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Abstract

The Optimal Tuple Merge (OTM) problem arises within the context of relational query lan-

guage extensions to query and manipulate metadata as well as data. Such extensions include

the ability to create dynamic output schemas from the input data. This flexibility is necessary

for truly schema independent restructuring, however many null values may be introduced into

the resultant data. Many of these “artifical” null values can be subsequently merged away. In

this paper, we prove that the optimal merging case, in which the resulting relation contains

as few tuples as possible, results in an NP-Complete problem. In spite of this, we character-

ize when an optimal (and unique) merge is easy to obtain, and identify at least one class of

practically relevant relations where OTM is efficiently solvable.
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1 Introduction

Recent frameworks for relational interoperability provide flexible methods for querying and re-

structuring both metadata and data in relational tables. This flexibility is necessary to satisfy the

demands for schema independent queries that arise when combining semantically similar data from

multiple, distinct sources. Applications of relational interoperability are widespread, and include

support for Federated Information Systems (FIS), encompassing the ability to create and manage
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mediators, global schemas, and metadata dictionaries. Furthermore, recent extension to the rela-

tional query languages SQL and the RA enable real-time interoperability in a large federation of

relational databases [3].

However, the added flexibility provided by frameworks for relational interoperability comes

with a price. One required capability is the ability to promote a column of data to relational

attributes (column headings). In order that this “transpose-like” operation on relations has a con-

sistent semantics for any relational table, many null values may be introduced into the result. We

would ideally like to merge these “artificial” null values as much as possible to obtain a relation

with the minimum number of tuples.

As a motivating example, consider the relation in figure 1 (a). This relation tracks assignment

grades for the students John, Jane, and Spot. After transposition, we obtain the relation in figure 1

(b). Such a transformation is important when translating from relational databases to spread sheets

(or vice versa). In this case, we can merge as shown (figure 1 (c)).

Name Asg1 Asg2 Asg3 Asg4 Asg5

John
John
John
John
John
Jane
Jane
Jane
Jane
Spot
Spot
Spot
Spot
Spot

78
73

88

50
53

48
67

90
85

96

82

89

84

98

(b)

Transposed relation (Asg1, Asg2, Asg3, Asg4, Asg5 data values
have become column headings)

Name

John
Jane
Spot

78 73 88 82 84
50 53 48 67
90 85 96 9889

Asg1 Asg2 Asg3 Asg4 Asg5

(c)

Optimal merged relation

John

Name

Asg1
Asg2
Asg3
Asg4
Asg5

John
John
John
John
Jane Asg1

Asg2
Asg3
Asg5

Jane
Jane
Jane
Spot Asg1

Asg2
Asg3
Asg4
Asg5

Spot
Spot
Spot
Spot

78

Assignment Grade

73
88
82
84
50
53
48
67
90
85
96
89
98

(a)

Original relation

Figure 1: Merge example.

What is special about this example is that there is exactly one assignment grade for each stu-

dent. If the original relation had another tuple such as hName : John;Assignment : Asg3;Grade : 85i;

giving a conflicting grade for John’s third assignment, the merge would no longer be unique. This

intuition will be made precise in proposition 4.2. First, we will introduce some necessary termi-

nology and consider the merging problem in more generality.
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2 Terminology

The most basic elements within our formal framework are called domain elements. We assume

a countably infinite domain of atomic elements, denoted dom, which typically contains alphanu-

meric strings, such as 123, abc or SomeElement. We will use teletype font to denote specific

elements of dom. In addition, we assume a special element, ?, called the null element. We stipu-

late that ? 62 dom.

Definition 2.1

A tuple is a mapping from dom to dom[ f?g that is ? at all but a finite number of domain

elements.

A tuple may be represented explicitly using the notation hA1 : a1; :::;An : ani where Ai 2 dom and

ai 2 dom[f?g (1 � i � n). Alternatively (or in combination), we may use the notation t[A] to

mean t(A), the A-th component of t. A canonical relation is a finite set of tuples. The active

schema of a relation, R, denoted asch(R), consists of domain elements, A, for which some tuple

t 2 R assigns a non-null value to A.

Definition 2.2 (see [2], definition 4.2)

Let R be a relation with asch(r) = fA1; :::;Ang.

1. Two tuples t1; t2 2 R are mergeable provided for each i = 1; :::;n, either t1[Ai] = t2[Ai] or one

of t1[Ai] or t2[Ai] is a null value.

2. Suppose t1; t2 2 R are mergeable. Then their merge, denoted t = t1� t2, is given by

t[Ai] =

8><
>:

t1[Ai] if t1[Ai] 6=?;

t2[Ai] otherwise.
(1 � i � n)

In what follows, we consider the idea of an optimal merge result. A merge result is considered

optimal if no smaller merge result can be obtained. This is made precise in definition 2.4.

Definition 2.3

Let R;S be relations. Then we say S is a merge of R in case S can be obtained from R by a finite

sequences of merges among mergeable tuples.
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Definition 2.4 (Optimal Merge)

Let R;S be relations. Then S is an optimal merge for R in case

1. S is a merge of R, and

2. for all S0 such that S0 is a merge of R, we have that jSj � jS0j.

Note that, in general, there will be more than one optimal merge for a given relation R.

3 Optimal Tuple Merge is NP-Complete

Optimal merges for a relation are, in general, provably difficult to find. By this, we mean that

the problem of finding an optimal merge counterpart for an arbitrary relation belongs to the well-

known class of NP-Complete problems. Before proving this, we must precisely state the Tuple

Merge and Optimal Tuple Merge problems more formally.

Definition 3.1

1. The Tuple Merge Decision (TMD) problem is thus: given a relation R and a natural number

l, is there a merge of R of size l (i.e. an l-merge)?

2. The Optimal Tuple Merge (OTM) problem is to find an optimal merge of a given relation R.

If we can determine whether a relation has a merge of size l in time T (l), we can find such a

merge in time O(jRj3 �T (l) � l). Thus, a polynomial-time solution to to TMD gives a polynomial-

time solution to OTM, since we need only determine the least number in f1; :::; jRjg for which a

merge exists, and then compute such a merge.

Theorem 3.1 (Tuple Merge Decision is NP-Complete)

Let R be a relation and l a natural number. Then the problem of determining whether R has an

l-merge is NP-complete.

Proof of Theorem 3.1:

We will give a class of hrelation, li pairs for which the problem of deciding whether there is an
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l-merge is equivalent to finding a solution to the known NP-Complete decision problem Hitting

Set ([1], page 222).

Hitting Set involves a finite set S = f1; :::;mg and a collection of sets C1; :::;Cn � S. In addition,

we are given an integer k � m. The problem asks: is there a set S0 � S where jS0j = k and for all

j;1 � j � n, Cj \S0 6= /0?

Given an instance of Hitting Set, we define the following relation, R. The active schema of R

will be fN;B;C1; :::;Cng.1 In addition R contains the following tuples:

1. m tuples Ei := hN : i;B : ?;C1 : x1; :::;Cn : xni for 1 � i � m, where for 1 � j � n

x j =

8><
>:

1 in case j 2Cj, and

0 otherwise;

2. n tuples Cq := hN : ?;B : 0;C1 :?; :::;Cq : 1; :::;Cn : ?i for 1 � q � n; and

3. m� k tuples Bp := hN : ?;B : p;C1 : ?; :::;Cn : ?i for 1 � p � m� k.

Given R, let l = m. We claim that there is an l-merge of R exactly in case there is a hitting set

for the Ci of size k.

Any merge of R will be of size � m since none of the Ei tuples can be merged with each other

(they all differ on the N component).

Additionally, because the B component of the Bp tuples is distinct from the B component of

the Cq tuples, no Bp tuple can merge with any Cq tuple. However, the Bp tuples can merge with the

Ei tuples. Assume this is done, leaving m� (m�k) = k Ei tuples unmerged with Bp’s that need to

be merged with the Cq tuples.

It should be clear that, by definition, a Cq can only merge with an Ei in case i 2Cq; hence, we

can see that all remaining Ei tuples will be merged exactly in case there is at least one Hitting Set

of size k for the Cq sets (this Hitting Set will in fact be given as the set of N components of the Ei

tuples that merged with the Cq tuples).
1We will overload the names “C1” through “Cn” to denote both the subsets of S as well as the corresponding column

attributes of R so that the following exposition is clearer.
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Figure 2: Hitting Set translations to Tuple Merge Decision.

This shows that anl-merge ofR determines a hitting set of sizek. Conversely, a hitting set of

sizek will clearly determine anl-merge of the relationR as defined above. Hence, Tuple Merge is

at least as difficult as Hitting Set.

On the other hand, Tuple Merge is in NP. The easiest way to see this involves the idea of a

merge-mapping. Given relationR, and natural numberl, an l-merge-mapping for R is a mapping

from the tuples ofR into f1; :::; lg that describes anl-merge ofR (tuples mapped to the same

number are to be merged). Suppose we have a relationR and a natural numberl, and we guess

an l-merge-mapping forR. In this case, we can verify whether the mapping indeed describes a

well-definedl-merge ofR in time O(jRj � l) by attempting to build thel-merge. Thus, TMD is

solvable in NP.

Corollary 3.1

OTM is NP-complete.

Example 3.1

Figure 2 (a) and (b) give two Hitting Set problems and corresponding relationsR. Figure 2 (a)
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gives an example where anl-merge exists; figure 2 (b) gives an example where anl-merge does

not exist. In figure 2 (a), the elements of the hitting set are highlighted in thel-merge relation.

4 Further Results

Although the above result would appear to be seriously limiting in terms of the viability of the

merge operation for federated relations, there is a broad class of relations which admit a unique

(and easily identifiable) optimal merge. Furthermore, the description of this class gives us a

polynomial-time test to determine whether the merge of a relation is unique.

Proposition 4.1

Let R be a relation. ThenR has a unique non-trivial optimal merge exactly in case the following

condition holds: for every triplet1; t2; t3 of tuples inR, if at least two pairs involvingt1; t2; t3 are

mergeable, then all oft1; t2 andt3 are mergeable.

Proof of Proposition 4.1:

Both directions are reasonably straightforward using proof by contradiction. We will show the

condition is sufficient to guarantee a unique merge. Indeed, suppose not:i.e. the condition holds

but there are at least two distinct non-trivial optimal merges ofR, namelyS andS 0. SinceS and

S0 are both non-trivial and optimal yet distinct, there are tuplest;x1; :::;xn;y1; :::;ym 2 R such that

tS = t� x1��� �� xn 2 S andtS0 = t� y1��� �� ym 2 S0.

Case 1. If tS andtS0 are not mergeable, then there must bexi andy j which are not mergeable,

andt, xi andy j break the condition.

Case 2. If tS andtS0 are mergeable, then considerS alone, wheret�x1��� ��xn�y1 � � ��ym

could replacet � x1� �� � � xn with the y j ’s being removed from other tuples where they

occur. SinceS is minimal, this cannot empty out any other tuples, so there is someyJ and

z1; :::;zk whereyJ�z1��� ��zk is in the originalS but is not mergeable witht�x1��� ��xn.

In this case,yJ, somezk, and eithert or somexi comprise a triple that violates the condition.
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Corollary 4.1

GivenR, a relation such thatjRj = n, we can test whether there is a unique optimal merge forR

using at mostO(n3) tuple comparisons.

The class of relations having a unique optimal merge includes a sub-class particularly appro-

priate for use with relational transposition.2 The description of this class requires recourse to the

notion of asuperkey of a relation: a set of attributes whose values uniquely identify every tuple

in the relation. Definitions 4.1, 4.2 and proposition 4.2 (below) gives a precise formal account of

why the merging in figure 1 is well-defined.

Definition 4.1

Let R(A;B;C1; :::;Cn) be a relation schema. Then thetranspose of A on B of R, denotedτB
A(R) is

given as follows.

1. The active schema ofτB
A(R) is fv : v 2 ΠB(R);v 6=?g[asch(R),3 and

2. whenever there ist = hA : a;B : b;C1 : c1; :::;Cn : cni 2 R whereb 6= ? then the tuplehA :

a;B : b;C1 : c1; :::;Cn : cn;b : ai 2 τB
A(R).

Definition 4.2

Let R(A1; :::;An) be a relational schema. Then

Π
Ai(R), thedrop projection of R on Ai, is defined

as

Π

Ai(R) = Πasch(R)�fAig(R).

Proposition 4.2

Let R be a relation withasch(R) = fA;B;C1; :::;Cng. Let R0 :=

Π

A;B(τB
A(R)). Suppose furthermore

thatfB;C1; :::;Cng is asuperkey for R. ThenR0 has exactly one non-trivial optimal merge.

Proof of Proposition 4.2:

SupposeR, R0 are as above and the condition holds. Since thefB;C1; :::;Cng components uniquely

identify tuples inR, there will be at mostone A value inR for every group of distinctB;C1; :::;Cn

values. ConsiderR0. Let ΠB(R) = fhb1i; :::;hbmig. Then the active schema ofR0 is fb1; :::;bmg[

fC1; :::;Cmg (note we dropped theA andB columns inR0). We can partitionR0 into sub-relations
2Every relation can be seen as the transpose ofsome relation, thus the following result is general.
3Π denotes ordinary relational projection.
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R0
1; :::;R0

k based on distinctC1; :::;Cn values. For each of these partitionsR0
i (1� i� k), at most one

tuple has a non-nullb j component for allj, 1� j � m. This means each of these partitions can

be fully merged in exactly one way, resulting in one tuple for eachR0
i. Altogether we will havek

tuples in the optimal merge ofR0 as a result.

5 Conclusions

Given propositions 4.1 and 4.2, we can easily determine whether merging the result of a transpose

is well-defined. In fact, according to proposition 4.2, the best case involves checking for a superkey

(which is linear in the size of the relation).

We can incorporate this into our relational interoperability framework as follows. We provide

a fast merge operator for relations,
J

, that checks the condition in proposition 4.2. In case the

condition holds, the unique optimally merged result is returned. Otherwise, we can return some

heuristically determined but not necessarily optimal merge (or simply issue an error). In this way,

we can meet the user’s expectations for the transposition of a relation in a broad range of cases

which will suffice in practice since “artificial” null values will most often arise during relational

interoperation.
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