Recursion and Circularity
—Extended Puzzle With Solution—

By

Matthias Felleisen
Indiana University
Bloomington, IN 47405

TECHNICAL REPORT NO. 201

Recursion and Circularity
—Extended Puzzle With Solution—
by
Matthias Felleisen

October, 1986

This material is based on work supported in part by an IBM Fellowship and by the National
Science Foundation grant number DCR 85-01277.

16 October 1986

RECURSION AND CIRCULARITY
—EXTENDED PUZZLE WITH SOLUTION—

Matthias Felleisen

Computer Science Department
Indiana University
Lindley Hall 101
Bloomington, IN 47405, USA

The Asy-calculus. The A,y-calculus [2] is an extension of Plotkin’s [5]),-calculus.
It is an algebraic system for reasoning with assignments in higher-order languages.
Its syntax and reduction rules are formalized in Figure 1.

The term language is an extension of the original A-calculus-language, A. There
are four new concepts. Firstly, we have added a set of assignable variables. Unlike
(constant) variables, assignable variables can be rebound to a new value, that is,
all subterms of a program that are traceable to the same bound variable may be
replaced by a different value. In order to keep track of these arguments we have
introduced the concept of a labeled value. All values with the same label originated
from the same f-step. Our third new concept is the class of o-abstractions. When
applied to an argument, they cause the rebinding of a labeled value. Lastly, we
introduce the notion of a delabeling application which transforms labeled values
into values.

The basic notions of reduction are term rewriting rules like the ordinary §-
relation. Besides the basic f,-rule we have a 8,-rule which is used to label repla-
cable, labeled values. o-abstractions that are applied to a value and D-applications
“bubble” their way up in a term until they reach the root. Once they are at the
top of the term, computation rules may be applied to them. These computation
rules implement the proper effect, i.e., they delabel the value or they reassign a new
value to all subterms with the same label. For both computation rules the label
replacement M[n := V] is needed. It parses the term M and puts V" in all places
where it finds a subterm U™.

2

Recursion and Circularity

Definition 2: The)\,,-calculus

The improper symbols are A, (,), ., 0, and D. Vars = Vary U Var, is a
countable set of variables. We use the set of natural numbers, w, as labels.
The set of values contains variables, abstractions, and o-abstractions. V|
ranges over values, n over labels, and X over Var, and labeled values. Ag
contains

— variables: z if x € Vary;

— X-abstractions: (Az.M) if M € A5 and z € Vars;

— applications: (MN) if M, N € Ag;

— o-abstractions: (o0z. M) and (¢V".M) if M,N € As and z € Var,;

— D-applications: (Dz M) and (DV"™ M) if M € Ag and z € Var,.
The notions of reduction are

Oz MV L5 Mz :=V] (8,)
where z € Var) and V is a value,
Oz MV L5 Mz =V (8,)
where z € Var,, V is a value, and n is fresh.
N((eX.M)V) 2 (e X.(NM))V (or)
where N and V are values
(eX.M)V)N 25 (6 X.(MN))V (o1)
where V is a value.
N x M) 25 (0 X (0. N(Mw))) (D)
where N is a value
0 X M)N 2 (p X (0w MoN)). (D)

The top-level computation rules are

(eU™.M)V b, M[n :=V] where V is a value (>s)
(DV™ M) >p MVn:=V]. (DD)

Recursion and Circularity

Equipped with these basic definitions we can turn to the question of how to use
the calculus.

Reasoning with the A, -calculus. For the reasoning with the),,-calculus we
define a series of equivalence relations. As usual the notions of reduction are the
basis for a congruence relation over Ag-terms. We denote this relation with =,,.
The equivalence closure of the computation rules together with =,, form a non-
compatible (non-congruent) equivalence =,. This unconventional construction fac-
tors out all the points in a reduction sequence which must happen in a linear order.
The two relations together are the core of the \,,-calculus.

Working with the basic notions of reduction and computation rules is sometimes
cumbersome. We therefore introduce two meta-rules which shortcut recurring re-
duction sequences. These meta-rules are based on the notion of an applicative
context. Contexts are terms with a hole. We use [] to denote holes. Applicative
contexts are either a hole, a value applied to an applicative context, or an applica-
tive context applied to an arbitrary term. The notation C[],C'[],... stands for
an applicative context; this notation underlines that a context is a term which is
a function of the contents of its hole. C[M] accordingly represents a term which
results from filling the hole in C[] with M. Given terms of the form (¢U".M)V
and (DU"M) in an applicative context C[| we can show that the following two
meta-rules hold:

C[(PV"N)]=C[NV[n:=V"]|
Cl(eV".N)V] = C[N][n :=V"].

These meta-rules are consistent with the standard reduction function and, hence,
we can use them with the understanding that they do not lead us astray on the
search for a value.

The two meta-rules play an important role in conjunction with the operational
equivalence relation. We shall say that two terms are operationally equivalent,
M = N, if there is no arbitrary context that can distinguish them hygienically.
In other words, one can always substitute one for the other in a program context
where neither term is in a label sharing relationship with the rest of the program.
Clearly, M =,, N implies M ~ N. It is furthermore possible to show that, if for all
applicative contexts C[| C[M] =; C[N], then M ~ N. The next section illustrates
an application of these equivalence relations to the problem of self-references.

Circular structures. Assignments introduce a peculiar effect into a higher-order
programming language: they permit the explicit construction of self-referential

3

4 Recursion and Circularity

terms. On traditional machines this corresponds to circular structures. We in-
vestigate in this section how our term language deals with these circularities.

The essence of our treatment of self-referential assignments is a tricky interplay
between the assignment abstraction and the delabeling application. For an example
let us consider the expression

(let (£10') ((¢£.0 fT)(A=.(D fT)z)), (*)

where the abbreviation (let (zv) b) stands for (Az.b)v. Using the above meta-rules
we get the following computation for any applicative context C| |:

... = C[(0'0".D'0"T)(Az.(P'0'"T)x)] (1)
= C[P(\z.(D'0"T)z)"]] 2)
= C[Az.(D(Az.(D'0"T)z)"). (3)

In words, in (*) f is first bound to some arbitrary value, the label n at the value
indicating that this is a replacable value. Then, in line 1 this labeled value is
assigned a value which contains an n-labeled value inside, i.e., the assignment is
self-referential. But, as can be seen from the resulting expression in line 2, the inner
reference survives the assignment: it is not replaced. The way our calculus is set up,
this inner replacement is not needed until it is truly delabeled. It is precisely for this
reason that delabeling applications were introduced. They protect a labeled value
from being delabeled too early. Once a value is delabeled we must make sure that
inner references to the same label are updated such that they reflect the true state
of the program. This is achieved by the delabeling computation rule. The effect
can be observed in line 3 of our example. In some sense, the calculus maintains
circular structures in a by-need manner.

Our above example has another interesting property. When the resulting func-
tion is invoked, it will go into an infinite loop. This is seen more easily if we use
the following abbreviation for the expression in (*):

(rec f (Mz.(DfI)z)).
Recast in terms of operational equivalence, we have just demonstrated that
(rec f (Az.(D fI)z)) ~ D(Az.(D'0"1)x)1
~ Az.(D(Az.(D'0"T)z)"x)
~ Az.(rec f (Az.(D fI)z))=,

Recursion and Circularity

where the last step is justified by the definition of operational equivalence and the
two preceding lines. Put informally, we have shown that when this last function is
invoked it first regenerates itself and then uses the argument. We have constructed
an infinite loop without using a recursion operator. Before we take a closer look at
this phenomena, we briefly recall in the next section the basic principles of recursion
in the traditional A-calculus and \,-calculus.

Recursion. Recursive definitions are syntactic sugar for the A-calculus of the
form:

FozoveFanaf v s

The self-reference on the right-hand side of the equation to the defined quantity is
the characteristic of recursive definitions. In the A-calculus the self-reference on the
right-hand side can be restricted to a single occurrence of f:

F=lAfovon Fove o) F S0 cssBornfionll

From this reformulation it is clear why recursive definitions are syntactic sugar to
the A-calculus: a recursively defined object is the! fixpoint of some function and the
Y-combinator, Y = Af.(Ag.f(99))()g-f(g9)), of the A-calculus constructs fixpoints
for all functions F. In other words, given F, F(YF) =5 YF. Hence, the above
equation is an abbreviation for

F=Y(gc..gcg. o).

In the A,-calculus this construction does not work. Since YF is not a value in
F(YF), it must be reduced further before F can absorb its argument. But this
yields F(F(YF)) and leads obviously into an infinite loop. The dilemma is caused
by the immediate evaluation of the fixpoint value YF. Assuming that we actually
want to define a recursive function, the way out of this dilemma is an application
of a standard trick in a by-value system, namely, delaying the action by abstraction
until it is needed. In other words, since YF represents a function, it is feasible to
wrap it into Az....z. Therefore, we claim that a by-value recursion operator, Yy,

should satisfy
Y. F =5 F(\z.Y,Fz).

1 The fixpoint is indeed unique and is the minimal fixpoint. This is the result of the Scott-Stratchey

denotational semantics for the A-calculus.

5

6 Recursion and Circularity

We furthermore know that the inner application Y, F is generated by the self-
application gg in Y’s defining equation. Hence, Y, is defined by indirecting this
self-application

Y, = M.(Ag-f(Az.992)) (9. f(Az.997)).
It is straightforward to verify that this definition of Y, satisfies the above equation.

Recursion without self-application. Computer scientists realized early that re-
cursion is a powerful strategy for realistic problem-solving. However, implementing
recursion with the Y-operators as shown in the previous section is too costly. They
use function application in abundance and function application is expensive on tra-
ditional as well as advanced machine architectures.

The usual improvement is the implementation of a recursive function F by a
circular structure on the machine level [1, 6]. This is justified by the above equations
which say that YF regenerates itself when the recursive function is used. The self-
reference is not eliminated but mapped onto a circular structure.

Landin [3] was the first one to realize that in a higher-order language with
assignments this trick is available in the language itself. Since Landin did not have
a calculus for his extended language, he could not prove any properties of this
construction but had to rely on his intuition.

In the A;.-calculus recursive functions can—as indicated above—Dbe defined with
the syntactic form (rec f M), where f is the name by which M, '+ may refer to itself.
The disadvantage of this approach is the introduction of a new syntactic form with
binding character. It is desirable to build a function Y, which uses rec, but is
more like Y or Y,.

A first approximation to the definition of Y. is

Yiee = Af.(rec g f(Dgl)).

The intuition behind this definition is that the variable g stands for the pseudo-
fixpoint of f and that f must be applied to this pseudo-fixpoint. Unfortunately,
this does not work in a by-value system. The expression (rec g f(DgI)) must be
evaluated completely before g becomes bound to the proper recursive value. Hence,
f(DgI) must be evaluated and this means that g is immediately delabeled. But the
current value of g is arbitrary and, since it is passed by-value, it is not reassignable
once f has returned a result.

The problem with this first approximation is again the problem of early eval-
uation. Assuming that we use Y. to define recursive functions we can use the

Recursion and Circularity

delaying technique to get the timing right. Since f(DgI) causes the problem we
define Y,.. in our second approximation as

Yiec = Af.(rec g Az.f(DgI)z).
Without syntactic sugar this becomes:
Yiec = Af.(Ag.(09.DgT)(Az. f(DgI)z)) 0.

When applied to a function F in an arbitrary applicative context C[], the compu-
tation proceeds as follows:
ClY:ecF] =,C[(Ag.(0g.(DgI))(Az.F(DgI)z))'0")]
=,C[(c'0"™.(D'0"1))(Az.F(D'0"™1)z)]
=,C[P(Az.F(D'0"™I)z)" 1]
=,C[\z.F(D(\z.F(D'0"1)z)"1)x].

With the operational equivalence relation this can be expressed more succinctly:
YieeF & D(Az. F(D'0™1)z)"I & Az. F(D(Mz. F(D'0"T)z)" 1)z.

Since, by the definition of operational equivalence, indistinguishable terms can be
replaced in a hygienic program contexts, we can deduce that, if Az.F[]z and
(D(Az.F(D'0™1)z)™I) do not share a label, then

Yiee F 8 Az2.F (Yoo F)z.

The precondition of this step is true if and only if the two instances of F do not
share labels, i.e., if F' does not contain labels.

The derived operational equivalence for Y. nicely captures the fact that the
defined quantity is a function, but it also stipulates that the Y,..-operator is differ-
ent from the Y-operator. In particular, the equations suggests that the two behave
differently if the defined quantity is not a function. Since Y, insists on returning
an abstraction, we expect to get a bad result back. It is not difficult to validate our
suspicion: when applied to Az.0 the two operators give different answers.

Given that Y, does not correspond to Y,, we can ask whether there is a
variation of Y, which satisifies the above operational equivalence of Y,... Based
on the extra indirection around F(Y,e.F') it is easy to see that we need a similar
indirection in Y, and thus we get:

Y, = Afz.(Ag.f(Az.992))(Ag.f(Az.992))z.

8

Recursion and Circularity

A short calculation shows that this variation has the desired property.

A more interesting question is whether there is another approximation of Ye.
which is more like Y. For the second approximation we had delayed the entire
application f(DgI). This is unnecessary because it is only the delabeling of ¢ which
causes the problem. A delay of the D-application alone should be sufficient since
the recursive function is only needed when it is invoked. Thus we get a third
approximation:?

Y. = Af.(rec g (f(Az.(DgI)z))
= Af.(let (9'0") ((0g9.091)(f(A2.(DgI)x))))
= Af.(Ag.((09.DgT)(f(Az.(DgI)z))))'0".
A couple of calculation steps reveal that the application Y,..F leads to an

application of F to some function, but unlike in the case of Y, F the result of this
application is needed for the completion of the recursive definition:

ClYrecF] =, C[(let (¢'0') ((09.DgI)(F(Az.(DgI)z))))] (1)
=, C[((0'0'™.D'0"™I)(F(Az.(D'0™I)z)))]. (2)

If we assume for the moment that in this context FV is operationally indistinguish-
able from some value G[f « V|, then we can continue with

L)

.. = C[((¢'0™.D'0™"T)G[f « Az.(D'0"™1)x]] (3)
... =5 C[DG[f « Az.(D'0"I)z|"1)] (4)
... = C[G[f « Az.(DG[f « Az.(D'0O™I)z]™1)z]]. (5)

At this point we know from line (1) and (4) of this proof that the underlined
subterm in (5) and Y,..F are operationally indistinguishable. Thus, if we knew
that the context of the underlined term was hygienic, we could fill in Y .. F. As
above, this condition translates into the requirement that there are no labels in
G. The label m is exempted because the replacement removes all of its instances.
Assuming this additional condition we get:

.. 8 C[G[f — 2. YreFa]]

2 This variation is due to Bruce Duba, 1984. It comes closest in spirit to a transliteration of Landin’s

original Y,.-proposal for a by-reference language like As [3].

Recursion and Circularity

and by our first assumption and the fact that the context did not change
oo &8 C[F(A2.Y e Fz)).

In summary we have shown that Y,.. satisfies the same operational equivalence
relation as Y, provided the defining function F and its value guarantee two condi-
tions:

e for all values V, FV ~ G[f « V| where G[f « V] is a value, and

e the value G[f « V] does not contain any other label than the ones introduced

by V.

The second condition is quite restrictive. It rules out sensible programs such as
loops which use imperative accumulators. We do not know how to avoid this. The
first condition is a more viable restriction. It essentially requires that upon invoca-
tion F terminates without visible imperative actions or that it loops forever. Since
the function F must be invoked by any recursion operator in order to yield the de-
fined function, the termination condition causes no problem. The imperative-action
part leads us back to the question posed at the outset of this question. Depending
on how many times the defining function F is truly invoked, the imperative actions
are performed a varying number of times. In other words, we really ask how many
function applications are used to implement recursion with the various Y-operators.

Analysis. In the two preceding sections we have seen four recursion operators
all of which allow the definition of recursive functions, but with slightly different
operational properties:

Yy = M.(Ag.f(Az.992))(Ag-f(Az.992))
Y. = Afz.(Ag.f(Az.997))(Ag.f(Az.992))z
Yiee = Af.(rec g f(Az.g7))
Y.e.' = Af.(rec g (Az.fgz)).
For a comparison of these operators we adopt the standard reduction strategy as the
basis of our measure. The important question is how many applications the defined

recursive function needs according to this evaluation in order to achieve recursion.
Hence, we first determine the functions which realize the recursive effects:

Y F = F(\z.(Ag.F(\z.ggz))(A\g.F(Az.g9z)))

Y,'F = (Az.(A\g.F(\z.992))(Ag.F()z.99x)))
Y.ooF = Gf « Az.(DC[f « A\z.(D'0™T)z]"T)a]
Yie'F = (Az.F(D(Az.F(D'0'"I)z)"I)z).

9

10 Recursion and Circularity

The underlined parts are the relevant functions. The first two turn out to be the
same, but they actually perform some of the work at different times. In principle,
both of them reconstruct the recursive function from scratch once they are invoked.
This happens by the inner self-application and the invocation of the defining func-
tion F on that result. When the recursive function is reconstructed, it is passed the
recursion argument. This amounts to four applications per recursion step.

The first point to notice about the imperative versions constructed with N
is that they do not contain a copy of the function F. This means that F is only
invoked once; the rest of the work is done by the function f. When the function [is
used to perform a recursion step, it simply reconstructs itself by a delabeling step
and avoids any other applications, i.e., f only uses one application per recursive
invocation.

Recursion according to Y,..' is more expensive than the one by Y. but still
cheaper than a purely functional implementation. Instead of reconstructing the
defined recursive function by a self-application, it is formed by a delabeling step
and then applied to the functional F. Otherwise, recursion works like in the first
two cases. It needs three applications per step.

Conclusion. In the preceding sections we have discussed four different recursion
operators in an imperative, by-value, higher-order programming language. If they
are used to define purely functional recursive functions, the four (probably) imple-
ment the same behavior, but are quite different in efficiency. If they are used to
define recursive functions with globally visible side-effects or if they are applied to
non-function defining functions, then the four operators possibly exhibit essential
differences.

By lack of a model, the satisfaction of operational equivalence relations does
not imply uniqueness and necessitates the conditional language in the preceding
paragraph. Neverthelees, the discussion has illustrated that a formal system like
the Asy-calculus can point to behavioral differences of functions. An interesting
research question is to analyze the meaning of & and related relations in a syntactic
manner a la Morris [4] in order to get a better (minimal) characterization of our
operators.

References.

1. BURGE, W. Recursive Programming Techniques, Addison-Wesley, 1975.

Recursion and Circularity

. FELLEISEN, M., D.P. FRIEDMAN. A calculus for assignments in higher-order
languages, Proc. 14th ACM Symp. Principles of Programming Languages, 1987,
to appear.

. LANDIN, P.J. A correspondence between ALGOL 60 and Church’s lambda
notation, Comm. ACM, 8(2), 1965, 89-101; 158-165.

. MORRIS, J.H. Lambda-Calculus Models of Programming Languages, Ph.D.
Thesis, Project MAC, MAC-TR-57, MIT, 1968.

. PLOTKIN, G. D. Call-by-name, call-by-value, and the A-calculus, Theoretical
Computer Science 1, 1975, 125-159.

. TURNER, D.A. A new implementation technique for applicative languages,
Software—Practice and Ezperience 9, 1979, 31-49.

11

