A Final Scheme-Word on Landin’s J-Operator

by
Matthias Felleisen

Computer Science Department
Indiana University
Bloomington, Indiana 47405

TECHNICAL REPORT NO. 205

A Final Scheme-Word on Landin’s J-Operator
by
Matthias Felleisen
November, 1986

This material is based on work supported in part by an IBM Fellowship Award to M. Felleisen,
and by the National Science Foundation grant number DCR 85-01277.

A Final Scheme-Word on Landin’s J-Operator

A FINAL SCHEME-WORD ON LANDIN’S J-OPERATOR
Matthias Felleisen

Computer Science Department
Indiana University
Lindley Hall 101
Bloomington, IN 47405, USA

Abstract

Landin’s J-operator was the first attempt to extend the A-calculus with a non-functional control
facility. We show in this note how the extended language can be embedded in Scheme. This finally
clarifies the relationship between the J- and the call/cc-operator. Beyond the historical perspective
the note simultaneously provides insight into the programming with continuations and the construc-
tion of language embeddings for the clarification of semantic issues.

J-operator programming with continuations embeddings

1. The A-calculus and Landin’s J-operator

Landin’s J-operator [10, 11] was the first attempt to extend the A-calculus with a
non-functional control facility. It was added to model the semantics of Algol 60’
labels and jumps. The concept of a continuation [7, 13] had not yet been invented
and, in any case, Landin aimed for as direct a translation of Algol into the A-calculus
as possible.

In order to model labels and their interaction with Algol’s block structure the
J-operator must communicate with applications of A-abstractions which serve as
representations for blocks. Whenever a A-abstraction is invoked, Landin’s defini-
tional SECD-machine remembers the current state so that it can perform the rest of
a program’s actions after the application is evaluated. A label is therefore the com-
bination of this saved state with the remaining actions of a block. The formation of
a labeled statement is accomplished by invoking J on a function which models the
rest of the block. J grabs the currently saved state, combines it with its argument,
and returns this function-like object: a program point. A goto is the invocation of
a program point which reinstalls the saved state and runs its associated function.

1

2

A Final Scheme-Word on Landin’s J-Operator

A short example will clarify this particular use of J. Suppose we are given the

block
... begin integer z; (stmtl); L: (stmt2) end...

where (stmt1) and (stmit2) are arbitrary statements, possibly containing goto state-
ments to the label L. A Landinesque translation of this block becomes:

...let =0 in let L = J(fstmt2) in (fstmtl)...

where (fstmt) stands for a functional representation of the respective statement.
The last action of (fstmitl) would be a jump to L, i.e., L().

In contrast to ordinary Algol-labels program points are first-class objects in
Landin’s extended A-calculus-language. They can be the result of an expression,
bound to parameters, and stored in data structures. This property, in conjunction
with the close ties to labels, made the J-operator a rather opaque concept and it
did not become popular.

Ten years later Sussman and Steele [15] developed another A-calculus-based
programming language, called Scheme. Like Landin they added facilities to control
the evaluation of programs in a non-functional fashion. Unlike Landin they could
use the concept of a continuation and continuation-passing (cps) style programming
[7, 13]. A continuation is a function-like abstraction of the rest of the program
evaluation. In cps programming a program explicitly constructs, passes around,
and invokes its current continuation. This explicit administration of the rest of the
evaluation gives a program direct power over the evaluation process, but it makes
the program complex and hard to understand. Scheme leaves the bookkeeping work
to the underlying evaluation mechanism and instead provides a linguistic facility
which gives a program access to the continuation when needed. This achieves the
same effect as cps-programming and improves the comprehensibility.

Many non-functional control features of algorithmic languages can be directly
transliterated into an equivalent Scheme construction [3]. Examples are function
exits, backtrack points, and exception handlers. We refer to this concept as em-
bedding or, less formally, as syntactic sugar [10]. The advantage of embeddings
is twofold. First, an embedded expression is either manually or automatically re-
placed in situ by its Scheme counterpart without knowledge of the textual context.
Embeddings thus avoid the overhead of an interpreter solution and are also much
simpler than a compiler-like preprocessing which would result in a restructuring
of the entire program. Second, it follows that the facilities of both languages, the

A Final Scheme-Word on Landin’s J-Operator

embedding and the embedded language, may freely interact if they respect each
others semantic integrity.

Since Scheme’s semantics is relatively clean and easy to understand, embeddings
provide an alternative way to define the meaning of programming constructs. The
J-operator language, however, has so far resisted attempts to describe it as syntactic
sugar. Our goal in this note is to derive such a solution, validate its correctness,
and thereby enhance our understanding of J and continuations.

The paper is self-contained with the exception of Section 5. In the next section
we formalize Landin’s SECD-language and machine and investigate the J-operator.
Section 3 contains a subset of Scheme which suffices to express J. In Section 4 we
develop an embedding of the SECD-J-language and argue its correctness. For the
mathematically inclined reader we include Section 5 which presents the same result
in the framework of denotational semantics. This part assumes some knowledge
about denotational semantics and its use of continuations for the explanation of
control facilities. Section 6 puts our work into perspective.

2. The SECD-language and machine

The pure SECD-machine is a definitional interpreter for the A-calculus language.
In order to distinguish the language from the traditional A-calculus we refer to it
as the SECD-language. It is defined in Figure 1. For some programming examples
we recommend the text books of Burge [2] and of Abelson and Sussman [1].

The machine is a transition system in the sense of automata theory with an
infinite set of states and a transition function. A machine state is a 4-tuple com-
prising a stack, an environment, a control string sequence, and a dump. A control
string is an SECD-term or the unique symbol ap. An environment is a finite map
from variables to values. Values are, for the moment, either constants or closures.
Closures are machine representations of evaluated M-abstractions; they are a pair
containing a A-abstraction and an environment which defines the meaning of the
free variables in the abstraction. A stack is a sequence of values. Finally, a dump
is either an empty dump or a machine state.

Conventions. The letters o, p, 7, and § stand for arbitrary stacks, environments,
control strings, and dumps. The notation p[z « v] characterizes an environment
which is like p except for the place z where it returns the value v. M, N and u,
v range over arbitrary A-terms and values, respectively. We use square brackets
[+, -] to denote sequences and angle brackets (-, -, .. .) for tuples. = represents the

3

4

A Final Scheme-Word on Landin’s J-Operator

Figure 1: The SECD-language

The improper symbols are A, ., (, and). Const is a set of constants some
of which may be functions; Var is a countable set of variables. The symbols
a,...and z,...range over Const and Var as meta-variables but are also used
as if they were elements of the sets. If f is a functional element in Const and
a is a constant for which f is defined then ap(f,a) denotes the result of the
application of f to a. The SECD-language contains

— constants: a if a € Const;
— variables: z if x € Var;
— abstractions: (Az.M) if M is an SECD-term and z € Var; z is called

the bound variable in the expression M or the formal parameter, M
is the abstraction body or just body;

— applications: (MN) if M,N are SECD-terms; M is sometimes called
the function part or the operator, N is correspondingly called argu-
ment part or operand.

All variables that do not occur bound in an expression are called unbound
or free.

empty sequence and the empty dump. End of Conventions

The transition function is displayed in Figure 2. The transition from one state to
the next is dictated by the first component of the control string sequence. Constants
and variables load associated values on the stack; abstractions produce closures as
intermediate results. An application simply changes the control string sequence.
This causes the machine to first evaluate the operand, then the operator, and finally
to produce the result of the application. The symbol ap causes the machine to apply
the top of the stack to the value in the second position. If the two are constants,
the result of applying the function to the argument is left on the stack. A closure
is invoked by running the function body in the closure environment extended by a
binding of the formal parameter to the value of the argument. The current state
is saved in the dump so that it can be reinstalled upon exhaustion of the control
string sequence.

A program, that is, a term with no unbound variables, is evaluated on the

A Final Scheme-Word on Landin’s J-Operator

Figure 2: The SECD-transition function

(0’,,0, [a '7] 6) ([a ‘7] Py)
(0,0, [2,7], 8) — ([p(2), 0], p,7, 6)
(0, p,[Az.M, "], 6) — ([(Az.M, p), 0], p,, 8)
(0,0, [MN,~],6) +— (0, p, [N, M, ap,], §)
([(Az.M, pre), v, 0], p, (2P,], 6) — (m, prr[z — v], M, (0, p, 7, 6))
([f,a,0],p,[ap,"],6) — ([ap(f,a), 0], p,7,6)
([v, 0], p,m, {00, Po, 0, 60)) — ([v, 0], 0, Yo, &0)

SECD-machine by putting it in the control string position, and setting the stack,
environment, and dump to the empty component, respectively. The machine termi-
nates upon encountering a state with an empty control string and an empty dump.
The value on the stack is the final result.

Since the machine evaluates both parts of an application before invoking a
function on an argument, it is called an applicative-order machine. Plotkin [12]
has shown that this strategy coincides with the standard reduction function of the
A-value-calculus and that this calculus is therefore the correct medium to reason
about SECD-programs.

Each of the four state components serves a specific purpose during the eval-
uation. The control string generally decides about the next transition step. The
environment defines the meaning of unbound variables in control strings. The stack
corresponds to a sequence of intermediate results of the current closure. It is in
principle the same stack that is commonly found in pocket calculator programs.

An empty dump corresponds to the stop instruction on a regular machine.
When a closure is applied, a new dump is formed, which remembers the current
state components. Indeed, this is the only time when a new dump is constructed.
The dump components are reinstalled when the control string is exhausted. Since
the SECD-machine is a deterministic transition system, the starting state of an eval-
uation sequence determines the unique result. Hence, a dump, which is a sequence
of states, abstracts a transition sequence:

Fact 1. An empty dump signals stop; a non-empty dump encodes the actions which

5

6 A Final Scheme-Word on Landin’s J-Operator

must be performed after the invocation of a closure is completed.

Given this basic machinery, we can now proceed to discuss the J-operator.!

We introduce J into the framework of the SECD-machine as a variable with a
predefined meaning [2, 10, 11]. For a complete definition of its meaning we have to
extend the above system by three rules. First, we define what J means as a control
string:

{0,0,[3,7],8) — ([{J,), 0], p,7,8) if I & Domain(p) (J.con)

With the extra condition we preserve the possibility that some function uses J as
a formal parameter. The tagged structure (J,6) is called stateappender and must
be considered as a new kind of value. Second, we specify what it means to invoke
a stateappender:

([{(J,81),v,0], p,[ap,], 8) — ([(J,v,6;),0],p,7,6). (sa.ap)
The resulting object (J,v,8;) is called a program point and is yet another kind of
value. Finally, we say how to evaluate a program point invocation:

([(Js U, 6J)) v, J]a P [ap, 'ﬂ: 5) ==F ([’U, ’U], 03 [ap]s 5J) (pp'ap)

The three rules make use of two new kinds of values, both of which may be
invoked on values. We refer to the union of functional constants, closures, stateap-
penders, and program points as applicable values.

From the formal definitions we can deduce the following

Fact 2.

a) J evaluates to a stateappender which contains the current dump.

b) A program point is the combination of a state appender with an applicable
value resulting from the invocation of the stateappender on this value.

c¢) The invocation of a program point throws away the current machine state,
installs its dump in the dump position, and invokes the associated applicable
value on its argument.

Fact 1 and part a) of Fact 2 imply that J’s meaning changes when a closure is
invoked and a new dump is constructed. We can also reverse this perspective and
state it from the point of view of an abstraction body:

1 For the formalization of J we follow Burge’s development [2, pp.81-87]. Landin’s original account of the
extended SECD-machine [11] is informal and, unfortunately, slightly inconsistent. While J is syntactically
treated like a variable, its semantics is only defined for the operand position, t.e., as if (J M) were a new

syntactic form. Since this treatment is a special case of Burge’s, we decided to investigate the latter.

A Final Scheme-Word on Landin’s J-Operator

Fact 3. The evaluation of J yields a different stateappender in every function body
and depends on where and when the respective closure is invoked.

The characterization of J according to these facts suffices for our case study. In
the next section we introduce the programming language Scheme. The above facts
then enable us to define the SECD-J-language by a syntactic extension of Scheme.

3. Scheme

For the purpose of this paper we regard Scheme as a dialect of the pure SECD-
language, ¢.e., an applicative-order concretization of the A-calculus. The syntax is
displayed in Figure 3.

Figure 3: Concrete Syntax of Scheme

(exp) ::= (const) |
(var) |

(lambda ((var)) (ezp)) |

({ezp) (ezp))|
(define (var) (ezp)) |

(syntactic-eztension) (see text)

{eonst) = 0|1]2];:

Beyond this core language Scheme contains a number of predefined operations
one of which gives a program access to its current continuation. It is called call-
with-current-continuation and is generally abbreviated call/cc. The application
(call/cc M) grabs its continuation and then applies M to this continuation, that
is, M is called with the current continuation. A continuation is a function-like
representation of the rest of the program evaluation. When invoked on a value, it
resumes the program as if the expression (call/cc M) had returned this value. Like
constants and functions, continuations are first-class objects.

8

A Final Scheme-Word on Landin’s J-Operator

Reasoning about the behavior of continuations is difficult if based on a denota-
tional or machine semantics. We have recently developed a syntactic theory which
greatly facilitates reasoning with call/cc and continuations [6]. It yields the follow-
ing two (informal) rules which, when added to the usual S-value- (substitution-) rule
of the A,-calculus, allow a programmer to reason symbolically about the evaluation
of programs in our subset of Scheme:

e the expression (call/cc M) is equivalent to an application of M to the textual
evaluation context of the call/cc-expression: a continuation corresponds to the
textual evaluation context

e when a context, i.e. a continuation, is invoked on a value, the current evaluation
context is thrown away and the program continues with the continuation-context
and the hole that was left behind by (call/cc M) is filled with the value.

For an application of these rules consider the expression

(((call/ccI)(K add1))0),

where I = (lambda (z) z) and K = (lambda (y) (lambda (z) y)). The evalua-
tion of this expression yields 1. This can be computed as follows:

(((call/ccI)(K add1))0) (1)
—(((call/ccI)(lambda (z) add1)) 0) (2)
—(((Iv)(lambda (z) add1))0) where v ~ (([](lambda (z)add1))0) (3)
—((v (lambda (z) add1)) 0) (4)
—(((lambda (z) add1) (lambda (z) add1)) 0) (5)
—(add10) — 1. (6)

Although the expression per se is rather pointless, its evaluation demonstrates how
continuations are treated as first-class objects (lines 3 and 4) and how the grabing
(lines 2 and 3) and invoking of continuations (lines 4 and 5) is easily performed
with the above rules.

Full Scheme supports many other linguistic facilities such as the construction
of arbitrary constants (quote), branching constructs (e.g., if), side-effects (set!),
modified forms of abstraction (multiple parameters, rest parameters), and defini-
tions (define). Except for the last one, none are of any importance to our purpose.
Definitions are expressions of the form

(define (var) (ezpression)).

A Final Scheme-Word on Landin’s J-Operator

The result is undefined and the effect is that the initial environment contains a
binding of (var) to the value of (expression). Definitions may be embedded in
expressions® in which case they are closed in the current environment.

Many implementations of Scheme also contain a facility to define syntactic
sugar. Especially convenient are the facilities found in Scheme 84 [8] and Chez
Scheme [5]. For example, a syntactic variation of Landin’s let such as

(let ((var) (ezp)) (body))

abbreviates
((lambda ((var)) (body))(ezp))

and is added by entering
(extend-syntax () [(let ((var) (ezp)) (body)) ((lambda ((var)) (body))(ezp) -

The effect is that the programmer has a new language available which is like the
old one but has an additional syntactic form.

Every declaration of a syntactic extension (as used in this note) has two parts:
a possibly empty list of variable names and a pair of pattern-expressions enclosed in
brackets. The first pattern expression is called input pattern, the second one is the
output pattern. When the syntax preprocessor discovers an actual instance of the
input pattern in a program, it replaces this instance by an instance of the output
pattern with the pattern variables appropriately instantiated. If the expansion
creates a binding to a variable that is not in the actual input expression, this
binding is transparent unless the variable name is included in the first argument of
extend-syntax. Hence, in an or-expression specified by

(extend-syntax () [(or (ezpl) (ezp2)) (let (v (exp1)) (if vv (ezp2)))])

the variable v is inaccessible from within the subexpression. On the other hand, if
we had entered the definition

(extend-syntax (v) [(or (ezpl) (exp2)) (let (v (expl)) (if v (ezp2)))])

v would have been accessible from within (ezp2) and would have overridden any
other meaning of v in (ezp2).

2 In dialects of Scheme which satisfy the current standard [4] this kind of expression must be modified so
that the binding is established first and then the binding is side-effected to contain the proper value. Scheme

84 handles these definitions without rearrangements.

9

10

A Final Scheme-Word on Landin’s J-Operator

With the extend-syntax facility it is easy to embed other languages in Scheme.
We refer the reader to Kohlbecker’s dissertation [9] for more information on the
capabilities of extend-syntax and a survey of embeddings based on this facility
[9, pp-22-23]. In the next section we demonstrate how the SECD-J-language is
embedded.

4. Embedding the SECD-J-language in Scheme

The design of a language embedding in Scheme generally proceeds in two steps.
During the first step every (abstract) syntactic form of the embedded languaged
is assigned a Scheme semantics via the definition of a syntactic extension. In the
second step the semantic primitives are added to the initial environment. In many
cases there is a trade-off between these two steps. Syntactic extensions may require
modifications of semantic primitives and vice versa.

In the case at hand the syntax and semantics of the embedded core language is
seemingly already subsumed by Scheme. The only semantic primitive is J. However,
according to Fact 3, the evaluation of J yields a different value in different function
bodies and invocations thereof. The most direct way to implement this is to define
J in the initial environment and to rebind J for function bodies. The second part ac-
tually means that we need abstractions which are different from Scheme’s lambda-
abstractions. We accomplish this by defining a syntax for SECD-abstractions in

Scheme:
(extend-syntax (...)

[(Lambda ({var)) (body))
(lambda ((var))

oo (let (J ...) (body))))).

Given these decisions we can turn our attention to the bindings of J.

The evaluation of J yields a stateappender according to Fact 2a). A stateappen-
der acts like a closure: when invoked on a value, it immediately returns a program
point. Since stateappenders and program points are applicable values, lambda-
abstractions are valid representations for both. Hence, J should be bound to an
expression like

(lambda (f) (lambda (a)...))

where the underlined part represents the program point and f and a are the argu-
ment to the stateappender and program point, respectively. Fact 2c) finally requires
that a program point invokes the argument to the stateappender on the argument to

A Final Scheme-Word on Landin’s J-Operator

the program point and reinstalls the dump. We can make the above approximation
more precise:

(lambda (f) (lambda (a)...(fa)...)).

The ellipsis indicates the actions which implement the reinstallement of the dump.

Following Fact 1 an empty dump corresponds to a stop instruction. Invoking a
program point which contains the empty dump means to stop the computation after
having evaluated (fa). In Scheme “stopping the computation” means to invoke an
initial continuation which returns the program to the read-eval-print loop of the
interpreter system. From this we can deduce J’s initial binding:

(call/cc
(lambda (inztk)
(define J (lambda (f) (lambda (a) (initk(fa))))))).

Clearly, initk stands for the empty textual context and, when invoked, simply re-
turns its argument to the interpreter loop and stops.

A non-empty dump represents the rest of the computation of a closure invo-
cation, i.e., a dump is the continuation of a closure invocation. Hence the first
action of a Lambda-body must be the grabbing of the current continuation. This
is accomplished with a call/cc-application and thus the output pattern of Lambda
starts out approximately like

(lambda ({var)) (call/cc (lambda (5) .. .))).

The only remaining question is what the new value of J is. J's arity stays
the same, but, instead of invoking the initial continuation on (fa), J—following
Fact 2—must now reinstall the current dump which means it must invoke j:

(lambda (f) (lambda (a) (5(fa))))-

Putting things together, we obtain the following syntactic extension for Lamb-
da as a first approximation:

11

12 A Final Scheme-Word on Landin’s J-Operator

(extend-syntax (J)
[(Lambda ({var)) (body))
(lambda ((var))
(call/cc
(lambda (y)
(tet (3 (lambda (f) (lambda (a) (j(fa))))) (bods)))))).

Whereas the variable j must be transparent because it only represents the raw
continuation, the new definition of J must be accessible from within (body). There-
fore we put J into the variable-name part of extend-syntax. This, however, leads
to a subtle mistake in our definition. The binding of the variable J shadows the
binding of the formal parameter (var). If (var) stands for the variable name J,
the argument will be inaccessible from within the abstraction body. To provide the
programmer with the possibility of using J as a formal parameter, we must inter-
change the binding order. This is done by introducing a transparent, intermediate
variable y:

(extend-syntax (J)
[(Lambda ((var)) (body))
(lambda (y)
(call/cc
(lambda ()
(tet (J (lambda () (lambda (a) (7(fa)))
(et ((var) y) (body))))))])-

Lambda-abstractions together with the global definition of J and the rest of
Scheme form a new language, say Scheme-J,® which realizes Landin’s SECD-J-
language. One point worth validating is that the redefinition of J within Lambda
uses the correct continuation. For this purpose we exploit the informal rules from
Section 3. Suppose we are at a point in the evaluation of a program where a
Lambda-abstraction is applied in some textual context ...[]...:

...((Lambda (z) Body)Arg)... .

8 In Scheme 84 a programmer can redefine the core syntax and, hence, Scheme 84 could serve as the

concretization of the SECD-J-language.

A Final Scheme-Word on Landin’s J-Operator 13

In expanded form this reads as

... ((lambda (y)
(call/cc
(lambda ()

(let (J (lambda (f) (lambda (a) (5(fa)))))
(let (zy) Body)))))Arg)... .

According to the evaluation rules we continue with

ol fee
(lambda (y)

(let (J (lambda (f) (lambda (a) (5(fa)))))
(et (z ValofArg) Body))))...,

where ValofArg is the value of the expression Arg, and finally

...(let (J (lambda (f) (lambda (a) (5(fa)))))
(let (z ValofArg) Body))...,

where y & ...[]....

This binding of 5 corresponds to the continuation of the original application,
and therefore, when a program point created by J is invoked on a function F and
an argument A, it will resume the program evaluation with

... ValofFA...,

if ValofFA is the result of invoking F on A. This precisely reflects the operational
meaning of program points as described by the facts and equations in Section 2.

Remark. The preceding validation reveals that our solution is only partially cor-
rect. If a program invokes a large number of program points before it actually gets
to resume the continuation j, it may run out of stack space where an SECD-program
may have terminated. Technically speaking, the solution is not tail-recursive. It
can be fixed by enforcing an invocation of the continuation before (fa) is evalu-
ated or, equally, by delaying (fa) so that the continuation is truly invoked. The
standard way of getting this kind of timing problem right is to freeze and thaw the
appropriate actions. Freezing means to construct a nullary function; thawing is the
converse: it means to apply a nullary function to no arguments. The optimizing
version of Lambda is:

14 A Final Scheme-Word on Landin’s J-Operator

(extend-syntax (J)
[(Lambda ((var)) (body))
(lambda (y)
((call/cc
(lambda (y)
(let (J (lambda (f) (lambda (a) (j(lambda () (fa))))))

(let ({var) y) (body))))))])-

The definition of the initial binding for J must be modified in a similar way.
End Remark

A natural question arises at this point: Can the J-operator implement call/cc?
The answer is straightforward. A Lambda-abstraction which realizes call/cc must
take one argument and apply it to the continuation of the application. On the other
hand, a program point always combines this continuation with some closure and,
if the closure is the identity function, a program point 7s the desired continuation.
Hence, we can define call/cc in the SECD-J-language by:*

(define call/cc
(Lambda ()

(f(J(Lambda (z) 2))))).

This definition shows that the two languages are directly equivalent. It is not
necessary to write an interpreter in order to simulate one language in the other.

5. A denotational approach

In this section we present the J-operator in the standard denotational framework
for a semantics of the SECD-language. Figure 4 recalls the usual definitions for the
syntactic and semantic domains and equations [14]. We have omitted constants for
the sake of simplicity.

Since J is a variable name with a predetermined denotation, the syntax of our
language remains unchanged. The initial environment for £ must contain a yet to
be determined binding for J:

(Ja Jinit) € Pinit -

4 This is due to Reynolds who defined his escape-construct with J [13].

A Final Scheme-Word on Landin’s J-Operator

Figure 4: A Denotational Semantics of the SECD-language

Syntactic Domains:

z € Var (Variables),
L,M,Ne€A (SECD-language).
Syntax:

L = z| . M| MN
Semantic Domains;

p € Env= Var — Val (Environments),
m,n,v € Val = Val — Cont — Val (Values or Closures),

K,K',... € Cont= Val — Val (Continuations).

Semantic Functions:
& :A— Env— Cont —s Val,

€[z] = Apr.x(p[2]),
[z M] = Apr.c(Avk'.€ [M]p[z + v]x'),
E[MN] = Apk.E[N]p(An.€ [M] p(Am.mnk)).

In order to determine the denotation of J we need to construct domains for two
new kind of values, namely, stateappenders and program points. The domain of
values becomes:

Val = [Val — Cont — Va!] + SA + PP.

Next we translate the facts of Section 2 into our denotational framework. Fact 1
says in the terms of the denotational semantics in Figure 4 that a dump corresponds
to the continuation &' which is passed to the closure. An initial dump is the initial
continuation. From Fact 2 we know that the result of looking up J in the envi-
ronment is a stateappender which, when invoked, immediately returns a program
point, i.e., it passes the program point to its continuation. Hence, the domain of

15

16

A Final Scheme-Word on Landin’s J-Operator

stateappenders is defined by
SA = Val — Cont — PP.

Program points are also like closures, but they ignore their current dump and
hence their continuation. Instead, they invoke their encoded applicable value on
their argument and return the result value to the continuation ', while ignoring
their own. The domain of program points is therefore like the original domain of
values and we have the following new definitions:

Val = [Val — Cont — Val] + SA + PP,
SA = Val — Cont — PP,
PP = Val — Cont — Val.

It is easy to see that these equations may be collapsed into the original equation
for values and that we therefore do not need new domains.

We now know that the arity of J is Afxy.... since the value of J is a stateap-
pender. This stateappender returns a program point of type Aak,. ... which, if it
is the initial one, runs the closure f on its argument a and then stops the machine.
In denotational terms, initial program points throw away their continuation and
instead use the initial continuation I:

Jinit - Afﬁ}f.fﬁf(/\aﬁ:a (faI))

Furthermore, from Fact 3 we can deduce that J must be redefined with every
closure application. This can be realized in at least two ways. The most direct
transliteration would redefine the denotation of an application. The application
would pass along the new value for J to a closure. But that would mean that
we must also change the denotation of a closure. It would take the value for its
argument, the new value for J, and the continuation of the application. Since this
continuation is the only piece that J needs to form program points, we can also
redefine J once the closure is called. In other words, we only need to modify the
denotation of abstractions in order to give J the correct meaning within function
bodies. We redefine the second semantic equation as:

E[Az. M] = Apr.k(Mvk! E[M]p[J « Jy][z « v]&').
The binding of J and of the argument are serialized such that J may be used as a

bound variable. The new denotation J, must be like the initial one, except that
the program points which are produced use the application continuation:

Ja = Afrs.kp(Aake.(fax')).

A Final Scheme-Word on Landin’s J-Operator

In summary the two modifications to the semantics in Figure 4 are
(J, (A frfr.cr(Aak,. fal))) € pinic
and
€[z M] = Apr.k(Avr'.E[M]p[J — Afrs.kp(Aaky. far')][z — v]s').

The denotational characterization has much in common with the Scheme version of
the preceding section. Both definitions provide an initial binding, both redefine the
meaning of the abstraction mechanism in the language, and both use continuations
as their major tool to describe the effect of J and program points.

Nevertheless we perceive a series of differences which underline some subtle
points in the definition of J. Scheme’s initial definition of J explicitly invokes the
initial continuation and clarifies that the computation terminates with an invocation
of an initial program point. Furthermore, by using the operator call/cc in order to
obtain the proper continuation, the syntactic extension in Scheme makes unmistak-
enly clear which continuation is used by a program point, namely, the continuation
of the closure application. The three explicit continuations in the denotational ver-
sion are rather confusing. Lastly, the introduction of an auxiliary variable y in
the syntactic extension for Scheme directs the reader’s attention to the difficulty of
binding J at the right time. This is not quite as simple as the serialization of the
environment extensions, but the point becomes obvious. Although these differences
are mainly due to the complicated nature of J, they also indicate a difference be-
tween Scheme as a defining language and denotational semantics. Whereas in the
latter framework everything is explicit, definitions via Scheme concentrate on the
essentials. Depending on the situation this may be an advantage or a disadvantage.

6. Conclusion

We have constructed a Scheme-embedding of the J-operator which essentially char-
acterizes J with respect to the current continuation of a closure invocation. The
inverse relation, namely, how to define a J-based facility which grabs the current
continuation, has been known for a long time and is much simpler.

The asymmetry between the two embeddings indicates that the two operators
are, although formally equivalent, in different complexity classes. This may also
explain why J has generally been used in situations like

(Lambda (z) (let (lab(J fun))...)).

LT

18

A Final Scheme-Word on Landin’s J-Operator

This expression is equivalent to the construction
(lambda (z) (call/cc (lambda (c) (let (lab (lambda (z) (¢(fun z))))...))))

and it is easy to see which continuation is contained in the program point lab.
Furthermore, J and program points are closely entangled with the definition and
meaning of closures and closure invocations. Indeed, J can only be understood
by a redefinition of the abstraction mechanism. This unfortunately implies that
equivalences like

((Lambda () Body)) = Body

are no longer valid if Body contains references to J. The standard way of reasoning
about abstractions and applications has almost become impossible.

In contrast, the call/cc-operation in Scheme only depends on the ubiquitous
concept of the current continuation. Its meaning is independent of other language
constructs and therefore, easier to comprehend. Because of this, it is also easy to
model other non-functional control facilities with call/cc in a rather direct way.
Scheme may thus serve as a natural target language for language definitions in the
same style that Landin was aiming for with the SECD-J-language.
Acknowledgement. Dan Friedman originally directed our attention to the prob-
lem of embedding Landin’s SECD-J-language in Scheme. Our note greatly benefited
from Cameron Nagle’s attempt to prove the impossibility of this task. Bruce Duba,
Dan Friedman, and Chris Haynes provided useful comments on earlier drafts. The
author gratefully acknowledges the support of an IBM Graduate Research Fellow-
ship.

References
1. ABELSON, H., G.J. SUSSMAN. Structure and Interpretation of Computer Pro-
grams, The MIT Press, Cambridge, 1985.

2. BURGE, W. Recursive Programming Techniques, Addison-Wesley, 1975.

3. CLINGER, W.D., D.P. FRIEDMAN, M. WAND. A scheme for a higher-level
semantic algebra, in Algebraic Methods in Semantics, J. Reynolds, M.Nivat
(Eds.), 1985, 237-250.

4. CLINGER, W., REEs, J. (Eds.) The revised® report on the algorithmic lan-
guage Scheme, SIGPLAN Notices 21(11), 1986, to appear.

5. DYBVIG, R. K. The Scheme Programming Language, Prentice Hall, 1987, in
press.

10.

L1

12.

13.

14.

15.

A Final Scheme-Word on Landin’s J-Operator

. FELLEISEN, M., D.P. FRIEDMAN. Control operators, the SECD-machine,

and the A-calculus, Formal Description of Programming Concepts III, North-
Holland, Amsterdam, 1986, to appear.

. FIsCHER, M.J. Lambda calculus schemata, Proc. ACM Conference on Proving

Assertions about Programs, Las Cruces, SIGPLAN Notices, 7(1), 1972, 104-109.

. FRIEDMAN, D.P., C.T. HAYNES, E. KOHLBECKER, M. WAND. Scheme 84

Interim Reference Manual, Technical Report No. 153, Indiana Univeristy Com-
puter Science Department, 1985.

- KOHLBECKER, E. Syntactic Ertensions in the Programming Language Lisp,

Ph.D. dissertation, Indiana University Computer Science Department, 1986.

LANDIN, P.J. A correspondence between ALGOL 60 and Church’s lambda
notation, Comm. ACM, 8(2), 1965, 89-101; 158-165.

LANDIN, P.J. An abstract machine for designers of computing languages, Proc.
IFIP Congress, 1965, 438-439.

PLOTKIN, G. D. Call-by-name, call-by-value, and the A-calculus, Theoretical
Computer Science 1, 1975, 125-159.

REYNOLDS, J.C. Definitional interpreters for higher-order programming lan-
guages, Proc. ACM Annual Conference, 1972, 717-740.

StoY, J.E. Denotational Semantics: The Scott-Stratchey Approach to Pro-
gramming Languages, The MIT Press, Cambridge, Massachusetts, 1981.

SUSSMAN G.J., G. STEELE. Scheme: An interpreter for extended lambda
calculus, Memo 349, MIT Al-Lab, 1975.

19

