SCHEME AS AN INTERACTIVE GRAPHICS
PROGRAMMING ENVIRONMENT

by

Peehong Chen
Department of Electrical Engineering & Computer Science
University of California
Berkeley, CA 94720

and

L. David Sabbagh
Computer Science Department
Indiana University
Bloomington, IN 47405

TECHNICAL REPORT NO. 166

SCHEME AS AN INTERACTIVE GRAPHICS
PROGRAMMING ENVIRONMENT

by

Peehong Chen, University of California
and
L. David Sabbagh, Indiana University

March, 1985

SCHEME AS AN INTERACTIVE GRAPHICS
PROGRAMMING ENVIRONMENT

Peehong Chen

Computer Science Division
Department of Electrical Engineering and Compster Sciences
University of California
Berkeley, CA 94720

L. David Sabbagh

Compuier Science Department
Indsana Unsverssly
Bloomington, IN 47405

ABSTRACT

This paper describes several interesting aspects of Scheme Graphics (SG),
an interactive graphics system built on top of Scheme. Most other interactive
graphics environments do not offer much programming power by themselves.
What is special about SG is that a very expressive language interpreter is inte-
grated into the system making it a highly interactive environment for graphics
programming. Scheme is an applicative order, lexically-scoped dialect of Lisp.
In Scheme, functions and continuations are first-class citizens. With such, it
is relatively easy to simulate modern programming concepts like abstract data
types and message passing. We pay special attention to the implications of these
language features in a graphics domain. In particular, we discuss issues such
as data representation, functional programming, object-oriented programming,
and exception handling, all in the context of SG.

1 Imnstruction

Scheme Graphics (SG), as the name implies, is an interactive graphics program-
ming environment based on Scheme. Scheme is a programming language that
runs with a compiler as well as an interpreter. To create an interactive envi-
ronment for graphics applications, we built a subset of the ACM Core system
[GSC79], a set of linear algebra operators, and some miscellaneous functions
in Scheme. These graphics-related primitives and Scheme itself are collectively
called SG [Chen83a). Application programs of SG can also access 8 rich reper-
toire of Scheme, Franz Lisp, or even C functions in the environment. A

Most other interactive graphics environments do not offer much program-
ming power by themselves. They are “interactive” at the command level instead
of exposing a complete langeage to the world, thus the interactive program-
ming capability in those systems is somewhat restricted. If the user wants to do
something beyond what the command set can handle, he has to leave the envi-
ronment temporarily, prepare those things in a programming language, compile
them, and then return to where he left. The user does not lose anything for
programming per se, but the low degree of interactiveness may be a nuisance.
In Unigrafix [Séquin83}, a Unix-based interactive graphics environment, for in-
stance, some shell level commands are available for its users. Although the
command interpreter of a Unix shell supports some naive programmability, the
user still needs help from the C compiler outside the graphics environment to
manipulate complex operations.

What is special about SG is that the power of a very expressive language is
integrated into the system making it a highly interactive environment for graph-
ics programming. Scheme is a dialect of Lisp. Its major departure from Lisp
includes lexical scoping and treating functions and continuations as first-class
objects. In this paper, rather than going into the implementation details of SG
(concerned readers may refer to [Chen83b]), we try to describe the implications
of these language features which make SG “expressive” in the context of com-
puter graphics. We present mostly Scheme code in this paper and hope the
reader will not be disturbed by parentheses. It is assumed that Pascal (or any
language in that family) counterparts of some examples, although not presented,
are understood implicitly.

Section 2 gives a brief overview of the programming language Scheme, intro-
ducing primarily those features that are of interest to SG programming. In the
section following we discuss how graphics objects are represented in SG. The
next two sections examine object manipulations: Section 4 shows a functional
style programming which SG inherits directly from Scheme’s applicative order
evaluation; Section 5 focuses on SG's prototyping capability whereby graphics
applications in an object-oriented style similar that of Smalltalk [Goldberg8s3]

1The Scheme used in our work has an import facility that allows the user to call any functions
written in Frans Lisp or C within the Scheme environment.

<expressien> ::= <constant>
| <identifier>
| (if <expressien> <expression> <expressien>)
| (lambda (<identifiers>) <expressicn>) ; Lambda expressien
| (change! <identifier> <expressien>) ; Assignment
| <applicatien> : Invoecation
| <syntactic-extension>
<identifiers> ::= <empty> | <identifier> <identifiers>
<application> ::= (<expressiocms>)
<expressicns> ::= <empty> | <expressien> <expressions>
<syntactic-extensiecn> ::= (<keyword> <objects>)
<objects> ::= ; Definition is emitted here
..... ; Nore omitted

Figure 1: A simplified Scheme syntax

can be modeled. Finally in Section 6 we demonstrate the power of continuations
for exception handling which often is desirable in an interactive system.

2 Overview of Scheme

The programming language Scheme was designed and first implemented at MIT
in 1975 by Gerald J. Sussman and Guy L. Steele, Jr. as part of an effort
to understand the actor model of computation. It is based on the lambda
calculus described by Alonzo Church [Church41] and serves as “a simple concrete
experimental domain for certain issues of programming semaitics and style.”
The revised report on Scheme was published by Steele and Sussman in 1978
[Steele78]. In 1980 they had their first Scheme VLSI chip implemented and
at the same time a full report on their work was also released [Steele80]. SG
is implemented in Scheme-311 [Fessenden83] which is written in Franz Lisp
[Foderaro80] running under Berkeley Unix on VAX 11/780.

Scheme may be characterized as an applicative order, block structured, lex-
ically scoped, tail recursive dialect of Lisp. In its semantic structure it is as
closely akin to Algol 60 as to early Lisps. Its syntactic structure is simple, as
shown in Figure 1.

There are quite a few system-provided primitives, functions, and macros.
The standard Lisp list access primitives car and cdr return the first element
and a list excluding the first element, respectively. The macro 1ist takes any
number of arguments and returns a list containing them. The function append

3The difference between functions and macros is that the expression bound to a function
name is evaluated when defined and that to a macro is only a symbolic (or symntactic)
binding (not evaluated). When executed a macro needs to ezpand itself.

takes two lists and returns a list with the two appended. The macro define
does the binding between an identifier and an expression which can potentially
be recursive.

Scheme is block-structured. In the simplest case, the system has a facility
called block (or proga) that evaluates a sequence of expressions in the given
order and returns the result of the last. Furthermore, the macro let plays the
role of structuring programs, whose syntax is:

(1et ([id1 expi]

(ia3 exp2]

..... : Mere local bindings
)
body)

The semantic is that 1et creates a block (i.e. body in our case) with variable
1d1 bound to expi, 142 to exp3, ... etc. Since Scheme is lexically-scoped, the
variables are local to body. There is a variant of let called letrec with an
identical syntax. The difference is that if an id is to be bound to a lambda
expression, letrec allows it to be recursive whereas let does not.

The effect of normal order evaluation can be obtained when necessary by
using thunks, functions of no arguments. Thus

(define th (lambda () exp))

binds th to exp unevaluated (i.e. freezing). Evaluation (or thewing) of exp
may be enforced by invoking th, as in

(th) ; The imvecation needs me arguments for a thunk.

Scheme treats functions (or lambde ezpressions) as first-class citizens. In
other words, functions in Scheme are just ordinary Lisp objects (e.g. atoms,
lists) in the sense that they can be passed to functions as arguments or they
can be returned as values of functions. The difference is that they can be ap-
plied with arguments whereas non-functional objects can not. This property
does not exist in many Lisp systems. For example, a function invocation that
otill returns a function is illegal in Franz Lisp but is common in Scheme. 3 In
fact, it is this fundamental departure from conventional Lisp that makes mod-
ern programming language concepts such as date abstraction, message passing,
ezception handling, ete. possible in Scheme. What they mean to a graphics
environment will be discussed later.

An interesting observation is that these important concepts are not built-in
features of Scheme. The language kernel is compact and efficient. To prototype -

3In the thunk example above, exp being a lambda expression is not allowed in Franz but is
a basic technique to model data abstraction in Scheme (see Section 6).

other systems, the user simply makes the concepts concreted on a by-need basis.
SG is a typical example that takes advantage of this powerful incrementality.

8 Data Representation

SG represents graphics objects in a data structure that is most natural to any
Lisp systems — [ists. The basic data types in a graphics environment are vec-
tors and matrices. Representing vectors as lists is straightforward. For instance,
suppose vector is aliased to the Lisp 1ist operation, then in SG,

(define v (veetor 1 3 8 4&))

binds the identifier v to the vector [1 2 3 4]. Furthermore, notice that a ma-
trix is just a list of its component row vectors. Assuming matrix to be another

alias for 1ist, to declare a 2 X 2 matrix m = (; i)willbe:

(define m (matriz (vecter 1 2) (vector S 4))).

The same technique can be applied to represent less trivial geometric objects.
Again, let vertex, face, and object all be aliases for 11st. Let uc be a unit
cube sitting on the first octant of a left-handed 3D space with the origin being
one of its corners. A simple way to represent uc is to declare it as an object
with six faces each of which is a list of four vertices specified in a predefined
fashion (e.g. clockwise). The following definition specifies the front face of uc:

(define frronT

(face (vertex 0 0 0) (vertex 0 0 1) (vertex 1 0 1) (vertex 1 0 0)))

The other five faces (i.e. fpack, frop, feorToM, [LEFT, and friGHT) can
be specified in the same manner. So uc itself is just an object consisting of all

these faces, that is,

(define wc (ebjeet frront fsacx frop fsorrom frerr fricur))

For viewing transformations, it is often necessary to extend 3D vectors with
a homogeneous coordinate. In SG, it is easy to define the function hozogenize
that does the job:

(define homogenize (v)
(a_ppond v (vector 1)))

Later when the homogeneous coordinate is no longer necessary, we can just
strip off the trailing 1. No vector of any fixed size ever needs to be prede-
clared. Obviously this flexibility comes from a dynamic feature of Lisp family

languages — weak typing. Imagine what the corresponding effort will be to rep-
resent graphics objects and to do transformations in a stongly-typed language
environment like Pascall

4 Functional Programming

SG programming is mostly done in a functional style. Functional programming
makes use of the properties of mathematical functions. A mathematical function
is a relation that maps a set (the domain) to a set (the renge) in a way that
for each member in the domain, there is a unique image in the range. Thus
a function can be defined by specifying the following: (1) the domain, (2) the
range, and (3) the rules of mappings between the two. To invoke a function, we
apply specific elements in the domain to yield a value in the range. For instance,
the lambda expression [Church4l]

Az \y.zy
defines a curried two-argument function of multiplication such that the appli-
cation (i.e. invocation)

((Az.Ay.zy)2)3
yields the result 8.

Due to the fact that languages are implemented in computers which have
certain physical constraints, not all properties of mathematical functions can be
realized in functional languages. For example, parameters are names of memory
cells where their values are stored in programming languages instead of just
the representations of values like in mathematical functions. However, since
geometry and algebra are the core of computer graphics, it seems reasonable to
claim that a functional approach in those categories is a more natural reflection
of their properties than using most imperative style programming languages.

Scheme is not pure functional, at least not as pure as McCarthy's Lisp
[McCarthy60] or Backus’ FP [Backus78]. Pure functional languages should be
side effect free. Scheme, like most modern Lisp systems, has change! (i.e.
setq) that does nothing but side effects. As we saw earlier, 1ot (or letrec)
also causes some local side effects to its body. These non-functional features are
added to the language in order to achieve more flexibility and cleaner structures.
Aside from that, most programming styles are still functional in modern Lisp
systems, including SG.

Figure 2 depicts a version of 3D cross product which typifies the functional
style programming in SG. It takes two vectors vi and v2, returns vixv2. In
cross a local routine det is defined in the 1ot clause to calculate determinants.
The function comp takes a vector v and an index k and returns the kth element
of v. The function 1+ is a unit incrementor and the function med is the modulus
operator.

Suppose vi is bound to [a; b; c;] and v2is bound to [a3 by c3]. (det 1)

(define cross
(lazbda (vi v2)
(let ([det (lambda (k)
(- (» (comp vi (1¢ (med k 3)))
(comp v2 (1¢ (mod (1+ k) 8))))
(¢ (comp vi (1+ (med (1+ k) 8)))
(comp v2 (1+ (med kSN
(i€ (end vi v2)
(et ([41 (length vi)] [d2 (length v2)])
(i (= a1 42)
(i2 (= 41 3)
(vector (det 1) (det 2) (det 3))
(vriteln °|Arguments nmot 3D[))
(vriteln °|Arguments unequal in dimemsiem|)))
(writeln °‘|Arguments contain zere vector|)))))

Figure 2: Definition of 3D cross product in SG

by ¢

b) Similarly (det 2) will return the
2 C2

will return the determinant of (

determinant of (“1 %), and (det 8), that of (a1 b) If something is
c3 63 az by

wrong with the arguments, an error message will be printed by writeln which
returns the empty list ail.

The returned value is essential to functional programming. Everything other
than a1l (which logically means false) is regarded as true in Scheme. Continuing
the previous example, suppose we want to do some transformation to the cross
product w (if it exists). In SG it is conceivable to have the following piece of
code:

(let ([w (exoss vi v2)])
(if w
(transfora w) ;: If v ie nen-pil, transform
.....) ; If v is nil, do something else

..... : Rest of the ecede

Recall that cross returns nil if vi and v2 cannot be crossed.

The language C has a similar flat view on numerical and logical values.
Scheme is more elaborate, non-nil values include all symbols: numerical con-
stants, strings, lists, efc. In a less functional language like Pascal, the code to
handle our example will be comparatively awkward.

(define VECTOR
(lambda ()
(1ot ([v (vector)]
[init-leck =nil])

(letzee
([(self (lasbda (msg)
(case msg
{init (lazbda (un)
(i2 init-leck
self
(bleek
(change! v u)
(change! init-leck &)
self)))]
[cont v]
[hom (((VECTOR) °init) (hemogenize v)))]
[eress (lambda (U)
(((VECTOR) °init) (ecress v (U ‘cent)))]
[draw (bleck
(1ine_rel_S (car v) (cadr v) (caddr v))
sel?)]
N
self))))

Figure 3: A simplified version of the vector object.

5 Object-Oriented Programming

An even more advanced program structure, namely the object-oriented system,
can be modeled in SG. Two programming language concepts are closely cou-
pled with such a structure. The first concept is date abstraction which hides
information from unauthorized access [Morris73]. The second concept, message
passing, serves as the mechanism to access the abstracted data. In essence, we
are talking about a data entity that (1) encapsulates information and (2) defines
the related data manipulation routines marked with entry names. The outside
world cannot have access to the information except through the designated en-
tries.

The structure of Smalltalk objects, & la Simula-67 [Dahl70] classes, * is
a good application of this data abstraction idea. In fact, in Smalltalk there
is nothing but objects. Communication between objects is done via message
passing. Thus to draw the vector [1 2] is to send a message (asking for drawing)

4Simula classes also influenced a mumber of programming languages designed in the 70’s.
For instance, modules in Mesa [Mitchell79] and Modula-2 [Wirth8s], and pscksges in Ada
[ANSI8S] are all descendents of classes.

to an object of type Vector currently encapsulating the information {1 2] (in
Smalltalk this object is an instance of the class Vector.)

SG is able to prototype an object-oriented system similar to Smalltalk with-
out much difficulty. To implement objects requires the use of thunks discussed
earlier. Figure S defines an encapsulated version of the vector data type called
VECTOR. 5 It freezes the evaluation of a let clause which first reserves a private
memory v (the invocation of vecter with no arguments gives one cons cell: nil)
and returns a lambda expression (i.e. self). This self is defined by letrec
because it is recursive. The body of self is a case expression that evaluates a
string (the message) and takes the appropriate action. In other words, VECTOR
is a class (ie. data type) that reserves for its instances some instance variables
(i.e. private memory) and defines an interface with the rest of the system. This
interface consists of some message entries and corresponding methods that de-
scribe how to carry out the requested actions on the encapsulated information.

Let V be an instance of VECTOR (an instance is created by thawing VECTOR),
that is,

(define V (VECTOR)).

Then ((V ‘init) u) initializes the vector once and for all. No one will ever be
able to modify the encapsulated vector after the first initialization (due to the
guard init-loeck). Peeking Vs content can be done by saying (V ‘coatent).
Algebraic and geometric operations involving V itself and possibly others are
done in a similar fashion. For instance, (V' 'hen) gives a homogenized version
of V, and ({V ‘cross) U) returns the cross product of V and U, each an
instance of VECTOR. To draw the vector (relative to the current cursor position),
(V ‘draw) plots a line by calling the standard SG 3D primitive 1ine rel 3.

Apparently Figure 3 is just a simplified version of the actual data type.
More methods can be added to VECTOR as long as they are consistent with
the structure. To make things even more complicated, an access list can be
implemented within the scope of the let clause in Figure 3 so that the vector
becomes accessible only to a controlled class of alien objects.

The object-oriented program structure is compatible with the basic data rep-
resentation and functional style programming of SG. The encapsulated data are
represented the same way as was discussed in Section 3 and the entry routines
are coded along the line of what was advocated in Section 4. This compatibility
and SG's overall flexibility are due to some Scheme features: (1) Lexical scop-
ing, which makes data encapsulation possible. A dynamic scoping like that of
Lisp may cause unexpected identifier clash and therefore guarantees no effec-
tive information hiding. (2) Functions as first-class entities, which underscores
the realization of message passing. In an environment where functions are not

SHere the comvention is that data types or identifiers bound to certain data types are in
upper case if they denote objects, and in lower case if they are not.

treated equally with other parametric objects (as in Pascal) or the thunk con-
struct (i.e. expression freezing and thawing) is not allowed (as in Lisp) system
prototyping techniques examplified by Figure 3 would be either impossible or
very cumbersome.

6 Exception Handling

Some graphics applications manage system-user interaction of their own. What-
ever form (mouse-driven or the old-fashioned keyboeard-input, command line
interpreter) the user interface may be, an sndo mechanism is usually avail-
able. This mechanism falls as a special case into the general ezception handling
paradigm although the latter is a much more complicated problem than the
former.

The basic technique for handling undo is to push previous operations onto a
stack and pop them when normal progression of user input pauses upon receiving
the undo request. SG takes a different approach. Scheme has a built-in control
structure called contfinsation that can potentially be used to deal with a variety
of exceptions including the undo mechanism. A continuation is a function of
one argument that refers to the rest of the computation. In Scheme whenever
an expression is evaluated there is a continuation wanting its result. Normally
these ubiquitous continuations are hidden behind the scenes. However, Scheme
provides the programmer with a function call-with-curreat-coatiauatien
(abbreviated call/cc) to access the current continuation. Its standard use
follows:

<computation-before-call/ce>
(call/ece (lambda (X) <bedy>))
<rest-of-the-computatien>

where K, the current continuation, is a one-argument function that, when passed
a value within the scope of <body>, causes the value to be immedaitely returned
as the result of call/cc. The normal execution is aborted and the system
restores its state to the one right before K was created and picks up “the rest of
the computation” from the expression which lexically follows call/ce.

To clarify the idea, suppose a graphics editor takes sequences of characters as
commands in an unbuffered mode (i.e. the system accepts each input character
as soon as it is typed, no carriage return necessary). Figure 4 shows a skeleton of
the editor called top-level. It defines a local routine edit that, when invoked,
reads a single character first (by readc), then calls the current continuation K.
Depending on what the input character is, it triggers the corresponding sub-
routine with K as the argument. For example, if chr is the letter a, it means
the user is requesting a node (e.g. a circle) to be drawn. The corresponding
subroutine node is called and possibly more input characters are expected to
follow in order to complete the node drawing command. At any time during

10

(define top-leval
(letrec ([edit (lambda ()
(et ([chr (reade)])

(bleck
(call/ee
(lasbda (K)
(case ehr
[a (node k)] ; Requesting a mode
[e (edge k)] ; Requesting an edge
(s (text K)] ; Requesting some text
..... : Other opticns
)
(edit)))])

(edit)))
Figure 4: The top level of a simple graphics editor

the session of command input, the characters typed (and thus the system state
changed) so far can be undone by entering a special character, say control-K .
Upon receiving control-K in node’s scope (K t) will restore the system back to
the state before call/cc was executed. The program then picks up the rest of
the computation. In our case it is the recursive invocation of edit.

The undo example is a simple application of the continuation facility. In
the graphics domain exceptions may happen in many different situations. For
instance, matrices involved in 38D transformations may not be compatible for
multiplications, control polygon specifications for spline drawings may not have
enough end conditions, ... etc. The technique described above can be used to
handle these exceptions in principle.

7 Conclusions

We have shown how a programming language like Scheme may affect the style
and structure of graphics applications. In SG graphics entities are represented
and manipulated in a way that resembles their geometric and algebraic coun-
terparts. Furthermore, an object-oriented graphics environment can be mod-
eled with moderate effort. Prototypes of other systems such as turtle geome-
try [Abelson81] and functional geometry [Hendersen82] have also shown similar
compactness.

There is no significant difference between the graphics capability of SG and
that of other systems. The strength of SG, however, is that it offers a great
deal of flexibility for graphics-related “interactive” programming. Based on the
graphics primitives and language properties of SG, user applications can be

11

tuned to meet different requirements gracefully. This feature is generally not
available in other interactive graphics environments.

With the advent of personal workstations that are equipped with high reso-
lution bit-mapped displays and linked to high quality laser printers, the notion
of programming has changed drastically in recent years. Two overall lessons
emerge from the SG experience. The first lesson is that a modern program-
ming environment must incorporate some graphics capability to parallel these
hardware breakthroughs. The necessary ingredients for a successful interac-
tive environment described in [Sandewall78] is readily available in Scheme. SG
proves that graphics to Lisp systems is a plus. It opens many doors to new
research in user interface and graphics programming.

Our second lesson is that graphics applications, though language indepen-
dent, can be realized with less overhead if the underlying programming language
is carefully chosen. To be robust, the graphics environment exposed to the user
should incorporate some programming flexibility which normally can be im-
ported from the underlying language.

8 Acknowledgements

We would like to thank the people who were involved in the design and imple-
mentation of Scheme Graphics. Final integration and the user manual of SG
were done by Wen-Ying Chi. Linear algebra package was hacked by George
Springer. Eric Ost implemented functional gemeotry. Thanks are also due to
Will Clinger, Dan Friedman, and Mitch Wand, the implementors of Scheme-311.

References

[Abelson81] Harold Abelson and Andrea A. diSessa, Turtle Geometry: The
Computer as & Medium for Ezploring Mathematics, MIT Press, Cambridge,
Massachusetts, 1981.

[Backus78] John Backus, “Can programming be librated from the von Neumann
style? a functional style and its algebra of programs,” Comm. ACM, Vol.
21, No. 8 (August 1978), pp. 613-641.

[Chen83a] Pechong Chen, W. Y. Chi, E. M. Ost, L. D. Sabbagh, and G.
Springer, “Scheme Graphics Reference Manual,” technical report #145,
Computer Science Department, Indiana University, August 1983.

[Chen83b] Peehong Chen and L. D. Sabbagh, “A Functional Approach to Geo-
metric Applications in Computer Graphics,” technical report #146, Com-
puter Science Department, Indiana University, August 1983.

[Church41] Alonzo Church, “The caleuli of lambda conversion,” Arnnals of Math-
ematics Studiecs, No. 6, Princeton University Press, 1941.

12

[Dahl70] Ole-Johan Dahl, B. Myhrhaug, and K. Nygaard, “Simula 67 Com-
moir Based Language,” Publication N. S-22, Oslo: Norwegian Computing
Center, October 1970. '

[ANSI83| American National Standards Institute, Reference mansal for the Ads
Programming Language, ANSI/MILSTD 1815A, February 1983.

[Fessenden83] Carol Fessenden, W. D. Clinger, D. P. Friedman, and C. T.
Haynes, “Scheme 311 Version 4 Reference Manual,” technical report #137,
Department of Computer Science, Indiana University, February 1983.

[Foderaro80] John K. Foderaro, The FRANZ LISP Mansal, Computer Science
Division, University of California, Berkeley, 1980.

[Goldberg83] Adele Goldberg and Dave Robson, Smalltslk-80: The Language
and its Implementation, Addison-Wesley, 1983.

[GSC79] ACM Graphics Standards Committee, “Status report of the Graphics
Standards Committee,” Compuler graphice, Vol. 13, No. 3, August 1979.

[Hendersen82] Peter Hendersen, “Functional geometry,” Conrferernce Record of
the 1982 ACM Symposiem on Lisp ernd Functional Programming, ACM
Order No. 552820, 1982.

[McCarthy60] John McCarthy, “Recursive functions of symbolic expressions
and their computation by machine,” Comm. ACM, Vol. 3, No. 4 (April
1960), pp. 185-195.

[Michell79] James G. Mitchell, W. Maybury, and Richard Sweet, “Mesa Lan-
guage Manual,” Version 5.0, Xerox PARC CSL-79-3, April 1979.

[Morris73] James H. Morris Jr., “Protection in programming languages,” Comm.
ACM, Vol. 16, No. 1 (January 1973), pp. 15-21.

[Sandewall78] Erik Sandewall, “Programming in an interactive environment:
the “Lisp” experience,” Compsting Serveys, Vol. 10, No. 1 (March 1978),
pp. 35-71.

[Séquin83] Carlo H. Séquin, Mark Segal, and Paul Wensley, “UNIGRAFIX 2.0
User’s Manual and Tutorial,” technical report UCB/CSD 83/161, Computer
Science Division, University of California, Berkeley, December 1983.

[Steele78] Guy L. Steele and G. J. Sussman, “The Revised Report on SCHEME,
a Dialect of LISP,” MIT Artificial Intelligence Laboratory Memo #452,
Cambridge, MA, January 1978.

[Steele80] Gn); L. Steele and G. J. Sussman, “Design of a LISP-based micro-
processor,” Comm. ACM, Vol 23, No. 11 (Nov. 1980), pp. 628-645.

138

[Wirth83] Niklaus Wirth, Programming sn Moduls-2, 2nd edition, Springer-
Verlag, 1983.

14

