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Abstract

SelfType is a programming language feature of object systems which allows both methods and instance variable
declarations to refer to the type of self. We present an object encoding suÆcient to model SelfType while
maintaining explicit support for instance variables or other private interfaces. The range of the encoding is F!

^
,

the typed �-calculus including polymorphic functions and types, intersection types and subtyping, augmented
with recursive types (of kind ?). Intersection types are used to support vertical specialization of methods and
multiple inheritance.

1 Introduction

In this paper we present an object encoding supporting SelfType. In particular, we allow the use of SelfType in
instance variable declarations. We �rst describe the notions of SelfType and of object encodings. We then present
our encoding in three stages.

1.1 SelfType

Inheritance in object-oriented languages allows code written for the superclass to be reused by the subclass, with
dynamic references to self helping to increase its relevance to the subclass. Self-references in the superclass are
redirected to refer to the subclass object. In addition to self-reference at the level of objects, one might allow self-
reference at the level of types. Declaring parameters and return values of methods and instance variables to be
of SelfType causes them to be considered, from the perspective of a derived class, to be declared as the type of
that derived class, not in general the type of the class currently being constructed. This feature dates back to the
Ei�el programming language. Bruce describes its use in the prevention of the loss of type information when self
is returned by a method and in the implementation of binary methods [4]. Bruce, et. al., provide this feature in
their PolyTOIL language (derived from TOOPLE [6]) and present an example of these uses as well as the creation
of specializable recursively-de�ned data structures [3]. We next present a functional variant of the latter example in
a made-up object-oriented language.

Objects of class Node contain two instance variables, one a natural number and the other of SelfType. Nodes
contain two methods. The getVal method dereferences the appropriate instance variable. The argOrSelfOrNext
method accepts an argument of SelfType and a selector and returns either the node argument, the current node, or
its next pointer, depending on the selector value. Doubly-linked nodes (of class DNode) add a single instance variable
of SelfType and an access method.

Class Node specializes ()
ivars = { val: Nat,

next: SelfType },
methods = { getVal = lambda () val,

argOrSelfOrNext: =
lambda ([arg SelfType][sel Nat])

case sel of
[0 arg]
[1 self]
[2 next]};
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Class DNode specializes (Node)
ivars = { prev: SelfType },
methods = { getPrev = lambda () prev };

Now, our test. We will see that although argOrSelfOrNext was de�ned in the superclass Node, it is able to both
accept and return elements of the derived class DNode, upon which we may use the new getPrev method.

First we de�ne some test nodes. We assume that our new operator takes as arguments all instance variables of
the class, ordered by a post-order traversal of a depth-�rst spanning tree of the hierarchy. The object a3rdDNode
holds the value 3 and points in both directions to a2ndDNode, which holds the value 2 and points in both directions
to aDNode, which holds the value 1 and contains two nil pointers.

aDNode = new DNode 1, nil, nil;
a2ndDNode = new DNode 2, aDNode, aDNode;
a3rdDNode = new DNode 3, a2ndDNode, a2ndDNode;

Given the selector 0, we return the argument, a2ndDNode, whose predecessor contains 1.

((a3rdDNode.argOrSelfOrNext(a2ndDNode, 0)).getPrev()).getVal() => 1

Given the selector 1, return self, a3rdDNode, whose predecessor contains 2.

((a3rdDNode.argOrSelfOrNext(a2ndDNode, 1)).getPrev()).getVal() => 2

Given the selector 2, return the successor, a2ndDNode, whose predecessor contains 1.

((a3rdDNode.argOrSelfOrNext(a2ndDNode, 2)).getPrev()).getVal() => 1

Providing a simple node as an argument to argOrSelfOrNext on a doubly-linked node yields a type error.

(a3rdDNode.argOrSelfOrNext(a2ndNode 0)).getVal() => type error

Most statically type-checked object-oriented languages do not provide this degree of controlled reuse. SelfType
allows great exibility in interpreting method signatures under subclassing.

1.2 Object Encodings

The above work, however, was presented in terms of a denotational semantics. The use of encodings of object
systems into typed �-calculi was pioneered by Cardelli, Pierce and Turner [8, 17]. High-level object-oriented languages
implicitly include some object system that de�nes the basic structure and interactions of objects and classes. An
encoding of an object system into a typed �-calculus is a way of giving a two-level semantics to such languages.
At the higher level, a set of object-oriented support routines are developed within the calculus. Support routines
include high-level operators for de�ning object and class types from interfaces and functions for instantiating and
extending classes. At the lower level, the speci�c rules by which an object-oriented language operates are de�ned by
the way in which these support routines are used by translated programs. As in most previous work in the area, we
will provide examples using the support routines directly, leaving the details of the translation from a higher-level
language unspeci�ed. An important advantage of the object-encoding methodology is that it demonstrates an upper
bound on the complexity of language features in terms of the standard typing systems that are required for their
encoding.

The recursive record encoding of objects (OR) is based on ideas introduced by Cook and Palsberg [11]. It treats
classes as generators of records of methods, and objects as their �xed points. The encoding presented here is largely
based on the recursive record encoding. Pierce and Turner present an encoding of objects using existential types [15]
instead of recursive types (OE), demonstrating that the essentials of object-oriented programming do not require
recursive types [17]. Their use of type operators with subtyping is similar to the F-bounded polymorphism suggested
by Canning, et. al. [7]. This paper closely follows the techniques introduced by Pierce and Turner. Bruce, Cardelli
and Pierce [5] standardize the above two object encodings and present two more: a type-theoretic analogue of Bruce's
denotational semantics using both recursive and existential types (ORE) 1, and a simpli�cation of Abadi, Cardelli
and Viswanathan's encoding [2] of the \calculus of primitive objects" [1] using recursive and bounded existential
types [9] (ORBE). The ORBE encoding takes the signi�cant step of assuming that the type of an object's state is a
subtype of the object itself. Thus it merges the concepts of a record of methods and an object state, with updates
to state treated functionally by returning revised methods. Crary's OREI encoding [12] is even more thorough, using
intersection types along with existential types to guarantee that an object's state is precisely the object itself. We
believe that there is some merit in distinguishing an object's public and private interfaces and proceed on that
basis. Both Bruce, et. al., and Crary provide only object types for the four encodings, and omit the class encodings
provided by Pierce and Turner for OE. Our presentation here of a full encoding supporting SelfType can be seen as
a continuation of the project begun in that work.

1The ORE encoding was developed to model some aspects of Bruce's work. It does not model his use of SelfType in de�ning instance
variables.
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1.3 De�ciencies of Current Encodings in Dealing with SelfType

The OR and ORE encodings can handle only approximations of SelfType. Bruce, Cardelli and Pierce describe how
a function parameterized over an interface and then an object type can simulate binary methods [5]. In the context
of our above example, we can de�ne:

f =
� I <: NodeI:

� o : ORE I:
o( argOrSelfOrNext o 0

;

Here, ( corresponds to message-sending. We can then call f DNodeI aDNode if we know that aDNode :
ORE DNodeI , and argOrSelfOrNext will be expected to accept and return an ORE DNodeI. Similar techniques
should work for OREI, although it is not de�ned in the context of bounded quanti�ers.

While these encodings might allow an instance variable to hold objects of any subclass of the class currently being
de�ned, they do not provide the ability to declare instance variables as belonging to SelfType. Thus, although we
have achieved the ability to have a method return an object of a known subclass within a de�ned scope, this victory
is hollow since we cannot de�ne the body of the method as an instance-variable reference without getting a type
error. This criticism is somewhat unfair for OREI, which has dismissed with instance variables all-together, but we
feel that there is bene�t in an encoding which allows for type self-reference at distinct implementation levels.

The OE and ORBE encodings have the advantage of monotonicity (so the above \trick" is not needed), but
can gain type self-reference only by giving up pointwise subtyping between interfaces (by wrapping a recursive-type
declaration around them).

2 An Object Encoding For SelfType

The calculus that we will require is F!^ with �rst-order recursive types. This system is the polymorphic �-calculus,
extended with type operators, subtyping and �nite intersections, and further extended with recursive types (of kind
?). We also assume the presence of local bindings, record types, bounded quanti�ers and products, as these can be
implemented from within the calculus. We assume familiarity with these standard features of type systems. Our
approach is meant to be intuitive | we present this calculus as a pedagogical tool for explaining object systems. We
make no claims of it here beyond that our implementation is suÆcient to typecheck the examples presented in this
paper. Syntax for the calculus is presented in Figure 1. Below, we omit kind annotations for bounded polymorphic
types, bounded type abstractions, intersections and products.

A diÆculty of the object-encoding approach is in handling state, a rather central feature of object-oriented
systems. One approach, taken by Pierce and Turner [17], is to model side e�ects by the use of \extractors" that
perform functional get and set operations on a record that may be a proper subtype of the current representation.
Pierce also describes a solution using reference types and a weakened call-by-value recursion operator [16]. Another
possibility is to model state directly in a �-calculus enhanced with labels. Work was done in this direction using
an untyped �-calculus [13]. We choose to view the issue as a distraction and work with functional examples in the
comfort that state could be added by any of these means.

2.1 Basics

We will be using the example from the introduction. We begin by presenting public and private interfaces. The
attributes of both may include SelfType, so both are de�ned not as �rst-order record types but as operators over
record types. For example, we de�ne both interfaces of nodes as follows:

NodePublic =
� SelfType:
fgetVal : Unit! Nat ;
getValIndirect : Unit! Nat ;
argOrSelfOrNext : SelfType! Nat! SelfType g

;

DeltaNodePrivate = � SelfType: f#val : Nat ; #next : SelfType g;

NodePrivate = DeltaNodePrivate;

We thus declare that the public interface of nodes contains three methods, two returning a natural and one
accepting a node followed by a natural and returning a node. The reason for including getValIndirect will become
apparent shortly. The private interface of nodes contains a natural and a node. It is speci�ed via a \Delta" operator
that gives the portion of the private interface local to the class being de�ned.

Next we seek a typing in the calculus of objects and their representations. Both must be in terms of SelfType.
The type of a representation of an object is an application of a private interface to SelfType, while the type of an
object is an application of a public interface to SelfType. In both cases, SelfType will be de�ned as a �xed point of
a yet to be determined public interface, FinalSelfPublic. Thus, we have:
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Figure 1: Kind, Type and Term Syntax for the Calculus

K ::= ? types
K ! K type operators

T ::= X variable
Unit;Bool;Nat base types
? bottom type
T ! T function type
8X � T :: K: T bounded polymorphic type
8X :: K: T

:
= 8X � >K :: K: T unbounded polymorphic type

8X: T
:
= 8X :: ?: T unbounded polymorphic type at kind ?

�X :: K: T operator abstraction
T T operator aplication
fl : T : : : l : Tg record type
RecX:T recursive type
V
K [T : : : T ] intersection at kind K

>K
:
=

V
K [] top at kind K

T ^K T
:
=

V
K [T; T ] binary intersection at kind K

T �K T cross product at kind K
e ::= x variable

unit; true; false; n base terms
nil bottom term
ife thene elsee conditional
iszeroe zero test
prede predecessor
�x : T: e abstraction
e e application
letx = e ine local de�nition
letX = T ine local type de�nition
�X � T :: K: e bounded type abstraction
�X :: K: e

:
= �X � >K :: K: e unbounded type abstraction

�X: e
:
= �X :: ?: e unbounded type abstraction at kind ?

e T type application
fl = e : : : l = eg record construction
e:l �eld selection
�x e recursive expression
< e; e > pair
e:1 left projection
e:2 right projection
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Representation =
� Private :: ?! ?:

� FinalSelfPublic :: ?! ?:
Private (Rec X: FinalSelfPublic X)

;

Object =
� Public :: ?! ?:

� FinalSelfPublic :: ?! ?:
Public (Rec X: FinalSelfPublic X)

;

Objects are derived from representations. Another type operator expresses this relationship.

Implementation =
� Public :: ?! ?:

� Private :: ?! ?:
� FinalSelfPublic :: ?! ?:

Representation Private FinalSelfPublic!
Object Public FinalSelfPublic

;

The similarity between representation types and object types is quite intentional and the above de�nitions indicate
the existence of an implementation hierarchy. Thus, we allow a representation to consist of arbitrary private methods
which in another context might be considered an object. Our examples, however, will use traditional representations
consisting of instance variables.

The use of an implementation to create an object lexically hides the representation within the object | the object
is thus abstract, as in object-oriented languages. An alternative approach used by Pierce and Turner in providing
this capablity is to pass around structures containing both representations and implementations as objects and build
methods only upon method invocation, using existential types for object encapsulation. We choose to enjoy the
simplicity of our approach. However, we believe that an encoding analogous to this one could be developed with
existential types.

In both cases, though, objects hide more than they do in most object-oriented languages, whose notion of en-
capsulation is class-based and not object-based [18]. In other words, it is possible in most object-oriented languages
to see from within an object's methods the representation of another object belonging to the same class. A notion
of class-based control over representations could be implemented (at runtime) by giving each class a key value and
having objects provide instead of a representation, a function from the set of possible key values to representations.
We treat this subtlety as inconsequential.

Within the calculus, classes are de�ned as expressions whose types determine the typing of the methods they
provide. 2 Classes are de�ned as functions from representations to implementation generators. We next present a
type operator describing class types.

Class =
� Public :: ?! ?:

� Private :: ?! ?:
� FinalSelfPublic :: ?! ?:

Representation Private FinalSelfPublic!
Implementation Public Private FinalSelfPublic!
Implementation Public Private FinalSelfPublic

;

Our encoding di�ers from others in that classes do not hold an initial object representation. Instead, the repre-
sentation is provided on object construction. Allowing both forms of initialization is overly complex for our purposes.
Without side e�ects, allowing only class-based initialization would require a separate class for every possible object
representation. This is inconsistent with existing object-oriented languages. In any case, we �nd it awkward to force
all objects of a class to begin with the same representation, as there are not always appropriate defaults (although
a nil value of type ? could be used for this purpose) and we do not believe that initialization is an appropriate use
for side e�ects. Notice that since we are not implementing state there is no necessity for each object to have its
own representation at all, and we could make do with having each class hold the primary copy of the representation.
However, we wish to make our encoding \state-friendly" by allowing for the possiblity of updatable representations.
The hash marks on our record structures for representations mark �elds as mutable and thus treated invariantly
under subtyping.

For class creation, we can use a function extend0 3. This will require method descriptions from the user of the
routine, which we type as MethDesc0. This type de�nes a record of methods conforming to the public interface in
terms of the local representation and a self object. The self object is provided as a thunk to allow for applicative-order
evaluation.

2We make no commitment about the status of classes in the high-level language from which we may have translated.
30 is the number of parents.
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MethDesc0 =
� Public :: ?! ?:

� DeltaPrivate :: ?! ?:
� FinalSelfPublic :: ?! ?:

Representation DeltaPrivate FinalSelfPublic!
(Unit! Object Public FinalSelfPublic)!
Object Public FinalSelfPublic

;

extend0 =
� Public :: ?! ?:

� DeltaPrivate :: ?! ?:
� FinalSelfPublic <: Public:

� methDesc : MethDesc0 Public DeltaPrivateFinalSelfPublic:
let Private = DeltaPrivate in

� selfRepr : Representation Private FinalSelfPublic:
� selfImpl : Implementation Public Private FinalSelfPublic:

� repr : Representation Private FinalSelfPublic:
methDesc repr ( � u : Unit: selfImpl selfRepr)

;

extend0 :
8 Public :: ?! ?:
8 DeltaPrivate :: ?! ?:
8 FinalSelfPublic <: Public:

MethDesc0 Public DeltaPrivate FinalSelfPublic!
Class Public DeltaPrivate FinalSelfPublic

From such method descriptions, extend0returns a class which for a given representation and implementation, re-
turns an implementation which will, given a representation, apply the method descriptions to that representation
(since with no parents it is entirely local) and to a self object derived from the given implementation and represen-
tation. Returning to our node example, we demonstrate the use of extend0by generating a node class in terms of the
�nal public interface:

closeNodeClass =
� FinalSelfPublic <: NodePublic:

extend0
NodePublic DeltaNodePrivate FinalSelfPublic
(� deltaRepr : Representation DeltaNodePrivate FinalSelfPublic:
� selfObjTh : Unit! Object NodePublic FinalSelfPublic:
fgetVal = � u : Unit: deltaRepr:val ;

getValIndirect = � u : Unit: (selfObjTh u):getVal u ;
argOrSelfOrNext =
� arg : Object NodePublic FinalSelfPublic:

� sel : Nat:
if iszerosel
then arg

else
if iszero(predsel)
then selfObjThunit
else deltaRepr:next

g

)

;

closeNodeClass :
8 FinalSelfPublic <: NodePublic:

Class NodePublic NodePrivate FinalSelfPublic

aNodeClass = closeNodeClass NodePublic;
aNodeClass : Class NodePublic NodePrivate NodePublic

The getVal method returns the natural number from the representation. The getValIndirect method calls
getVal through the self object. The argOrSelfOrNextmethod returns either the node argument, the current node,
or its next pointer, based on the selector value 4. We \close" the class by specifying that NodePublic is to be used
to type self-references in both objects and representations.

The new function generates an object of a given representation from a class. It applies the class to the rep-
resentation, takes the �xed point of the implementation generator, and then \closes" the object by providing the
representation.

4We avoid creating objects of SelfType in our example since we do not know the �nal representation required. Where necessary,
this can be handled through the factory method pattern [14].
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new =
� Public :: ?! ?:

� Private :: ?! ?:
� class : Class Public Private Public:

� repr : Representation Private Public:
�x (class repr) repr

;

new :
8 Public :: ?! ?:
8 Private :: ?! ?:

Class Public Private Public!
Representation Private Public!
Object Public Public

We can generate a few nodes and test our methods as follows:

aNode = new NodePublic NodePrivate aNodeClass f#val = 1 ; #next = nil g;
aNode : Object NodePublic NodePublic

a2ndNode = new NodePublic NodePrivate aNodeClass f#val = 2 ; #next = aNode g;
a2ndNode : Object NodePublic NodePublic

a2ndNode:getVal unit;
2 : Nat

a2ndNode:getValIndirect unit;
2 : Nat

Given the selector 0, we return the arg, aNode, which contains 1.

(a2ndNode:argOrSelfOrNext aNode 0):getVal unit;

1 : Nat

Given the selector 1, we return self, a2ndNode, which contains 2.

(a2ndNode:argOrSelfOrNext aNode 1):getVal unit;

2 : Nat

Given the selector 2, we return the successor, aNode, which contains 1.

(a2ndNode:argOrSelfOrNext aNode2):getVal unit;

1 : Nat

2.2 Single Inheritance

For single inheritance, we introduce a natural extension of MethDesc0 and extend0.

MethDesc1 =
� SuperPublic :: ?! ?:

� Public :: ?! ?:
� DeltaPrivate :: ?! ?:

� FinalSelfPublic :: ?! ?:
Representation DeltaPrivate FinalSelfPublic!
(Unit! Object Public FinalSelfPublic)!
(Unit! Object SuperPublic FinalSelfPublic)!
Object Public FinalSelfPublic

;
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extend1 =
� SuperPublic :: ?! ?:

� Public <: SuperPublic:
� SuperPrivate :: ?! ?:

� DeltaPrivate :: ?! ?:
� FinalSelfPublic <: Public:

� superClass : Class SuperPublic SuperPrivateFinalSelfPublic:
� methDesc : MethDesc1 SuperPublic Public DeltaPrivateFinalSelfPublic:

let Private = SuperPrivate� DeltaPrivate in
� selfRepr : Representation Private FinalSelfPublic:

� selfImpl : Implementation Public Private FinalSelfPublic:
� repr : Representation Private FinalSelfPublic:

methDesc repr:2
(� u : Unit: selfImpl selfRepr)
(� u : Unit:

superClass
repr:1
(� superRepr : Representation SuperPrivate FinalSelfPublic:

(selfImpl < superRepr; repr:2 >) )
selfRepr:1)

;

extend1 :
8 SuperPublic :: ?! ?:
8 Public <: SuperPublic:
8 SuperPrivate :: ?! ?:
8 DeltaPrivate :: ?! ?:
8 FinalSelfPublic <: Public:

Class SuperPublic SuperPrivate FinalSelfPublic!
MethDesc1 SuperPublic Public DeltaPrivate FinalSelfPublic!
Class Public (SuperPrivate�DeltaPrivate) FinalSelfPublic

Because the user of the routine may refer to the super object within the methods being de�ned, the methDesc
function now takes such an object. This requires that MethDesc1 take the superclass public interface. 5

The extend function now requires a superclass. We assume that the new public interface is a subtype of that of the
superclass. Thus, any rede�nitions provided in the new interface may only constrain the speci�ed types. We assume
that the private interface of the new class is a product of the superclass private interface and its own local private
interface (DeltaPrivate). A product is appropriate because the local representation of a class must be independent of
that of its parent. Thus, in calling methDesc, the local component must be extracted for the deltaPrivate argument,
the self object is easily constructed from the given selfImpl, while the super object is constructed from the superclass,
using selfImpl to form the self object visible within superclass methods.

We quickly test that we have correctly implemented virtual functions by deriving NewNodeClass from NodeClass.
NewNodeClass uses the same public interfaces as NodeClass, and adds no instance variables.

We use intersection types in creating derived public interfaces to allow for vertical as well as horizontal modi�ca-
tions, i.e., we allow the derived class to specialize the types of methods provided by its parent. This is a departure
from standard practice which is to use a biased product, giving up vertical modi�cations and deferring the introduc-
tion of intersection types until they are needed for multiple inheritance. This decision is orthogonal to the rest of
the development. We use a cross-product to represent the derived private interface to ensure that the information
in representations is preserved in subclass objects. It would be a violation of encapsulation to allow a subclass to
override private attributes. An intersection (cross-product) of type operators is a type operator which when applied
yields the intersection (cross-product) of the application of each component type operator. Thus, intersections and
cross-products are pushed to the record types.

DeltaNewNodePublic = � SelfType: fg;
NewNodePublic = NodePublic ^ DeltaNewNodePublic;
DeltaNewNodePrivate = � SelfType: fg;
NewNodePrivate = NodePrivate� DeltaNewNodePrivate;

NewNodeClass rede�nes getVal to always return 5 regardless of the stored value, while getValIndirect and
argOrSelfOrNext are simply inherited from the super class. Note that the extension must take place relative to
FinalSelfPublic, i.e., before the base class is \closed".

5
MethDesco expects a private interface and representation. It might also have been designed to take a protected interface and

representation, allowing for separate encapsulation over external and subclass interfaces.
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closeNewNodeClass =
� FinalSelfPublic <: NewNodePublic:

extend1
NodePublic NewNodePublic NodePrivate DeltaNewNodePrivate FinalSelfPublic
(closeNodeClass FinalSelfPublic)
(� deltaRepr : Representation DeltaNewNodePrivate FinalSelfPublic:

� selfObjTh : Unit! Object NewNodePublic FinalSelfPublic:
� superObjTh : Unit! Object NodePublic FinalSelfPublic:
fgetVal = � u : Unit: 5 ;

getValIndirect = (superObjTh unit):getValIndirect ;

argOrSelfOrNext = (superObjTh unit):argOrSelfOrNext g

)

;

closeNewNodeClass :
8 FinalSelfPublic <: NewNodePublic:

Class NewNodePublic NewNodePrivate FinalSelfPublic

aNewNodeClass = closeNewNodeClass NewNodePublic;
aNewNodeClass : Class NewNodePublic NewNodePrivate NewNodePublic

To create a NewNode object, we must specify both components of the representation as a pair | we place the
supertype representation before the local representation. While this may appear awkward, we could always, as in the
high-level language in the Introduction, accept the arguments in a at list and rebuild the hierarchical representation
automatically, assuming, for example, a postorder traversal of the class hierarchy.

aNewNode = new NewNodePublic NewNodePrivate aNewNodeClass f#val = 0 ; #next = nil g;

aNewNode : Object NewNodePublic NewNodePublic

aNewNode:getVal unit;
5 : Nat

aNewNode:getValIndirect unit;
5 : Nat

Here, we see that when we rede�ne getVal to always return 5 regardless of the stored value, this rede�nition is
used even in the superclass method getValIndirect.

We can now follow Bruce, et. al., by deriving doubly-linked nodes from singly-linked ones. A doubly-linked node
has a public interface including an additional method returning the additional link, and a private interface storing
the additional link.

DeltaDNodePublic = � SelfType: fgetPrev : Unit! SelfType g;
DNodePublic = NodePublic ^ DeltaDNodePublic;

DeltaDNodePrivate = � SelfType: f#prev : SelfType g;
DNodePrivate = NodePrivate � DeltaDNodePrivate;

All methods of class Node are inherited unchanged by DNode. The getPrev method is de�ned to simply return the
new link from the representation.

closeDNodeClass =
� FinalSelfPublic <: DNodePublic:

extend1
NodePublic DNodePublic NodePrivate DeltaDNodePrivate FinalSelfPublic
(closeNodeClass FinalSelfPublic)
(� deltaRepr : Representation DeltaDNodePrivate FinalSelfPublic:

� selfObjTh : Unit! Object DNodePublic FinalSelfPublic:
� superObjTh : Unit! Object NodePublic FinalSelfPublic:
fgetVal = (superObjThunit):getVal ;

getValIndirect = (superObjTh unit):getValIndirect ;

argOrSelfOrNext = (superObjTh unit):argOrSelfOrNext ;

getPrev = � u : Unit: deltaRepr:prev g

)

;

closeDNodeClass :
8 FinalSelfPublic <: DNodePublic:

Class DNodePublic DNodePrivate FinalSelfPublic
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Here is the test from the Introduction:

aDNodeClass = closeDNodeClass DNodePublic;
aDNodeClass : Class DNodePublic DNodePrivate DNodePublic

aDNode =
new DNodePublic DNodePrivate aDNodeClass
< f#val = 1 ; #next = nil g; f#prev = nil g >;

aDNode : Object DNodePublic DNodePublic

a2ndDNode =
new DNodePublic DNodePrivate aDNodeClass
< f#val = 2 ; #next = aDNode g; f#prev = aDNode g >;

a2ndDNode : Object DNodePublic DNodePublic

a3rdDNode =
new DNodePublic DNodePrivate aDNodeClass
< f#val = 3 ; #next = a2ndDNode g; f#prev = a2ndDNode g >;

a3rdDNode : Object DNodePublic DNodePublic

Given the selector 0, we return the arg, a2ndDNode, whose predecessor contains 1.

((a3rdDNode:argOrSelfOrNext a2ndDNode 0):getPrev unit):getVal unit;
1 : Nat

Given the selector 1, we return self, a3rdDNode, whose predecessor contains 2.

((a3rdDNode:argOrSelfOrNext a2ndDNode 1):getPrev unit):getVal unit;
2 : Nat

Given the selector 2, we return the successor, a2ndDNode, whose predecessor contains 1.

((a3rdDNode:argOrSelfOrNext a2ndDNode 2):getPrevunit):getVal unit;
1 : Nat

Providing a simple node as an argument to argOrSelfOrNext on a doubly-linked node yields a type error.

(a3rdDNode:argOrSelfOrNexta2ndNode 0):getVal unit;
Error: Invalid operand type.

2.3 Multiple Inheritance

We now extend our encoding to support multiple inheritance. This development is straightforward, along the lines
of the extension of the OE encoding to support multiple inheritance suggested by Compagnoni and Pierce [10]. The
public interface is now restricted to be a subtype of the intersection of those of the superclasses. The left (super)
product component is now itself a product of the two superclass representations. The methDesc f unction now
accepts two superclass objects, one constructed from each superclass. Similar functions could be generated for any
number of superclasses.

MethDesc2 =
� SuperPublic1 :: ?! ?:

� SuperPublic2 :: ?! ?:
� Public :: ?! ?:

� DeltaPrivate :: ?! ?:
� FinalSelfPublic :: ?! ?:

Representation DeltaPrivate FinalSelfPublic!
(Unit! Object Public FinalSelfPublic)!
(Unit! Object SuperPublic1 FinalSelfPublic)!
(Unit! Object SuperPublic2 FinalSelfPublic)!
Object Public FinalSelfPublic

;
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extend2 =
� SuperPublic1 :: ?! ?:

� SuperPublic2 :: ?! ?:
� Public <: SuperPublic1 ^ SuperPublic2:

� SuperPrivate1 :: ?! ?:
� SuperPrivate2 :: ?! ?:

� DeltaPrivate :: ?! ?:
� FinalSelfPublic <: Public:

� superClass1 : Class SuperPublic1 SuperPrivate1FinalSelfPublic:
� superClass2 : Class SuperPublic2 SuperPrivate2FinalSelfPublic:

� methDesc : MethDesc2 SuperPublic1 SuperPublic2 Public DeltaPrivateFinalSelfPublic:
let Private = (SuperPrivate1� SuperPrivate2)� DeltaPrivate in

� selfRepr : Representation Private FinalSelfPublic:
� selfImpl : Implementation Public Private FinalSelfPublic:

� repr : Representation Private FinalSelfPublic:
methDesc repr:2
(� u : Unit: selfImpl selfRepr)
(� u : Unit:

superClass1 repr:1:1
(� superRepr1 : Representation SuperPrivate1 FinalSelfPublic:

(selfImpl << superRepr1; (repr:1):2 > ; (repr:2) >) )
selfRepr:1:1)

(� u : Unit:
superClass2 repr:1:2
(� superRepr2 : Representation SuperPrivate2 FinalSelfPublic:

(selfImpl << repr:1:1; superRepr2 > ; repr:2 >) )
selfRepr:1:2)

;

extend2 :
8 SuperPublic1 :: ?! ?:
8 SuperPublic2 :: ?! ?:
8 Public <: SuperPublic1 ^ SuperPublic2:
8 SuperPrivate1 :: ?! ?:
8 SuperPrivate2 :: ?! ?:
8 DeltaPrivate :: ?! ?:
8 FinalSelfPublic <: Public:

Class SuperPublic1 SuperPrivate1 FinalSelfPublic!
Class SuperPublic2 SuperPrivate2 FinalSelfPublic!
MethDesc2 SuperPublic1 SuperPublic2 Public DeltaPrivate FinalSelfPublic!
Class Public ((SuperPrivate1 � SuperPrivate2)� DeltaPrivate) FinalSelfPublic

Assuming a primitive type Color, and a de�nition of a ColorClass with an instance variable of type Color and a
getColor method returning its contents, we can demonstrate the de�nition of ColorNode using multiple inheritance.

DeltaColorNodePublic = � SelfType: fg;
ColorNodePublic = (NodePublic ^ ColorPublic) ^ DeltaColorNodePublic;
DeltaColorNodePrivate = � SelfType: fg;
ColorNodePrivate = (NodePrivate� ColorPrivate)� DeltaColorNodePrivate;
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closeColorNodeClass =
� FinalSelfPublic <: ColorNodePublic:

extend2
NodePublic ColorPublic ColorNodePublic NodePrivate ColorPrivate DeltaColorNodePrivate
FinalSelfPublic
(closeNodeClass FinalSelfPublic)
(closeColorClass FinalSelfPublic)
(� deltaRepr : Representation DeltaColorNodePrivate FinalSelfPublic:

� selfObjTh : Unit! Object ColorNodePublic FinalSelfPublic:
� superObjTh1 : Unit! Object NodePublic FinalSelfPublic:

� superObjTh2 : Unit! Object ColorPublic FinalSelfPublic:
fgetVal = (superObjTh1 unit):getVal ;

argOrSelfOrNext = (superObjTh1 unit):argOrSelfOrNext ;

getPrev = (superObjTh2 unit):argOrSelfOrNext g

)

;

closeColorNodeClass :
8 FinalSelfPublic <: ColorNodePublic:

Class ColorNodePublic ColorNodePrivate FinalSelfPublic

In a diamond hierarchy, shared methods may be accessed from either super object. These may or may not be
equivalent. With the introduction of state, either repeating (tree-based) or virtual (graph-based) classes [19] can be
implemented on the object level, the choice determined by the initial representation structure used.

3 Conclusion

We have presented an object encoding supporting SelfType. We conclude by comparing our encoding to the others
described by Bruce, Cardelli and Pierce [5], on the basis of the criteria they specify. In our encoding, like in OR,
methods need not take an explicit self argument on invocation and instance variables are lexically protected. Thus,
like OR, our encoding does not su�er from the failure of full abstraction caused by allowing methods to be applied
to arguments other than the intended self parameter. Of course, this would be changed by inclusion of existential
types as in ORE.

Like OR, OE and ORE, our encoding works with the weaker kernel F<: subtyping rule for quanti�ers, which
only compares quanti�ers with a common bound. The ORBE encoding requires the more general contravariant F<:

subtyping rule.
We have decided to allow instance variable values to be speci�ed upon instance creation and not upon class

creation. This di�ers from the existing encodings. It is mostly a matter of style, but makes it possible for us to
avoid full support of state without having to create numerous classes. We also di�er from the existing encodings
in parameterizing Object by FinalSelfPublic as well as Public. This allows us to use our intended rule for subtyping
applications of type operators [17] in the presence of recursive types. Finally, we di�er in treating Representation
analogously to our treatment of Object, and not as a simple type. Thus, we parameterize Representation by both
Private and FinalSelfPublic. This allows for the use of SelfType in instance variable declarations.

Comparisons related to self-reference are described in the Introduction. Like OR, ORE and OREI, our encoding
supports binary methods. Unfortunately, our object type constructor is still non-monotonic (as with those encodings),
although we have perhaps made some progress in changing this by parameterizing Object over FinalSelfPublic. Once
Object has been fully applied, however, the resulting types do not preserve subtyping. Some variant of existential
types might be useful here.

Unlike any of the existing encodings, we treat representations via interfaces. Also unlike any of the existing
encodings, we have decided to allow instance variable values to be speci�ed upon instance creation and not upon
class creation. The former decision is fundamental, the latter is mostly a matter of style, but makes it possible for
us to avoid full support of state without having to create numerous classes.
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