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Abstract. We establish a link between measures and certain types of
inference systems and we illustrate this connection on examples that
occur in computing applications, especially in the areas of databases and
data mining.

1 Introduction

The main contribution of our paper is the establishment of a link between set-
based additive measures and certain types of inference systems. To show the
applicability of our result, we apply it to particular measures, especially some
that occur in the areas of of databases and data mining. Our work signi�cantly
generalizes that of Malvestuto [10], Lee [13], and Dalkilic and Robertson [5],
where it was shown how Shannon's entropy measure [11] can be used to de-
rive inference systems for functional and multivalued dependencies in relational
databases [6].

Our measure framework can be used to �nd evidence of presence or absence
of relationships (possibly causal). For example, if M is a measure, and X and
Y are sets, then the quantity M(X [ Y ) �M(X), i.e., the rate of change of
M in going from X to X [ Y , plays a crucial role in this regard. Depending on
its value, this rate can capture interesting relationships. For example, when this
rate is 0, it can interpreted as \X fully determines Y according toM", and if
it isM(Y ), it can be interpreted as X and Y are independent according toM.

As a simple, motivating example consider the cardinality measure j:j de�ned
over all subsets of some set S. The cardinality measure has some important
properties: for all X , Y , and Z subsets of S, it holds that

jX j � jX [ Y j isotonicity, and
jX [ Y [ Zj+ jX j � jX [ Y j+ jX [ Zj subadditivity.

From these properties follow some others. For example, we can deduce the
following \transitivity" property:

(jX [ Y j � jX j) + (jY [ Zj � jY j) � (jX [ Zj � jZj): (1)

Given this, we can consider constraints on cardinalities. For example, the con-
straint jX j = jX [ Y j states that X � Y . Well-known inference rules for set
? The authors were supported by NSF Grant IIS-0082407.



containment can then be derived from the rules about the cardinality measure.
For example, if the constraints jX [ Y j = jX j and jY [ Zj = jZj are true, then,
by the transitivity and the isotonicity rules, jX [ Zj = jZj. A simpler way of
writing this is an inference rule about the set-inclusion relation:

X � Y & Y � Z

X � Z

The paper is organized into several sections. In Section 2, we introduce ad-
ditive measures and give examples. In Section 3, we introduce �nite di�erentials
for such measures and study the properties of these di�erentials. In Section 4,
we introduce measure constraints and derive inference systems for these con-
straints from the rules of di�erentials. We illustrate our approach by deriving
some speci�c inference systems from measures. Finally, in Section 5, we estab-
lish a duality between measures and di�erentials similar to the one that exists
between integrals and derivatives in calculus.

2 Additive measures

In this section, we de�ne additive measures. We then give several examples of
such measures that occur in practice.

In the rest of the paper, S denotes a �nite set, S denotes 2S , U , V , X , Y ,
and Z (possibly subscripted) denote subsets of S, Y and Z denote subsets of S
andM denotes a real-valued function over S. Furthermore, we use the following
abbreviations:

XY = X [ Y ;
X � Y = fXY j Y 2 Yg;
tY =

S
Y 2Y Y ;

uY =
T
Y 2Y Y ;

Y [Y  Z] = Y � fY g [ fZg.

Our de�nitions for measures are inspired by the inclusion-exclusion principle
for counting �nite sets.[1]. In light of this, we de�ne the following function D:

De�nition 1. Let f be a function from S into the reals, let X � S, and let Y
be subset of S. Then the function Df at X and Y is de�ned as follows:

Df (X;Y) =
X
Z � Y
odd(Z)

f(X t Z)�
X

Z � Y
even(Z)

f(X t Z): (2)

We illustrate this de�nition in the following table.



X Y Df (X;Y)

X ; �f(X)

X fY g f(XY )� f(X)

X fY1; Y2g f(XY1) + f(XY2)� f(XY1Y2)� f(X)

X fY1; Y2; Y3g f(XY1) + f(XY2) + f(XY3) + f(XY1Y2Y3)
�f(XY1Y 2)� f(XY1Y3)� f(XY2Y3)� f(X)

Y1 \ Y2 fY1; Y2g f(Y1) + f(Y2)� f(Y1Y2)� f(Y1 \ Y2)

With the use of the function D, we can now de�ne subadditive and superad-
ditive measures.

De�nition 2. Let S be a �nite set, let M be a function from S into the re-
als, and let n be a positive natural number. M is called a n-subadditive (n-
superadditive) measure if for each X � S, and each nonempty set Y of subsets
of S, with jYj � n, DM(X;Y) � 0 (DM(X;Y) � 0, respectively).

Example 1. Mathematical measures [3] are n-subadditive for each n � 1. For
such measures, M(;) = 0. When also M(S) = 1 these measures are called
probability measures.

The following proposition, the proof of which is straightforward, relates iso-
tone with anti-isotone functions, and subadditive measures with superadditive
measures. This proposition allows us to focus on subadditive measures.

Proposition 1. LetM be a function from S into the reals and de�neM (also
a function from S into the reals) as follows:

M(X) = [M(S)�M(X)] +M(;):1 (3)

M is an n-subadditive measure if and only ifM is an n-superadditive measure.

2.1 Frequently used measures

In this subsection, we describe a variety of application areas in databases and
data mining where measures occur naturally. We identify these measures and
�t them in the our measures framework. In the area of databases, we consider
aggregate functions and relational data-uniformity measures. In the area of data
mining, we focus on measures that occur in the context of the item sets problems.

1 Notice thatM(S) =M(;) andM(;) =M(S).



Databases - aggregation functions Computations requiring aggregate func-
tions occur frequently in database applications such as query processing, dat-
acubes [8], and spreadsheets. Among these, the most often used are count, sum,
min, max, avg, variance, order statistics, and median. Each of these functions
operates on �nite sets (count on arbitrary �nite sets, and the others on �nite
sets of (nonnegative)2 numbers) and each returns a nonnegative number. Thus
they are measures. We elaborate on how they �t precisely in our framework.

1. De�ne count(X) to be the cardinality of X . From the inclusion-exclusion
principle, it follows that count is n-subadditive for each n � 1. (Similar
reasoning demonstrates that sum is n-subadditive for all n � 1.)

2. Let S consist of positive integers. De�ne max(X) to be equal to the largest
integer in X , for X 6= ;, and max(;) to be equal to the smallest element in S.
Then max is an n-subadditive measure for n � 1. The key to showing that max
is n-subadditive for n � 1 is the observation that max(Y) = maximum(Y ) for
some set Y 2 Y . (Similar reasoning demonstrates that min is n-superadditive
for all n � 1.)

3. Let S consist of positive integers. Order-statistics are used to determine
the ith smallest element of S. For example, the 2nd order statistics, de-
noted min2(X), returns the second smallest element in X . Clearly, min2 is
1-superadditive. However, it is not 2-superadditive (e.g. let Y1 = f1; 4; 5g,
Y2 = f2; 4; 5g and X = Y1 \ Y2).

4. The functions avg, variance, and median are neither n-subadditive nor n-
superadditive for any n � 1. However, observe that in the case of avg both
the numerator and the denominator come from n-subadditive measures (sum
and count, respectively). It follows that the quotient of two subadditive
measures is not necessarily a subadditive measure.

Databases - data uniformity Consider the values occurring under an at-
tribute of a relation in a relational database. These values can occur uniformly
(e.g. the values `male' and `female' in the gender attribute of a census), or skewed
(e.g. the values for the profession attribute in the same census). Measuring these
degrees of uniformity can inuence how data is stored or processed. When data
is numeric, a common way to measure uniformity is to use the variance statistic.
This statistic computes the average of the distances between data values and
their average. To measure data uniformity for categorical data we consider the
Simpson measure [12], and the Shannon entropy measure [11]. Unlike variance,
these measures are speci�ed in terms of probability distributions de�ned over
the data sets. We show that, unlike variance (Section 2.1), the Shannon measure
is n-subadditive for n � 2 and the Simpson measure is n-subadditive for n � 1.

Let T be a nonempty �nite relation over the relation schema S and let p be
a probability distribution over T . ForX � S, de�ne pX to be the marginal proba-
bility distribution of p onX . Thus if x 2 �X (T ) then pX(x) =

P
ft 2 T j t[X ] = xgp(t).

2 We restrict ourselves in this paper to nonnegative numbers, but it is straightforward
to adapt our framework to include negative numbers as well.



The Simpson measure S and the Shannon measure H are de�ned as follows:3

S(X) =
X

x2�X(T )

pX(x)(1� pX(x)) = 1�
X

x2�X(T )

p2X(x); (4)

H(X) = �
X

x2�X(T )

pX(x) log pX(x): (5)

Proposition 2. The Simpson measure (S) is an n-subadditive measure for all
n � 1 while the Shannon entropy measure (H) is only 2-subadditive measure.

Proof. We prove that the Simpson measure is n-subadditive for n � 1. To
prove n-subadditivity, let Y = fY1; : : : ; Yng, and Y be a bit vector of length n

such that when Y [i] = 1, we have Yi = Y 0i , and when Y [i] = 0 we have either
Yi = Y 0i or Yi 6= Y 0i (in this way the 0 acts very much like a wildcard �). We
de�ne Terms(Y ) = f(PY1:::YnPY 0

1
:::Y 0

n
)j8i Yi = Y 0i when Y [i] = 1g.

The generalized inclusion-exclusion principle [9] states

n\
k=1

W (Terms(Yk)) =
X

Z � f1; : : : ; ng
even � 2

\
j2Z

W (Terms(Yj)) +W (Terms(0))

�
X

Z � f1; : : : ; ng
odd

\
j2Z

W (Terms(Yj)) (6)

where W (Terms(Y )) is some weight function and Yj implies only Yj = Y 0j . If
we choose W (Terms(Y )) = Terms(Y ) and rearrange terms, then we have
Terms(0) =

P
Z � f1; : : : ; ng

odd

T
j2Z Terms(Yj)�

P
Z � f1; : : : ; ng

even � 2

T
j2Z Terms(Yj)

+
Sn
k=1 Terms(Yk)

which after simpli�cation yields

n[
k=1

Terms(Yk) =
X

Z � f1; : : : ; ng
odd

\
j2Z

Terms(Yj)�
X

Z � f1; : : : ; ng
even � 2

\
j2Z

Terms(Yj)

(7)
And since the more zero bits in a vector means more wildcards, then the more
zero bits a vector Y has, the larger it is; that is Terms(0) � Terms(Y ). Given
this and 7, we have

Terms(0) �
X

Z � f1; : : : ; ng
odd

\
j2Z

Terms(Yj)�
X

Z � f1; : : : ; ng
even � 2

\
j2Z

Terms(Yj)

(8)
3 In ecology, S is known as the Simpson rarity function.



Finally we expand this equation to the original probabilities to get.
[
P

Y1
: : :
P

Yn
PY1:::Yn ]

2 �
P
Z � fY1; : : : Yng

odd

P
Yi1

: : :
P

YijZj
[PYi1 :::YijZj

]2�

P
Z � fY1; : : : Yng

even � 2

P
Yi1

: : :
P

YijZj
[PYi1 :::YijZj

]2
, which

can be further simpli�ed to yieldP
Z � fY1; : : : Yng

even

P
Yi1

: : :
P

YijZj
[PYi1 :::YijZj

]2 �

P
Z � fY1; : : : Yng

odd

P
Yi1

: : :
P

YijZj
[PYi1 :::YijZj

]2
, which yields

P
Z � Y
odd(Z)

S(uY t Z)�
P
Z � Y
even(Z)

S(uY t Z) � 0.

The Shannon Entropy measure (H) is a 2-subadditive measure [4]. How-
ever, H is not a 3-subadditive measure. Indeed, for the following relation over
attributes A;B;C, DH(;; ffAg; fBg; fCgg)< 0.

A B C
1 1 1
1 1 2
1 2 1
2 1 1

ut

Data mining - frequent item sets

An important problem in data mining is discovering frequent item sets. In this
problem, a set of baskets is given. Each basket contains a set of items. In practice,
the items may be products sold at a grocery store, and baskets correspond to
items bought together by customers. The frequent items sets problem is to �nd
the item sets that occur frequently within the baskets.

More formally, let S be a set of items and let B be a subset of S consist-
ing of the baskets. De�ne B(X) = fB j X � B and B 2 Bg and de�ne the

frequency measure freq as freq(X) = jB(X)j
jBj : It can be shown that freq is an

n-superadditive measure for n � 1 [2].

3 Measure Di�erentials

Some natural issues that arise for measures is (1) to calculate their rate of change
and (2) to determine where these rate changes reach optima. Typically, these
issues are considered for functions over continuous domains by using traditional
calculus techniques, in particular derivatives. In our framework for additive mea-
sures, we have discrete, set-based functions, and thus reasoning about derivatives
must be done with the methods of �nite di�erences and �nite di�erence equa-
tions [7].



De�nition 3. Let f be a function from S into the reals, let X be a subset of S,
let Y be a subset of S, and let Y be in Y. We de�ne the �nite di�erence of f at
X relative to Y as follows:

�f (X;Y) = f(X) if Y = ;; (9)

and
�f (X;Y) = �f (XY;Y � fY g)��f (X;Y � fY g) otherwise: (10)

Notice that the de�nition is dependent on the choice for Y in Y . We will show
however that each possible choice of Y leads to the same result, i.e., �f (X;Y)
is well de�ned.

Proposition 3. Let f be a function from S into the reals. Then, for each X � S

and for each nonempty set Y � S, �f (X;Y) is well-de�ned.

Proof. Trivially, �f (X;Y) is well-de�ned when 0 � jYj � 1. When jYj � 2,
Y contains two di�erent sets Y and Y 0. We need to show �f (XY;Y � fY g) �
�f (X;Y � fY g) = �f (XY 0;Y � fY 0g) � �f (X;Y � fY 0g). We show this by
induction on jYj.

1. When jYj = 2 this equation becomes

�f (XY; fY 0g)��f (X; fY
0g) = �f (XY 0; fY g)��f (X; fY g):

Further expansion leads to the equation f(XY Y 0) � f(XY ) � f(XY 0) +
f(X) = f(XY 0Y )� f(XY 0)� f(XY ) + f(X) which is clearly true.

2. When jYj � 3, by induction, we are allowed to expand the left hand side of
the equation, i.e., the expression �f (XY;Y � fY g)��f (X;Y � fY g), into
the expression�f (XY Y 0;Y�fY; Y 0g)��f (XY;Y�fY; Y 0g)��f (XY 0;Y�
fY; Y 0g) +�f (X;Y � fY; Y 0g). Similarly, the righthand of the equation can
be expanded to expression�f (XY 0Y;Y�fY 0; Y g)��f (XY 0;Y�fY 0; Y g)�
�f (XY;Y � fY 0; Y g) + �f (X;Y � fY

0; Y g). Clearly both expressions are
equal.

ut

It turns out that the functions D and � are closely related:

Proposition 4. Let f be a function from S into the reals. Then for each X � S

and for each nonempty set Y � S

Df (X;Y) = (�1)jYj�1�f (X;Y): (11)

Proof. The proof is by induction on jYj. For Y = ;, we have Df (X; ;) =
�f(X) = ��f (X; ;). For Y = fY g, we have Df (X; fY g) = f(XY ) � f(X) =
�f (X;Y), and the claim follows.
For jYj � 2, and Y 2 Y , we have by the de�nition of �

(�1)jYj�1�f (X;Y) = (�1)(�1)jYj�2(�f (XY;Y � fY g)��f (X;Y � fY g));



which, by induction, is equal to

(�1)(Df (XY;Y � fY g)�Df (X;Y � fY g)):

By the de�nition of D, we have that Df (X;Y�fY g)�Df (XY;Y�fY g) is equal
toP
Z � Y � fY g
odd(Z)

f(XtZ)�
P
Z � Y � fY g
even(Z)

f(XtZ)�(
P
Z � Y � fY g
odd(Z)

f(XY t

Z)�
P
Z � Y � fY g
even(Z)

f(XY tZ)) which, after rearranging terms and realizing

that jZj is even if and only if jZ [ fY gj is odd, is equal toP
Z � Y � fY g
odd(Z)

f(X t Z) +
P
Z � Y � fY g
even(Z)

f(XY t Z)

�
P
Z � Y � fY g
even(Z)

f(X t Z)�
P
Z � Y � fY g
odd(Z)

f(XY t Z)

This is equal to
P
Z � Y
odd(Z)

f(X t Z)�
P
Z � Y
even(Z)

f(X t Z) = Df (X;Y). ut

In the following proposition we summarize some important properties of D.
These properties are speci�ed as equalities and inequalties, but it is more useful
here to view them as inference rules.

Proposition 5. LetM be an n-subadditive measure (n � 1). Let Y be a subset
of S. Then DM satis�es following properties:

1 � jYj � n

DM(X;Y) � 0
sign rule;

Y 2 Y

DM(X;Y � fY g) = DM(X;Y) +DM(XY;Y � fY g)
reduction.

When M is an n-superadditive measure, the reduction rule remain valid. The
sign rule however needs to be altered by replacing DM(X;Y) � 0 with DM(X;Y) �
0.

Proof. The sign rule follows from the fact we always de�ne DM(X;Y) � 0 for
1 � jYj � n. Reduction follows from (10) and (11). ut

Using Proposition 5, we derive interesting rules about measure di�erentials in
the next proposition.

Proposition 6. LetM be an n-subadditive measure (whenM is n-superadditive,
the inequalities change direction) and n � 1. Let Y be a set of subsets of S such
that 0 � jYj � n. Then the rules display in Figure 1 follow from Proposition 5.



Y 2 Y

DM(X;Y[Y  Y Z]) = DM(X;Y) +DM(XY;Y[Y  Z])
chain rule;

Y 2 Y Y � X

DM(X;Y) = 0
triviality;

Y 2 Y

DM(X;Y[Y  Y Z]) � DM(X;Y)
decomposition;

Y 2 Y U � X

DM(X;Y) = DM(X;Y[Y  UY ])
right augmentation;

(Y 2 Y ^ U � XY ) or (U � X)

DM(X;Y) � DM(XU;Y)
weak left augmentation;

0 � jYj < n

DM(X;Y) � DM(XU;Y)
left augmentation;

X � Z jYj = 1

DM(X; fY g) +DM(Y; fZg) � DM(X; fZg)
weak transitivity (a);

Y 2 Y Y
0 2 Y

DM(X;Y) +DM(Y;Y[Y 0  XY
0
; Y  Z])

� DM(X;Y[Y  Z]) weak transitivity (b);

Y 2 Y 1 � jYj < n

DM(X;Y) +DM(Y;Y[Y  Z]) � DM(X;Y[Y  Z])
transitivity;

Y 2 Y 2 � jYj � n

DM(X;Y � fY g) � DM(X;Y)
replication;

Y 2 Y 1 � jYj � n

DM(X;Y) +DM(Y;Y � fY g) � DM(X;Y � fY g)
coalescence.

Fig. 1. Additional rules for D



Proof. We provide a sketch of how these rules can be proved as follows. The
chain rule follows directly from reduction and then simplifying. Triviality follows
directly from reduction on Y � X . Decomposition follows directly from the
chain rule (on DM(X;Y [Y  Y Z])) and the sign rule.

Right augmentation follows by applying reduction on Y for the �rst term,
UY for the second term, and then using the fact U � X to simplify. Weak left
augmentation follows by applying the general chain rule (identify Y with U , Z
with Y ) and the sign rule. For Y = ;, weak left augmentation follows from the
fact U � X (thus DM(X; ;) � DM(XU; ;) = 0). Left augmentation follows by
using reduction to combine terms and �nally using the sign rule at level n.

Weak transitivity can be proved by using weak left augmentation and the
chain rule. By applying right augmentation on the �rst term, and using weak left
augmentation on the second term, we get for jYj � 2,DM(X;Y)+DM(Y;Y [Y  
Z; Y 0  XY 0]) � DM(X;Y [Y 0  XY 0]) + DM(XY;Y [Y  Z; Y 0  XY 0]).
Which when we apply the chain rule is equal to DM(X;Y [Y  ZY; Y 0  
Y 0X) which is greater or equal than DM(X;Y [Y  Z]) by decomposition.
For jYj = 1, weak transitivity can be proved by weak left augmentation, chain
rule and decomposition. By weak left augmentation we have DM(X; fY g) +
DM(Y; fZg) � DM(X; fY g)+DM(XY; fZg). Using the chain rule, this is equal
to DM(X; fY Zg) which by decomposition is greater or equal to DM(X; fZg).

Transitivity can be proved along the lines of weak transitivity by using left
augmentation and the general chain rule. Replication can be proved directly
from reduction (which imposes the restriction jY � fY gj � 1) and the sign rule
(to remove the last term). Coalescence can be proved by using reduction and left
augmentation. DM(X;Y)+DM(Y;Y�fY g) = DM(X;Y�fY g)�DM(XY;Y�
fY g) + DM(Y;Y � fY g). SinceM is n-subadditive, then by left augmentation
we have DM(XY;Y � fY g) � DM(Y;Y � fY g) which implies coalescence. ut

An interesting special case to consider is when S = X tY . In this case, some
of the rules of Proposition 6 collapse and we obtain the following proposition.

Proposition 7. LetM be an n-subadditive measure (whenM is n-superadditive,
the inequalities change direction) and n � 1. Let S = X tY or S = Z tY. Then
the rules display in Figure 2 follow from Proposition 6.

Proof. R1 derived directly from the chain rule and triviality. R2 is the trivial-
ity rule proved in Proposition 6. R3 can be proved by weak augmentation of
Proposition 6 by dividing U into partitions such that U = (U \ XY1) [ : : : [
(U \XYn). Using weak augmentation, DM(X;Y) � DM(X [ (U \XY1);Y) �
: : : � DM(XU;Y). R4, R5 are nothing but the weak transitivity rule proved
in Proposition 6. R6, R7 are the replication and coalescence rules derived in
Proposition 6. ut

4 Measure Constraints

In this section, we consider the situations wherein measure di�erentials are min-
imized. In particular, for context-subadditive (context-superadditive) measures,



Y 2 Y S = X t Y

DM(X;Y[Y  Y Z]) = DM(X;Y)
R1 - chain rule;

Y 2 Y Y � X

DM(X;Y) = 0
R2 - triviality;

U � S = X t Y

DM(X;Y) � DM(XU;Y)
R3 - augmentation;

Y 2 Y X � S = Z t Y

DM(X;Y) +DM(Y;Y[Y  Z]) � DM(X;Y[Y  Z])
R4 - transitivity (a);

Y; Y
0 2 Y S = XZ t Y

DM(X;Y) +DM(Y;Y[Y 0  XY
0
; Y  Z])

� DM(X;Y[Y  Z]) R5 - transitivity (b);

Y 2 Y 2 � jYj � n

DM(X;Y � fY g) � DM(X;Y)
R6 - replication;

Y 2 Y 1 � jYj � n

DM(X;Y) +DM(Y;Y � fY g) � DM(X;Y � fY g)
R7 - coalescence.

Fig. 2. Additional rules for D when S = X t Y

we consider when DM(X;Y) = 0 for 0 � jYj � n. This leads us to intro-
duce level-n constraints and to derive inference rules for them. By applying
these results to particular measures, we uncover certain classes of constraints in
databases and data mining, as well as corresponding inference systems.

De�nition 4. LetM be an n-subadditive (n-superadditive) measure. We call
DM(X;Y) = 0 for 0 � jYj � n a level-n constraint and we say thatM satis�es
X ) Y if DM(X;Y) = 0.

It turns out that De�nition 4 and Propositions 5,6 yield the inference rules for
level-n constraints. These rules are a direct consequence of the rules in Proposi-
tions 5-6 although care must be taken regarding rules when Y = ;.

Proposition 8. Let M be an n-subadditive (n-superadditive) measure. Let Y
be a set of subsets of S such that 0 � jYj � n, and Z;U � S. Then the level-n
constraint of M satis�es the inequalities in Figure 3.

Proof. The proof of these rules follows directly from Propositions 5,6.
As a side note, in instances where Y = ; is possible, care must be taken

to deduce these inference rules. We show for example how this applies to the
reduction rule and coalescence when Y � fY g = ;. For reduction, we have
DM(X; fY g)+DM(XY; ;) = DM(X; ;). Since the left hand side of the equation



Y 2 Y X ) Y XY ) Y[Y  Z]

X ) Y[Y  ZY ]
chain rule (a);

Y 2 Y X ) Y[Y  ZY ]

X ) Y XY ) Y[Y  Z]
chain rule (b);

Y 2 Y X ) Y XY ) Y � fY g

X ) Y � fY g
reduction.

Y 2 Y Y � X

X ) Y
triviality;

Y 2 Y X ) Y[Y  Y Z]

X ) Y
decomposition;

Y 2 Y U � X X ) Y

X ) Y[Y  UY ]
right augmentation (a);

Y 2 Y U � X X ) Y[Y  UY ]

X ) Y
right augmentation (b);

(U � X [ Y ^ Y 2 Y) or (U � X) X ) Y

XU ) Y
weak left augmentation;

1 � jYj < n X ) Y

XU ) Y
left augmentation;

X � Z X ) fY g Y ) fZg

X ) fZg
weak transitivity (a);

Y; Y
0 2 Y X ) Y Y ) Y[Y  Z; Y

0  XY
0]

X ) Y[Y  Z]
weak transitivity (b);

Y 2 Y 1 � jYj < n X ) Y Y ) Y[Y  Z]

X ) Y[Y  Z]
transitivity;

Y 2 Y 2 � jYj � n X ) Y � fY g

X ) Y
replication;

Y 2 Y 2 � jYj � n X ) Y Y ) Y � fY g

X ) Y � fY g
coalescence.

Fig. 3. Constraint rules for D



is zero, then we must have that DM(X; ;) = 0. The converse is not true however,
i.e. DM(X; ;) = 0 does not imply DM(X; fY g) = 0 and DM(XY; ;) = 0, since
one of the terms maybe positive and other negative. Futhermore, coalescence
for jYj = 1 does not hold, that is DM(X; fY g) = 0 and DM(Y; ;) = 0 does not
imply DM(X; ;) = 0. Even though DM(X; fY g) +DM(Y; ;) = 0 � DM(X; ;),
yet DM(X; ;) = �M(X) which can be less than zero.

Note in the special case when S = X tY , some of the rules of Proposition 8
collapse and we obtain the following proposition.

Proposition 9. LetM be an n-subadditive (n-superadditive) measure. Let S =
XtY or S = ZtY. Then the level-n constraint ofM satis�es the rules displayed
in Figure 4 follow from Proposition 8.

Y 2 Y S = X t Y X ) Y[Y  Y Z]

X ) Y
R1 - chain rule (a);

Y 2 Y S = X t Y X ) Y

X ) Y[Y  Y Z]
R1 - chain rule (b);

Y 2 Y X ) Y XY ) Y � fY g

X ) Y � fY g
R2 - reduction.

Y 2 Y Y � X

X ) Y
R3 - triviality;

U � S = X t Y X ) Y

XU ) Y
R4 - augmentation;

Y 2 Y X � S = Z t Y X ) Y Y ) Y[Y  Z]

X ) Y[Y  Z]
R5 - transitivity (a);

Y; Y
0 2 Y S = XZ t Y

X ) Y Y ) Y[Y 0  XY
0
; Y  Z]

X ) Y[Y  Z]
R5 - transitivity (b);

Y 2 Y 2 � jYj � n X ) Y � fY g

X ) Y
R6 - replication;

Y 2 Y 2 � jYj � n X ) Y Y ) Y � fY g

X ) Y � fY g
R7 - coalescence.

Fig. 4. Additional inference rules when S = X t Y



4.1 Case studies

It turns out that when we apply De�nition 4, and Propositions 5 and 6 to
speci�c measures we uncover useful inference systems that can be used to reason
about the relationships between the sets invlolved. Here we briey cover the
inference systems that can be uncovered when we use the measures count for
counting sets, the Shannon entropy and the Simpson measure for data uniformity
in databases, and �nally freq in data mining.

1. The level-n constraint Dcount(X;Y) = 0 holds when uY � X for jYj � 1.
This is a direct consequence of the inclusion-exclusion principle for count-
ing �nite sets. The resulting inference system for count follow directly from
Proposition 8. Given that X ) Y holds when uY � X , we have the rules
below (derived from Subsection 2.1). The case where Y = ; deserves spe-
cial consideration as it implies count(X) = 0 which implies that X = ;.
For example, when Y � fY g = ;, the reduction rule becomes Y � X and
count(XY ) = 0 imply count(X) = 0.

chain rule a (Y 2 Y)
uY � X uY[Y  Z] � XY

uY[Y  ZY ] � X

chain rule b
Y 2 Y uY[Y  ZY ] � X

uY � X uY[Y  Z] � XY

triviality
Y 2 Y Y � X

uY � X

decomposition
Y 2 Y uY[Y  Y Z] � X

uY � X

right augmentation a
Y 2 Y U � X uY � X

uY[Y  UY ] � X

right augmentation b
Y 2 Y U � X uY[Y  UY ] � X

uY � X

left augmentation
1 � jYj < n uY � X

uY � XU

weak left augmentation
(U � X [ Y ^ Y 2 Y) or (U � X) uY � X

uY � XU

weak transitivity
X � Z Y � X Z � Y

Z � X

weak transitivity (Y; Y 0 2 Y)
uY � X uY[Y  Z; Y

0  XY
0] � Y

uY[Y  Z] � X

transitivity (Y 2 Y; jYj < n)
uY � X uY[Y  Z] � Y

uY[Y  Z] � X

reduction
Y 2 Y uY � X uY � fY g � XY

uY � fY g � X

replication (Y 2 Y)
2 � jYj � n uY � fY g � X

uY � X

coalescence (2 � jYj � n)
Y 2 Y uY � X uY � fY g � Y

uY � fY g � X

2. The level-1 constraint for the Shannon entropy measure holds when we have
a functional dependency X ! Y . Let V = XY . The equality holds if and



only for each x 2 X , pX(x) log p(x) =
P

vx2Vx
pV (vx) log pV (vx) if and only

if for each x 2 X ,
P

vx2Vx
pV (vx) log pX(vx) =

P
vx2Vx

pV (vx) log pV (vx) if
and only if for each x 2 X , jVxj = 1 if and only if the relation T satis�es
the functional dependency X ! Y . This was shown in [10][13][5]. The corre-
sponding inference system rules that can be derived correspond to the well
known rules of functional dependencies. Some of the inference system rules
are shown in Figure 5.

The level-2 constraint for the Shannon entropy measure holds when we have
a multivalued dependency X � Y . In this case, X � Y holds if and only if
H(X [ Y ) +H(X [ Z) = H(X [ Y [ Z) +H(X) and Z = R � Y [5]. The
corresponding inference system rules that can be derived using our mea-
sure framework correspond directly to the well known rules of multivalued
dependencies. Some of the inference system rules are shown in Figure 6.

reexivity
Y � X

X ! Y

augmentation
X ! Y

XU ! Y

transitivity
X ! Y Y ! Z

X ! Z

Fig. 5. Inference system for function dependencies derived from the Shannon entropy
measure.

reexivity
Y � X

X � Y j S �XY

augmentation
X � Y j S �XY

XU � Y j S �XUY

transitivity
X � Y j S �XY Y � Z j S � ZY

X � Z j S �XZ

replication
X ! Y2

X � Y1 j S �XY1

coalescence
X � Y jS �XY Y ! Y

0

X ! Y
0

Fig. 6. Inference system for multivalued dependencies derived from the Shannon en-
tropy measure.

3. The level-1 constraint for the Simpson measure holds when we have a func-
tional dependency X ! Y . Let V = X [ Y . The equality holds if and only
for each x 2 X , p2X(x) =

P
vx2Vx

p2V (vx). if and only if for each x 2 X ,

(
P

vx2Vx
pV (vx))

2 =
P

vx2Vx
p2V (vx) if and only if for each x 2 X , jVxj = 1 if

and only if the relation T satis�es the functional dependency X ! Y . The
corresponding inference system rules that can be derived correspond to the
well known rules of functional dependencies. Some of the inference system
rules are shown in Figure 5.



The level-2 constraint for the Simpson measure X � Y holds when we have
a special multivalued dependency X � Y such that jYxj = 1 or jZxj = 1
(where Z = S � XY , Yx = �Y (�X=x(T )) and Zx = �Z(�X=x(T ))). This
can be shown by expanding X ! Y jZ = 0 for Simpson's measure, which
works out to be

S(X [ Y ) + S(X [ Z) = S(X [ Y [ Z) + S(X)

Which can be expanded and simpli�ed to be
P

x2�x

P
y2Yx

P 2
XY (xy)

+
P

x2�x

P
z2Zx

P 2
XZ(xz) =

P
x2�x

P
y2Yx

P
z2Zxy

P 2
XY Z(xyz)+

P
x2�x

P 2
X(x).

This equation is true when jYxj = 1 or jZxj = 1 which implies a special multi-
valued dependency where one of independent columns has one distinct value
only.The corresponding inference system rules that can be derived using our
measure framework correspond directly to the well known rules of multival-
ued dependencies. Some of the inference system rules are shown in Figure 6.
The level-n constraint of the Simpson measure can be generalized accord-
ingly. A level-n constraint holds when we have two tuples such that
8t1t2; R(t1) ^R(t2))

Sn
i=1 t1[i] = t2[i].

4. The level-1 constraint of the freqmeasure holds if and only if freq(X[Y ) =
freq(X) if and only if B(X [ Y ) = B(X) if and only if there is a pure
association rule from X to Y , denoted X ! Y , in B. (A pure association
rule is an association rule with con�dence 100%.) The inference rules of our
framework hold for association rules.
The level-n constraint for the freq measure can be interpreted to yield
weaker forms of association rules. Using the inclusion-exclusion principle,
then Dfreq(X;Y) = 0 implies that X � tY = ; (or alternatively X ) tY).
This means that item X cannot be bought alone; that is it is bought with
at least one item Y 2 Y . Given that Dfreq(X;Y) = 0, then this yields
a weak association rule that can be interpreted that item X can only be
bought with elements of Y . For example, Dfreq(X; fY1; Y2g) = 0 implies
freq(XY1) + freq(XY2) = freq(X)+ freq(XY1Y2). To illustrate the use of
the inclusion-exclusion principle in this interpretation, refering to Figure 7,
we have freq(X) = jaj + jbj + jcj + jdj, freq(XY1Y2) = jcj, freq(XY1) =
jbj + jcj, and freq(XY2) = jcj + dj. Putting everything together, we must
have jaj = 0. This implies that X can only be bought with Y1 or Y2. The
inference rules in Figure 3 also hold for these rules. The case where Y = ;
deserves special consideration as it implies freq(X) = 0 which implies that
item X is not bought. For example, when Y � fY g = ;, the reduction rule
becomes freq(XY ) = freq(X) and freq(XY ) = 0 imply freq(X) = 0.

5 Duality

In this section we will establish a duality between measures and di�erentials.
This duality is similar to the one that exists between derivatives and integrals
in calculus: Z x+y

x

F 0(u)du = F (x+ y)� F (x):



&%
'$
&%
'$

&%
'$a b

d c

B(X) B(Y1)

B(Y2)

Fig. 7. Frequency constraints example

In our setting this duality is captured by the expression

DM(X; fX [ Y g) =M(X [ Y )�M(X):

In other words, one can reasonably think about the expression DM(X; fX[Y g)
as stating the integration of the function DM \from" X \to" X [ Y .

We wish to explore this duality in more depth. To do so, we consider functions
satisfying the properties of measure di�erentials (Proposition 5) and \integrate"
them. We can show that the resulting functions are measures and that their
measure di�erentials are the original functions. These results establish that it is
possible go back and forth between measures and di�erentials.

De�nition 5. Let D be a function from 2S � 22
S

into the reals and let n � 1.
We call D an n-di�erential if it has the following property:

Y 2 Y jYj � 2

D(X;Y � fY g) = D(X;Y) +D(XY;Y � fY g)
reduction

We call D a positive n-di�erential if D is an n-di�erential and D satis�es
the property:

X � S 1 � jYj � n

D(X;Y) � 0
positive.

We call D a negative n-di�erential if D is an n-di�erential and D satis�es
the following property:

X � S 1 � jYj � n

D(X;Y) � 0
negative.

The following proposition formulates the duality between measures and dif-
ferentials.

Proposition 10. Let D be a n-di�erential (n � 1) and let M be the function
from 2S into the reals de�ned as follows:

M(X) = �D(X; ;): (12)



Then for each X � S and for each nonempty set Y of subsets of S such that
jYj � n

DM(X;Y) = D(X;Y): (13)

If D is a positive (negative) n-di�erential then M is an n-subadditive (an
n-superadditive) measure.

Proof. We prove this by induction on jYj. For jYj = 0, DM(X; ;) = �M(X) =
D(X; ;). When jYj � 1, by the properties of DM (Proposition 5), DM(X;Y) =
DM(X;Y �fY g)�DM(XY;Y �fY g) = D(X;Y �fY g)�D(XY;Y �fY g), by
the induction hypothesis. By the reduction rule for D this is equal to D(X;Y).

It immediately follows from the the de�nition of measure that when D is
a positive (negative) n-di�erential,M is an n-subadditive (an n-superadditive)
measure. ut

Acknowledgments:We thankMarc Gyssens, Paul Purdom, and Edward Robert-
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