR (new PRT);
BANYAN :-new LIST (P.P);
end

else
begin comment: Inductive step, build two Subnetworks;

ref(L.IST) BL,BR,T1,T2;
BL :— BANYAN(N-1);
BR :- BANYAN (N-1);

Tl :- B8L; T2 :- BR;
while (I'l =/= none) do
begin

ref (SWTCH) S;
S :— new SWTCH(T1.ELT,T2.ELT);
Dl BET E= SJ0E:; B2: BLT 4= S5.UR;
] :- T1.REST; I'2 :- T'2.REST;
end;

BL.CONC (BR);

BANYAN :- BL;

end;

end BANYAN;



Page A 4

class POOL;
comment: A POOL is a collection of like objects, such as
PROCESSORs. It is analogous to a SIMSET. The
POOL maintains performance averages and manages the
resumption of 'its objects during simulation;
begin
ref (AGENT) FIRST,T;
ref (TALLY) RPT;
procedure CLOCK(N); integer N;
comment: Resume each agent N times. "CLOCK(n+1)" is
equivalent to "begin CLOCK (1), CLOCK(n) end";
/ begin
while (N>0) do
begin
T :- FIRST;
while (T =/= none) do begin resume(T); I :- [.NEX[; end;
N := N-1;
end;
end POOL.CLOCK;
procedure RESET;
begin
T = PIRST;
while (I' =/= none) do begin T.RESET; T :- [.NEXI; end;
end POOL.RESET;
procedure REPORT (LVL); integer LVL;
comment: Get .each AGENT to report its performance statistics.
Place a summary (averages) in this POOL's TALLY. If the
report level (LVL) is greater than zero, issue the tally;
begin
integer 1I;
T:— FIRST; I:= 0:
while (I =/= none) do
begin
RPI.ADD(I'.RPT);
T.REPORT (LVL);

I:= I+]1;
Py= T.NEXT
end;

RPT.AVG(I);
if (LVL > 0) then
begin
outimage;
inspect FIRST
when PROCESSOR do outtext ("PROCESS30R")
when MEMORY do outtext ("MEMORY")
when SWTCH do outtext ("SWITCH");
outtext (" pool summary:"); outimage;
RPI'.REPORT (LVL);
outimagej;outimage
end;
end REPORT;
RPI':- new TALLY (new MAP) ;
end POOL;
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class AGENT;
comment: An AGENT is a non-passive message passing object;
virtual: procedure RESET;
begin
ref (AGENT) NEXT;
ref (TALLY) RPI;
procedure JOIN(P); ref(POOL) P;
begin
this AGENT.NEXT :- P,.FIRST;
P.FIRST:- this AGENT;
end AGENT.JOIN;
procedure REPORT(LVL); integer LVL;
comment: Issue this AGENT's tally if there is one and if the
reporting level (LVL) permits;
begin
if ((RPI =/= none) and (LVL > 1)) then RP[.REPORT (LVL)
end AGENT.REPORT;
inner;
end;
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AGENT class MEMORY (P); ref(PRT) P;
comment: Withdraw packets from the O-latch of the port.

Transfer of RSVP messages is blocked if the I-port is
occupied. If there is no other transaction, try to
supply the new-sink;

begin
procedure RESET; begin this AGENT.RPI:- new TALLY (none) end;

this AGENT.JOIN (MEMORYPOOL);

RESET;
CY¥CLE:
detach;
if (P.0 == none) then goto NEWSINK;
if P.O.RSVP then
begin
if (P.I == none) then
begin
RPI.RA:= RPT.RA + 1;
P. Ly= P..0;
P.0:- none;
goto CYCLE;
end
else if (P.N == none) then
begin
RPT.RB:= RPT.RB+];
goto CYCLE;
end .
else goto NEWSINK;
end;

P.O:- ncone;
RPI'.SA:= RPI.SA+];
goto CYCLE;
NEWSINK:
if (P.N == none) then
begin
RPT.NA:= RPTI.NA+];
P.N:—- new PKT (0,false);
end
else RPI.IDL:= RPT.IDL+1;
goto CYCLE;
end MEMORY;



Page A7

AGENT class PROCESSOR(P); ref (PRT) P;
comment: Generate MEMORY requests;
begin
integer STATE, NEXT, ID;
procedure RESET;
begin
STATE:= 0;
this AGENT.RPT:- new TALLY (new MAP)
end PROCESSOR.RESET;
comment: Process behavior: i) To initialize, enter the processor
pool, get a REPORT object, then fetch a NEW message - this floods
the switch network and establishes this processor's ID.
ii) Throughout the remainder of the processor's lifetime issude
memory requests as specified in the TRANSition table;
RESET;
this AGENT.JOIN (PROCESSPOOL);
while (P.N == nrone) do detach;
RPT.IDL:= this PROCESSOR.ID:= P,.N.A;
P.N:- none;
CYCLE:
detach;
CONTROL :
NEXT:= randint(0, 3,SEED);
if not draw(IRANS[STATE,NEXI'],SEED) then goto CONTROL;
STATE:= NEXT;

if (STATE = 1) then goto doNEW;

if (STATE = 2) then goto do3TING;

if (STATE = 3) then goto doRSVP;
doNOOP:

RPI'.IDL:= RPI.IDL+1;
goto CYCLE;

doNEW:
while (P.N == none) do begin RPI'.NW:= RPIL.NW+l; detach end;
RPT.NA:= RPI.NA+]; :
RPT.M.INCR(P.N.A);
P.N: - none;
goto CYCLE;

doSTING:
while (P.O =/= none) do begin RPl.S3:= RPI'.SB8+]1; detach end;
RPT.SA:= RPI.SA+];
P.0:- new PKT (randint (0,MAXADDR,SEED) ,false);
goto CYCLE;

doRSVP:
while (P.0 =/= none) do begin RP[.R3:= RPT.R3+1l; detach end;
if draw(LOCALITY,SEED) then P.0O:- new PKI' (ID,true) else
P.0:- new PKT(randint(0,MAXADDR,SEED),true);
while (P.I == none) do begin RPI.RW:= RPI.RW+1; detach end;
RPT.RA:= RPT.RA+];
P.I:- none;

goto CYCLE;

end;



AGENT class SWTCH(LL,LR);

comment:

This object is a 2x2 crossbar packet switch.

ref(PRT) LL,LR

-
r
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Its cycle

of behavior has two phases - first to sense the condition
of its ports, and second to direct those ports to

transfer packets among each other;

begin
ref (PRT) UL,UR;

integer ISTATUS, OSTATUS, NSTATUS ;

comment:

LL.L:= false;
LR.L:= true;

UL := new PRT;
UR :- new PRT;

Initialize the switch.
whether they are leftmost wrt this switch;

UL.U:= false;
UR.U:=

true;

this AGENT.JOIN (SWITCHPOOL);

while true do
begin
detach;

Mark the ports to indicate

comment: Phase 1 - Determine the status of the ports;
CHKLSB(LR.0.A);
CHKLSB(LL.0O.A);

80:= if (LR.O

none) then 0 else

Bl:= if (LL.O == none) then 0 else
82:= if (UR.O == none) then 0 else
B3:= if (UL.O == none) then 0 else
OSTATUS:= ((B3*2 + 82)*%3 + B1)*3 +
BO:= if (UR.I == none) then 0 else
8l:= if (UL.I == none) then 0 else
32:= if (LR.I == none) then 0 else
83:= if (LL.I == none) then 0 else
ISTATUS:= ((B3*2 + 82)%*3 + 81)*3 +
B0:= if (LR.N == none) then 0 else
Bl:= if (LL.N == none) then 0 else
B2:= if (UR.N == none) then 0 else
33:= if (UL.N == none) then 0 else
NSTATUS:= ((B3*2 + 82)%*2 + 31)*2 +
detach;

1;
1;

80;
CHKMS3 (JR.I.A);
CHKMS3(JL.I.4A);

1l

o o e G
o‘l‘...‘l O\.

-

comment: Phase 2 - transfer packets;

X:= LACT[OSTATUS];
if (X =
X:= RACT[OSTATUS];
if (X = -1)
X:= LACT[ISTATUS];
if (X =
X:= RACT[ISTATU3];

if (X = -1) then LR.XFRI (UL)

X:= LSNK(NSTATUS);
if (X = -1)
X:= RSNK (NSTATUS);
if (X = =1)
end;

end;

-1) then UL.XFRO(LR)
then UR.XFRO(LL)

—-1) then LL.XFRI (UR)

then LL.XFRN (UR)

then LR.XFRN (UL)

else
else
else
else
else

else

if
if
if
it
if
if

-

>

(X
(X
(X
(X
(£

1) then
l) then
1) then
1) then
1) then

1) then

JL.XFRO(LL);
UR.XFRO(LR);
LL.XFRI(JL);
LR.XFRI (JR);
LL.XFRN (JL);

LR.XFRN (JR);



Page jg

class TALLY (M); ref (MAP) M;
comment: This object keeps behavior statistics for its owner.
Updates, operations and output are handled here;
begin
real IDL; comment: Counts IDLE cycles;
real Nw,NA; comment: Counts NEW Wait and active cycles;
real SB,8A; comment: Counts STING Wait and Active cycles;
real R3,RA,RW;comment: Counts RSVP Wait and Active and Busy cycles;
procedure ADD(T); ref(I'ALLY) T;
begin _
IDL:= IDL+T.IDL; NW:= NW+I'.NW; NA:= NA+I.NA; SB:= S58+l'.5B;
SA:= SA+T.SA; RB:= R3+T.RB; RA:= RA+TI'.RA; RW:= RW+I.RW;
end;
procedure AVG (X); integer X;
begin
IDL:= IDL/X; NW:= NW/X; NA:= NA/X; S8:=3SB/X; SA:= SA/X;
RB:= RB/X; RA:= RA/X; RW:= RW/X;
end;
procedure REPORT (LVL); integer LVL;
begin
real TA,TW,T3,UT;
TA:= NA+SA+RA+IDL; TW:=NW+RW; TI'B:= SB8+RB;
UT:= if (TA = 0) then 0 else 100*(TA/(TA+TW+IB));
outtext (" Util: ");outfix(UT,0,3);outtext("s —- ");
oUEEIR(TA,2,T);olittext (", ")ioutfix(I'W,2,7);outtext("w, ");
outfix(T8,2,7);outtext("b, "Jioukfix(IDL,2,7); outtext(® idle."):
outimage; outtext (" N,S,R (effort): ");
UT:= if (NA = 0) then 0 else 100* (NA/ (NA+NW) ) ;
outfix (NA,2,7);outtext(" (");outfix(UT,0,3);
UT:= if (SA = 0) then 0 else 100* (SA/ (SB+5A));
outtext("%), “);outfix(5a,2,7);
outtext(" (");outfix(UT,0,3); outtext("3), ");
UT:= if (RA = 0) then 0 else 100%*(RA/ (RA+RB+RW));
outfix (RA,2,7);outtext(" ("); '
outfix (UT,0,3); outtext("z)."); outimage;
if (M =/= none) then begin M.RATE; M.REPORT (LVL) end;
outimage; '
end TALLY.REPORT;
" end TALLY;
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class MAP;
comment: An array of counters for measuring locality;
begin
real array C(0:MAXADDR);
real TOT,MX1,MX2;
procedure INCR(N); integer N; begin C[N]:= C[N]+l end;
procedure RATE;
begin
integer I,J;
for I:= 0 step 1 until MAXADDR do TOT:= FOT+C [I];
if (roT>0) then for I:= 0 step 1 until MAXADDR do
begin
J:= (C[I]/TOT)*100;
if (J > MX1) then begin MX2:= MXl; MXl:= J end
else if (J > MX2) then MX2:= J;
ClI]z=J

end
end MAP,RATE;
procedure REPORT (LVL); integer LVL;
begin
if (LVL > 3) then
begin
outtext (" Locality - (lst) ")joutfix(MX1,0,3);
outtext ("%, (2nd) “);outfix(sz,0,3);0uttext("%“);outimage;
end; ”
if (LVL > 4) then
bejin
integer 1,J;
Pi= 0;
REPEAT: outtext(" ")
for J:= 1 step 1 until 5 do
begin
if (I = CAPACITY) then goto TAEPER;
outint(I,3);outtext(": ")ioutfix(C[I],0,3);outtext ("3 "33
I:= I+1; '
end;
outimage;
goto REPEAT;
TAEPER: outimage;
end;
end MAP.REPORT;
end MAP;
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integer procedure CHKMSB (A); integer A;
begin
CHRMSB:= if (A < MSB8) then 1 else 2;
end;

integer procedure CHKLSB(A); integer A;
begin
CHKLSB:= if (A = (A//2)*2) then 1 else 2;
end;

Comment: Global variables;

integer SPREAD; comment: Operator gives number of processors;
integer CAPACITY; comment: Number of Proc/Mem pairs;

integer MAXADDR; comment: Maximum addressable memory;

integer MSB; comment: Leftmost bit in an address;

integer RUN; comment: Number of iterations in simulation;
integer LEVEL; comment: For reports;

real LOCALITY,PRRSVP,PRSTNG,PRNEW;

integer SEED; comment: For randomizer;

integer L1,L2,L3; comment: Loop control;

integer X,80,81,82,B3;

integer array LACT(0:35), RACT(0:35), LSNK(0:15), RSNK(0:15);
real array TRANS (0:3,0:3); :

ref (LIST) L;

ref (PROCESSOR) Pl1,P2;

ref (MEMORY) M;

ref (POOL) SWITCHPOOL,MEMORYPOOL,PROCESSPOOL;
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comment: PROCESSOR TRANSITION MATRIX

A matrix of conditional probabilities for processor behavior.
States in the stochastic process are IDLE (I), NEW (N),

STING (5), and RSVP (R). Rows represent the current state
and columns indicate the conditional probability that

a PROCESSOR will go into another state.

I N S R

T I [ 8.8 0.0 0.0 1.0 1
| |

N | 0.0 0.0 0.6 .90 ]

| |

S I 8.0 0.0 0.0 1.0 |

| |

R | 8.0 0.0 0.0 1.0 |

This matrix: PROCESSORs only do RSVPs.

end PROCESSOR TRANSITION MATRIX comment;
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SWITCH CONTROL TABLE
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In the first phase of switch control the status of ports is

checked on each comminication plane.

The status is encoded

and the second phase switch action is determined by table

lookup. A separate table is used for the NEW-sink.

In the incoming/outgoing table:

i) output status codes are 0 (empty)

ii) input status codes are 0
iii) transfer actions are ":"

iv) plane
outgoing
K incoming

OUT INP XFR
LRLR LR
0000 : :
Q9B 13 x
D00 2 =
QeI o =:;
091 T =_
0012 ==
0020 : x
00 21 x x
0 022 : =
01 00 : :
01 01 x :
0102 : :
0110 =_:
6 1 1L = a
0 L 1 2 ==z
01 20 = =2
01 21 x :
0122 =: :
1 000 : :
1 001 : :
l1 002 : =
1 010 : :
1 011 = :
1012 : =
1020 : x
1 0 21 5. R

[ T S P SR S TP R W

NN — OO0 O N

N O NN O NN- O N
LT

-
-

LR L ||

& &8 ss ee 60 w0 e

(empty) 1
(noop), "="

and 1

(occupied)
(go left) and 2

and llxll

L-inp R-inp L-out R-out R-xfr L-xfr bit

LL.O LR.O
UL.I UR.I

Comment

R blocked

L blocked

R blocked

R blocked
R blocked
L blocked
L blocked

(switch

(switch

(output

(switch
(output
(output
(output

UL.
LL.

0 UR.O UR
I LR.I LR

preference)

preference)

locked)

preference)
locked)
locked)
locked)

R,L blocked (output locked)

R blocked (output locked)

L blocked
R,L blocke

(output

locked)

d (output locked)
L blocked (output locked)

R blocked (output locked)

L blocked (switch preference)

Outputs 1lo

L

L]

cked

n

end SAITCH CONTROL TABLE comment ;

UL Lsa
LL Ms3

(go right)
(cross)



comment:

N>
N>

WO doU b wp— o

NEW-sink CONTROL TABLE

status action

UL UR LL LR LL

Wl e ee PG ®e es se e 0e

l' “ e eo

Hi e w000 000 0CO
HEHE -0 0000 HELELULOoO0OOoO O
HHOOH-H R OO0 RN HOO OO
!—'D'—'DPD'—'OFD‘—'O!—'OHC

end NEW-sink CONTROL

LR

s f] e0 || se BG we e e I ose || ®2 se oo oo

comment;

comment

Switch preference

Outputs locked
Switch preference

Outputs locked
Switch preference
Switch preference
Switch preference
Outputs locked.
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comment: The TRANSition matrix for PROCESSORs declares the
probabilities that a process will do one operation, given that
in the last iteration it did another operation.

0 (Idle) 1 (New) 2 (Sting) 3 (RSVP) ;
TRANS [0, 0] i TRANS [0, 1 0 ; TRANS[0,2]: ;TRANS[0,3]:= 1 ;
TRANS [1,2]:=0

=0

H . ek
- -

.

-

0 ]l:= 0

TRANS[1,0]:= 0 ;TRANS[1,1]:=0 ; ;TRANS [1,3]:=1 ;

TRANS[2,0]: 0 ;TRANS[2,1]:=0 ; TRANS[2,2]: ;TRANS [2,3]:=1 ;

FRANS [3,0]:= 0 ;TRANS[3,1]:=0 ; [RANS[3,2]:=0 ; TRANS[3,3]:=1 ;
LACT[ O]:= 0; LACT[ 1]:=-1; LACT[ 2]:= 0; LACT[ 3]:=+1; LACT[ 4]:=+1;
LACT[ 5]:=+1; LACT[ 6]:= 0; LACT[ 7]:=-1; LACT] 8]:= 0; LACT[ 9]:= 0;
LACT[10]:=-1; LACT[1l1l]:= 0; LACT[12]:=+]l; LACT[13]:=+1; LACT[14]:=+1;
LACT[15]:= 0; LACT[16]:=-1; LACT[17]:= 0; LACT[18]:= 0; LACT[19]:= 0;
LACT[20]:= 0; LACT[21]:= 0; LACT[22]:= 0; LACT([23]:= 0; LACT[24]:= 0;
LACT[25]:= 0; LACT[26]:= 0; LACT[27]:= 0; LACT[28]:= 0; LACT[29]:= 0;
LACT[30]:= 0; LACT[31]:= 0; LACT[32]:= 0; LACT[33]:= 0; LACT[34]:= 0;
LACT[35]:= 0;
LSNK[0 ]:= 0; LSNK[l ]:= 0; LSNK[2 ]:= 0; LSNK[3 ]:= 0; LSNK[4 ]:= 0;
LSNK[5 ]:=-1; LSNK[6 ]:= 0; LSNK[7 ]:= 0; LSNK[8 ]:=+1; LSNK[9 ]:=+1;
LSNK[10]:= 0; LSNK[1ll]:= 0; LSNK[12]:=+1; LSNK[13]:=+1; LSNK[l4]:= 0;
LSNK[15]:= 0;
RACT[ O]:= 0; RACT[ 1]:= 0; RACT[ 2]:=+1; RACT[ 3]:= 0; RACT[ 4]:= 0;
RACT[ 5]:=+1; RACT[ 6]:=-1; RACT[ 7]:=-1; RACT[ 8]:=+1; RACT][ 9]:= 0;
RACT[10]:= 0; RACT([11]:= 0; RACT[12]:= 0; RACT[13]:= 0; RACT[1l4]):= 0;
RACT[15]:= 0; RACT[16]:= 0; RACT[17]:= 0; RACT[18]:= 0; RACT[19]:= 0;
RACT[20]:=+]; RACT[2]1]:= 0; RACT[22]:= 0; RACT[23]:=+1; RACT[24]:=-1;
RACT[25]:=-1; RACT[26]:=+1; RACT[27]:= 0; RACT([28]:= 0; RACT[29]:= 0;
RACT([30]:= 0; RACT[31]:= 0; RACT[32]:= 0; RACT[33]:= 0; RACTI[34]:= 0;
RACT[35]:= 0;
RSNK[O ]:= 0; RSNK[1 ]:= 0; RSNK[2 ]:= 0; RSNK[3 ]:= 0; RSNK[4 ]:=+1;
RSNK[5 ]:= 0; RSNK([6 ]:=+1; RSNK[7 ]:= 0; RSNK[8 ]:= 0; RSNK[9 J:= 0;
RSNK[10]:=-1; RSNK[l1l]:= 0; RSNK[12]:=+1; RSNK[13]:= 0; RSNK[l4]:= +1.;
RSNK[15]:= 0; ' :



outtext("Banyan simulation.™);
outimage;

outtext("Report Level [0-9]:
outtext("Length of RUN:
GETLOC:
outtext("Locality: ");breakoutimage;
outtext ("Pr (RSVP):
if (PRRSVE > 1. 0) then goto GETLOC;
if (PRRSVP < 0.0) then goto GETLOC;

");breakoutimage; LEVEL:
")i;breakoutimage; RUN:= inint;

LOCALITY:=
")ibreakoutimage; PRRSVP:= inreal;
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inint;

inreal;

TRANS[0,0]:= TRANS([1,0]:= TRANS[2,0]:= T NS[3 0]:= 0.0;
TRANS[1,1]:= PRANS[0,21:= TRANS[1,3]:= 0
/ TRANS[1l,2]:= 1.0;
TRANS [0, 3]:= TRANS[2,3]:= TRANS[3, 3]:= PRRSVP;
TRANS[2,1]:= TRANS[2,2]:= TRANS[3,1]:= TRANS[3,2]:= (1.0-PRR3VP)/2.0;
INIT:
outtext("How many stages?: "); breakoutimage; SPREAD := inint;
CAPACITY := 2,0 ** SPREAD;
MAXADDR:= CAPACITY-1;
MSB := 2.0 ** (SPREAD-1);
SWITCHPOOL :- new POOL;
MEMORYPOOL :- new POOL;
PROCESSPOOL :=- new POOL;
comment: Build a Banyan network;
L:- BANYAN (SPREAD);
while (L =/= none) do begin M :- new MEMORY (L.ELT); L :- L.REST; end;

outtext("Network constructed."); outimagej;outimage;outimage;

fot Lilx
begin
PROCESSPOOL.CLOCK (
SWITCHPOOL.CLOCK (2
MEMORYPOOL.CLOCK (1

end;

1 step 1 until RUN do

L)z
)i
):

PROCESSPOOL.REPORT{LEVEL);
comment: MEMORYPOOL.REPORT (1);
outimage; outimage; outimage;
goto INIT;

EXIT:

end.



