
On an Information Theoretic Approximation

Measure for Functional Dependencies

Chris Giannella and Edward Robertson?

Computer Science Department, Indiana University, Bloomington, IN 47405, USA
fcgiannel,edrbtsng@cs.indiana.edu

Abstract. We investigate the problem of de�ning an approximation
measure for functional dependencies (FDs). For �xed sets of attributes,
X and Y , an approximation measure is a function which maps relation
instances to real numbers. The number to which an instance is mapped,
intuitively, describes the strength of the dependency, X ! Y , in that
instance. We de�ne an approximation measure for FDs based on a con-
nection between Shannon's information theory and relational database
theory. Our measure is normalized to lie between zero and one (inclu-
sive), and maps a relation instance to zero if and only if X ! Y holds
in the instance. Hence, the smaller the number to which an instance is
mapped, the \closer" X ! Y is to being an FD in the instance.

To put our measure in context, we compare it to a slight variation of a
measure previously de�ned by Kivinen and Mannila, g3. We denote the
variation as ĝ3, although, our results, essentially, apply unchanged to g3.
The purpose of comparing our measure with ĝ3 is to develop a deeper
understanding of not only our measure, but also, ĝ3. Moreover, we gain a
deeper understanding of the natural intuitive notion of an approximate
FD. We observe that our measure and ĝ3 agree at their extremes but are
quite di�erent in-between. As a result, we conclude that our measure and
ĝ3 are signi�cantly di�erent. An interesting question emerges from this
conclusion: is there a rigorous way to determine when one measure better
captures the meaning of the degree to which an FD is approximate?

1 Introduction

Over approximately the last ten years, a new research direction has emerged
involving functional dependencies (FDs). Researchers have been addressing the
problem of �nding all of the FDs which hold in a given relation instance ([4],
[5], [6], [7], [9], [10], [12], [15]). We call this FD discovery research. The primary
motivation for FD discovery research is di�erent than that for the original FD
research in the 70s. The research in the 70s was primarily motivated by database
design (e.g. schema normal forms). The primary motivation for FD discovery
research is not database design. Instead, it is knowledge discovery. FDs represent
valuable knowledge of the \structure" of the relation instance.
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In some cases, an FD may not hold because of a few tuples. This FD can be
thought to approximately hold. For example ([4]), first name ! gender may
approximately hold. Approximate functional dependencies (AFDs) also repre-
sent valuable knowledge of the structure of the relation instance. The discovery
of such knowledge can be valuable to domain experts (whose data is contained in
the database). Paraphrasing from [4] page 100: an AFD in a database of chem-
ical compounds relating various structural attributes to carcinogenicity could
provide valuable hints to biochemists for potential causes of cancer (but cannot
be taken as a fact without further analysis by domain specialists).

AFD discovery research consists of three primary parts: (1) de�ning an ap-
proximation measure for AFDs, (2) developing methods for applying AFDs to
pre-existing problems, (3) developing algorithms for e�ciently computing AFDs.
Huhtala et al. [4] address (3) by developing an algorithm, TANE, for discovering
all AFDs which hold in a relation instance. TANE uses an approximation mea-
sure, g3, proposed in [6] to de�ne when an AFD is deemed to hold. In this paper
we consider a slight variant of g3 de�ned as the minimum number of tuples that
need be removed for the FD to hold divided by the size of the relation instance
minus one. In [4] and [6], g3 is de�ned as the minimum number of tuples divided
by the size of the relation (i.e. the \minus one" is dropped). We change the
denominator of g3, so that the range of our measure includes one. This change
makes essentially no di�erence in our analysis, but, for the sake of clarity, we
refer to the changed measure as ĝ3.

We are interested in addressing area (1). To do so, we de�ne an approxima-
tion measure for AFDs based on a connection between information theory and
\classical" relational database theory [1], [2], [11]. This measure, intuitively, is
the amount of \information" the left-hand side of the AFD contains about the
right-hand side normalized to lie between zero and one (inclusive). The amount
of information is quanti�ed in terms of information dependencies [2]. We then
compare this information theoretic measure with ĝ3.

2 Purpose and Primary Contributions

The primary purpose of this paper is to investigate the use of information depen-
dencies as a means for de�ning an approximation measure for AFDs. In doing
so, we gain a deeper understanding of the natural intuitive notion of an AFD.
To achieve this purpose we compare our information theoretic measure with ĝ3.
Doing so not only puts our new measure in a previously established context,
but, develops a deeper understanding of not only our new measure, but also, ĝ3.

Our primary contributions are the following: (i) a new approximation mea-
sure for AFDs based on information theory, (ii) a rigorous comparison between
the measure and ĝ3. We observe that at the extremes (zero and one) the mea-
sures correspond, but, in-between they are quite di�erent. Moreover, in the limit,
the measures do not correspond at the extremes (i.e. one measure may approach
an extreme while the other does not).



Our information theoretic measure and ĝ3 both can be used as an approxi-
mation measure for AFDs. We have shown that these two measures behave quite
di�erently. An interesting question emerges: is there a rigorous way to determine
when one measure better captures the meaning of the degree to which an FD is
approximate?

2.1 Related Work

Cavallo and Pittarelli [1] propose an information theoretic measure for AFDs
(similar ideas were described previously by Malvestuto [8] and Nambiar [11] but
a measure was not proposed). Their measure (and ours) is based on the concept
of an information dependency. However, their measure is normalized di�erently
than ours. This di�erence causes their measure to behave quite di�erently than
our measure and ĝ3. These di�erences are described in section 5.

Piatetski-Shapiro de�nes probabilistic data dependencies in [13]. Based on
probabilistic data dependencies he goes on to de�ne a normalized measure of
association which corresponds to the � association measure proposed previously
by Goodman and Kruskal [3]. � can be used to de�ne an approximation measure
for AFDs (although not discussed in [3] or [13]). This measure behaves quite
di�erently than our information theoretic measure and ĝ3. These di�erences are
described in section 5.

Three di�erent approximation measures for AFDs are de�ned in [6] (and
called error measures). The de�nitions of these three measures are based directly
on the de�nition of an FD holding in a relation instance. The third of these
measures is g3. In [6] it is shown that these three measures give very di�erent
outputs for some relations. The authors conclude that it is not clear which, if
any, of these measures is the most natural measure of the degree to which an
FD is approximate. Our measure is de�ned on fundamentally di�erent principals
than the three measures of [6]. Hence a rigorous comparison of its behavior and
ĝ3 is valuable.

2.2 Paper Layout

In section 3, two approximation measures for AFDs are de�ned. The �rst is
based solely in standard relational database theory and the second is based on a
connection between information theory and relational database theory. In section
4, the two measures are compared. Part of the comparison involves studying the
limiting behavior of the measures. In section 5, two additional measures from
the literature are discussed. Comparisons are made between these measures and
measures de�ned in section 3. Finally, in section 6, future work is described.

3 Two Approximation Measures for AFDs

In this section we de�ne two approximation measures for AFDs. The �rst is based
on standard relational database theory. The second is based on a connection be-
tween information theory and relational database theory, namely, Information



Dependencies [2]. We assume that the reader is familiar with the standard de�-
nitions from relational database theory and do not state them here (see [14]).

Let S be a relation schema,X and Y be non-empty, disjoint subsets of S and r
be an instance over S. There are several ways of de�ning an AFD approximation
measure. We use a slight variant of the approximation measure g3 in [4] and [6].

De�nition 1

ĝ3X!Y (r) =
minfjsj : s � r;8t1; t2 2 r � s; t1[X ] = t2[X ]) t1[Y ] = t2[Y ]g

jrj � 1
:

A B C
1 3 1
2 2 0
3 1 1
1 3 0
2 2 1
3 1 0

Fig. 1.

ĝ3 is normalized to lie between zero and one (inclusive), and
equals zero if and only ifX ! Y holds. Take note that, ĝ3X!Y (r)
can be computed in time O(jrjlg(jrj)). ĝ3 di�ers from g3 only in
that the denominator of g3 is jrj. This di�erence is insigni�cant
in our analysis to follow.

To de�ne the approximation measure based on information
dependencies, some basic de�nitions from [2] are needed. They
are included here for the sake of being self-contained. The rela-
tional algebra operators � and � are assumed to be duplicate
removing (i.e. they return sets).

Let �X(r) = fx1; : : : ; xpg and c(xi) = j�X=xi(r)j for 1 � i �
p (clearly

Pp
i=1 c(xi) = jrj). Likewise, let �Y (r) = fy1; : : : ; yqg

and c(yj) = j�Y=yj (r)j for 1 � j � q. Finally, let c(xi; yj) =
j�X=xi;Y=yj (r)j for 1 � i � p; 1 � j � q.

De�nition 2 Entropy ([2]).

1. The entropy of Y over r, written HY (r), is
1
Pq

j=1
c(yj)
jrj lg(

jrj
c(yj)

).

2. The entropy of Y over r given X = xi, written HY jX=xi(r), is
2Pq

j=1
c(xi;yj)
c(xi)

lg( c(xi)
c(xi;yj)

).

3. The information dependency (InD) measure of Y given X, written

HX!Y (r), is
Pp

i=1
c(xi)
jrj HY jX=xi(r).

Example 1. Let s be the relation instance over schema A;B;C seen in Fig. 1.
Careful inspection shows that HA(s) =

2
6 lg(

6
2 ) +

2
6 lg(

6
2 ) +

2
6 lg(

6
2 ) = lg(3) and

that HA!B(s) =
1
3HBjA=1(s)+

1
3HBjA=2(s)+

1
3HBjA=3(s) =

1
30+

1
30+

1
30 = 0:

The following facts about entropy and the InD measure will be quite useful.

Fact 1 1. Alternate characterization of the InD measure: HX!Y (r) =
HX[Y (r) �HX (r).

2. 0 � HX (r) � lg(jrj).

1 \lg" denotes the logarithm base 2.
2 c(xi; yj) may be zero. In this event we de�ne

c(xi;yj)

c(xi)
lg( c(xi)

c(xi;yj)
) to be zero.



3. j�X(r)j = 1 if and only if HX(r) = 0.

4. j�X(r)j = jrj if and only if HX(r) = lg(jrj).

5. If j�X (r)j = 1, then HX[Y (r) = HY (r).

Proof: 1., 2. See [2]. For the rest of the proof recall the de�nition HX (r) =Pp
i=1

c(xi)
jrj lg(

jrj
c(xi)

).

3. If j�X(r)j = 1, then p = 1 and c(x1) = jrj, so, HX(r) =
jrj
jrj lg(

jrj
jrj) = 0. On

the other hand, assume HX (r) = 0. Since c(xi) � 1 for all 1 � i � p, then it

follows that c(xi)
jrj lg(

jrj
c(xi)

) = 0. Hence c(xi) = jrj for all i, therefore j�X (r)j = 1

(because
Pp

i=1 c(xi) = jrj).

4. Since c(xi) � 1 for all 1 � i � p, it is straight-forward to show that
c(xi)
jrj lg(

jrj
c(xi)

) = lg(jrj)
jrj for all i if and only if j�X(r)j = jrj. Hence HX(r) =Pjrj

i=1
c(xi)
jrj lg(

jrj
c(xi)

) = lg(jrj) if and only if j�X(r)j = jrj.

5. Assume j�X(r)j = 1. Then p = 1 and c(x1; yj) = c(yj) for all 1 � j � q.

Hence, HX[Y (r) =
Pp

i=1

Pq
j=1

c(xi;yj)
jrj lg( jrj

c(xi;yj)
) =

Pq
j=1

c(x1;yj)
jrj lg( jrj

c(x1;yj)
) =Pq

j=1
c(yj)
jrj lg(

jrj
c(yj)

) = HY (r).
3

�

Part 1. of the following theorem forms the basis of our information depen-
dency based AFD approximation measure. Part 1. also completely characterizes
the class of relation instances which minimize the InD measure. Part 2., com-
pletely characterizes the class which maximize the InD measure.

Theorem 1 1. 0 � HX!Y (r) � lg(jrj) and the lower bound obtains if and
only if X ! Y holds over r.

2. j�X(r)j = 1 and j�Y (r)j = jrj if and only if HX!Y (r) = lg(jrj).

Proof: 1. See [2]. Now consider 2.. By Fact 1 parts 1. and 2. it follows that,
HX!Y (r) = lg(jrj) if and only if HX[Y (r) = lg(jrj) and HX(r) = 0. By parts
3. and 4. it follows that HX[Y (r) = lg(jrj) and HX(r) = 0 if and only if
j�X[Y (r)j = jrj and j�X (r)j = 1. But this can easily be seen to hold if and
only if j�Y (r)j = jrj and j�X(r)j = 1. �

We de�ne an approximation measure for AFDs as follows.

De�nition 3 Information theoretic AFD approximation measure.

IAX!Y (r) =
HX[Y (r) �HX(r)

lg(jrj)
:

IAX!Y is normalized to lie between zero and one (inclusive) and equals zero
if and only if X ! Y holds. Note that IAX!Y (r) can be computed in time
O(jrjlg(jrj)).

3 If c(xi; yj) equals zero, then we de�ne
c(xi;yj)

jrj
lg( jrj

c(xi;yj)
) to be zero.



4 Comparison of the Approximation Measures

In this section we compare the approximation measure, ĝ3, and the InD based
approximation measure, IA. At their endpoints, these measures correspond com-
pletely.

Theorem 2 ĝ3X!Y (r) = 0 or 1 if and only if IAX!Y (r) = 0 or 1, respectively.

Proof: By de�nition, ĝ3X!Y (r) = 0 if and only if the X ! Y holds over r. So,
the desired result for zero follows from Theorem 1 part 1.. Also, by de�nition,
ĝ3X!Y (r) = 1 if and only if j�Y (r)j = jrj and j�X (r)j = 1. So, the desired
result for one follows from Theorem 1 part 2.. �

In-between the endpoints the classical and InD measures do not correspond
very well. The next theorem demonstrates just how badly they correspond.

Theorem 3 For any rational number a
b
2 [0; 1) and any positive multiple, m,

of b, there exists s with m tuples such that ĝ3X!Y (s) =
a
b
m

m�1 and IAX!Y (s) =
a
b
lg(b)�(1� a

b
)lg(1� a

b
)

lg(m) .

Proof: Let s be as seen in Fig. 2 (schema A;B;C and m rows).

A B C
1 1 1
1 1 2
...

...
...

1 1 (1� a
b
)m

1 2 1
1 2 2
...

...
...

1 2 m
b

...

...
1 a+ 1 1
1 a+ 1 2
...

...
...

1 a+ 1 m
b

Fig. 2.

Note that if a
b
= 0, then s consists entirely of only those

rows in the above table with \1" in their B column. Let
X = fAg and Y = fBg. Consider ĝ3A!B(s). Since

a
b

is a non-negative, rational number less than one, then
a + 1 � b. Hence (1 � a

b
) � 1

b
. So, the B value which

occurs in a maximal number of tuples is 1 which occurs

in (1 � a
b
)m tuples. Thus, ĝ3A!B(s) =

m�(1� a
b
)m

m�1 =
a
b
m

m�1 , as needed.

Now consider IAA!B(s). Since j�A(s)j = 1, then
by Fact 1 parts 3. and 5., it follows that IAA!B(s) =
HY (s)
lg(m) . By observation it can be shown that HY (s) =

�(1 � a
b
)lg(1 � a

b
) + a

b
lg(b). Hence IAA!B(s) =

a
b
lg(b)�(1� a

b
)lg(1� a

b
)

lg(m) , as needed. �

To better understand Theorem 3, let a
b
= 1

2 . s, in
this case, is of the form seen in Fig. 3. We have that

ĝ3A!B(s) =
1
2m

m�1 and IAA!B(s) =
1

lg(m) . In this ex-

ample, for all but small m, the measures are quite dif-
ferent. In fact, it will be shown later, that, for large
m, the instance s witnesses the maximum di�erence
between the measures and this di�erence is ĝ3A!B(s).
We examine the limiting behavior of the measures in
the next subsection.



4.1 Limiting AFD Measure Behavior

A B C
1 1 1
1 1 2
...
...

...
1 1 (1� 1

2 )m
1 2 1
1 2 2
...
...

...
1 2 m

2

Fig. 3.

Let (rn) be a sequence of relation instances over schema S
where for all n, jrnj < jrn+1j. Let us call sequences of this form,
growing sequences. We compare Lĝ3 = limn!1ĝ3X!Y (rn) and
LIA = limn!1 IAX!Y (rn) under the assumption that both
these limits exist. Clearly �1 � Lĝ3 � LIA � 1. We address the
question: how large or small can Lĝ3 �LIA be? Also, we address
the following questions for k = 0; 1. If Lĝ3 = k does LIA = k? If
LIA = k does Lĝ3 = k?

To address the question of how large or small Lĝ3 � LIA can
be, we show that: Lĝ3 � LIA � 0, and for any rational number
a
b
2 [0; 1), Lĝ3�LIA can be made as large as Lĝ3 where Lĝ3 =

a
b
.

Since LIA � 0, then Lĝ3 � LIA is bounded above by Lĝ3 . Our
result shows that this bound obtains and the di�erence can be
made as arbitrarily large as possible (i.e. arbitrarily close to one).

Theorem 4 Assume both Lĝ3 and LIA exist. Then Lĝ3 � LIA, and, for any
rational number a

b
2 [0; 1), there exists a growing sequence (sn), such that Lĝ3 �

LIA = Lĝ3 =
a
b
.

Proof: From the proof of Theorem 3, we see how to construct a

growing sequence (sn) such that Lĝ3 = limn!1

a
b
jsnj

jsnj�1
= a

b
and

LIA = limn!1

a
b
lg(b)�(1� a

b
)lg(1� a

b
)

lg(jsnj)
= 0. To complete the proof

it su�ces to show that Lĝ3 � LIA (for (rn)).
Let rn be any relation in the sequence (rn) where jrnj � 4. Let Dn denote

minfĝ3X!Y (rn)� IAX!Y (rn); 0g. It su�ces to show that limn!1(Dn) = 0:
Let �X(rn) = fx1; : : : ; xpg and �Y (rn) = fy1; : : : ; yqg. For each i, let mi =

maxfc(xi; y1); : : : ; c(xi; yq)g and let qi = jfc(xi; yj) � 1 : 1 � j � qgj. Assume
without loss of generality that for all 1 � i � p, we have that mi = c(xi; y1) �
c(xi; y2) � � � � � c(xi; yq) (this implies that: c(xi; yqi+1) = � � � = c(x1; yq) = 0).
By de�nition and Fact 1 part 1., we have that

IAX!Y (rn) =

Pp
i=1

Pq
j=1

c(xi;yj)
jrnj

lg( jrnj
c(xi;yj)

)�
Pp

i=1
c(xi)
jrnj

lg( jrnj
c(xi)

)

lg(jrnj)

=

Pp
i=1[c(xi)lg(c(xi))�

Pqi
j=1 c(xi; yj)lg(c(xi; yj))]

jrnjlg(jrnj)

�

Pp
i=1[c(xi)lg(c(xi))�milg(mi)]

jrnjlg(jrnj)
:

It can be seen that ĝ3X!Y (rn) =
Pp

i=1
c(xi)�mi

jrnj�1
. So, we get ĝ3X!Y (rn) �

IAX!Y (rn) is bounded below byPp
i=1[c(xi)(lg(jrnj)� lg(c(xi)))�mi(lg(jrnj)� lg(mi))]

jrnjlg(jrnj)
: (1)



Let Ni denote the i
th summation term in the numerator of (1). We assert that:

(a) if c(xi) �
jrnj
2 , then Ni � 0; (b) if c(xi) >

jrnj
2 , then Ni � � jrnj2 .

It will follow that (1) is bounded below by � p>
2lg(jrnj)

where p> denotes jf1 �

i � pjc(xi) >
jrnj
2 gj. Hence it will follow that 0 � Dn � � p>

2lg(jrnj)
. However,

since
Pp

i=1 c(xi) = jrnj, then p> � 1. Thus, it will follow that limn!1Dn = 0,
as desired. All that remains is to prove the assertion.

A B C
1 1 1
1 1 2
...
...
...

1 1 n
...
...

1 n 1
1 n 2
...
...
...

1 n n.

Fig. 4.

(a) The derivative of Ni with respect to mi equals zero if and

only if mi =
jrnj
2 (under the constraint that 1 � mi � c(xi)).

Assume that c(xi) �
jrnj
2 . Then Ni is monotonic in mi. Thus,

Ni is bounded below by the minimum of Ni at mi = 1; c(xi).
At mi = c(xi), Ni = 0, and at mi = 1, Ni = c(xi)[lg(jrnj) �
lg(c(xi))] � lg(jrnj). The latter expression is monotonic for 1 �

c(xi) �
jrnj
2 , and at c(xi) = 1, it equals zero while at c(xi) =

jrnj
2 ,

it equals jrnj
2 � lg(jrnj). Since jrnj � 4; jrnj2 � lg(jrnj) � 0, so,

c(xi)[lg(jrnj) � lg(c(xi))] � lg(jrnj) � 0 for 1 � c(xi) �
jrnj
2 .

Hence, Ni � 0 for 1 � mi � c(xi).

(b) Assume c(xi) >
jrnj
2 . Since the derivative of Ni with

respect to mi is zero if and only if mi = jrnj
2 , then Ni is

bounded below by the minimum of Ni at mi = 1; jrnj2 ; and
c(xi). At mi = 1, Ni = c(xi)[lg(jrnj) � lg(c(xi))] � lg(jrnj);

at mi = jrnj
2 ; Ni = c(xi)[lg(jrnj) � lg(c(xi))] �

jrnj
2 ; and at

mi = c(xi); Ni = 0. Since jrnj � 4, then jrnj
2 � lg(jrnj), so,

it su�ces to show that c(xi)[lg(jrnj)� c(xi)]�
jrnj
2 � � jrnj2 . But,

this clearly holds since c(xi) � 1. �

The following Corollary to Theorem 4 addresses the questions
(for k = 0; 1): does Lĝ3 = k imply LIA = k and does LIA = k imply Lĝ3 = k?

Corollary 1 Assume both Lĝ3 and LIA exist.

1. If Lĝ3 = 0, then LIA = 0, but, the converse does not hold.
2. If LIA = 1, then Lĝ3 = 1, but, the converse does not hold.

Proof: Part 1. and the \If ... then" statement in part 2. follow directly from
Theorem 4. To see that the converse in part 2. does not hold, consider the relation
instance, sn, over schema A;B;C (with n2 rows) in Fig. 4. Careful inspection

shows that ĝ3A!B(sn) =
n2�n
n2�1 which goes to 1 as n!1. Also, by Fact 1 parts

3. and 5., it follows that IAA!B(sn) =
HB(sn)
lg(n2) which equals lg(n)

2lg(n) =
1
2 . Hence,

Lĝ3 = 1, but, LIA = 1
2 . �

Conclusion: ĝ3 and IA agree at their endpoints, but, behave quite di�erently
in-between. In fact, in several cases, the measures behave quite di�erently even
as one approaches an endpoint. We conclude that ĝ3 and IA are quite di�erent
measures.



5 Other AFD Measures

In this section we describe two other approximation measures for AFDs from
the literature (the two AFD measures mentioned in the �rst two paragraphs of
section 2.1).

5.1 Measure of Cavallo and Pittarelli

The �rst approximation measure from the literature is an information theoretic
measure proposed by Cavallo and Pittarelli in [1]. Their measure is de�ned to
lie between zero and one (inclusive) and equal one if and only if the FD holds.
To make their measure comparable with IA and g3 we subtract it from one (so
that it equals zero if and only if the FD holds). The result is the following.

CPX!Y (r) =

(
0 if HY (r) = 0
HX!Y (r)
HY (r)

otherwise.

The only di�erence between IA and CP is the normalization; both are the
information dependency measure normalized to lie between zero and one (inclu-
sive). IA is normalized by lg(jrj) while CP is normalized by HY (r). Because
CP; IA; and ĝ3 are all zero exactly when X ! Y holds over r, then these three
measures agree at the endpoint, zero.

A fundamental di�erence in the behavior of CP and IA (also ĝ3) lies in what
happens when these measures are maximized. We saw from Theorem 1 part 2.
that IA and ĝ3 are maximized exactly when j�X(r)j = 1 and j�Y (r)j = jrj.
However, CP is maximized exactly when X and Y are independent in the sense
that knowing the X value of a tuple gives no information whatsoever as to the
Y value in the tuple. Formally stated, X and Y are independent if j�Y (r)j 6= 1

and for all 1 � i � p; 1 � j � q it is the case that c(xi; yj) =
c(xi)c(yj)

jrj . The

de�nition of independence can be understood as follows. The probability that

a tuple contains xi is
c(xi)
jrj , contains yj is

c(yj)
jrj , and contains both xi and yj is

c(xi;yj)
jrj . Independence implies

c(xi;yj)
jrj = c(xi)

jrj
c(yj)
jrj , thus, c(xi; yj) =

c(xi)c(yj)
jrj .

If IAX!Y (r) = 1 (equivalently, ĝ3), then j�X(r)j = 1, so, p = 1 and c(x1) =

jrj. Thus,
c(x1;yj)
c(x1)

=
c(yj)
jrj for all 1 � j � q. So, X and Y are independent,

therefore, CPX!Y (r) = 1. On the other hand, there are instances, s, in which
X and Y are independent, but, IAX!Y (s) < 1. In fact, IAX!Y (s) = 1 only if
j�Y (s)j = jsj, but, independnece does not require such a strong condition. So,
the conditions under which CP is maximized are much weaker than that of IA
and ĝ3. CP does not agree with IA and ĝ3 at the endpoint, one.

Moreover, it can be shown that ĝ3 and CP do not agree at either endpoint
in the limit. In other words, there are growing sequences for which: ĝ3 ! 1, but
CP 9 1; ĝ3 ! 0, but CP 9 0; CP ! 1, but, ĝ3 9 1; CP ! 0, but 9 0. As for
IA, the situation is a bit less constrasting. Since IA is normalized by a larger
factor than CP , then IAX!Y (r) � CPX!Y (r). Hence, IA! 1 implies CP ! 1



and CP ! 0 implies IA ! 0. But, in the other two endpoint limit cases, IA
and CP do not agree. Namely, there exist growing sequences for which: IA! 0,
but, CP 9 0; CP ! 1, but IA9 1.

In summary, CP behaves quite di�erently than ĝ3 and IA with a only few ex-
ceptions. One of the fundamental di�erences is that the condition for maximizing
IA and ĝ3 is much weaker than that for maximizing CP .

5.2 � Measure

The second approximation measure in the literature was originally de�ned by
Goodman and Kruskal [3] and is called � . Later Piatetski-Shapiro [13] de�nes
probabilisitic data dependencies and based on these he goes on to de�ne a nor-
malized measure for AFDs which corresponds to � . Just as the measure of Cavallo
and Pittarelli, � is de�ned to lie between zero and one (inclusive) and equal one
if and only if the FD holds. To make their measure comparible with IA and ĝ3
we subtract it from one (so that it equals zero if and only if the FD holds). The
result is the following.

�̂X!Y (r) =

8><
>:
0 if j�Y (r)j = 1

1�
(
Pp

i=1

Pq

j=1

c(xi;yj )
2

jrjc(xi)
)�
Pq

j=1

c(yj )
2

jrj2

1�
Pq

j=1

c(yj )
2

jrj2

otherwise.

As with CP , a fundamental di�erence in the behavior of �̂ and IA (also ĝ3)
lies in what happens when these measures are maximized. �̂ reaches one exactly
when CP does, namely, when X and Y are independent. So, the conditions
under which �̂ is maximized are much weaker than that of IA and ĝ3. �̂ does
not agree with IA and ĝ3 at the endpoint, one.

Moreover, it can be shown that there are limiting cases where �̂ and g3; IA

do not agree at the endpoints. Namely, there exist growing sequences such that:
�̂ ! 1 but g3; IA 9 1 and g3; IA ! 0 but �̂ 9 0, respectively. We did not
investigate the two other limiting cases, because it is clear already that �̂ is
quite di�erent from both of g3 and IA.

We know that �̂ and CP agree on their endpoints, but, we did not compare
these measures further. This analysis is left as future work.

6 Further Directions

In [6], three di�erent measures for AFDs are de�ned (one of which is g3) and
the authors state that it is not clear which, if any, of these measures is the most
natural measure of the degree to which an FD is approximate. Adding IA, CP ,
and �̂ to the mix, the situation is made further unclear. The following question
is raised. Is there a rigorous way to determine when one measure better captures
the meaning of the degree to which an FD is \approximate"?

We intend to address this question by hypothesizing that the degree to which
an FD is approximate is the degree to which a the relation instance determines



a function between �X(r) and �Y (r). We feel that an e�ort an axiomatizing
the degree to which a function is determined will shed light on our hypothesis.
We feel that particular attention should be paid to conditions under which a
function is the \furthest" from being determined.
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