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Abstract

The power of first class continuations is demonstrated by implementing a variety of corou-
tine mechanisms using only continuations and functional abstraction. The importance of

general abstraction mechanisms such as continuations is discussed.

1 Introduction

A variety of coroutine mechanisms have been proposed, some so complicated that there
has been significant confusion over their semantics [1]. Yet most languages provide no
coroutine mechanism, and do not provide sufficient power to allow the user to define one.
In this paper we demonstrate that a wide variety of coroutine mechanisms may easily be
defined by the user given a single control abstraction, called a continuation. The power
of continuations stems from their first class nature: they may be passed to and returned

from functions, be stored in data structures, and have indefinite extent.

* A preliminary version of this paper was presented at the 1984 ACM Symposium on
LISP and Functional Programming. This material is based on work supported by the
National Science Foundation under grant numbers MCS 83-04567 and MCS 83-03325.
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In Scheme 84 [2] the call-with-current-continuation expression of the form
(call/cc Ezp) applies the function which results from evaluating Ezp to the contin-
uation of the entire call/cc expression. This continuation is a first class functional object
that, when invoked, returns the value of its single parameter as the value of the entire
call/cc expression. The control and environment information associated with continua-
tions is recorded in storage that is dynamically allocated. It is reclaimed only when all
references to the continuation have been abandoned. This allows complete management
of the control behavior of the computation, including arbitrary backtracking and other
forms of context switching such as interrupt driven multiprocessing [3]. (In GEDANKEN
[4], 1abels are also first class control objects, but are less general than continuations; they
refer only to statements, rather than to arbitrary points within an expression. Reynolds

also notes that GEDANKEN labels may be used to implement coroutines.)

In the next section we provide an overview of Scheme 84, a Scheme dialect which
provides first class functional and continuation objects. We then demonstrate how a basic
coroutine mechanism may be defined in Scheme 84 using continuations. This basic mecha-
nism is then elaborated to provide additional features, such as a simple interface between a
group of coroutines and a stream. Finally, we conclude with a discussion of the importance

of powerful abstractions, such as first class continuations, for language extensibility.

2 An Overview of Scheme 84

Scheme was designed and first implemented at MIT in 1975 by Gerald Jay Sussman and
Guy Lewis Steele, Jr. [5,6] as part of an effort to understand the actor model of com-
putation [7]. Scheme may be described as a dialect of Lisp that is applicative order,
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lexically scoped, and properly tail-recursive. Most importantly, Scheme—unlike all other

Lisp dialects—treats functions and continuations as first class objects.

A subset of Scheme 84 [2] is composed of the following syntactic constructs:

(expression) ::=
(constant)
| (identifier)
| (syntactic extension)
| (lambda ( {(identifier)} ) {({expression)} )
| (12 (expression) (expression) (expression) )
| (set! (identifier) (expression) )
| (call/ce (expression) )
| {(application)

(syntactic extension) ::= ({keyword) {{expression)} )

(application) ::= ( (expression) {(expression)} )

lambda is the sole binding operator and evaluates its expressions sequentially, returning
the value of the last. set! side-effects an existing identifier binding or initializes a global
identifier. call/cc is described below. An application evaluates its expressions (in an
unspecified order) and applies the value of the first expression to a list of arguments formed

from the values of the remaining expressions.

Scheme 84 provides a syntactic preprocessor that examines the first object in each
expression. If the object is a syntactic extension (macro) keyword, the procedure associated
with the indicated syntactic extension is invoked on the expression, and the expression is
replaced by the resulting transformed expression. If the object is not a keyword or core
expression identifier (1ambda, if, efc.), then it is assumed that the expression is a2 normal

function zpplication.

We use a few syntactic extensions. let makes local identifier bindings. define changes
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an existing identifier binding or initializes a global identifier.
(rec I E) = (let ([I °*]) (set! I E))

evaluates E in an environment which binds I to the value of E itself.* Evaluating E should
not result in dereferencing I. This presents no problem in the usual case when FE evaluates
to a closure.

(case Tag [A; E:] ... [A, E,])

evaluates T'ag and then returns the value of the first E; such that 4; matches the value of
Tag.t

call/cc evaluates its argument and applies it to the current continuation represented
as a functional object of one argument.} In order to specify the current continuation at
any point in a computation, a continuation semantics is necessary. We provide such a
semantics with the meta-circular Scheme 84 interpreter in Figure 1. The value passed to

the continuation is the result of the computation up to the point where it is invoked.

In a continuation semantics, every recursive procedure receives a continuation param-

eter. Rather than simply return, the procedure either passes its result directly to this

* = indicates that an expression of the form on the left is transformed into one of the
form on the right, and brackets are interchangeable with parentheses.

t Some readers may be put off by the number of parentheses in Scheme programs. How-
ever, we feel these parentheses are justified for several reasons. In the first place, there
are more advantages of such minimal syntax than is generally realized. A simple, unam-
biguous syntax aids comprehension and provides the basis for a truly extensible language.
(Users may easily define their own syntactic extensions, or macros, thereby extending the
syntax of the language to meet their needs.) Secondly, the difficulties associated with
heavily parenthesized expressions are greatly reduced with some practice and intelligent
tools, such as editors and pretty-printers [8]. Finally, in this paper we are concerned with
semantics and do not wish to be burdened by elaborate syntax. The obdurate reader may
imagine these semantics expressed in his or her favorite syntax.

} Using this primitive we can define catch, a version of Landin’s J operator [9,10,6].
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(define meaning
(lambda (e r k) ; e = expression, r = environment, k = continuation
(case (type-of-expression e)
[constant (k e)]
[identifier (k (R-lookup e r))]
[lambda (k (lambda (actuals k)
(evaluate-all (body-pts e)

(extend-env r (formals-pt e) actuals)

k)))]
[if (meaning (test-pt e) r

(lambda (v) (if v (meaning (then-pt e) r k)
(meaning (else-pt e) r k))))]
[set! (meaning (val-pt e) r
(lambda (v) (k (store! (L-lookup (id-pt e) r) v))))]
[call/cc (meaning (fn-pt e) r
(lambda (f)
(f

(1ist (lambda (actuals dummy) (k (car actuals))))

K)))]
[application (meaning-of-all (comb-parts e) r

(lambda (vals) ((car vals) (cdr vals) k)))1)))

(define evaluate-all
(lambda (exp-list r k)
(meaning (car exp-list) r
(1f (null? (cdr exp-1list))
k
(lambda (v) (evaluate-all (cdr exp-list) r k))))))

(define meaning-of-all
(lambda (exp-list r k)
(meaning (car exp-list) r
(lambda (v) (if (null? (cdr exp-list))
(k (coms v nil))
(meaning-of-all (cdr exp-list) r
(lambda (vr) (k (cons v vr)))))))))

Figure 1. Meta-circular interpreter for a subset of Scheme 84

continuation, or passes the continuation (possibly embellished) to some other procedure.
For example, consider meaning (Figure 1). The constant, identifier, and lambda expres-
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sions pass their values directly to the continuation k. In the if case, meaning is recursively
invoked on the test-pt (predicate) of the expression in the current environment, and with
a new continuation, denoted by a lambda expression, which will be passed the value of the
test-pt. Depending on this value, meaning is invoked on the then-pt or else-pt with

the original continuation k of the if expression.

8 Implementation of Coroutines

Heretofore, coroutine languages have generally been statement oriented, and the resume
statement which transfers control from one coroutine to another could not return a value.
Thus coroutines have had to communicate information through shared free variables. Be-
cause Scheme is expression oriented, we must associate some value with the resume expres-
sion. What better candidate for this value than a value passed by the resuming coroutine?
Though shared variables may still be necessary for some types of communication, such

resume values suffice in most cases for inter-coroutine communication.

Thus, in our Scheme implementation of coroutines, resume will be a function of two
arguments: the coroutine to be resumed, and the value to be passed to the resumed
coroutine. This value becomes the value of the resume expression by which the receiving

coroutine last relinquished control.

We implement a coroutine as a procedure with some local state. Each coroutine must
have its own private resume function, because the resume function records the current
state of the coroutine’s computation (its continuation!) in a variable local to the coroutine.
This variable is called LCS, for Local Control State. Since the LCS variable is part of the
implementation of our coroutine facility, and not part of the programmer’s abstraction
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of coroutines, the LCS variable should not be in the scope of the programmer’s coroutine

code. This goal will be achieved using the scoping mechanisms of Scheme.

We implement the coroutine abstraction with a function make-coroutine that takes
as its argument another function, which contains the programmer’s coroutine code. make-
coroutine then passes to this function a resume function. Thus make-coroutine will be

of type

(resume-function — z) —» y

for some types z and y that we have not yet elaborated.

The result of make-coroutine is a procedural object with a private variable, LCS,
which holds the current state of its computation (obtained with call/cc). Each time the
coroutine object is invoked, it receives a value, which is sent to the continuation LCS. Thus
the interface returned by make-coroutine should look like (1ambda (v) (LCS v)), closed
in an environment in which LCS is properly bound. This function receives a value v and
sends it to the current (application time) value of LCS, as desired. (Note that the interface
could not be simply LCS, which would always use the closure-time value of LCS.) Since

make-coroutine returns a function of one argument, its type is

(resume-function — z) — (value — z).

Each time a coroutine is resumed (including the first time) it must also receive a value,
so we further require that the argument to make-coroutine be a function which accepts a
resume function and returns a function of one argument, a recesver that accepts the initial
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value with which the coroutine is to be resumed. The type of make-coroutine is now
(resume-function — (value — 2)) — (value — 2).

Here z represents the type of value returned by the coroutine. In the simplest view of
coroutines, they just resume one another and never return a value; so at this time the
type of z is immaterial. Later we will give a meaningful semantics to values returned by

coroutines.

Thus the following expression returns a new coroutine procedure that executes Body,
with resume bound to the local resuming function and init bound to the value with which

the coroutine is initially resumed or invoked.

(make-coroutine
(lambda (resume)
(lambda (init) Body)))

Our implementation starts as:

(define make-coroutine
(lambda (f)
(call/cc
(lambda (maker)
(let ([LCS °%])
(let ([resume
(lambda (dest val)
(call/ce
(lambda (self)
(set! LCS self)
(dest v2l))))1)
(let ([receiver (f resume)])
?777)))))))

resume grabs the current state of the computation, stores it in LCS, and invokes the
destination with the given value, as desired.

The tricky part of this implementation is setting LCS to the correct initial continuation,



which should look like (1ambda (v) (receiver v)). We can create a continuation like
this by doing a call/cc in the context (receiver (call/cc (lambda (initk) ...))).
Having created this continuation, we can store it in LCS and then exit from make-coroutine
by invoking the continuation maker (which we were clever enough to grab when we entered
make-coroutine). The value which we should return to the maker is just (lambda (v)

(LCS v)), as we decided before. Now we have:

(define make-coroutine
(lambda (f)
(call/cc
(lambda (maker)
(let ([LCS °#*])
(let ([resume
(lambda (dest val)
(call/cc
(lambda (self)
(set! LCS self)
(dest val))))])
(let ([receiver (f resume)])
(receiver
(call/cc
(lambda (initk)
(set! LCS initk)
(maker
(lambda (v)
(LSS ¥INNIMNINN

The last call/cc expression, however, is just (resume maker (lambda (v) (LCS v)))!
Also, receiver is used only once, so we can substitute (f resume) for its use. The last let

expression may then be replaced by
((f resume) (resume maker (lambda (v) (LCS v)))).

The currying of £, which has so far been valuable in the logical development of make-
coroutine, is superfluous (except by those who like currying for its own sake, or who have
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other reasons for its use). Uncurrying £, the type of make-coroutine becomes
(resume-function x value — z) — (value — 2)

and we have our final version:

(define make-coroutine
(lambda (f)
(call/cc
(lambda (maker)
(let ([LCS °*])
(let ([resume
(lambda (dest val)

(call/cc
(lambda (k)
(set! LCS k)

(dest val))))])
(f resume
(resume maker
(lambda (v) (LCS v))))
(error °coroutine-fell-off-end)))))))

As noted above, coroutines generally call one another in turn, but what if one just re-
turns a value? (Remember, in our implementation they are procedures, and any procedure
can return a value.) The (error °‘coroutine-fell-off-end) expression above ensures

that something predictable happens in this case.

If textual abstraction is preferred to functional abstraction, and one is always willing
to call the resume-function resume and the initial value init-value, then one may use

the syntactic extension:

(coroutine E) =
(make-coroutine
(lambda (resume init-value) E))

4 Extensiomns of the Coroutine Mechanism

Dahl and Hoare [11] describe an extension to the basic coroutine mechanism described
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above, which they incorrectly perceive as that of Simula [1]. In addition to the continuation
LCS of the last point at which the coroutine relinquished control, each coroutine also
records its celler continuation, CC. A coroutine may be invoked by either a resume or a
call operation. In the latter case, the continuation of the caller is recorded in the CC of
the called coroutine. When one coroutine resumes another, the CC of the resumer becomes
the CC of the resumed coroutine. A coroutine can then invoke its caller continuation by an

explicit detach operation, or by simply returning a value.

To implement Dahl-Hoare style coroutines, we represent coroutines not as functions
of one argument (a value o be passed to the LCS) but as a function of two arguments, a
value and a caller continuation. The caller continuation is recorded in the CC variable of the
resumed or called coroutine, and the value is then passed to the LCS as before. The resume
procedure now passes both the resumer’s caller-continuation and the resumer value to the
destination coroutine. The new detach procedure also grabs the current continuation and
saves it in LCS, and then simply invokes CC with the given value. The functional argument
£ of make-coroutine now receives this detach-function, as well as the resume-function and

initial value. See Figure 2.

One can enter a group of coroutines in this discipline by using the function call, which
receives the destination coroutine and a value to pass to it, grabs the current continuation,

and passes this continuation and the given value to the called coroutine.

(define call
(lambda (dest val)
(call/cc
(lambda (k) (dest k val)))))

In some situations, it may be necessary to pass control to, and return control from,
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(define make-coroutine
(lambda (f)
(call/cc
(lambda (maker)
(let ([LCS °*] [CC °+])
(let ([resume (lambda (dest val)
(call/cc
(lambda (k)
(set! LCS k)
(dest CC val))))]
[detach (lambda (val)

(call/cc
(lambda (k)
(set! LCS k)

(CC val))))1)
(detach ((f resume detach)
(call/cc
(lambda (k)

(set! LCS k)

(maker (lambda (cont val)
(set! CC cont)
(LCs val)))NNNN))

Figure 2. Dahl-Hoare Style Coroutine

a group of coroutines without need for the generality of the Dahl-Hoare style facility
just discussed. In our implementation, the fact that coroutines are invoked not by a
primitive resume operation, but by application to a standard functional object (the resume-
function), allows us to easily achieve other forms of control. For example, by creating a
coroutine that simply exports its resume-function, we can create an interface between a
group of coroutines and other parts of a program. To accomplish this, we define a coroutine

interface that passes its resume-function to its initial value:

(define interface
(coroutine (init-value resume)))

(Recall that coroutine is a syntactic extension that binds init-value and resume.) By
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passing this coroutine a continuation as its initial value, we can obtain the coroutine’s

resume-function at any point in a program.

(let ([interface-resume (call/cc interface)])
&)

By invoking this resume-function with another coroutine and a value, the indicated corou-
tine will be resumed with the indicated value. The resumed coroutine may then resume
other coroutines, with control being passed around within some coroutine group until it is
desired that control return to the point at which the group was entered. It is then only
necessary for one of the coroutines to resume the interface coroutine via (resume inter-
face Value). This causes control to return to the caller of the interface-resume function,
with some indicated resume value. (Of course a group of coroutines could have several

interface coroutines of this sort if required.)

As an example of the use of this mechanism, consider the problem of generating a
stream of values, where the consecutive values are produced by a group of coroutines. We
represent a stream as a pair (cons Value Thunk), where Value is the first element of
the stream and Thunk is a function of no arguments which, when invoked, will return a
similar representation of the rest of the stream. Assuming that corout is the name of the
coroutine group member that is to be resumed first in order to initiate computation of
the next stream element (and assuming that the value with which corout is resumed is

irrelevant) the next stream may be obtained by

(cons (interface-resume corout nil) thunk)

where thunk is a function of no arguments which, when invoked, will return the representa-
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tion of the rest of the stream. After corout has been resumed by interface-coroutine,
any member of the coroutine group can then return v as the next stream element by ex-

ecuting (resume interface v). Thus a coroutine-generated stream may be constructed

by

(let ([interface-resume (call/cc interface)])
((rec thunk

(lambda ()
(cons (interface-resume corout nil)
thunk)))))

The stream interface example is of particular importance because in many situations
where coroutines have been employed, streams are more appropriate. Yet coroutines are
clearly more general than streams. When the transfer of control among coroutines is linear,

that is

A=>B=.=22=>.=2B=>A

(read = as “resumes”), information is passed in only one direction, and each coroutine
divides easily into segments between resumes, then a much more transparent solution may
generally be obtained by using streams rather than coroutines. Conway’s problem [12],
the classic example for coroutines, is of this form. The relationship between coroutines
and streams is analogous to that between imperative and applicative programming. If a
problem can without undue difficulty be expressed in a purely side-effect-free form, such a
solution is usually more transparent and it is well worth the effort to obtain. However, if
state transitions are inherent to the problem being solved, clarity is often lost by attempting

to force a solution that is side-effect-free.

Thus we would like to be able to use streams wherever appropriate, but have the
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more powerful but less disciplined coroutine facility available when needed. If part of a
problem yields to a stream implementation, but some segment of the problem is best solved
with coroutines, with a coroutine-stream interface at our disposal we can combine both

techniques in the same program, using each as appropriate.

5 Conclusion

We have demonstrated that the first class functional and control objects of Scheme 84
allow us to implement a coroutine facility, rather than having to incorporate a coroutine
mechanism in the core language. We also have the freedom to extend the basic coroutine
mechanisms in a variety of ways and to interface coroutines with other language features

in ways suitable to a given problem or class of problems.

We believe that a primary responsiblity of language designers is to provide a flexible
basis for the creation of abstractions suitable for various classes of problems. The presence
of first class continuations in Scheme 84 provides such a basis for the creation of control
abstractions such as coroutines. If a mechanism as complicated as coroutines is included in
a language design, it will be more complicated than is required for most applications, yet
still lack features desirable for some applications. For instance, many coroutine applications
do not need the complexity of a detach mechanism, and it is unlikely that even a very
elaborate coroutine mechanism will provide as clean a stream interface as the one developed
here. By using a clean base language with powerful and orthogonal reflection mechanisms
(such as call/cce), the programmer is able to create control structures far better tuned to
the problem at hand.
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