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Abstract

The Optimal Tuple Merge (OTM) problem arises within the context of relationa query lan-
guage extensions to query and manipulate metadata as well as data. Such extensions include
the ability to create dynamic output schemas from the input data. This flexibility is necessary
for truly schema independent restructuring, however many null values may be introduced into
the resultant data. Many of these “artifical” null values can be subsequently merged away. In
this paper, we prove that the optimal merging case, in which the resulting relation contains
as few tuples as possible, results in an NP-Complete problem. In spite of this, we character-
ize when an optimal (and unique) merge is easy to obtain, and identify at least one class of

practically relevant relations where OTM s efficiently solvable.
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1 Introduction

Recent frameworks for relationa interoperability provide flexible methods for querying and re-
structuring both metadata and data in relational tables. This flexibility is necessary to satisfy the
demandsfor schema independent queriesthat arise when combining semantically similar datafrom
multiple, distinct sources. Applications of relational interoperability are widespread, and include
support for Federated Information Systems (FIS), encompassing the ability to create and manage



mediators, global schemas, and metadata dictionaries. Furthermore, recent extension to the rela-
tional query languages SQL and the RA enable real-time interoperability in a large federation of
relational databases[3].

However, the added flexibility provided by frameworks for relational interoperability comes
with a price. One required capability is the ability to promote a column of data to relational
attributes (column headings). In order that this “transpose-like” operation on relations has a con-
sistent semantics for any relational table, many null values may be introduced into the result. We
would ideally like to merge these “artificial” null values as much as possible to obtain a relation
with the minimum number of tuples.

As a motivating example, consider the relation in figure 1 (a). This relation tracks assignment
grades for the students John, Jane, and Spot. After transposition, we obtain the relation in figure 1
(b). Such atransformation isimportant when transating from relational databasesto spread sheets

(or vice versa). In this case, we can merge as shown (figure 1 (c)).
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@ (b)

Original relation Transposed relation (Asgl, Asg2, Asg3, Asg4, Asg5 data values

have become column headings)
Figure 1. Merge example.

What is special about this example is that there is exactly one assignment grade for each stu-
dent. If the original relation had another tuplesuch as (Name : John, Assignment : Asg3,Grade : 85),
giving a conflicting grade for John’s third assignment, the merge would no longer be unique. This
intuition will be made precise in proposition 4.2. First, we will introduce some necessary termi-

nology and consider the merging problem in more generality.
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2 Terminology

The most basic elements within our formal framework are called domain elements. We assume
a countably infinite domain of atomic elements, denoted dom, which typically contains aphanu-
meric strings, such as 123, abc or SoneEl ement. We will use teletype font to denote specific
elements of dom. In addition, we assume a specia element, |, called the null element. We stipu-
late that | ¢ dom.

Definition 2.1
A tuple is a mapping from dom to domuU { L} that is L at al but a finite number of domain

elements.

A tuple may be represented explicitly using the notation (Az : a, ..., An : an) where A; € dom and
a e domu{Ll} (1<i<n). Alternatively (or in combination), we may use the notation t[A] to
mean t(A), the A-th component of t. A canonical relation is a finite set of tuples. The active
schema of arelation, R, denoted asch(R), consists of domain elements, A, for which some tuple
t € Rassignsanon-null valueto A.

Definition 2.2 (see [2], definition 4.2)

Let Rbe arelation with asch(r) = {As,...,An}.

1. Twotuplests,t; € Rare mergeable provided for eachi = 1,...,n, either t1[A] = t2[Ai] or one
of t1[Ai] or to[Aj] isanull value.

2. Supposets,t; € Rare mergeable. Then their merge, denotedt =t; ®tp, isgiven by

t1[A]if tp[A] # L, _
A = 1[A]Ift[A] # (1<i<n)
to[A] otherwise.
In what follows, we consider the idea of an optimal merge result. A merge result is considered

optimal if no smaller merge result can be obtained. Thisis made precise in definition 2.4.

Definition 2.3
Let R,Sberelations. Then we say Sisamerge of R in case S can be obtained from R by afinite
seguences of merges among mergeable tuples.



Definition 2.4 (Optimal Merge)
Let R Sberelations. Then Sisan optimal merge for Rin case

1. Sisamerge of R, and
2. foral S suchthat S isamerge of R, we havethat |S < |S].

Note that, in general, there will be more than one optimal merge for a given relation R.

3 Optimal Tuple Mergeis NP-Complete

Optimal merges for a relation are, in genera, provably difficult to find. By this, we mean that
the problem of finding an optimal merge counterpart for an arbitrary relation belongs to the well-
known class of NP-Complete problems. Before proving this, we must precisely state the Tuple
Merge and Optimal Tuple Merge problems more formally.

Definition 3.1
1. The Tuple Merge Decision (TMD) problem is thus: given arelation R and a natural number
[, isthere amerge of R of sizel (i.e. an|-merge)?

2. The Optimal Tuple Merge (OTM) problem isto find an optimal merge of a given relation R.

If we can determine whether a relation has a merge of sizel intime T (I), we can find such a
merge in time O(|R|3- T (1) -1). Thus, a polynomial-time solution to to TMD gives a polynomial-
time solution to OTM, since we need only determine the least number in {1,...,|R|} for which a

merge exists, and then compute such a merge.

Theorem 3.1 (Tuple M erge Decision is NP-Complete)
Let R be arelation and | a natura number. Then the problem of determining whether R has an
[-merge is NP-compl ete.

Proof of Theorem 3.1:
We will give aclass of (relation, |) pairs for which the problem of deciding whether there is an



I-merge is equivaent to finding a solution to the known NP-Complete decision problem Hitting
St ([1], page 222).

Hitting Set involvesafiniteset S= {1,...,m} and acollection of setsCy, ...,C, C S. In addition,
we are given an integer k < m. The problem asks: isthereaset S C Swhere |S| = k and for all
j.1<j<nCjNnS #0?

Given an instance of Hitting Set, we define the following relation, R. The active schema of R

will be {N,B,C,...,Cy}.1 In addition R contains the following tuples:

1. mtuplesEj:=(N:i,B: L,Cy1:Xq,...,Ch:Xy) for L <i <m,wherefor1<j<n

lincase j € Cj, and
Xj =
0 otherwise;

2. ntuplesCq:=(N:1,B:0,C;: L,....Cq:1,...,Cq: L) for 1< g < n; and
3. m—ktuplesBy:=(N:1,B:p,Ci:L,...Cq: L) fori<p<m-—k.

Given R, let | = m. We claim that there is an [-merge of R exactly in case there is a hitting set
for theC; of sizek.

Any merge of Rwill be of size > m since none of the E; tuples can be merged with each other
(they al differ on the N component).

Additionally, because the B component of the B, tuples is distinct from the B component of
the Cq tuples, no B, tuple can merge with any Cq tuple. However, the B, tuples can merge with the
Ei tuples. Assumethisis done, leaving m— (m— k) = k E; tuples unmerged with By’ s that need to
be merged with the Cq tuples.

It should be clear that, by definition, a Cq can only merge with an E; in casei € Cy; hence, we
can see that all remaining E; tuples will be merged exactly in case thereis at least one Hitting Set
of size k for the Cy sets (this Hitting Set will in fact be given as the set of N components of the E;
tuples that merged with the Cq tuples).

We will overload the names“C;” through “C,,” to denote both the subsets of Saswell as the corresponding column
attributes of R so that the following exposition is clearer.
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A 4-merge of R:

N B C, C,
N B C, C
E 1 L 1 0 1 2
. 1
HS case 1: E2 o 1 1 1 Bl®E1 1 1 1 o
$={1,234} E, 3 | 0 1
c,={1,24} EA 4 1 1 1 B,OE, 2 2z 1 1
cs{234 ¢ L0 14 ;3@53 3 3 0 1
_ COCO®E : 0o 1 1
k=1 B1 N 1L 1 1 2 4
B, 1 2 1 1
B, 1 3 1 1 (Hitting set highlighted.)
(@
R an optimal merge of R:
N B C1 C2 N B Cl Cz
HS case 2: E 1L 1 o
t B,OE 1 1 1 0
S={1,23,4} Ez 2 L o 1 IR
3 1 0
C,={1 3 Ej . i o 1 B,OE, 2 2z o0 1
C,={2.4 c. | o 1 1 BOE 3 3 1 0
k=1 ¢, 1 o L 1 C®E, 4 0 0o 1
B, 1 1 1 1 i i
B, 1 2 1 1 C, 0 1
By, 1 3 1 L

No 4-merge of R exists.

(b)

Figure 2: Hitting Set translations to Tuple Merge Decision.

This shows that ahrmerge ofR determines a hitting set of sike Conversely, a hitting set of
sizek will clearly determine am-merge of the relatioR as defined above. Hence, Tuple Merge is
at least as difficult as Hitting Set.

On the other hand, Tuple Merge is in NP. The easiest way to see this involves the idea of a
merge-mapping. Given relationR, and natural numbdr anl-merge-mapping for R is a mapping
from the tuples oR into {1,...,1} that describes ahrmerge ofR (tuples mapped to the same
number are to be merged). Suppose we have a relRi@mmd a natural numbér and we guess
anl-merge-mapping foR. In this case, we can verify whether the mapping indeed describes a
well-definedl-merge ofR in time O(|R| - ) by attempting to build thé-merge. Thus, TMD is
solvable in NP.

Corollary 3.1
OTM is NP-complete.

Example 3.1
Figure 2 (a) and (b) give two Hitting Set problems and corresponding relaorisgure 2 (a)
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gives an example where darmerge exists; figure 2 (b) gives an example wheré-arerge does

not exist. In figure 2 (a), the elements of the hitting set are highlighted irtierge relation.

4 Further Results

Although the above result would appear to be seriously limiting in terms of the viability of the
merge operation for federated relations, there is a broad class of relations which admit a unique
(and easily identifiable) optimal merge. Furthermore, the description of this class gives us a

polynomial-time test to determine whether the merge of a relation is unique.

Proposition 4.1
Let R be a relation. TheR has a unique non-trivial optimal merge exactly in case the following
condition holds: for every triplé;, to,t3 of tuples inR, if at least two pairs involvinds,to, t3 are

mergeable, then all df,t, andtz are mergeable.

Proof of Proposition 4.1:

Both directions are reasonably straightforward using proof by contradiction. We will show the
condition is sufficient to guarantee a unique merge. Indeed, supposeendire condition holds

but there are at least two distinct non-trivial optimal mergeRofiamelySandS'. SinceS and

S are both non-trivial and optimal yet distinct, there are tupl&s, ...,Xn, Y1, ..., Ym € R such that
ts=tOX1® --OXy€Sandtg =tOy1®---Oyme S.

Case 1. If tsandtg are not mergeable, then there muskpandy; which are not mergeable,

andt, x; andy;j break the condition.

Case 2. If tsandtg are mergeable, then considgalone, wheré¢ ©x1®---OXnOY1- - O Ym
could replace ©® x; ® --- © Xn With the y;'s being removed from other tuples where they
occur. SinceSis minimal, this cannot empty out any other tuples, so there is sgnaad
2,...,z«Wherey; ©z; ®--- ®z is in the originalSbut is not mergeable with®o X1 ©® - - - © Xp.
In this casey;, somez, and eithet or somex; comprise a triple that violates the condition.



Corollary 4.1
GivenR, a relation such thgR| = n, we can test whether there is a unique optimal mergéfor

using at mosO(n3) tuple comparisons.

The class of relations having a unique optimal merge includes a sub-class particularly appro-
priate for use with relational transpositiériThe description of this class requires recourse to the
notion of asuperkey of a relation: a set of attributes whose values uniquely identify every tuple
in the relation. Definitions 4.1, 4.2 and proposition 4.2 (below) gives a precise formal account of
why the merging in figure 1 is well-defined.

Definition 4.1
Let R(A,B,Cy,...,Cn) be a relation schema. Then ttranspose of A on B of R, denotediB(R) is

given as follows.
1. The active schema af(R) is {v:v e Ng(R),v# L} Uasch(R),® and

2. whenever there is= (A:a,B:b,Cy: cy,...,Ch: Cy) € Rwhereb # | then the tuplgA:
a,B:b,Ci:cy,...,Cqhicn,b:a) € TB(R),
Definition 4.2
Let R(Aq,...,An) be a relational schema. Théin, (R), thedrop projection of Ron A;, is defined
asUa (R) = Masonr)—(a} (R)-
Proposition 4.2
Let Rbe a relation wittasch(R) = {A,B,Cy, ...,Cn}. LetR := Lo g(18(R)). Suppose furthermore

that{B,Cy,...,Cn} is asuperkey for R. ThenR has exactly one non-trivial optimal merge.

Proof of Proposition 4.2:

SupposeR, R are as above and the condition holds. Since[B&;, ...,C,} components uniquely
identify tuples inR, there will be at mosbne A value inR for every group of distincB,Cy,...,C,
values. ConsideR. LetMg(R) = {(by),...,(bm)}. Then the active schema Bf is {b, ...,bn} U
{Cy,...,Cn} (note we dropped th& andB columns inR’). We can partitiorR into sub-relations

2Every relation can be seen as the transposeroé relation, thus the following result is general.
3M denotes ordinary relational projection.



R;....,R based on distinety, ...,C, values. For each of these partitidRs(1 < i < k), at most one
tuple has a non-nulhj component for allj, 1 < j <m. This means each of these partitions can
be fully merged in exactly one way, resulting in one tuple for e@chAltogether we will havek
tuples in the optimal merge & as a result.

5 Conclugons

Given propositions 4.1 and 4.2, we can easily determine whether merging the result of a transpose
is well-defined. In fact, according to proposition 4.2, the best case involves checking for a superkey
(which is linear in the size of the relation).

We can incorporate this into our relational interoperability framework as follows. We provide
a fast merge operator for relations), that checks the condition in proposition 4.2. In case the
condition holds, the unique optimally merged result is returned. Otherwise, we can return some
heuristically determined but not necessarily optimal merge (or simply issue an error). In this way,
we can meet the user’s expectations for the transposition of a relation in a broad range of cases
which will suffice in practice since “artificial” null values will most often arise during relational

interoperation.
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