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Abstract

“Concepts” are an essential language feature needed to support generic pro-
gramming in the large. Concepts allow for succinct expression of bounds on type
parameters of generic algorithms, enable systematic organization of problem do-
main abstractions, and make generic algorithms easier to use. In this paper we
formalize the design of a type system and semantics for concepts that is suitable
for non-type-inferencing languages. Our design shares much in common with the
type classes of Haskell, though our primary influence is from best practices in
the C++ community, where concepts are used to document type requirements for
templates in generic libraries. The technical development in this paper defines an
extension to System F and a type-directed translation from the extension back to
System F. The translation is proved sound; the proof is written in the human read-
able but machine checkable Isar language and has been automatically verified by
the Isabelle proof assistant. This document was generated directly from the Isar
theory files using Isabelle’s support for literate proofs.
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1 Introduction

Generic programming is an effective methodology for developing reusable software
libraries. Musser and Stepanov developed the methodology in the late 1980’s [32, 33]
and applied it to the construction of sequence and graph algorithms in Scheme, Ada,
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and C. In the early 1990’s they shifted focus to C++ and took advantage of templates [46]
to construct the Standard Template Library [45] (STL). The STL became part of the
C++ Standard, which brought generic programming into the mainstream. Since then,
generic programming has been successfully applied in the creation of generic libraries
for numerous problem domains [4,24,38,41,43,48,50].

A distinguishing characteristic of generic programming is that generic algorithms are
expressed in terms of properties of types, rather than in terms of any particular type. A
generic algorithms can be used (more importantly, reused) with any type that has the
necessary properties. (Support for generic programming in a statically typed language
thus requires type parameterization.)

A fundamental issue in providing language support for generic programming is how to
express the set of admissible types for a given algorithm, or equivalently, how to design
a type system that can check calls to a generic (type-parameterized) algorithm and
separately check the implementation of the algorithm. An important complementary
issue is providing the run-time mechanism by which user-defined operations, such as
multiplication for aBigInt type, are connected with uses of operations inside a generic
algorithm, such as a call tox ∗ x in an algorithm parameterized on the number type.
In today’s programming languages there are three common approaches to addressing
these issues: subtype bounds, type classes, and by-name operation lookup. We briefly
describe each of these approaches below and show examples in Figure 1.

Subtype Bounds(Figure 1 (a)) In object-oriented languages, bounds on type parame-
ters are typically expressed via subtyping [7,8,37]. When a generic function constrains
a type parameter to be a subtype of an interface, objects passed to the generic function
must carry along the necessary operations. This approach is used in Eiffel [28] and in
the generics extensions to Java [6] and C# [23,29].

Type Classes(Figure 1 (b)) In Haskell, type classes are used to describe the set of
admissible types to a generic function [49]. A type class contains a list of required
operations, and a type is declared to belong to a type class through an instance dec-
laration that provides implementations of the required operations. If a type parameter
to a generic function is constrained to be an instance of a type class, operations from
the appropriate instance declaration are implicitly passed into the generic function. A
type class is similar to an object-oriented interface in that it specifies a set of required
operations. However, unlike interfaces, type classes are not themselves types (e.g., one
cannot declare a variable with a type class as its type).

By-Name Operation Lookup (Figure 1 (c)) In CLU [26] and Cforall [11], a generic
function declares the name and signature of all the operations it needs. Then at a call to
the generic function, the enclosing scope must contain definitions of functions with the
appropriate names and signatures. These functions are then passed implicitly into the
generic function. The approach used in C++ is similar in that individual operations are
found based on their names. However, a generic function does not explicitly declare
which operations it needs. Instead, name resolution in the body of the function is
performed after instantiation, using argument-dependent lookup [16].

In [12] we implemented a generic graph library (based on the Boost Graph Library [42])
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public interface Number<U> {
public U mult(U other);

}
public class BigInt implements Number<BigInt> {

public BigInt mult(BigInt x) { ... }
...

}
public class Square {

<T extends Number<T>>
T square(T x) { return x.mult(x); }

public static void main(String[] args) {
square(BigInt(4));

}
}

(a) Subtyping: parameter T must extend the Number in-
terface.

class Number a where
mult :: a →a →a

instance Number Int where
mult = (∗)

square :: Number a ⇒a →a
square x = mult x x

main = square (4::Int)

(b) Type classes: parameter
“a” must be an instance of
the Number type class.

template <class Number>
Number square(Number x) {

return mult(x, x);
}

int mult(int x, int y) { return x ∗ y; }

int main() {
return square(4);

}

(c) By-name operation lookup: a
function with the name “mult” is
found for type int.

Figure 1: Common approaches to realizing generic programming.
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using programming languages in each of the above three categories. We carefully eval-
uated each language with respect to support for generic programming and found that
although these approaches were able to support generic programming to varying de-
grees, none was ideal. The primary limitation was that existing languages do not fully
capture the essential feature of generic programming, namely,concepts.

In the parlance of generic programming, concepts are used to express sets of admis-
sible types to an algorithm. More specifically, a concept is defined as a collection
of abstractions, membership in which is defined by a list of requirements. Concepts
as specifications were formalized in the generic programming literature [21, 22, 51],
but are more widely known through their use in the documentation of C++ template
libraries [5,44].

Contributions. The current practice of generic programming is impeded because no
existing language provides all the features and abstractions needed to support generic
programming. In this paper we capture the essence of the necessary language ab-
stractions in a small formal system. Our primary contribution is System FG, a simple
language based on System F [13, 40] that explicitly includes concepts. Our design of
FG reflects a decade of experience in generic library construction in C++. Technically,
System FG is unique because 1) it provides scoped concept and model declarations,
2) concepts integrate nested types and type sharing in a type class-like feature, and 3)
it explores the design space of type classes for non-type-inferencing languages. The
formal developments in this paper were carried out using the Isabelle/Isar proof assis-
tant [34, 35]. We define System FG and a translation from FG to F and prove that the
translation is sound. The proof is expressed in the Isar proof language, a language that
is both human readable and machine checkable, and the proofs have been verified in
Isabelle. This document was generated directly from the Isar theory files.

Road map. Concepts have a number of similarities to the type classes of Haskell [15,
49] and FG has a number of similarities (and differences) with existing work, which we
discuss in Section 2. In Section 3 we provide a brief introduction to Isabelle and Isar.
In Section 4 we review System F, formalize its type system in Isabelle, and prove a few
properties that are necessary for our proof that the translation from FG to F is sound. In
Section 5 we introduce the syntax of FG and present some examples that demonstrate
generic programming in FG. We define both the type system and dynamic semantics
of FG in terms of a type-directed translation to System F (similar to the translation of
type classes to System F in [15]). We present an informal description of the translation
in Section 6 and the Isabelle formalization in Section 7. We prove that the translation
is sound in Section 8. Section 9 discusses future work and concludes.

2 Related Work

Of existing languages, Haskell’s type classes are the most similar to concepts. They are
based purely on parametric polymorphism, as are concepts. A fundamental difference
between our approach and that of type classes is that we are targeting languages without
Hindley-Milner style type inference. This gives our design more freedom in other
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aspects. For example, in FG two concepts may share the same member name (as do
classes in object-oriented languages) whereas in Haskell two type classes in the same
module may not share the same member name. In addition, our design is based on
experience in the field of generic library construction. One of the primary lessons
learned from that experience is the need for modularity, especially for good scoping
rules. As a result, concepts and models in FGare expressions, not declarations (as are
type classes and instances in Haskell), and they obey the usual lexical scoping rules.
The advantages of lexically scoped concepts and models are discussed in Section 5.

Another lesson we learned is that support for associated types is important. In our
study [12] we found that without associated types, interfaces of generic algorithms be-
come cluttered with extra type parameters to the point of causing scalability problems,
and internal helper types of abstract data types must be exposed, thereby breaking
encapsulation. In response to our study, Chakravartyet al proposed an extension to
Haskell for associating algebraic data types with concepts [9]. Our work differs from
that in [9] in three ways. First, our associated types are not algebraic data types but sim-
ply requirements for a type definition; all that is necessary for generic algorithms. The
second difference is that we include same-type constraints, which are vital for generic
algorithms that use associated types. Associated types and same-type constraints will
be treated in Part 2 of the technical report. Third, we include concept inheritance (re-
finement) in our formalism. Earlier extensions to Haskell [10,19] address some of the
same issues solved by associated types, but they did not address the problems of clutter
and encapsulation.

In Standard ML [30], a rough analogy can be made between ML signatures and FG

concepts, and between ML structures and FG models. However, there are significant
differences. Fist, functors are module-level constructs and therefore provide a more
coarse-grained mechanism for parameterization than do generic functions. More im-
portantly, functors require explicit instantiation with a structure, thereby making their
use more heavyweight than generic functions in FG or Haskell, which perform auto-
matic lookup of the required structure. The associated types and same-type constraints
of FG are roughly equivalent to types nested in ML signatures and to type sharing. We
reuse some implementation techniques from ML such as a union/find based algorithm
for deciding type equality [27]. There are numerous other languages with parameter-
ized modules [1,14,39] that also require explicit instantiation with a structure.

As discussed in the introduction, many object-oriented languages choose to express
bounds on type parameters via subtyping [6, 23, 28, 29]. For a detailed account of the
problems we encountered with the subtype-based approach we refer the reader to our
study [12].

In some sense, our work combines some of the best features of Haskell and ML relative
to generic programming. However, there are non-trivial details to combining these
features and these details are discussed in detail in this paper.
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3 Introduction to Isabelle and Isar

Isabelle is a generic proof assistant, and Isabelle/HOL is the version of Isabelle that
supports reasoning in higher-order logic. The Isar proof language is a front end to
Isabelle that provides both a human readable presentation and a machine checkable
formalism. We provide a short introduction to Isabelle and Isar here, which we hope is
enough to enable the reader to understand this paper. For a more detailed introduction
we refer to the reader to [34,35].

The following is an example proof in Isar. The lemma proves that the length of two
lists appended is the sum of the length of the two lists. The labellength-appendhas
been given to the lemma so that we can use it in other proofs. Like most proofs in
this document, this proof is by induction. The induction is on the listls1. Isabelle
encompasses an ML-like functional language, complete with support for data types.
Since there are two constructors for the list data type, there will be two cases for the
induction. A long dash indicates the start of a comment.

lemma length-append: ∀ ls2. length(ls1@ls2) = length ls1+ length ls2
proof (induct ls1)

— The first case is for the empty list. The keyword “show” indicates that a subgoal of the
lemma is to be proved. The phrase “by simp” indicates that the statement will be proved using
Isabelle’s simplifier, which expands definitions, in this case length and append, and performs
some simple arithmetic and logic.
show∀ ls2. length([] @ ls2) = length[] + length ls2by simp

next — The second case is for whenls1= x#xs. The keyword “fix” introduces fresh variables.
fix x xs— The keyword “assume” introduces one or more premises. We often use the label IH

for an induction hypothesis.
assumeIH : ∀ ls2. length(xs@ ls2) = length xs+ length ls2
show∀ ls2. length((x#xs) @ ls2) = length(x#xs) + length ls2
proof clarify — “clarify” decomposes logical constructs such as∀ and−→.
fix ls2— The “have” below states an intermediate result.
have length((x#xs) @ ls2) = length(x#(xs@ls2)) by simp
— The keyword “also” indicates equational reasoning. The ellipses stand for the previous

right-hand side.
also have. . . = 1 + length(xs@ls2) by simp
— Previously proven statements can be used via the “from” keyword followed by the labels

for the statements.
also from IH have. . . = 1 + length xs+ length ls2by simp
— The keyword “ultimately” indicates we are finished with the equational reasoning and have

the first left-hand side equal to the last right-hand side
ultimately have length((x#xs) @ ls2) = 1 + length xs+ length ls2by simp
— “thus” is like “show”, but uses the previous statement.
thus length((x#xs) @ ls2) = length(x#xs) + length ls2by simp

qed
qed

The following tree type is an example of Isabelle’s facility for defining algebraic data
types.

datatype ′a tree= Leaf ′a | Node ′a tree ′a tree
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Isabelle provides two facilities for the definition of recursive functions. The first re-
stricts definitions to primitive recursive functions, but automatically ensures termina-
tion. There must be a pattern match against the input data type, which decomposes
the data into its parts. Then a recursive call must refer to one of the parts. The type
constructor⇒ is for (total) functions.

constsheight:: ′a tree⇒ nat
primrec
height(Leaf x) = 0
height(Node a b) = 1 + max(height a) (height b)

The second facility allows for the definition of total recursive functions, but the user
must provide a measure function that decreases with each recursive call. Isabelle will
attempt to automatically prove that the measure decreases. If Isabelle fails, the user
must provide the appropriate lemmas to allow the termination proof to succeed. Below
is a version of quick sort for lists. A lemma concerning the length of a filtered list is
needed to prove termination.Sucis the constructor for natural numbers that adds one.

lemmafilter-length: length(filter f xs) < Suc(length xs)
by (simp add: less-Suc-eq-le)

constsquicksort:: nat list⇒ nat list
recdefquicksort measure length
quicksort[] = []
quicksort(x#xs) = quicksort(filter (λ y. y≤x) xs) @ [x] @ quicksort(filter (λ y. x<y) xs)

(hints recdef-simp: filter-length)

Another important feature of Isabelle is the inductive definition of sets, which will be
used in this paper to define judgments of various forms, especially typing judgments.
The well typed terms of the simply-typedλ-calculus serves as an example of an in-
ductively defined set. The following data types represent the types and terms of the
simply-typedλ-calculus. Nice syntax for the data type constructors is defined in the
parentheses.

datatypestlc-type= Fun stlc-type stlc-type(infixl → 100) | Bot (⊥ 100)
datatypestlc-term= Vrbl nat (‘-) | Apply stlc-term stlc-term(-·-) | Abs nat stlc-term(λ -. -)

The set of well typed terms is actually a triple, consisting of a type assignment, a term,
and its type. Several labeled introduction rules are defined for the set.

constswell-typed:: ((nat⇒ stlc-type) × stlc-term× stlc-type) set
inductive well-typedintros
stlc-var: (Γ, ‘x, Γ x) ∈ well-typed
stlc-app: [[ (Γ, e1, τ→τ ′) ∈ well-typed; (Γ, e2, τ) ∈ well-typed]]

=⇒ (Γ, e1· e2, τ ′) ∈ well-typed
stlc-abs: (Γ(x:=τ), e, τ ′) ∈ well-typed=⇒ (Γ, λ x. e, τ→τ ′) ∈ well-typed

The double arrow=⇒ is Isabelle’s meta-level implication, and[[ P; Q ]] =⇒ R is an
abbreviation forP =⇒ Q =⇒ R. The notationΓ(x:=τ) stands for function update:

f (a := b) ≡ λx. if x = a then b else f x

8



Figure 2: Types and Terms of System F

s, t ∈ Type Variables
x, y, d ∈ Term Variables
n ∈ N
σ, τ, ν ::= t | fn τ → τ | τ × · · · × τ | ∀t. τ

f ::= x | f(f) | λy : τ . f | Λt. f | f [τ ]
| let x = f in f | 〈f, . . . , f〉 | nth f n

The following creates nice syntax for membership in the inductively defined set.

syntaxwell-typed:: [nat⇒ stlc-type, stlc-term, stlc-type] ⇒ bool (- ` - : - [52,52,52] 51)
translations Γ ` e : τ 
 (Γ, e, τ) ∈ well-typed

Isabelle has a facility for typesetting any implication as an inference rule with a hor-
izontal bar, which will be used throughout this paper for the introduction rules of in-
ductively defined sets.

Γ ` e1: τ → τ ′ Γ ` e2: τ

Γ ` e1·e2: τ ′ (STLC-APP)
Γ(x := τ) ` e : τ ′

Γ ` λ x. e : τ → τ ′(STLC-ABS)

4 System F

System F, the polymorphic lambda calculus, is the prototypical tool for studying type
parameterization [13,40]. Figure 2 presents the abstract syntax for the types and terms
of System F. Type abstractions and functions have multiple parameters, instead of the
more standard single parameter, to facilitate the translation from FG to F. Tuples are
included in the language to serve as the runtime representation of models, and alet
expression serves to further simplify the translation. Several constants not included
here will be used in the examples, such asfix (for recursion), but these are not included
in the formalization because they are trivial to add.

It is possible to write generic algorithms in System F, as demonstrated in Figure 3, with
a polymorphicsum function. The function is written in the higher-order style, passing
the type-specificadd andzero as parameters. However, this approach does not scale:
practical algorithms typically require dozens of type-specific operations.

The following data types are used to represent types and terms of System F in Isabelle.
Shorthand syntax for the data type constructors is given in the parentheses next to each
constructor. Dashes in the syntax are place-holders for arguments.

typesvar = nat
datatype ty = VarT var(‘- ) | ArrowT ty list ty(fn -→ - ) | AllT var list ty (∀ -. - )
| TupleT ty list(〈-〉 ) | BoolT | IntT
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Figure 3: Higher Order Sum in System F

let sum =
(Λ t.

fix (λ sum : fn(list t, fn(t,t)→t, t)→t.
λls : list t, add : fn(t,t)→t, zero : t.
if null[t](ls) then zero
else add(car[t](ls), sum(cdr[t](ls), add, zero)))) in

let ls = cons[int](1, cons[int](2, nil[int])) in
sum[int](ls, iadd, 0)

datatype trm = Var var (‘- ) | App trm trm list(infixl · )
| Lam var list ty list trm(λ -:-. - ) | LetTrm var trm trm(let - := - in - )
| Forall var list trm (Λ -. - ) | Inst trm ty list(-[-] )
| Tuple trm list(〈-〉 ) | Nth trm nat| Boolean bool| Integer int

4.1 Type Substitution

The process of instantiating a type abstraction substitutes types for occurrences of the
parameters in the body of the abstraction. For example, take the identify functionid =
Λt.λx:t. x whose type is∀ t.t→t. Instantiating the identity functionid [int] substitutes
int for t, resulting inλx:int.x which has the typeint→int.

As defined here, type abstractions have multiple parameters, so a list of types will be
simultaneously substituted for a list of parameters. The following auxiliary function
will be used to search through a list of variables and a corresponding list of types to
find the type for a variable (and the position of the variable in the list).

constslookup:: [var, var list, ′t list, nat] ⇒ ( ′t × nat) option
primrec
lookup x[] vs i= None
lookup x(k#ks) vs i=

(case vs of[] ⇒ None| v#vs′⇒ if k = x then Some(v,i) else lookup x ks vs′ (Suc i))

There are several ways to define substitution. The standard definition is used here and
the variable convention is relied on to assure that free variables are not captured during
substitution [3]. The recursive function below implements substitution. The nested list
in the ty datatype prevents the use of Isabelle’sprimrec facility, so recdef is used to
define substitution. The following two lemmas are needed to prove termination. The
first states that ifx is in ss, thensize xis less thansize(fn ss→ t). The second states
that if if x is in τs, thensize xis less thansize〈τs〉.
lemma ty-list-tc1: x∈ set ss−→ size x< Suc(ty-list-size1 ss+ size t)
by (induct ss rule: list.induct, auto)
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lemma ty-list-tc2: x∈ setτs−→ size x< Suc(ty-list-size2τs)
by (inductτs rule: list.induct, auto)

constssub-ty:: (var list× ty list× ty) ⇒ ty
recdefsub-ty measure(λ p. size(snd(snd p)))
sub-ty(ts, τs, ‘t ) = (case(lookup t tsτs 0) of None⇒ ‘t | Some(τ ,i) ⇒ τ)
sub-ty(ts, τs, fn σs→ τ) = fn (map(λ σ. sub-ty(ts,τs,σ)) σs) → sub-ty(ts,τs,τ)
sub-ty(ts, τs, ∀ ss. τ) = (∀ ss. sub-ty(ts,τs,τ))
sub-ty(ts, τs, 〈σs〉) = 〈map(λ σ. sub-ty(ts,τs,σ)) σs〉
sub-ty(ts, τs, BoolT) = BoolT
sub-ty(ts, τs, IntT) = IntT

(hints recdef-simp: ty-list-tc1 ty-list-tc2)

The following abbreviations are used for substitution. The notation for substitution
on a list of types is slightly different to decrease Isabelle’s parsing time. (It increases
greatly when there is ambiguity).

[ts7→τs]τ ≡ sub-ty(ts, τs, τ)
{ts7→τs}σs≡ map(λσ. sub-ty(ts, τs, σ)) σs

4.2 Type Equality

The presence of universal types complicates type equality, since the types∀ t.t→t and
∀ s.s→s should be equal even though they are syntactically different. Two types are
equal when a renaming of bound variables (α conversion) can make them syntactically
equal. A renaming will be represented as a function from variables to variables. The
following function updates a renaming with a series of variable bindings.

constsextend:: [ ′a list, ′a list, ′a⇒ ′a] ⇒ ( ′a⇒ ′a)
primrec
extend[] vs T= T
extend(k#ks) vs T= (case vs of[] ⇒ T | v#vs⇒ T(k:=v))

Figure 4 defines the type equality judgment.

4.3 Type Rules for System F

The type rules will refer to a typing environment that map eachλ-bound variable to its
type.

typesTenv= (var× ty) set

The following notation is used to insert a binding into the environment.

Γ,x:τ ≡ {(x, τ)} ∪ Γ

The following function adds a list of bindings to the environment.

constspushs-env:: ( ′k× ′v) set⇒ ′k list⇒ ′v list⇒ ( ′k× ′v) set(-,-:- )
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Figure 4: Equality of types in System F up to the renaming of bound type variables.

t = T s

T `F ‘s = ‘t
(F-EQV)

T |=F τs= τs′ T `F τ = τ ′

T `F fn τs→ τ = fn τs′→ τ ′ (F-EQF)

extend ts ts′ T `F τ = τ ′

T `F ∀ ts. τ = ∀ ts′. τ ′ (F-EQA)
T |=F τs= τs′

T `F 〈τs〉 = 〈τs′〉
(F-EQT)

T `F BoolT = BoolT (F-EQB) T `F IntT = IntT (F-EQI)

T |=F [] = [] (F-EQN)
T `F τ = τ ′ T |=F τs= τs′

T |=F τ ·τs= τ ′·τs′ (F-EQC)

primrec
Γ,[]:τs= (Γ::( ′k× ′v) set)
Γ,(x#xs):τs= (caseτs of [] ⇒ Γ | τ#τs⇒ (Γ,xs:τs),x:τ)

The domain of an environment is defined as follows.

domΓ ≡ {x | ∃ τ . (x, τ) ∈ Γ}
The type rules for System F also keep track of which type variables are in scope, to en-
sure that the parameters of a type abstraction are disjoint with all other type parameters
in scope and thereby maintain the variable convention. Thus the environment includes
both the typing environment for term variables and a set of type variables.

record Fenv=
tys:: Tenv
tvars:: var set

The type rules must also ensure thatλ-bound variables do not appear as free variables
in the environment. Theftv function computes the free type variables of a type, andbtv
the bound type variables.

constsftv :: ty⇒ nat set
recdef ftv measure size
ftv (‘t ) = {t}
ftv (fn τs→ τ) =

S
(map ftvτs) ∪ ftv τ

ftv (∀ ts. τ) = ftv τ − set ts
ftv (〈τs〉) =

S
(map ftvτs)

ftv BoolT= {}
ftv IntT = {}

(hints recdef-simp: ty-list-tc1 ty-list-tc2)
constsbtv :: ty⇒ nat set
recdefbtv measure size
btv (‘t ) = {}
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btv (fn τs→ τ) =
S

(map btvτs) ∪ btv τ
btv (∀ ts. τ) = btv τ ∪ set ts
btv (〈τs〉) =

S
(map btvτs)

btv BoolT= {}
btv IntT = {}

(hints recdef-simp: ty-list-tc1 ty-list-tc2)

where we have overloaded
⋃

for a list of sets as defined below.foldr is used instead of
foldl becausefoldr follows the natural structure of a list, which makes it easier to work
with when performing induction on lists.⋃

ls≡ foldr op∪ ls ∅
ftv is extended to typing environments with the following definition.

FTV Γ ≡
⋃
{V | ∃ x τ . (x, τ) ∈ Γ ∧ V = ftv τ}

The type rules for System F are presented in Figure 5.

4.4 Properties of System F

In this section, some basic properties of System F will be proved, properties concerning
substitution, environments, and well typing that are needed later in the report.

A few facts about the lookup function are needed. The first lemma states that lookup
fails when the item does not appear in the list of keys. The “is” keyword introduces an
abbreviation for the proposition to be proved. The keyword?thesisrefers to the current
subgoal.

lemma lookup-fails: ∀ x (vs:: ′v list) i. x /∈ set ks−→ lookup x ks vs i= None(is ?P ks)
proof (induct ks) show?P [] by simp
next fix k ksassumeIH : ?P ksshow?P (k#ks)
proof clarify fix x and vs:: ′v list and i assumexmem: x /∈ set(k#ks)
show lookup x(k#ks) vs i= None
proof (cases vs) assumevs= [] thus ?thesisby simp
next fix v vs′ assumevs: vs= v#vs′ from vs xmem IHshow?thesisby auto
qed

qed
qed

The next lemma characterizes the pre and post-conditions for a successful lookup. The
use of “obtain” corresponds to the elimination of an existential.

lemma lookup-succeeds:
∀ t (τs:: ′v list). t ∈ set ts∧ length ts= lengthτs
−→ (∀ i. (∃ j. i ≤ j ∧ (j − i) < length ts∧ ts!(j−i) = t ∧ lookup t tsτs i= Some(τs!(j−i),j)))
(is ?P ts)

proof (induct ts) show?P [] by simp
next fix k ksassumeIH : ?P ksshow?P (k#ks)
proof clarify fix t and τs:: ′v list and i
assumeM: t ∈ set(k#ks) and L: length(k#ks) = lengthτs

13



Figure 5: Type Rules for System F

(x, τ) ∈ tysΓ
Γ `F ‘x : τ

(WT-F-VAR)

Γ `F e : fn σs→ τ Γ |=F es: σs′ id |=F σs= σs′

Γ `F e · es: τ
(WT-F-APP)

Γ(|tys:= tysΓ,xs:σs|) `F e : τ set xs∩ dom tysΓ = ∅ |xs| = |σs|
Γ `F λ xs:σs. e : fn σs→ τ

(WT-F-

ABS)

Γ `F e : ∀ ts. σ |ts| = |τs|
Γ `F e[τs] : [ts7→τs]σ

(WT-F-TAPP)

Γ(|tvars:= tvarsΓ ∪ set ts|) `F e : σ
set ts∩ tvarsΓ = ∅ set ts∩ FTV (tysΓ) = ∅ distinct ts

Γ `F Λ ts. e : ∀ ts. σ
(WT-F-TABS)

Γ `F e : σ Γ(|tys:= tysΓ,x:σ|) `F e′ : τ x /∈ dom tysΓ
Γ `F let x := e in e′ : τ

(WT-F-LET)

Γ |=F es: τs

Γ `F 〈es〉 : 〈τs〉
(WT-F-TUPLE)

Γ `F e : 〈τs〉 τs[i] = τ

Γ `F Nth e i: τ
(WT-F-NTH)

Γ `F Boolean b: BoolT (WT-F-BOOL) Γ `F Integer b: IntT (WT-F-INT)

Γ |=F [] : [] (WT-F-NIL )
Γ `F e : τ Γ |=F es: τs

Γ |=F e·es: τ ·τs
(WT-F-CONS)

14



from L obtain τ τs′ where ts: τs= τ#τs′ by (inductτs rule: list.induct, auto)
show∃ j. i ≤ j ∧ (j−i) < length(k#ks) ∧ (k#ks)!(j−i) = t

∧ lookup t(k#ks) τs i = Some(τs!(j−i),j)
proof (cases t= k) assumeta: t = k from ta tsshow?thesisby auto
next assumeta: t 6= k
from ta M L ts IH obtain j τ ′ where I : Suc i≤ j and jilk : (j − Suc i) < length ks
and ksji: ks! (j − Suc i) = t and tsi: τs′!(j − Suc i) = τ ′

and lts: lookup t ksτs′ (Suc i) = Some(τ ′,j) by (auto, blast)
from I haveI2: i ≤ j by simp
from I have ij : Suc(j − Suc i) = j − i by arith
from ksji tsi have(k#ks)!(Suc(j − Suc i)) = t ∧ (τ#τs′)!(Suc(j − Suc i)) = τ ′ by simp
with ij ts haveA: (k#ks)!(j − i) = t ∧ τs!(j−i) = τ ′ by simp
from jilk haveB: (j − i) < length(k#ks) by (simp, arith)
from lts ts ta AhaveC: lookup t(k#ks) τs i = Some(τs!(j−i),j) by simp
from I2 A B Cshow?thesisby simp

qed
qed

qed

Next some basic facts about substitution are proved. Substitution on a list of types
commutes with append. Substitution also commutes with the nth function, which is
derived directly from the fact that the map function commutes with nth. Substitution
does not change the length of a list of types.

lemmasubst-append: ∀ ts τsσs′. {ts7→τs}(σs@σs′) = {ts7→τs}σs@ {ts7→τs}σs′

by (inductσs rule: list.induct, auto)

lemmasubst-nth: ∀ i ts σs. i < lengthτs−→ ({ts7→σs}τs)!i = [ts7→σs](τs!i)
usingnth-mapby simp

lemmasubst-length: ∀ tsσs. lengthτs= length({ts7→σs}τs)
by (inductτs rule: list.induct, auto)

If the variables to be substituted do not occur in the type, then substitution does not
change the type. Before proving this, the following function is needed to formalize the
notion of occurring type variables.

constsotv :: ty⇒ nat set
recdefotv measure size
otv (‘t ) = {t}
otv (fn τs→ τ) =

S
(map otvτs) ∪ otv τ

otv (∀ ts. τ) = otv τ ∪ set ts
otv (〈τs〉) =

S
(map otvτs)

otv BoolT= {}
otv IntT = {}

(hints recdef-simp: ty-list-tc1 ty-list-tc2)

The proof is by induction on the structure of types. The induction rule that Isabelle has
generated based on the datatype definition is a mutual induction with three parts. The
first part is for types and the second and third parts are for lists of types.
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lemmano-otv-subst-is-id-mutual:
(∀ ts%s. set ts∩ otv τ = {} −→ [ts7→%s]τ = τ)
∧ (∀ ts%s. set ts∩

S
(map otvτs) = {} −→ {ts7→%s}τs= τs)

∧ (∀ ts%s. set ts∩
S

(map otvτs) = {} −→ {ts7→%s}τs= τs)
by (induct rule: ty.induct, simp add: lookup-fails, auto)

corollary no-otv-subst-ty-is-id: ∀ ts%s. set ts∩ otv τ = {} −→ [ts7→%s]τ = τ

usingno-otv-subst-is-id-mutualby simp

The next proof is a standard result called the Substitution Lemma [3]. Again the proof
is by induction on types. The following two abbreviations will be used for the proposi-
tions to be proved.

constdefssub-lemma-ty:: ty⇒ bool
sub-lemma-ty M≡ (∀ xs ys Ls Ns. set xs∩ set ys= {} ∧ set xs∩

S
(map otv Ls) = {}

∧ length xs= length Ns∧ length ys= length Ls∧ distinct xs
−→ [ys7→Ls]([xs7→Ns]M) = [xs7→{ys7→Ls}Ns]([ys7→Ls]M))

constdefssub-lemma-tys:: ty list⇒ bool
sub-lemma-tys Ms≡ (∀ xs ys Ls Ns. set xs∩ set ys= {} ∧ set xs∩

S
(map otv Ls) = {}

∧ length xs= length Ns∧ length ys= length Ls∧ distinct xs
−→ {ys7→Ls}({xs7→Ns}Ms) = {xs7→{ys7→Ls}Ns}({ys7→Ls}Ms))

The lemma as normally stated would require that

set xs∩
⋃

(map ftv Ls) = {}
however, by the variable convention we also have

set xs∩
⋃

(map btv Ls) = {}
Thus we make the variable convention explicit, and include the premise

set xs∩
⋃

(map otv Ls) = {}
The following fact about the union of a list of sets will be needed in the proof.

lemmaunion-list-elem-subset: ∀ i. i < length ls−→ ls!i ⊆
S

ls
by (induct ls, simp, clarify, case-tac i, auto)

The case forM ≡ ‘t is the non-trivial part of the lemma. The rest of the cases are either
immediate or are proved directly from their induction hypotheses.

lemmasubstitution-lemma-var: sub-lemma-ty(‘t )
proof (simp only: sub-lemma-ty-def, clarify)
fix xs ysand Ls::ty list and Ns::ty list
assumedisj-xs: set xs∩ set ys= {} and disj-xl: set xs∩

S
(map otv Ls) = {}

and lxn: length xs= length Nsand lyl: length ys= length Lsand dxs: distinct xs
let ?P= [ys7→Ls]([xs7→Ns](‘t )) = [xs7→{ys7→Ls}Ns]([ys7→Ls](‘t ))
havet ∈ set xs∨ t /∈ set xsby simp
moreover{ assumetxs: t ∈ set xsfrom disj-xs txshavetys: t /∈ set ysby auto
from txs lxnobtain i where ixs: i < length xsand xsi: xs!i = t
and ltn: lookup t xs Ns 0= Some(Ns!i,i)
using lookup-succeeds[of t xs Ns 0] by auto

from ltn have[ys7→Ls]([xs7→Ns](‘t )) = [ys7→Ls](Ns!i) by simp
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also have. . . = [xs7→{ys7→Ls}Ns](‘t )
proof −
from txs lxnobtain j where jxs: j < length xsand xsj: xs!j = t
and ltnp: lookup t xs({ys7→Ls}Ns) 0 = Some({ys7→Ls}Ns!j, j)
using lookup-succeeds[of t xs{ys7→Ls}Ns 0] by auto

from dxs ixs jxs xsi xsjhave ij : i = j usingdistinct-conv-nthby auto
from ij jxs lxn have[ys7→Ls](Ns!i) = {ys7→Ls}Ns!i usingsubst-nthby simp
also from ij ltnp have. . . = [xs7→{ys7→Ls}Ns](‘t ) by simp
ultimately show ?thesisby simp

qed
also from tyshave. . . = [xs7→{ys7→Ls}Ns]([ys7→Ls](‘t )) by (simp add: lookup-fails)
finally have ?Pby simp
} moreover{ assumetxs: t /∈ set xs
havet ∈ set ys∨ t /∈ set ysby simp
moreover{ assumetys: t ∈ set ys
from tys lyl obtain i where iys: i < length ysand ysi: ys!i = t
and ltl : lookup t ys Ls 0= Some(Ls!i,i) using lookup-succeeds[of t ys Ls 0] by auto

from txs ltl have[ys7→Ls]([xs7→Ns](‘t )) = Ls!i by (simp add: lookup-fails)
also have. . . = [xs7→{ys7→Ls}Ns](Ls!i)
proof −
from lyl iys have(map otv Ls)!i ⊆

S
(map otv Ls)

usingunion-list-elem-subset[of i map otv Ls] by simp
with lyl iys disj-xl haveset xs∩ otv (Ls!i) = {} by auto
thus ?thesisusingno-otv-subst-ty-is-idby auto

qed
also from ltl have. . . = [xs7→{ys7→Ls}Ns]([ys7→Ls](‘t )) by simp
finally have ?Pby simp
} moreover{ assumetys: t /∈ set ys
from tys txshave[ys7→Ls]([xs7→Ns](‘t )) = ‘t by (simp add: lookup-fails)
also from tys txshave. . . = [xs7→{ys7→Ls}Ns]([ys7→Ls](‘t )) by (simp add: lookup-fails)
finally have ?Pby simp
} ultimately have ?Pby blast
} ultimately show ?Pby blast

qed

lemmasubstitution-lemma-mutual: sub-lemma-ty M∧ sub-lemma-tys Ms∧ sub-lemma-tys Ms
by (induct rule: ty.induct, simp only: substitution-lemma-var, simp-all)

corollary substitution-lemma: set xs∩ set ys= {} ∧ set xs∩
S

(map otv Ls) = {}
∧ length xs= length Ns∧ length ys= length Ls∧ distinct xs
−→ [ys7→Ls]([xs7→Ns]M) = [xs7→{ys7→Ls}Ns]([ys7→Ls]M)

usingsubstitution-lemma-mutualby simp

If the variables inysdo not occur inMs then the Substitution Lemma can be simplified
to the following.

corollary substitution-lemma2:
assumesxsys: set xs∩ set ys= {} and xsls: set xs∩

S
(map otv Ls) = {}

and ysM: set ys∩ otv M = {} and xsNs: length xs= length Ns
and ysls: length ys= length Lsand dxs: distinct xs
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shows[ys7→Ls]([xs7→Ns]M) = [xs7→{ys7→Ls}Ns]M
proof −
from xsys xsls ysM xsNs ysls dxs
have[ys7→Ls]([xs7→Ns]M) = [xs7→{ys7→Ls}Ns]([ys7→Ls]M)
usingsubstitution-lemmaapply blastdone

also from ysMhave. . . = [xs7→{ys7→Ls}Ns]M
usingno-otv-subst-ty-is-idby simp

finally show ?thesisby simp
qed

A couple facts concerning type environments will be needed. The first fact is a kind of
associativity and the second fact is that pushing bindings on the environment commutes
with set union.

lemmapushs-env-assoc:
∀ dts. (S,d:dt),ds:dts= S,(d#ds):(dt#dts)
apply (induct-tac ds) apply simpapply clarify apply (case-tac dts) by auto

lemmapush-union-commute:
∀ S S′ dts. (S,ds:dts) ∪ S′ = ((S::Tenv) ∪ S′),ds:(dts::ty list)
apply (induct-tac ds) apply simpapply clarify apply (case-tac dts) apply simp

proof −
fix a list S S′ and dts::ty list and aa lista
assumeIH : ∀ (S::Tenv) S′ (dts::ty list). S,list:dts∪ S′ = (S∪ S′),list:dts
and dts: dts= aa# lista

from dtshave(S,a # list:dts) ∪ S′ = insert(a,aa) (S,list:lista∪ S′) by simp
also from IH have. . . = insert(a,aa) ((S∪ S′),list:lista) by auto
also from dtshave. . . = (S∪ S′),a # list:dtsby simp
finally show S,a # list:dts∪ S′ = (S∪ S′),a # list:dtsby blast

qed

Type equality is reflexive.

lemmaextend-refl-id: (λu. u) = extend ls ls(λu. u) by (induct ls, auto)

lemma f-equal-refl-mutual: (id `F τ = τ) ∧ (id |=F σs= σs) ∧ (id |=F σs= σs)
apply (induct rule: ty.induct) apply auto

proof (rule f-eqa)
fix list::var list and ty assumeE: (λu. u) `F ty = ty
have(λu. u) = extend list list(λu. u) by (simp add: extend-refl-id)
with E show(extend list list(λu. u)) `F ty = ty by simp

qed

corollary f-eq-refl: id `F σ = σ by (simp add: f-equal-refl-mutual)
corollary f-eqs-refl: id |=F σs= σs by (simp add: f-equal-refl-mutual)

Type equality is also symmetric and the following lemma extends symmetry to lists of
types.

lemma f-eqs-symm:
V

σs′. T |=F σs= σs′ =⇒ T |=F σs′ = σs
apply (inductσs rule: list.induct) apply (ind-cases T|=F [] = σs′, simp)
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apply (case-tacσs′) apply simpapply (ind-cases T|=F a#list = [], simp)
proof auto
fix a list aa lista
assumeIH :

V
σs′. T |=F list = σs′ =⇒ T |=F σs′ = list

and E: T |=F a # list = aa# lista
from E haveT |=F list = lista by (rule inv-f-eqc, simp)
with IH have ls: T |=F lista = list by simp
from E haveT `F a = aaby (rule inv-f-eqc, simp)
hencea: T `F aa= a by (rule f-eq-symm)
from a lsshowT |=F aa#lista = a#list by simp

qed

If two lists of terms are well typed, then appending the lists results in a well typed list
of terms.

lemmawt-f-append: ∀ Sτs fs′ τs′. S |=F fs : τs∧ S |=F fs′ : τs′−→ S |=F fs@fs′ : τs@τs′

by (induct fs rule: list.induct, auto, rule inv-wt-f-nil, auto,
rule inv-wt-f-cons, auto, rule wt-f-cons, auto)

Alpha-conversion on types should not affect well typing. This trivial fact requires a
fair amount of work to prove, so we simply state the following as axioms for now.

axioms
equal-preserves-wt: [[ S`F e : τ ; id `F τ = τ ′ ]] =⇒ S`F e : τ ′

equal-preserves-wts: [[ S |=F es: τs; id |=F τs= τs′ ]] =⇒ S |=F es: τs′

The variables occurring in a type are free or bound.

lemmaotv-ftv-btv: (otv τ = ftv τ ∪ btv τ)
∧ (

S
(map otvτs) =

S
(map ftvτs) ∪

S
(map btvτs))

∧ (
S

(map otvτs) =
S

(map ftvτs) ∪
S

(map btvτs))
by (induct rule: ty.induct, auto)

5 Introduction to System FG

The syntax for types and terms of FG is presented in Figure 6. Type abstractions in
FG have awhere clause that requires certain types to model certain concepts. There is
a correspondingwhere clause in the universal type constructor. The terms of FG also
include concept and model declarations, and model member access expressions.

To illustrate the features of FG, we evolve thesum function from Figure 3. To be
generic, thesum function should work for any element type that supports addition, so
we will capture this requirement in a concept. Mathematicians already have a name
for a slightly more generalized concept: aSemigroup is some type together with an
associative binary operation (such as addition or multiplication). In FG, theSemigroup
concept is defined as follows.

concept Semigroup(t) {
binary op : fn(t,t)→t;
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Figure 6: Types and Terms of FG

c ∈ Concept Names
s, t ∈ Type Variables
x, y, z ∈ Term Variables
ρ, σ, τ ::= t | fn (τ)− > τ | ∀t where σ models c. τ
e ::= x | e(e) | λy : τ. e

| Λt where σ models c. e | e[τ ]
| concept c(t){refines c(σ); x : τ ; } in e
| model c(τ) {x = e; } in e
| <c(τ)>.x

}

The genericsum function requires more than just addition; it also requires a zero el-
ement of the appropriate type. Again, mathematicians have a name for this concept:
a Monoid, which is aSemigroup with an identity element. In generic programming
terminology, we say thatMonoid is arefinementof Semigroup and defineMonoid in FG

accordingly.

concept Monoid(t) {
refines Semigroup(t);
identity elt : t;

}

To completely reflect the mathematical definition of a monoid, theidentity elt must
satisfy the following axioms for any objectx of type t. Unfortunately, expressing this
requirement is outside the scope of the FG type system.

binary op(identity elt, x) = x = binary op(x, identity elt)

A particular type, such asint, is said tomodela concept if it satisfies all of the require-
ments in the concept. In FG, an explicit declaration is used to introduce a model of a
concept (corresponding to an instance declaration in Haskell). The following declares
int to be a model ofSemigroup andMonoid, using integer addition for the binary op-
eration and0 for the identity element. The type system checks the body of the model
against the concept definition to ensure all required operations are provided and that
there are model declarations in scope for each refinement.

model Semigroup(int) {
binary op = iadd;

}
model Monoid(int) {

identity elt = 0;
}
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A model can be found via the concept name and type, and members of the model can
be extracted with the dot operator. For example, the following would return theiadd
function.

<Monoid(int)>.binary op

With theMonoid concept defined, we are ready to write a genericsum function. Since
the function has been generalized to work with any type that has an associative binary
operation with an identity element (no longer necessarily addition), a more appropriate
name for this function isaccumulate. As in System F, type parameterization in FG is
provided by theΛ expression. However, FG adds awhere clause to theΛ expression
for listing requirements on the type parameters.

let accumulate = (Λ t where t models Monoid. /∗body∗/)

The concepts, models, and where clauses collaborate to provide a mechanism for im-
plicitly passing operations into a generic function. As in System F, a generic function
is instantiated by providing type arguments for each type parameter.

accumulate[int]

In System F, instantiation substitutesint for t in the body of theΛ expression. In FG,
instantiation also involves the following steps:

1. int is substituted fort in the where clause.

2. For each required model in the where clause, the lexical scope of the instantiation
is searched for a matching model declaration.

3. The models are implicitly passed into the generic function.

Now consider the body of theaccumulate function. The model requirements in the
where clause serve as proxies for actual model declarations. Thus, the body ofaccumulate
is type-checked as if there were a model declarationmodel Monoid(t) in the enclosing
scope. The<> notation is used inside the body to access the binary operator and
identity element of theMonoid.

let accumulate =
(Λ t where t models Monoid.

fix (λ accum : fn(list t)→ t.
λls : list t.
let binary op = <Monoid(t)>.binary op in
let identity elt = <Monoid(t)>.identity elt in
if null[t](ls) then identity elt
else binary op(car[t](ls), accum(cdr[t](ls)))))

It would be more convenient to writebinary op instead of the explicit member access:
<Monoid(t)>.binary op. However, such a statement would be ambiguous without the
incorporation of overloading into the language. For example, suppose that a generic
function has two type parameters,s andt, and requires each to be aMonoid. Then a call
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Figure 7: Generic Accumulate

concept Semigroup(t) {
binary op : fn(t,t)→t;

} in
concept Monoid(t) {

refines Semigroup(t);
identity elt : t;

} in

let accumulate =
(Λ t where t models Monoid.

fix (λ accum : fn(list t)→ t.
λls : list t.
let binary op = <Monoid(t)>.binary op in
let identity elt = <Monoid(t)>.identity elt in
if null[t](ls) then identity elt
else binary op(car[t](ls), accum(cdr[t](ls))))) in

model Semigroup(int) {
binary op = iadd;

} in
model Monoid(int) {

identity elt = 0;
} in

let ls = cons[int](1, cons[int](2, nil[int])) in
accumulate[int](ls)

to binary op might refer to either<Monoid(s)>.binary op or <Monoid(t)>.binary op.
The addition of function overloading to FG is future work.

The complete program for this example is in Figure 7. As with System F, FG is an
expression-oriented programming language. The concept and models declarations are
like let; they extend the lexical environment for the enclosed expression (after thein).

The lexical scoping of models declarations is an important feature of FG, and one
that distinguishes it from Haskell. We illustrate lexical scoping of models with an
example. The mathematical definition of monoid is quite general—it only requires a
binary operation and an identity element with respect to that operation. That operation
need not be addition and the identity element need not be zero. The integers with
multiplication as the binary operation and unity as the identity element also form a
monoid. ThisMonoid is expressed in FG as follows.

model Semigroup(int) {
binary op = imult;
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Figure 8: Intentionally Overlapping Models

let sum =
model Semigroup(int) {

binary op = iadd;
} in
model Monoid(int) {

identity elt = 0;
} in accumulate[int] in

let product =
model Semigroup(int) {

binary op = imult;
} in
model Monoid(int) {

identity elt = 1;
} in accumulate[int] in

let ls = cons[int](1, cons[int](2, nil[int])) in
(sum(ls), product(ls))

}
model Monoid(int) {

identity elt = 1;
}

Borrowing from Haskell terminology, this second definition ofSemigroup andMonoid
creates overlapping model declarations, since there are now two models declarations
for Semigroup(int) andMonoid(int). Overlapping model declarations are problematic
since they introduce ambiguity: whenaccumulate is instantiated, which model (with
its corresponding binary operation and identity element) should be used?

In FG, overlapping models declarations can coexist so long as they appear in sepa-
rate lexical scopes. In Figure 8 we createsum andproduct functions by instantiating
accumulate in the presence of different models declarations. This example would not
type check in Haskell even if the two instance declarations were to be placed in dif-
ferent modules, because instance declarations implicitly leak out of a module when
anything in the module is used by another module.

6 Informal Description of the Translation

We describe a translation from FG to System F that is similar to the type-directed
translation of Haskell type classes presented in [15]. The translation described here
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is intentionally naive, since its main purpose is to communicate the semantics of FG.
There is extensive literature on techniques for producing more optimized results [2,
18]. The main idea behind the translation is to represent models with dictionaries that
map member names to values, and to pass these dictionaries as extra arguments to
generic functions. Here tuples represent dictionaries, so the model declarations for
Semigroup(int) andMonoid(int) translate to a pair oflet expressions that bind freshly
generated dictionary names to the tuples for the models.

model Semigroup(int) {
binary op = iadd;

} in
model Monoid(int) {

identity elt = 0;
} in /∗ rest ∗/
=⇒
let Semigroup 61 = (iadd) in
let Monoid 67 = (Semigroup 61,0) in /∗ rest ∗/

The accumulate function is translated by removing thewhere clause and wrapping
the body in aλ expression with a parameter for each model requirement in thewhere
clause.

let accumulate = (Λ t where t models Monoid. /∗body∗/)
=⇒
let accumulate =

(Λ t. (λ Monoid 18:(fn(t,t)→t)∗t. /∗ body ∗/)

The accumulate function is now curried, first taking a dictionary argument and then
taking the normal arguments.

accumulate[int](ls)
=⇒
((accumulate[int])(Monoid 67))(ls)

In the body ofaccumulate there are model member accesses. These are translated into
tuple member accesses.

let binary op = <Monoid(t)>.binary op in
let identity elt = <Monoid(t)>.identity elt in
=⇒
let binary op = (nth (nth Monoid 18 0) 0) in
let identity elt = (nth Monoid 18 1) in

<Monoid(t)>.binary op could also have been written<Semigroup(t)>.binary op, with
the same result. As mentioned before, thewhere clause introduces proxy model decla-
rations for each type requirement. In addition, thewhere clause introduces proxies for
all refinements. This enables the use ofSemigroup, sinceMonoid refinesSemigroup.
Note that only a single dictionary is passed intoaccumulate, and that the dictionary
for Semigroup is found inside the dictionary forMonoid, as shown in Figure 9. During
translation a table is used to map a concept and type, such asSemigroup(t), to a dictio-
nary name and a dictionary path. In this example, the dictionary name forSemigroup(t)
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Semigroup(t)Monoid(t)

identity_elt

binary_op

Monoid(t) := Monoid_18,[]

Semigroup(t) := Monoid_18,[0]

Figure 9: Dictionary representations for the modelsMonoid(t) andSemigroup(t). Also
shown is the model environment, which maps a model to its dictionary name and dic-
tionary path.

is Monoid 18, and the dictionary path is[0], since theSemigroup dictionary is in the
first slot of theMonoid dictionary.

The translation for the entire accumulate example is show in Figure 10.

7 Formal Semantics of FG

This section describes the Isabelle/Isar formalization of a semantics for FG via a type-
directed translation to System F. The types and terms of FG are represented with the
following data types.

datatype tyg= VarTG var (‘- ) | ArrowG tyg list tyg(fn -→ - )
| AllG var list (var× (tyg list)) list tyg (∀ - where -. - )
| BoolG| IntG

typeswhere-clause= (var× (tyg list)) list
typesrefinements= (var× (tyg list)) list
datatype trmg= VarG var(‘- ) | AppG trmg trmg list(infixl · )
| LamG var list tyg list trmg(λ -:-. - ) | LetTrmG var trmg trmg(let - := - in - )
| ForallG var list where-clause trmg(Λ - where -. - ) | InstG trmg tyg list(-[-] )
| BooleanG bool| IntegerG int
| ConceptG var var list refinements var list tyg list trmg

(concept -(-) { refines -; - : -; } in - )
| ModelG var tyg list var list trmg list trmg(model -(-) { - = -; } in - )
| ModelMemG var tyg list var(〈-(-)〉.- )

7.1 Type Substitution

The definition of simultaneous substitution on types in FG is given below, again using
Isabelle’srecdef facility. The following lemmas are needed to prove termination. The
presence of thewhere clause in type applications slightly complicates the proof.

lemma tyg-list-tc1: σ ∈ setσs−→ sizeσ < Suc(tyg-list-size1σs+ sizeτ)
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Figure 10: Translation of the Accumulate Example

let accumulate =
(Λ t.
λMonoid 18:(fn(t,t)→t)∗t.
fix (λ accum:(fn(list t)→t).

(λ ls:list t.
let binary op = (nth (nth Monoid 18 0) 0) in
let identity elt = (nth Monoid 18 1) in
if null[t](ls) then identity elt
else binary op(car[t](ls),accum(cdr[t](ls)))))) in

let Semigroup 61 = (iadd) in
let Monoid 67 = (Semigroup 61,0) in

let ls = cons[int](1,cons[int](2,nil[int])) in
(accumulate[int](Monoid 67))(ls)

by (inductσs rule: list.induct, auto)

lemma tyg-list-size2-elt: σ ∈ setσs−→ sizeσ < Suc(tyg-list-size2σs)
by (inductσs rule: list.induct, auto)

lemmawhere-list-tc: [[ σ ∈ setσs; (c, σs) ∈ set ws]]
=⇒ sizeσ < Suc(nat-tyg-list-x-list-size ws+ sizeτ)

apply (induct ws rule: list.induct) apply simp
proof clarify
fix a b list
assumeIH : [[ σ ∈ setσs; (c, σs) ∈ set list]]

=⇒ sizeσ < Suc(nat-tyg-list-x-list-size list+ sizeτ)
and sss: σ ∈ setσs and css: (c,σs) ∈ set((a,b)#list)

showsizeσ < Suc(nat-tyg-list-x-list-size((a, b) # list) + sizeτ)
proof (cases(c,σs) = (a,b))
assumeeq: (c,σs) = (a,b)
from ssshavesizeσ < Suc(tyg-list-size2σs) by (simp add: tyg-list-size2-elt)
with eqshow?thesisby simp

next assumeneq: (c,σs) 6= (a,b)
from neq csshavecss2: (c,σs) ∈ set listby auto
from sss css2 IHshow?thesisby simp

qed
qed

constssub-tyg:: (var list× tyg list× tyg) ⇒ tyg
recdefsub-tyg measure(λ p. size(snd(snd p)))
sub-tyg(ts, τs, ‘t ) = (case(lookup t tsτs 0) of None⇒ ‘t | Some(τ ,i) ⇒ τ)
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sub-tyg(ts, τs, fn σs→ τ) = fn (map(λ σ. sub-tyg(ts,τs,σ)) σs) → sub-tyg(ts,τs,τ)
sub-tyg(ts, τs, ∀ ss where ws. τ) =
(∀ ss where(map(λ w. (fst w, map(λ σ. sub-tyg(ts,τs,σ)) (snd w))) ws).

sub-tyg(ts,τs,τ))
sub-tyg(ts, τs, BoolG) = BoolG
sub-tyg(ts, τs, IntG) = IntG

(hints recdef-simp: tyg-list-tc1 where-list-tc)

The following notation is reused for substitution on FG types and lists of types. New
notation is introduced for applying a substitution to the requirements in awhere clause.

[ts7→τs]τ ≡ sub-tyg(ts, τs, τ)
{ts7→τs}σs≡ map(λσ. sub-tyg(ts, τs, σ)) σs
{|ts7→τs|}ws≡ map(λw. (fst w, map(λσ. sub-tyg(ts, τs, σ)) (snd w))) ws

The list nth function commutes with substitution, and the length of a list of types is
invariant under substitution.

lemmasubstg-nth: ∀ i τ tsσs. (τs::tyg list)!i = (τ ::tyg) ∧ i < lengthτs
−→ ({ts7→σs}τs)!i = [ts7→σs]τ usingnth-mapby simp

lemmasubstg-length: ∀ tsσs. length(τs::tyg list) = length({ts7→σs}τs)
by (inductτs rule: list.induct, auto)

7.2 Type Equality

Type equality for FG, shown in Figure 11, is nearly the same as that for F. The differ-
ence is that there is a new judgmentT |=r ws= ws′ for comparing two where clauses.

7.3 Concept Environments and Translation of Types

The typing context for FG includes information about concepts and models. The con-
cept environment is a set that maps concept names to the following record of informa-
tion.

record concept-info=
params:: var list
rfn :: refinements
mem-nms::var list
mem-tys:: tyg list

typesCenv= (var× concept-info) set

Since type annotations appear in the syntax of System F and FG our translation must
also convert types. The main goal of the type translation is to remove thewhere clause
associated with∀ ’s and replace it with a function type whose parameters are the types
of the dictionaries. The judgmentC ` τ  τ translates an FG type to an F type in
the context of concept environmentC. This judgment also plays the role of defining
well-formed FG types (just ignore the parts after the ). The judgmentC |= τs τs′
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Figure 11: Equality of types in FG up to the renaming of bound type variables.

T ` ‘s = ‘T s (FG-EQV)
T |= τs= τs′ T ` τ = τ ′

T ` fn τs→ τ = fn τs′→ τ ′ (FG-EQF)

extend ts ts′ T ` τ = τ ′ extend ts ts′ T |=r ws= ws′

T ` ∀ ts where ws. τ = ∀ ts′ where ws′. τ ′ (FG-EQA)

T ` BoolG= BoolG (FG-EQB) T ` IntG = IntG (FG-EQI)

T |= [] = [] (FG-EQN)
T ` τ = τ ′ T |= τs= τs′

T |= τ ·τs= τ ′·τs′ (FG-EQC)

T |=r [] = [] (FG-EQRN)
T |= %s= %s′ T |=r rs = rs′

T |=r (c, %s)·rs = (c, %s′)·rs′ (FG-EQRC)

Figure 12: The translation of types from FG to F. The judgment for well-formed types
of FG can be obtain by ignoring the parts after .

C ` ‘t  ‘t ( TRANS-VAR)

C |= τs τs′ C ` τ  τ ′

C ` fn τs→ τ  fn τs′→ τ ′ (TRANS-FUN)

C |=d ws δs C` τ  τ ′ distinct ts

C ` ∀ ts where ws. τ  ∀ ts. fn δs→ τ ′ (TRANS-ALL )

C ` BoolG BoolT (TRANS-BOOL) C ` IntG IntT (TRANS-INT)

C |= [] [] (TRANS-NIL )
C ` τ  τ ′ C |= τs τs′

C |= τ ·τs τ ′·τs′ (TRANS-CONS)

(c, ci) ∈ C
C |= τs τs′ C |=d rfn ci δs C |= mem-tys ci σs |τs| = |params ci|

C `d c τs [params ci7→τs′](〈δs@ σs〉)
(R-

D)

C |=d [] [] (RS-DS-NIL )

C `d c τs δ C |=d rs δs

C |=d (c, τs)·rs δ·δs
(RS-DS-CONS)
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translates a list of types. The judgmentC `d c %s τ specifies the construction of a
dictionary typeτ from a conceptc instantiated with type arguments%s. The judgment
C |=d rs τs finds dictionary types for each requirement in awhere clause, or for a
list of refinements in a concept definition. Figure 12 presents the definitions of these
judgments.

Adding entries to the concept environment does not affect type and dictionary transla-
tion. This is proved by a straightforward induction on the translation judgments.

lemmagrow-env-pres-trans:
(C ` τ  τ ′−→ (∀ C ′. C⊆ C ′−→ C ′ ` τ  τ ′))
∧ (C |= τs τs′−→ (∀ C ′. C⊆ C ′−→ C ′ |= τs τs′))
∧ (C `d c %s τ ′−→ (∀ C ′. C⊆ C ′−→ C ′ `d c %s τ ′))
∧ (C |=d rs τs′−→ (∀ C ′. C⊆ C ′−→ C ′ |=d rs τs′))
apply (induct rule: trans-ty-trans-tys-req-dict-reqs-dicts.induct)
apply simpapply simpapply simpapply simpapply simpapply simp
apply simpprefer 2 apply simpprefer 2 apply simp

proof clarify
fix C δsσs τs τs′ c ci C′

assumecC: (c, ci) ∈ C and IH1: ∀C ′. C⊆ C ′−→ C ′ |= τs τs′

and IH2: ∀C ′. C⊆ C ′−→ C ′ |=d rfn ci δs
and IH3: ∀C ′. C⊆ C ′−→ C ′ |= mem-tys ci σs
and L: lengthτs= length(params ci) and CCp: C⊆ C ′

from CCp cChavecCp: (c,ci) ∈ C ′ by auto
from cCp CCp IH1 IH2 IH3 L r-dshowC ′ `d c τs [params ci7→τs′](〈δs@ σs〉) by simp

qed

7.4 Model Environments

The model environment contains information about the model declarations that are in
scope and plays an important role in the translation from FG to F. Each model will
be translated to a dictionary (represented with a tuple) containing member operations
of the model and nested tuples for each refined concept. Each model declaration is
translated to alet expression that binds the tuple-creation expression to a fresh variable
that will serve as the name of the dictionary.

typesmodel-info= var× tyg list× var× (nat list)
typesMenv= model-info set

The model environment stores, for each model, the name of the concept being modeled,
the type arguments for the type parameters of the concept, a dictionary name, and
a sequence of natural numbers. This sequence gives the path from the top level of
the dictionary down to the sub-dictionary for the model. In the typing rule for type
abstraction, models are added to the model environment for each requirement in the
where clause. In addition, models for all inherited concepts are added to the model
environment. The paths in the model environment for these “super” models will point
to the appropriate place in the dictionary of the “derived” model that was required in
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Figure 13: The addition of models to the environment according to the requirements in
awhere clause.

(c, ci) ∈ C ¬ model-defined cτs M
M ′ = {(c, τs, d, ns)} ∪ M C |=[ |rfn ci| {|params ci7→τs|}rfn ci d ns M′⇒ M ′′

C `[ c τs d ns M⇒ M ′′ (FLAT-M-

I)

C |=[ 0 rs d ns M⇒ M (FLAT-MS-ZERO)

rs[i] = (c′, τs′) C `[ c′ τs′ d ns@ [i] M ⇒ M ′ C |=[ i rs d ns M′⇒ M ′′

C |=[ Suc i rs d ns M⇒ M ′′ (FLAT-MS-

SUC)

C ` [] [] M ⇒ M (ADD-MODELS-NIL )

C `[ c %s d [] M ⇒ M ′ C ` ws ds M′⇒ M ′′

C ` (c, %s)·ws d·ds M⇒ M ′′ (ADD-MODELS-CONS)

the where clause. The addition of models to the environment is formalized with the
three judgments defined in Figure 13.

The judgmentC ` ws ds M⇒ M ′ adds models to model environmentM for thewhere
clausews, resulting inM ′. The judgmentC `[ c τs d ns M⇒ M ′ processes a single
requirement andC |=[ i rs d ns M⇒ M ′ is for processing refinements. It would
have been preferable to encode these judgments as functions, but they are not primitive
recursive, and Isabelle does not support general recursive functions that are mutually
recursive. Themodel-definedfunction used in Figure 13 is defined as follows.

model-defined cτs M≡ ∃dns. (c, τs, dns) ∈ M

7.5 Model Member Lookup and Access

The translation of model member access expressions, such as<Monoid(s)>.binary op,
requires that we find the type forbinary op and the path tobinary op through the dictio-
nary. The judgments in Figure 14 map a member name, concept, and type arguments
to the type of the member and its dictionary path.

In the translation of a model member access expression, a series of tuple access ex-
pressions is produced. The access follows a specified path through the dictionary (as
in Figure 9), and is accomplished by themk-nthfunction.

consts
mk-nth:: [trm, nat list] ⇒ trm

primrec
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Figure 14: Look up the member of a model and return the type of the member and the
dictionary path to the member.

(c, ci) ∈ C lookup x(mem-nms ci) (mem-tys ci) 0 = Some(τ , i)

C `[ x c τs ns⇒ [params ci7→τs]τ ns@ [|rfn ci| + i]
(LM -M)

(c, ci) ∈ C
lookup x(mem-nms ci) (mem-tys ci) 0 = None C|=[ x |rfn ci| c τs ns⇒ τ ns′

C `[ x c τs ns⇒ τ ns′ (LM -R)

(c, ci) ∈ C (rfn ci)[i] = (c′, τs′) C `[ x c′ {params ci7→τs}τs′ ns@ [i] ⇒ τ ns′

C |=[ x Suc i cτs ns⇒ τ ns′ (LM -

RS1)

C |=[ x i c τs ns⇒ τ ns′

C |=[ x Suc i cτs ns⇒ τ ns′(LM -RS2)

mk-nth-nil: mk-nth d[] = d
mk-nth-cons: mk-nth d(n#ns) = mk-nth(Nth d n) ns

In the translation of type application expressions, the type abstraction, which has been
translated into a normal function, is applied to the dictionaries that satisfy itswhere
clause. Since the dictionaries may be nested inside the dictionary of a more refined
model, a series of tuple accesses is produced to obtain the right dictionary, again us-
ing mk-nth. Themk-nthsfunction processes a list of dictionaries and paths, invoking
mk-nthfor each dictionary and path.

consts
mk-nths:: [nat list, nat list list] ⇒ trm list

primrec
mk-nths[] nns= []
mk-nths(d#ds) nss= (case nss of[] ⇒ [] | (ns#nss) ⇒ (mk-nth(‘d) ns)#(mk-nths ds nss))

7.6 Translation from FG to F

The rules defining the translation from FG to F are presented in Figure 15. The type
system for FG can be obtained from the translation by ignoring what appears after
the . As mentioned before, the typing environment includes a concept and model
environment in addition to the usual type assignments for variables, which are bundled
into the following record.

typesTGenv= (var× tyg) set
record FGenv=
tyvars:: var set
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vars:: TGenv
concepts:: Cenv
models:: Menv

The following convenience functions are for manipulating the environment.

Γ,xs:τs≡ Γ(| vars:= (varsΓ),xs:τs|)
Γ,concept c ci≡ Γ(| concepts:= insert(c,ci) (conceptsΓ)|)
Γ,model mi≡ Γ(| models:= insert mi(modelsΓ)|)

The typing rule for concept declarations requires that the concept being declared must
not appear in the type of the body. The following formalizes what it means for a concept
name to appear in a type.

c occurs in typesτs∨ c occurs in typeτ

c occurs in type fnτs→ τ

c occurs in ws∨ c occurs in typeτ

c occurs in type∀ ts where ws. τ

c occurs in typeτ ∨ c occurs in typesτs

c occurs in typesτ ·τs

c occurs in(c, τs)·ws
c occurs in ws

c occurs in(c′, τs)·ws

As in System F, the rule for type abstraction refers to the free type variables in the
environment, which in turn refers to the free type variables in a type. We define the
following recursive function to compute the free type variables in a type. The pattern
of the recursion is the same as for substitution, so we reuse the termination lemmas.

constsftvg :: tyg⇒ nat set
recdef ftvg measure size
ftvg (‘t ) = {t}
ftvg (fn τs→ τ) =

S
(map ftvgτs) ∪ ftvg τ

ftvg (∀ ts where ws. τ) = (
S

(map(λ p.
S

(map ftvg(snd p))) ws) ∪ ftvg τ) − set ts
ftvg BoolG= {}
ftvg IntG= {}

(hints recdef-simp: tyg-list-tc1 where-list-tc)
constsbtvg:: tyg⇒ nat set
recdefbtvg measure size
btvg(‘t ) = {}
btvg(fn τs→ τ) =

S
(map btvgτs) ∪ btvgτ

btvg(∀ ts where ws. τ) = (
S

(map(λ p.
S

(map btvg(snd p))) ws) ∪ btvgτ) ∪ set ts
btvg BoolG= {}
btvg IntG= {}

(hints recdef-simp: tyg-list-tc1 where-list-tc)

constdefsbtv-cpt:: concept-info⇒ var set
btv-cpt c≡ set (params c) ∪

S
(map (λ p.

S
(map btvg(snd p)))(rfn c))∪

S
(map btvg

(mem-tys c))
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constdefsbtvc:: Cenv⇒ var set
btvc C≡

S
{ V. (∃ c cd. (c,cd) ∈ C

∧ V = set(params cd) ∪
S

(map(λ p.
S

(map btvg(snd p))) (rfn cd))
∪

S
(map btvg(mem-tys cd))) }

The free type variables in a typing environment is then defined as follows.

FTVgΓ ≡
S
{V | ∃ x τ . (x, τ) ∈ Γ ∧ V = ftvg τ}

8 The Translation is Sound

The main theorem of this paper is that the translation from FG to F defined in Figure 15
is sound. That is, the output terms are well-typed in System F. The proof is by induction
on the derivation of the translation. There are two extra conditions that are needed for
the induction: the concept environment must be “sane” and there must be a System F
typing environment that corresponds to the FG typing environment.

8.1 Concept Environment Sanity Conditions

Figure 16 formalizes the following sanity conditions on the concept environment.

1. Concept definitions are unique.

2. The type parameters for a concept are distinct.

3. All types that appear in a concept definition must be well-formed (and thereby
have a corresponding System F type).

4. When a concept refines another concept, the other concept must already be de-
fined.

5. The type variables occuring in the body of a concept are a subset of the type
parameters of the concept.

8.2 Environment Correspondence

Figure 17 defines the correspondence between the typing environment for FG and the
typing environment for the translated terms of System F. We writeΓ  S to mean
the FG environmentΓ is in correspondence with the System F environmentS. The
correspondence for normal variables is straightforward. If(x, τ) is in vars Γ, then
there must be aτ ′ such thatconceptsΓ ` τ  τ ′ and(x,τ ′) is in S.

The correspondence for the model environment is more involved. If model(c,τs,d,ns)
is in modelsΓ and if the pathns = [], then the dictionary variabled for that model
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Figure 15: Translation from FG to F

Γ(|models:= M, tyvars:= tyvarsΓ ∪ set ts|) ` e : σ f
set ts∩ tyvarsΓ = ∅ set ts∩ FTVg(varsΓ) = ∅

distinct ts conceptsΓ |=d ws τs conceptsΓ ` ws ds modelsΓ ⇒ M

Γ ` Λ ts where ws. e : ∀ ts where ws. σ Λ ts. (λ ds:τs. f )
(FG-TABS)

Γ ` e : ∀ ts where ws. σ f
|ts| = |τs| modelsΓ |= {|ts7→τs|}ws ds,nns conceptsΓ |= τs τs′

Γ ` e[τs] : [ts7→τs]σ f [τs′] · mk-nths ds nns
(FG-TAPP)

c /∈ dom conceptsΓ conceptsΓ |=d rs τs conceptsΓ |= σs σs′

Γ,concept c cì e : τ  f ci = (|params= ts, rfn = rs, mem-nms= xs, mem-tys= σs|)
distinct ts |xs| = |σs|

[
(map(λp.

[
(map ftvg(snd p))) rs) ⊆ set ts[

(map ftvgσs) ⊆ set ts (c, τ) /∈ c-occurs-ty

Γ ` (concept c ts{ refines rs; xs: σs; } in e) : τ  f
(FG-

CPT)

¬ model-defined c%s (modelsΓ) (c, ci) ∈ conceptsΓ conceptsΓ |= %s %s′

xs= mem-nms ci Γ |= es: σs fs σs= {params ci7→%s}mem-tys ci
conceptsΓ |=d rfn ci dts modelsΓ |= {|params ci7→%s|}rfn ci ds,ns

de= 〈mk-nths ds ns@ fs〉 |params ci| = |%s| Γ,model(c, %s, d, []) ` e : τ  f

Γ ` (model c%s{ xs= es; } in e) : τ  let d := de in f
(FG-

MDL )

(c, τs, d, ns) ∈ modelsΓ conceptsΓ `[ x c τs ns⇒ τ ns′

Γ ` (〈cτs〉.x) : τ  mk-nth(‘d) ns′ (FG-MEM)

(x, τ) ∈ varsΓ

Γ ` ‘x : τ  ‘x
(FG-VAR)

Γ ` e : fn σs→ τ  f Γ |= es: σs′ fs id |= σs= σs′

Γ ` e · es: τ  f · fs
(FG-APP)

Γ,xs:σs` e : τ  f conceptsΓ |= σs σs′ |xs| = |σs|
Γ ` λ xs:σs. e : fn σs→ τ  λ xs:σs′. f

(FG-ABS)

Γ ` BooleanG b: BoolG Boolean b(FG-BOOL)

Γ ` IntegerG i: IntG Integer i(FG-INT)

Γ |= [] : [] []
Γ ` e : τ  f Γ |= es: τs fs

Γ |= e·es: τ ·τs f ·fs

Γ |= [] [],[]
(c, τs, d, ns) ∈ M M |= ws ds,nns

M |= (c, τs)·ws d·ds,ns·nns
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Figure 16: Concept Environment Sanity

C |=d rfn c τs
C |= mem-tys c σs distinct(params c) |mem-nms c| = |mem-tys c|[

(map(λp.
[

(map ftvg(snd p))) (rfn c)) ⊆ set(params c)[
(map ftvg(mem-tys c)) ⊆ set(params c)

C ` c ok
(WF-C)

∅ ok (WF-CS-NIL )

n /∈ dom C C` c ok C ok

{(n, c)} ∪ C ok
(WF-CS-CONS)

must be bound inS to the dictionary typeτ for that model. If the pathns 6= [], then the
dictionary variabled must be bound to some dictionary typeτ in Sand following the
pathns from τ yields the sub-dictionary typeτ ′ for this model. The following is the
inductive definition for following a path through a dictionary type.

τ−[]→τ (P-NIL )
τs[n]−ns→τ ′

〈τs〉−n·ns→τ ′ (P-CONS)

The environment correspondence is used in four cases of the main theorem. Thefg-var
case uses the correspondence to obtain the System F type for the variable. Thefg-tapp,
fg-mdl, andfg-memcases use the correspondence to show that their use of dictionaries
is well typed.

8.3 Properties of Sane Concept Environments

This section collects a few properties of sane concept environments.

1. For a given concept name there is at most one concept definition.

2. Adding to the concept environment does not affect concept sanity judgements.

3. All concepts in a sane concept environment are sane.

The first lemma and its corollary prove that each concept has a unique definition.

lemmaunique-concept-mutual:
(C ` cd ok−→ True) ∧ (C ok−→ (c,cd) ∈ C ∧ (c,cd′) ∈ C−→ cd = cd′)
by (induct rule: wf-concept-wf-concept-env.induct, auto)
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Figure 17: Correspondence between the FG typeing environment and the System F
environment needed to type the output of the translation. This correspondence is an
invariant that is maintained by the translation.

Γ S≡ ∃Sv Sm. conceptsΓ `v varsΓ Sv∧ conceptsΓ `m modelsΓ Sm∧ tvars S=
tyvarsΓ ∧ tys S= Sm∪ Sv

C `v ∅ ∅ (CV-NIL )

C `v V S C` τ  τ ′

C `v V,x:τ  S,x:τ ′ (CV-CONS)

C `m ∅ ∅ (CM-NIL )

C `m M S C`d c τs τ

C `m {(c, τs, d, [])} ∪ M S,d:τ
(CM-CONS)

C `m M S ns6= [] (d, τ) ∈ S C`d c τs τ ′ τ−ns→τ ′

C `m {(c, τs, d, ns)} ∪ M S
(CM-DROP)

corollary unique-concept: [[ C ok; (c,cd) ∈ C; (c,cd′) ∈ C ]] =⇒ cd = cd′

usingunique-concept-mutualby blast

The next properties is that “weakening” the environment by adding more concept defi-
nition does not affect judgements about a concept definition’s sanity.

lemmagrow-env-pres-wf-concepts: (C ` cd ok−→
(∀ C ′. C⊆ C ′∧ C ′ ok−→ C ′ ` cd ok)) ∧ (C ok−→ True)
apply (induct rule: wf-concept-wf-concept-env.induct)
prefer 2 apply simpprefer 2 apply simp

proof clarify
fix C σs τs and c::concept-infoand C ′

assumers: C |=d rfn c τs and ms: C |= mem-tys c σs
and dp: distinct(params c) and len: length(mem-nms c) = length(mem-tys c)
and rftv:

S
(map(λp.

S
(map ftvg(snd p))) (rfn c)) ⊆ set(params c)

and mftv:
S

(map ftvg(mem-tys c)) ⊆ set(params c)
and ccp: C⊆ C ′ and cpok: C ′ ok

from ccp cpok rshaversp: C ′ |=d rfn c τs usinggrow-env-pres-transby blast
from ccp cpok mshavemsp: C ′ |= mem-tys c σs usinggrow-env-pres-transby blast
from rsp msp dp len rftv mftvshowC ′ ` c okusingwf-c by blast

qed

corollary grow-env-pres-c-ok: [[ C ` cd ok; C ′ ok; C⊆ C ′ ]] =⇒ C ′ ` cd ok
usinggrow-env-pres-wf-conceptsapply blastdone

The third property is that if a concept is in a sane concept environment, then the concept
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is sane.

lemmac-mem-implies-c-ok-mutual:
(C ` ci ok−→ True) ∧ (C ok−→ (∀ c ci. C ok∧ (c,ci) ∈ C−→ C ` ci ok))
apply (induct rule: wf-concept-wf-concept-env.induct)
apply simp+ apply clarify apply (case-tac(ca,ci) = (n,c))
usinggrow-env-pres-c-okapply blastusinggrow-env-pres-c-okby blast

corollary c-mem-implies-c-ok: [[ C ok; (c,ci) ∈ C ]] =⇒ C ` ci ok
usingc-mem-implies-c-ok-mutualby blast

8.4 Properties of the Type Translation

This section establishes several properties of the translation from types in FG to types
in System F.

The inversion lemma for the translation of a concept instantiation to a dictionary type is
heavily used. The following lemma is an easier to use variant of that inversion lemma.
Instead of a conclusion that gives the existence of a concept definition for conceptc, the
lemma instead includes a premise for the concept definitioncd which the conclusion
gives its results in terms of.

lemma inv-r-d2:
assumesD: C `d c %s τ and Cok: C okand cC: (c,cd) ∈ C
shows∃ δsσs τs′. C |= %s τs′∧ C |=d rfn cd δs
∧ C |= mem-tys cd σs∧ length%s= length(params cd)
∧ τ = 〈{params cd7→τs′}(δs@ σs)〉

proof −
from D obtain δsσs%s′ cd′ wherecpC: (c,cd′) ∈ C and rs-rsp: C |= %s %s′

and Ds: C |=d rfn cd′ δs and ms-ss: C |= mem-tys cd′ σs
and lrsp: length%s= length(params cd′)
and T: τ = 〈{params cd′ 7→ %s′}(δs@σs)〉 by (rule inv-r-d, auto)

from Cok cC cpChavecd-cdp: cd = cd′ by (rule unique-concept)
from cd-cdphaveDs2: C |=d rfn cd δs by simp
from cd-cdphavems-ss2: C |= mem-tys cd σs by simp
from cd-cdp lrsphave lrsp2: length%s= length(params cd) by simp
from cd-cdp ThaveT2: τ = 〈{params cd7→ %s′}(δs@σs)〉 by simp
from rs-rsp Ds2 ms-ss2 lrsp2 T2show?thesisby auto

qed

The next lemma states that the type translation is a function. The proof is a mutual
induction on the four type translation judegements.

lemma fun-dict-trans-ty:
(C ` τ  τ ′−→ C ok−→ (∀ τ ′′. C ` τ  τ ′′−→ τ ′ = τ ′′))
∧ (C |= τs τs′−→ C ok−→ (∀ τs′′. C |= τs τs′′−→ τs′ = τs′′))
∧ (C `d c %s dt−→ C ok−→ (∀ dt ′. C `d c %s dt ′−→ dt ′ = dt))
∧ (C |=d ws dts−→ C ok−→ (∀ dts′. C |=d ws dts′−→ dts′ = dts))
(is (C ` τ  τ ′−→ ?P1 Cτ τ ′) ∧ (C |= τs τs′−→ ?P2 Cτs τs′)
∧ (C `d c %s dt−→ ?P3 C c%s dt) ∧ (C |=d ws dts−→ ?P4 C ws dts))
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apply (induct rule: trans-ty-trans-tys-req-dict-reqs-dicts.induct)
apply clarify apply (rule inv-trans-var) apply simpapply simp
prefer 3 apply clarify apply (rule inv-trans-bool) apply simpapply simp
prefer 3 apply clarify apply (rule inv-trans-int) apply simpapply simp
prefer 3 apply clarify apply (rule inv-trans-nil) apply simpapply simp
prefer 5 apply clarify apply (rule inv-rs-ds-nil) apply simpapply simp

proof −
fix C τ τ ′ τs τs′ assume?P2 Cτs τs′ and ?P1 Cτ τ ′

thus ?P1 C(fn τs→ τ) (fn τs′→ τ ′) apply clarify by (rule inv-trans-fun, auto)
next
fix C δs τ τ ′ ts wsassume?P4 C wsδs and ?P1 Cτ τ ′

thus ?P1 C(∀ ts where ws. τ) (∀ ts. fn δs→ τ ′)
apply clarify by (rule inv-trans-all2, auto)

next
fix C τ τ ′ τs τs′ assume?P1 Cτ τ ′ and ?P2 Cτs τs′

thus ?P2 C(τ # τs) (τ ′ # τs′) apply clarify by (rule inv-trans-cons, auto)
next
fix C δsσs τs τs′ c and ci::concept-infoassumecC: (c,ci) ∈ C
and IH1: ?P2 Cτs τs′ and IH2: ?P4 C(rfn ci) δs and IH3: ?P2 C(mem-tys ci) σs

show?P3 C cτs ([params ci7→τs′](〈δs@ σs〉))
proof clarify
fix dt ′ assumeCok: C okand D: C `d c τs dt ′

from D Cok cCobtain δs′ σs′ τs′′

where ts-tspp: C |= τs τs′′ and r-dsp: C |=d rfn ci δs′

and ms-sp: C |= mem-tys ci σs′

and dtp: dt ′ = 〈{params ci7→τs′′}(δs′@σs′)〉 using inv-r-d2by blast
from IH1 Cok ts-tspphavetseq: τs′ = τs′′ by simp
from IH2 Cok r-dsphavedseq: δs= δs′ by simp
from IH3 Cok ms-sphavemseq: σs= σs′ by simp
from dtp tseq dseq mseqshowdt ′ = [params ci7→τs′](〈δs@ σs〉) by simp

qed
next
fix C δ δs τs c rsassume?P3 C cτs δ and ?P4 C rsδs
thus ?P4 C((c,τs)#rs) (δ#δs) apply clarify by (rule inv-rs-ds-cons, auto)

qed

The length of type list is invariant under translation. The number of requirements in
where clause is equal the length of the list of dictionary types.

lemma trans-length:
(C ` τ  τ ′−→ True) ∧ (C |= σs σs′−→ lengthσs= lengthσs′)
∧ (C `d c %s dt−→ True) ∧ (C |=d rs dts−→ length rs= length dts)
by (induct rule: trans-ty-trans-tys-req-dict-reqs-dicts.induct, auto)

corollary trans-length-tys: C |= σs σs′ =⇒ lengthσs= lengthσs′

using trans-lengthapply blastdone

corollary trans-length-r-d: C |=d rs dts=⇒ length rs= length dts
using trans-lengthapply blastdone
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If the list of typesσs translates toσs′, then the ith element ofσs translates to the ith
element ofσs′.

lemma trans-nth-helper:
(C ` τ  τ ′−→ True) ∧ (C |= σs σs′−→ (∀ i < lengthσs. C ` σs!i σs′!i))
∧ (C `d c %s dt−→ True) ∧ (C |=d rs dts−→ True)
apply (induct rule: trans-ty-trans-tys-req-dict-reqs-dicts.induct)
apply autoapply (case-tac i) apply autodone

corollary trans-nth: [[ C |= σs σs′; i < lengthσs ]] =⇒ C ` σs!i σs′!i
using trans-nth-helperby blast

The next few lemmas and definitions build up to the proof that type translation re-
spects substitution. The following fact characterizes the affect of substitution on free
variables.

lemma ftv-subst-ty: length ts= lengthσs=⇒ ftv [ts7→σs]τ ⊆ (ftv τ − set ts) ∪
S

(map ftvσs)

The proof will be a induction on the structure of types, and thus a mutual induction
proving the following two statements.

constdefsftv-subst-ty:: ty⇒ bool
ftv-subst-tyτ ≡
(∀ ts (σs::ty list). length ts= lengthσs
−→ ftv [ts7→σs]τ ⊆ (ftv τ − set ts) ∪

S
(map ftvσs))

constdefsftv-subst-tys:: ty list⇒ bool
ftv-subst-tysτs≡ (∀ ts (σs::ty list).

length ts= lengthσs
−→

S
(map ftv(sub-tys tsσs τs)) ⊆ (

S
(map ftvτs) − set ts) ∪

S
(map ftvσs))

The case for variables is the only interesting case. There are two subcases to consider,
whent is substituted, and when it is not.

lemma ftv-subst-var: ftv-subst-ty(‘t )
proof (simp only: ftv-subst-ty-def, clarify)
fix tsσs xassumexfv: x∈ ftv [ts7→σs]‘t and xfss: x /∈

S
(map ftvσs)

and len: length ts= lengthσs
showx∈ ftv (‘t ) − set ts
proof (cases t∈ set ts)
assumetts: t ∈ set ts
from tts lenobtain i where I : i < length tsand L: lookup t tsσs 0= Some(σs!i,i)
using lookup-succeeds[of t tsσs 0] by auto

hencest: [ts7→σs]‘t = σs!i by simp
from I len have iss: i < length(map ftvσs) using length-mapby simp
from isshave(map ftvσs)!i ⊆

S
(map ftvσs) usingunion-list-elem-subsetby blast

with st isshaveftv [ts7→σs]‘t ⊆
S

(map ftvσs) usingnth-mapby simp
with xfv xfsshaveFalseby autothus ?thesisby simp

next
assumetts: t /∈ set ts
from tts have lookup t tsσs 0= Noneby (rule lookup-fails)
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with xfv ttsshow?thesisby simp
qed

qed

lemma ftv-subst-mutual: ftv-subst-tyτ ∧ ftv-subst-tysτs∧ ftv-subst-tysτs
apply (induct rule: ty.induct) apply (rule ftv-subst-var)
apply (simp, blast)+ apply simp+ apply blastapply simpby (simp, blast)

corollary ftv-subst-ty: length ts= lengthσs
=⇒ ftv [ts7→σs]τ ⊆ (ftv τ − set ts) ∪

S
(map ftvσs)

using ftv-subst-mutualby simp

corollary ftv-subst-tys: length ts= lengthσs
=⇒

S
(map ftv{ts7→σs}τs) ⊆ (

S
(map ftvτs) − set ts) ∪

S
(map ftvσs)

using ftv-subst-mutualby simp

corollary ftv-subst-ty2:
assumesftts: ftv τ ⊆ set tsand len: length ts= lengthσs
showsftv [ts7→σs]τ ⊆

S
(map ftvσs)

proof −
from lenhaveftv [ts7→σs]τ ⊆ (ftv τ − set ts) ∪

S
(map ftvσs)

by (rule ftv-subst-ty)
with ftts show?thesisby auto

qed

corollary ftv-subst-tys2:
assumesftts:

S
(map ftvτs) ⊆ set tsand len: length ts= lengthσs

shows
S

(map ftv{ts7→σs}τs) ⊆
S

(map ftvσs)
proof −
from lenhave

S
(map ftv{ts7→σs}τs) ⊆ (

S
(map ftvτs) − set ts) ∪

S
(map ftvσs)

by (rule ftv-subst-tys)
with ftts show?thesisby auto

qed

The translation never adds free variables to a type. This is proved by induction on the
translation judgments, with the only interesting case being the case for a requirement
in a where clause.

lemma trans-reduces-ftv:
(C ` τ  τ ′−→ C ok−→ ftv τ ′⊆ ftvg τ)
∧ (C |= τs τs′−→ C ok−→

S
(map ftvτs′) ⊆

S
(map ftvgτs))

∧ (C `d c %s dt−→ C ok−→ ftv dt⊆
S

(map ftvg%s))
∧ (C |=d rs dts−→ C ok−→

S
(map ftv dts) ⊆

S
(map(λ p.

S
(map ftvg(snd p))) rs))

apply (induct rule: trans-ty-trans-tys-req-dict-reqs-dicts.induct)
apply simpapply (simp, blast) apply (simp,blast) apply simpapply simpapply simp
apply (simp, blast) prefer 2 apply simpprefer 2 apply (simp, blast)

proof clarify
fix C and δs::ty list and σs τs τs′ c ci x
assumecC: (c, ci) ∈ C and ts-tsp: C |= τs τs′

and xfds: x∈ ftv [params ci7→τs′](〈δs@σs〉)
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and IH1:
S

(map ftvτs′) ⊆
S

(map ftvgτs)
and IH2:

S
(map ftvδs) ⊆

S
(map(λp.

S
(map ftvg(snd p))) (rfn ci))

and IH3:
S

(map ftvσs) ⊆
S

(map ftvg(mem-tys ci))
and lts: lengthτs= length(params ci) and Cok: C ok

from Cok cChaveciok: C ` ci ok by (rule c-mem-implies-c-ok)
from ciok haversps:

S
(map(λp.

S
(map ftvg(snd p))) (rfn ci)) ⊆ set(params ci)

by (rule inv-wf-c, simp)
from ciok havemsps:

S
(map ftvg(mem-tys ci)) ⊆ set(params ci) by (rule inv-wf-c, simp)

from ts-tsp ltshave ltsp: length(params ci) = lengthτs′ by (simp add: trans-length)
from IH2 rspshavefdsps:

S
(map ftvδs) ⊆ set(params ci) by simp

from fdsps ltsphave
A:

S
(map ftv({params ci7→τs′}δs)) ⊆

S
(map ftvτs′) by (rule ftv-subst-tys2)

from IH3 mspshavefssps:
S

(map ftvσs) ⊆ set(params ci) by simp
from fssps ltsphave
B:

S
(map ftv({params ci7→τs′}σs)) ⊆

S
(map ftvτs′) by (rule ftv-subst-tys2)

from A Bhaveftv [params ci7→τs′](〈δs@σs〉) ⊆
S

(map ftvτs′)
by (inductδs rule: list.induct, auto)

with IH1 xfdsshowx∈
S

(map ftvgτs) by auto
qed

Substitution respects type translation That is, ifτ translates toτ ′, then[ts7→τs]τ trans-
lates to[ts7→τs′]τ ′, provided thatτs translates toτs′. The proof is by induction on
the derivation of the translation. There are two interesting cases, for translating type
variables, and the case for translating a concept instantiation in awhere clause. This
first lemma handles the translation of type variables.

lemmasubst-respects-trans-var: (C ` (VarTG t) (VarT t)
−→ (∀ ts τs τs′. distinct ts∧ length ts= lengthτs∧ C |= τs τs′

−→ C ` [ts7→τs](VarTG t) [ts7→τs′](VarT t)))
proof (clarify)
fix ts::var list and τs τs′

assumeD: distinct tsand L: length ts= lengthτs and ts-tsp: C |= τs τs′

showC ` [ts7→τs](VarTG t) [ts7→τs′](VarT t)
proof (cases t∈ set ts)
assumetm: t ∈ set ts
from tm L obtain i where il : i < length tsand tsi: ts!i = t
and lts: lookup t tsτs 0= Some(τs!i,i)
using lookup-succeeds[of t tsτs 0] by auto

from ts-tsphave lengthτs= lengthτs′ by (rule trans-length-tys)
with L haveL2: length ts= lengthτs′ by simp
from tm L2obtain i ′ τ ′ where
ipl: i ′ < length tsand tsip: ts!i ′ = t and tausip: τs′!i ′ = τ ′

and ltsp: lookup t tsτs′ 0 = Some(τs′!i ′,i ′)
using lookup-succeeds[of t tsτs′ 0] by auto

from D il ipl tsi tsip have i-ip: i = i ′ usingdistinct-conv-nthby auto
note ts-tsp
moreover from L il have i < lengthτs by simp
ultimately have C ` τs!i τs′!i by (rule trans-nth)
with lts ltsp tausip i-ipshow?thesisby auto

next
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assumetm: t /∈ set ts
from tm have lookup t tsτs 0= Noneby (rule lookup-fails)
moreover from tm have lookup t tsτs′ 0 = Noneby (rule lookup-fails)
ultimately show ?thesisby (simp add: trans-var)

qed
qed

The following abbreviations are used for the conclusions of the statements that will be
proved.

constdefssrt-ty :: [Cenv,tyg,ty] ⇒ bool
srt-ty Cτ τ ′≡ (∀ ts τs τs′. C |= τs τs′∧ C ok∧ distinct ts∧ length ts= lengthτs
−→ C ` sub-tyg(ts,τs,τ) sub-ty(ts,τs′,τ ′))

constdefssrt-tys:: [Cenv,tyg list,ty list] ⇒ bool
srt-tys Cτs τs′≡ (∀ tsσsσs′. C |= σs σs′∧ C ok∧ distinct ts∧ length ts= lengthσs
−→ C |= sub-tygs tsσs τs sub-tys tsσs′ τs′)

constdefssrt-dict :: [Cenv, var, tyg list, ty] ⇒ bool
srt-dict C c%s dt≡ (∀ ts τs τs′. (C |= τs τs′∧ C ok∧ distinct ts∧ length ts= lengthτs
−→ C `d c (sub-tygs tsτs%s) sub-ty(ts,τs′,dt)))

constdefssrt-ds:: [Cenv, where-clause, ty list] ⇒ bool
srt-ds C rs dts≡ (∀ ts τs τs′. C |= τs τs′∧ C ok∧ distinct ts∧ length ts= lengthτs
−→ C |=d {|ts7→τs|}rs {ts7→τs′}dts)

The case for translating a requirement in awhere clause is handled by the following
lemma.

lemmasubst-respects-trans-dict:
assumescC: (c, ci) ∈ C and ts-tsp: C |= τs τs′ and IH1: srt-tys Cτs τs′

and Rs: C |=d rfn ci δs and IH2: srt-ds C(rfn ci) δs
and Ms: C |= mem-tys ci σs and IH3: srt-tys C(mem-tys ci) σs
and lts: lengthτs= length(params ci)
showssrt-dict C cτs [params ci7→τs′](〈δs@ σs〉)

proof (simp only: srt-dict-def, clarify)
fix ts::var list and τsa::tyg list and τsa′::ty list
assumetsa-tsap: C |= τsa τsa′

and Cok: C okand dist: distinct tsand len: length ts= lengthτsa
let ?dt = [params ci7→τs′](〈δs@ σs〉)
let ?ts= {ts7→τsa}τs and ?tsp= {ts7→τsa′}τs′

let ?ms= {ts7→τsa}mem-tys ciand ?ss= {ts7→τsa′}σs
let ?rs= {|ts7→τsa|}(rfn ci) and ?ds= {ts7→τsa′}δs
notecC moreover from tsa-tsap Cok dist len IH1have
ts-tsp: C |= ?ts ?tspby simp

moreover noteRsand Ms
moreover from lts have length{ts7→τsa}τs= length(params ci)
usingsubstg-lengthby simp

ultimately have C `d c ?ts [params ci7→?tsp](〈δs@σs〉) by (rule r-d)
moreover have[params ci7→?tsp](〈δs@σs〉) = [ts7→τsa′]?dt
proof −
— We can alpha-convert to change the concept parameters so that they are distinct fromtsand

from the variables inτsa′.
haveA: set(params ci) ∩ set ts= {} sorry
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haveB: set(params ci) ∩
S

(map otvτsa′) = {} sorry
haveC: set ts∩ otv (〈δs@ σs〉) = {}
proof −
haveofb: otv (〈δs@ σs〉) = ftv (〈δs@ σs〉) ∪ btv (〈δs@ σs〉)
usingotv-ftv-btvby simp

from Cok cChaveciok: C ` ci ok by (rule c-mem-implies-c-ok)
from ciok havefrsps:

S
(map(λp.

S
(map ftvg(snd p))) (rfn ci)) ⊆ set(params ci)

by (rule inv-wf-c, simp)
from ciok havefmsps:

S
(map ftvg(mem-tys ci)) ⊆ set(params ci)

by (rule inv-wf-c, simp)
from Rs Cokhave

S
(map ftvδs) ⊆

S
(map(λp.

S
(map ftvg(snd p))) (rfn ci))

using trans-reduces-ftvby simp
with frspshavefdsps:

S
(map ftvδs) ⊆ set(params ci) by simp

from Ms Cokhave
S

(map ftvσs) ⊆
S

(map ftvg(mem-tys ci))
using trans-reduces-ftvby simp

with fmspshavefssps:
S

(map ftvσs) ⊆ set(params ci) by simp
haveftv (〈δs@ σs〉) =

S
(map ftvδs) ∪

S
(map ftvσs)

by (inductδs rule: list.induct, auto)
with fdsps fsspshaveftv (〈δs@ σs〉) ⊆ set(params ci) by auto
with A havetsfds: set ts∩ ftv (〈δs@ σs〉) = {} by auto
— We can alpha-convert the bound variables to be distinct fromts.
havetsbds: set ts∩ btv (〈δs@ σs〉) = {} sorry
from tsfds tsbds ofbshow?thesisby auto

qed
from ts-tsphave length ?ts= length ?tspusing trans-lengthby blast
with lts haveD: length(params ci) = lengthτs′

by (simp add: subst-length substg-length)
from tsa-tsaphave lengthτsa= lengthτsa′ using trans-lengthby blast
with lenhaveE: length ts= lengthτsa′ by simp
from Cok cChaveC ` ci ok by (rule c-mem-implies-c-ok)
henceF: distinct(params ci) by (rule inv-wf-c, auto)
from A B C D E Fhave[ts7→τsa′]?dt = [params ci7→?tsp](〈δs@σs〉)
usingsubstitution-lemma2apply blastdone

thus ?thesisby simp
qed
ultimately show C `d c {ts7→τsa}τs sub-ty(ts,τsa′,?dt) by simp

qed

The rest of the cases are trivial and proved automatically by Isabelle.

lemmasubst-respects-trans:
(C ` τ  τ ′−→ srt-ty Cτ τ ′) ∧ (C |= τs τs′−→ srt-tys Cτs τs′)
∧ (C `d c %s dt−→ srt-dict C c%s dt) ∧ (C |=d rs dts−→ srt-ds C rs dts)
apply (induct rule: trans-ty-trans-tys-req-dict-reqs-dicts.induct)
usingsubst-respects-trans-varapply simpapply simpapply simp
apply simpapply simpapply simpapply simp
usingsubst-respects-trans-dictby simp+

corollary subst-r-d:
assumesD: C `d c %s dt and Cok: C okand dist: distinct ts
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and L: length ts= lengthτs and ts-tsp: C |= τs τs′

showsC `d c {ts7→τs}%s [ts 7→ τs′]dt
proof −
haveC `d c %s dt−→ srt-dict C c%s dtusingsubst-respects-transby simp
with Cok D dist L ts-tspshow?thesisby auto

qed

corollary subst-ds:
assumesDs: C |=d rs dtsand Cok: C okand dist: distinct ts
and L: length ts= lengthτs and ts-tsp: C |= τs τs′

showsC |=d {|ts 7→ τs|}rs {ts 7→ τs′}dts
proof −
haveC |=d rs dts−→ srt-ds C rs dtsusingsubst-respects-transby simp
with Cok Ds dist L ts-tspshow?thesisby auto

qed

corollary subst-trans-ty:
assumesDs: C ` τ  τ ′ and Cok: C okand dist: distinct ts
and L: length ts= lengthτs and ts-tsp: C |= τs τs′

showsC ` [ts 7→ τs]τ  [ts 7→ τs′]τ ′

proof −
haveC ` τ  τ ′−→ srt-ty Cτ τ ′ usingsubst-respects-transby simp
with Cok Ds dist L ts-tspshow?thesisby auto

qed

corollary subst-trans-tys:
assumesDs: C |= σs σs′ and Cok: C okand dist: distinct ts
and L: length ts= lengthτs and ts-tsp: C |= τs τs′

showsC |= {ts 7→ τs}σs {ts 7→ τs′}σs′

proof −
haveC |= σs σs′−→ srt-tys Cσsσs′ usingsubst-respects-transby simp
with Cok Ds dist L ts-tspshow?thesisby auto

qed

If a concept is never referred to in a type, removing the concept from the environment
does not affect the translation of that type. We skip the proof of this straightforward
lemma due to time constraints.

lemma remove-concept-pres-trans:
(insert(c,ci) C ` τ  τ ′−→ (c,τ) /∈ c-occurs-ty−→ C ` τ  τ ′)
∧ (insert(c,ci) C |= σs σs′−→ (c,τ) /∈ c-occurs-ty−→ C |= σs σs′)
∧ (insert(c,ci) C `d c %s dt−→ (c,τ) /∈ c-occurs-ty−→ C `d c %s dt)
∧ (insert(c,ci) C |=d rs dts−→ (c,τ) /∈ c-occurs-ty−→ C |=d rs dts)
sorry

corollary remove-concept-pres-trans-ty:
[[ insert(c,ci) C ` τ  τ ′; (c,τ) /∈ c-occurs-ty]] =⇒ C ` τ  τ ′

using remove-concept-pres-transby blast

Adding concepts to the environment (weakening) does not affect the translation of
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types.

lemmaadd-concept-pres-trans:
(C ` τ  τ ′−→ (∀ c ci. insert(c,ci) C ` τ  τ ′))
∧ (C |= σs σs′−→ (∀ c ci. insert(c,ci) C |= σs σs′))
∧ (C `d c %s dt−→ (∀ c′ ci ′. insert(c′,ci ′) C `d c %s dt))
∧ (C |=d rs dts−→ (∀ c ci. insert(c,ci) C |=d rs dts))
apply (induct rule: trans-ty-trans-tys-req-dict-reqs-dicts.induct)
using r-d by auto

The type translation is a function. The premiseC ok is need to ensure that the concept
environment contains no more than one definition for each concept name. Again, we
skip the proof due to time constraints.

lemmaunique-trans-tys: [[ C |= τs σs; C ok; C |= τs σs′ ]] =⇒ σs= σs′

sorry

Next we prove a lemma concerning substitution and the translation of refinments to
dictionary types. The proof will use this basic fact about list append.

lemmaappend-eq-len:
V

ls1′ ls2 ls2′. [[ length ls1= length ls1′; ls1@ ls2= ls1′ @ ls2′ ]]
=⇒ ls1= ls1′∧ ls2= ls2′ by (induct ls1, simp, case-tac ls1′, simp, simp)

lemma refine-dict-types:
assumesD: C `d c τs 〈dts@σs〉 and Cok: C okand cC: (c, ci) ∈ C
and L: length dts= length(rfn ci)
showsC |=d {|params ci7→τs|}rfn ci dts

proof −
from D Cok cCobtain dts′ σs′ τs′ where ts-tsp: C |= τs τs′

and Ds: C |=d rfn ci dts′

and lpts: lengthτs= length(params ci)
and tp: 〈dts@σs〉 = 〈{params ci7→τs′}(dts′@σs′)〉 using inv-r-d2by blast

from tp have〈dts@σs〉 = 〈{params ci7→τs′}dts′@{params ci7→τs′}σs′〉
by (simp only: subst-append)

henceT: dts@σs= {params ci7→τs′}dts′@{params ci7→τs′}σs′ by simp
from L have length dts= length(rfn ci) .
also from Dshave. . . = length dts′ by (rule trans-length-r-d)
also have. . . = length{params ci7→τs′}dts′ usingsubst-lengthby simp
finally have L1: length dts= length{params ci7→τs′}dts′ by simp
from T L1 append-eq-lenhavedts: dts= {(params ci) 7→ τs′}dts′ by simp
from T L1 append-eq-lenhavess: σs= {params ci7→τs′}σs′ by simp
— So we finally have the dictionary types for the refinements.

haveC |=d {|params ci7→τs|}rfn ci {params ci7→τs′}dts′

proof −
from Cok cChaveciok: C ` ci ok by (rule c-mem-implies-c-ok)
from ciok havedist: distinct(params ci) by (rule inv-wf-c, simp)
from Cok Ds dist lpts ts-tspshow?thesisby (simp only: subst-ds)

qed
with dtsshow?thesisby simp

qed
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Given that a list of FG types translates to a list of F types, the ith FG type translates to
the ith F type.

lemma trans-tys-nth:
V

C σs′ i τ . [[ C |= σs σs′; i < lengthσs; σs! i = τ ]]
=⇒ C ` τ  σs′!i

proof (inductσs rule: list.induct, simp)
fix a list C σs′ i τ
assumeIH :

V
C σs′ i τ . [[C |= list σs′; i < length list; list ! i = τ ]] =⇒ C ` τ  σs′ ! i

and alss: C |= a # list σs′ and il : i < length(a # list) and alit: (a # list) ! i = τ
from alssobtain τ ′ τs′ where t-tp: C ` a τ ′ and ssp: σs′ = τ ′#τs′

and ltsp: C |= list τs′ by (rule inv-trans-cons, auto)
showC ` τ  σs′ ! i
proof (cases i)
assumeiz: i = 0 from iz alit haveat: a = τ by simp
from at t-tp ssp izshow?thesisby simp

next fix j assumeI : i = Suc j
from alit I have ljt : list!j = τ by simp
from il I have jl : j < length listby simp
from ltsp jl ljt IH haveC ` τ  τs′!j by blast
with I sspshow?thesisby simp

qed
qed

8.5 Paths Through Dictionaries

There are several places in Figure 15 where the environment is extended with concepts,
models, or variables. In Section 8.6 we show that the environment correspondence
is maintained in each case. However, first we need several lemmas regarding paths
through dictionaries.

The following two lemmas extend a path through a dictionary. The first extends the
path to the sub-dictionary for a refinement. The second extends the path to a member
of the dictionary. Both lemmas are straightforward inductions on the pathns.

lemmadict-path-to-super:V
dts dtσs i τ . [[ i < length dts; dt = 〈dts@σs〉; τ−ns→dt ]] =⇒ τ−ns@[i]→dts!i

proof (induct ns)
fix dts dtσs i τ
assumeI : i < length dtsand dt: dt = 〈dts@σs〉 and t-dt: τ−[]→dt
from t-dt haveeq: τ = dt apply (rule inv-path-nil) apply simpdone
from I have(dts@σs)!i = dts!i apply (simp add: nth-append) done
hence(dts@σs)!i−[]→dts!i by (simp add: p-nil)
hence〈dts@ σs〉−i#[]→dts!i by (rule p-cons)
with eq dtshowτ−[]@[i]→ dts!i by simp

next fix a list dts dtσs i τ
assumeIH :

V
dts dtσs i τ . [[i < length dts; dt = 〈dts@σs〉; τ−list→dt]] =⇒ τ−list@[i]→dts!i

and I : i < length dtsand dt: dt = 〈dts@ σs〉
and P: (τ , a # list, dt) ∈ path-ty

from P obtain τs whereP2: (τs!a, list, dt) ∈ path-ty
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and T: τ = 〈τs〉 apply (rule inv-path-cons) apply simpdone
from I dt P2 IH haveP3: τs!a−list@[i]→dts!i by simp
hence〈τs〉−a#(list @ [i])→dts!i by (rule p-cons)
with T haveτ−a#(list@[i])→dts!i by simp
thus τ−(a#list)@[i]→dts!i by auto

qed

lemmadict-path-to-member:V
dts dtσs i τ . [[ i < lengthσs; dt=〈dts@σs〉; τ−ns→dt ]] =⇒ τ−ns@[length dts+i]→σs!i

proof (induct ns)
fix dts dtσs i τ
assumeI : i < lengthσs and dt: dt = 〈dts@σs〉 and t-dt: τ−[]→dt
from t-dt haveeq: τ = dt apply (rule inv-path-nil) apply simpdone
from I have(dts@σs)!(length dts+ i) = σs!i
apply (simp add: nth-append-length-plus) done

hence(dts@σs)!(length dts+ i)−[]→σs!i by (simp add: p-nil)
hence〈dts@σs〉−(length dts+i)#[]→σs!i by (rule p-cons)
with eq dtshowτ−[]@[length dts+ i]→σs!i by simp

next fix a list dts dtσs i τ
assumeIH :

V
dts dtσs i τ . [[i < lengthσs; dt = 〈dts@ σs〉; τ−list→dt ]]

=⇒ τ−list@[length dts+ i]→σs!i
and I : i < lengthσs and dt: dt = 〈dts@σs〉 and P: τ−a#list→dt

from P obtain τs whereP2: τs!a−list→dt
and T: τ = 〈τs〉 apply (rule inv-path-cons) apply simpdone

from I dt P2 IH haveP3: τs!a−list@[length dts+ i]→σs!i by simp
hence〈τs〉−a#(list @ [length dts+ i])→σs!i by (rule p-cons)
with T haveτ−a#(list@[length dts+ i])→σs!i by simp
thus τ−(a#list)@[length dts+ i]→σs!i by auto

qed

The next lemma states that the ith entry in the dictionary type for conceptc is the
dictionary type for the “super” conceptc′. This lemma is proved by induction on the
refinement listrs.

lemmadict-at-i:
V

C dts i c′ τs′. [[ C |=d rs dts; rs!i = (c′,τs′); Suc i≤ length dts]]
=⇒ (∃ dts′ σs′ ci ′. C `d c′ τs′ dts!i ∧ dts!i = 〈dts′@σs′〉
∧ (c′,ci ′) ∈ C ∧ length(rfn ci ′) = length dts′)

apply (induct rs rule: list.induct) prefer 2 apply clarify prefer 2
proof −
fix C dts iand c′::var and τs′::tyg list
assumeDs: C |=d [] dtsand L: Suc i≤ length dts
from Dshavedts= [] by (rule inv-rs-ds-nil, simp)
with L haveFalseby simp
thus ∃ dts′ σs′ ci ′. C `d c′ τs′ dts!i ∧ dts!i = 〈dts′ @ σs′〉
∧ (c′,ci ′) ∈ C ∧ length(rfn ci ′) = length dts′ by simp

next fix a b list C dts i c′ τs′

assumeIH :
V

C dts i c′ τs′. [[ C |=d list dts; list!i = (c′, τs′); Suc i≤ length dts]]
=⇒ (∃ dts′ σs′ ci ′. C `d c′ τs′ dts!i ∧ dts!i = 〈dts′ @ σs′〉
∧ (c′,ci ′) ∈ C ∧ length(rfn ci ′) = length dts′)

and Ds: C |=d (a, b) # list dts
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and at: ((a, b) # list) ! i = (c′, τs′)
and I : Suc i≤ length dts

from Dsobtain τ τs whereD: C `d a b τ and Ds2: C |=d list τs
and dts: dts= τ#τs by (rule inv-rs-ds-cons, simp)

show∃ dts′ σs′ ci ′. C `d c′ τs′ dts!i ∧ dts!i = 〈dts′ @ σs′〉 ∧ (c′,ci ′) ∈ C
∧ length(rfn ci ′) = length dts′

proof (cases i)
assumeiz: i = 0
from iz at haveeq: (a,b) = (c′,τs′) by simp
from D eqhaveD2: C `d c′ τs′ τ by simp
from D2 obtain δsσs τs′′ ci wherecC: (c′,ci) ∈ C and ts-tsp: C |= τs′ τs′′

and Ds: C |=d rfn ci δs and Ms: C |= mem-tys ci σs
and tp: τ = 〈{params ci7→τs′′}(δs@σs)〉 by (rule inv-r-d, auto)

from tp haveT: τ = 〈({params ci7→τs′′}δs@{params ci7→τs′′}σs)〉
by (simp only: subst-append)

from T D2have
D3: C `d c′ τs′ 〈({params ci7→τs′′}δs@ {params ci7→τs′′}σs)〉 by simp

from T iz dtshave
dtsi: dts! i = 〈({params ci7→τs′′}δs@ {params ci7→τs′′}σs)〉 by simp

from Ds trans-lengthhave length(rfn ci) = lengthδs by blast
henceL: length(rfn ci) = length{(params ci) 7→ τs′′}δs usingsubst-lengthby simp
from D3 dtsihaveD4: C `d c′ τs′ dts!i by simp
from D4 dtsi cC Lshow?thesisby blast

next fix j assumeij : i = Suc j
from I ij dts haveJ: Suc j≤ lengthτs by simp
from ij at haveat2: list ! j = (c′,τs′) by simp
from Ds2 at2 J IHobtain dts′ σs′ ci ′ whereD2: C `d c′ τs′ τs!j
and at3: τs!j = 〈dts′ @ σs′〉 and cC: (c′,ci ′) ∈ C
and L: length(rfn ci ′) = length dts′ by blast

from D2 dts ijhaveD3: C `d c′ τs′ dts!i by simp
from dts ij at3haveat4: dts!i = 〈dts′@σs′〉 by simp
from D3 at4 cC Lshow?thesisby auto

qed
qed

8.6 Preserving the Environment Correspondence

The environment correspondence defined in Figure 17 must be preserved in the face of
changes made to the environment. For example, infg-abs, the variablesxsare added to
the variable environment, bound to the typesτs. To maintain the correspondence, we
also add the variablesxs to the System F environment, bound to the typesτs′, where
conceptsΓ |= τs τs′. The following lemma is proved by induction on the judgment
C |= τs τs′ (and the other judgments that it was mutually defined with).

lemmaadd-vars-preserves-var-env:
(C ` τ  τ ′−→ True)
∧ (C |= τs τs′−→ (∀ xs. C `v V S∧ length xs= lengthτs
−→ C `v V,xs:τs S,xs:τs′))

∧ (C `d c %s dt−→ True) ∧ (C |=d rs dts−→ True)
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apply (induct rule: trans-ty-trans-tys-req-dict-reqs-dicts.induct)
apply autoapply (case-tac xs) usingcv-consby auto

The following lemma provides a convenient way to use the invariants captured inC `v

V S. This lemma is used in thefg-var case of the main theorem.

lemmavar-mem-trans-implies:
[[ C `v V S; (x,τ) ∈ V ]] =⇒ (∃ τ ′. C ` τ  τ ′∧ (x,τ ′) ∈ S)

by (induct rule: trans-var-env.induct, auto)

The next two “weakening” lemmas show that adding a concept to the environment does
not affect variable and model environment correspondences.

lemmaadd-concept-preserves-var-env: C `v V S=⇒ insert(c,ci) C `v V S
apply (induct rule: trans-var-env.induct)
apply (simp add: cv-nil) usingadd-concept-pres-trans cv-consby auto

lemmaadd-concept-preserves-model-env: C `m M S=⇒ insert(c,ci) C `m M S
apply (induct rule: trans-model-env.induct)
apply (simp add: cm-nil) usingadd-concept-pres-trans cm-consapply simp

proof −
fix C M Sτ τ ′ τs ca d ns
assumem-s: insert(c, ci) C `m M Sand N: ns 6= []
and dt: (d, τ) ∈ Sand D: C `d ca τs τ ′ and P: path-tyτ nsτ ′

from D haveD2: insert(c,ci) C `d ca τs τ ′ usingadd-concept-pres-transby simp
from m-s N dt D2 Pshow insert(c, ci) C `m insert(ca, τs, d, ns) M S
by (rule cm-drop)

qed

Next we prove several lemmas that show how the correspondence with a System F typ-
ing environment is preserved as models are added to the environment. First we show
that adding models for the where clause of a type abstraction preserves the correspon-
dence . In particular, if we start with some model environmentM in correspondence
with some System F environmentS, and ifdsare the dictionary variables for the added
models, anddts are the types of the dictionaries for the models, then the new model
environmentM ′ will correspond toS,ds:dts.

lemmaadd-models-where-preserves:

[[ C ` ws ds M⇒ M ′; C ok; C |=d ws dts; C `m M S ]] =⇒ C `m M ′ S,ds:dts

The judgmentC ` ws ds M⇒ M ′ processes each requirement in the where clause
using`[. The judgment̀ [ adds a model to the environment and then uses|=[ to
add models for all of its concept refinements. We prove two lemmas with regards
to how`[ and |=[ preserve the environment correspondence while adding models to
the environment. The first lemma, in Figure 18, handles the case when`[ is used on
a refinement, and thus the dictionary for the model will be a sub-dictionary of some
other model. The dictionary path will be non-empty in this case. The second lemma,
in Figure 19, handles wheǹ[ is applied to a requirement in a where clause, when the
dictionary path for the model is empty. Figure 20 uses this lemma to show preservation
of the correspondence for all the requirements in the where clause.
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Figure 18: Adding models to the model environment for concept refinements preserves
the environment correspondence.

lemmaadd-models-rfns-pres:
(C `[ c %s d ns M⇒ M ′−→ (∀ Sτ dtsσs ci. C ok∧ ns 6= []
∧ C `d c %s 〈dts@σs〉 ∧ (d,τ) ∈ S∧ (c,ci) ∈ C
∧ length(rfn ci) = length dts∧ τ−ns→〈dts@σs〉 ∧ C `m M S
−→ C `m M ′ S))

∧ (C |=[ i rs d ns M⇒ M ′−→ (∀ S dtsτ σs. C ok∧ C |=d rs dts
∧ (d,τ) ∈ S∧ τ−ns→〈dts@σs〉 ∧ i ≤ length dts∧ C `m M S
−→ C `m M ′ S))

(is (C `[ c %s d ns M⇒ M ′−→ ?P C c%s d ns M M′)
∧ (C |=[ i rs d ns M⇒ M ′−→ ?PS C i rs d ns M M′))

proof (induct rule: flat-m-flat-ms.induct)
fix C::Cenvand M M ′ M ′′ τs c ci d i ns
assumecC: (c, ci) ∈ C and Mp: M ′ = insert(c, τs, d, ns) M
and IH : ?PS C(length(rfn ci)) ({|params ci7→τs|}rfn ci) d ns M′ M ′′

show?P C cτs d ns M M′′

proof clarify fix Sτ dtsσs ci′ assumeCok: C okand N: ns 6= []
and D: C `d c τs 〈dts@σs〉 and DT: (d,τ) ∈ S
and cpC: (c,ci ′) ∈ C and L: length(rfn ci ′) = length dts
and P: τ−ns→〈dts@σs〉 and m-s: C `m M S

from Cok cC cpChaveci-cip: ci = ci ′ by (rule unique-concept)
from L ci-cip haveL2: length dts= length(rfn ci) by simp
from D Cok cC L2haveDs2: C |=d {|params ci7→τs|}rfn ci dts
by (rule refine-dict-types)

from L2 haveL3: length(rfn ci) ≤ length dtsby simp
from m-s N DT D PhaveC `m insert(c,τs,d,ns) M Sby (rule cm-drop)
with Mp havemp-s: C `m M ′ Sby simp
from Cok Ds2 DT P L3 mp-s IHshowC `m M ′′ Sby auto

qed
next fix C M d ns rsshow?PS C 0 rs d ns M Mby simp
next fix C M M ′ M ′′ τs′ c′ d i ns rsassumersi: rs ! i = (c′, τs′)

and IH1: ?P C c′ τs′ d (ns@[i]) M M ′ and IH2: ?PS C i rs d ns M′ M ′′

show?PS C(Suc i) rs d ns M M′′

proof clarify
fix S dtsτ σs assumeCok: C okand Rs: C |=d rs dts
and DT: (d, τ) ∈ Sand P: τ−ns→〈dts@ σs〉
and I : Suc i≤ length dtsand m-s: C `m M S

from Rs rsi I Cokobtain dts′ σs′ ci ′ where
D: C `d c′ τs′ dts!i and dtsp: dts!i = 〈dts′@σs′〉
and cC: (c′,ci ′) ∈ C and LR: length(rfn ci ′) = length dts′

usingdict-at-i by blast
from D dtsphaveD2: C `d c′ τs′ 〈dts′@σs′〉 by simp
from I P haveτ−ns@[i]→dts!i by (simp add: dict-path-to-super)
with I dtsphaveP2: τ−ns@[i]→〈dts′ @ σs′〉 by simp
from Cok D2 DT cC LR P2 m-s IH1havemp-s: C `m M ′ Sby blast
from I haveI2: i ≤ length dtsby simp
from Cok Rs DT P I2 mp-s IH2showC `m M ′′ Sby auto

qed
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The following corollary captures first half of Lemmaadd-models-rfns-pres, which we
use in Lemmaadd-models-req-preserves.

corollary add-models-rfns-preserves: [[ C `[ c τs d ns M⇒ M ′; C ok; ns 6= [];
C `d c τs 〈dts@σs〉; (d,τ) ∈ S; (c,ci) ∈ C; length(rfn ci) = length dts;
τ−ns→〈dts@σs〉; C `m M S ]] =⇒ C `m M ′ S

usingadd-models-rfns-presby blast

The other place the model environment is extended is, of course, at model definitions.
The lemma in Figure 21 proves that we can add model(c,%s,d,[]) to the environment,
and the corresponding System F environment will beS,d:〈[params ci7→%s′]dts@ σs′〉,
whered is bound to the dictionary type for the model. The main work of the proof is
to showDt which states that the dictionary type is correct.

8.7 Model Member Lookup

In preparation for proving the case in the main theorem for model member access, we
need to show that the member access judgment`[ returns a typeτ and dictionary path
ns′ such that the path leads to a typeτ ′ that is the translation ofτ .

lemmadict-member: [[ C `[ x c τs ns⇒ τ ns′; C ok; C `d c τs dt ′; dt−ns→dt ′ ]]
=⇒ (∃ τ ′. dt−ns′→τ ′∧ C ` τ  τ ′)

The member access judgment`[ is mutually recursive with the judgment|=[ which
looks for a member among the refinements. Thus, our proof is an induction on the
derivation of both judgments. There are four cases to consider. The proof is fairly long
and tedious, so we summarize the proof here before presenting the proof itself. The
first case of the proof is when the memberx appears in the current conceptc. We rely
on the Lemmalookup-succeedsto get the type and position of the member. We then
use Lemmadict-path-to-memberto show that we can extend the current path to this
member. The second case is for when`[ uses|=[ to find the member in a refinement.
We simply use the assumptions with the induction hypothesis. The third case is when
the ith refinement, conceptc′ with type argumentsτs′ has the member. This case is
complicated by the substitutions that occur for the type parameters of the concept .
The fourth case is for continuing on to the next refinement in conceptc. This case is
trivial, since we just use the assumptions with the induction hypothesis. The following
is the proof in its entirety.

lemma lookup-found:
V

x τs i j τ . lookup x tsτs i = Some(τ , j) =⇒ x∈ set ts
apply (induct ts) apply simpapply (case-tacτs) apply simpapply simp
apply (case-tac a= x) by simp+

lemmadict-member-helper:
(C `[ x c τs ns⇒ τ ns′−→ (∀ dt dt′. C ok∧ C `d c τs dt ′∧ dt−ns→dt ′

−→ (∃ τ ′. dt−ns′→τ ′∧ C ` τ  τ ′)))
∧ (C |=[ x i c τs ns⇒ τ ns′−→ (∀ dt dt′ ci. C ok∧ C `d c τs dt ′∧ dt−ns→dt ′
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Figure 19: Adding models for a requirement in awhere clause preserves the environ-
ment correspondence.

lemmaadd-models-req-preserves:
(C `[ c %s d ns M⇒ M ′−→ (∀ Sτ . C ok∧ C `d c %s τ ∧ ns= []
∧ C `m M S−→ C `m M ′ (S,d:τ)))

∧ (C |=[ i rs d ns M⇒ M ′−→ (∀ S dtsτ σs. C ok∧ C |=d rs dts∧ (d,τ) ∈ S
∧ τ−ns→〈dts@σs〉 ∧ i ≤ length dts∧ C `m M S−→ C `m M ′ S))

(is (C `[ c %s d ns M⇒ M ′−→ ?P C c%s d ns M M′)
∧ (C |=[ i rs d ns M⇒ M ′−→ ?PS C i rs d ns M M′))

proof (induct rule: flat-m-flat-ms.induct)
fix C M M ′ M ′′ τs τs′ c ci d ns
assumeC: (c,ci) ∈ C and Mp: M ′ = insert(c,τs,d,ns) M
and IH : ?PS C(length(rfn ci)) ({|params ci7→τs|}(rfn ci)) d ns M′ M ′′

{ fix Sτ assumeCok: C okand D: C `d c τs τ and N: ns= []
and m-s: C `m M S
from m-s Dhavemp-s: C `m insert(c,τs,d,[]) M S,d:τ by (rule cm-cons)
from D obtain dtsσs τs′ ci ′ wherecip: (c,ci ′) ∈ C and ts-tsp: C |= τs τs′

and Dsp: C |=d rfn ci ′ dtsand lts: lengthτs= length(params ci′)
and tp: τ = 〈{params ci′7→τs′}(dts@σs)〉 by (rule inv-r-d, auto)

from Cok C ciphaveci-cip: ci = ci ′ by (rule unique-concept)
let ?Tup= 〈{params ci7→τs′}dts@ {params ci7→τs′}σs〉
from ci-cip tphaveT: τ = ?Tupby (simp only: subst-append)
from T N haveP: τ−ns→?Tupusingp-nil by simp
from Cok cip ci-ciphavedistinct(params ci)
usingc-mem-implies-c-ok inv-wf-cby blast

with Cok Dsp ci-cip lts ts-tsphave
Ds2: C |=d {|params ci7→τs|}(rfn ci) {params ci7→τs′}dtsby (simp only: subst-ds)

haveDT: (d,τ) ∈ S,d:τ by simp
from Dsp ci-ciphaveL: length(rfn ci) ≤ length{params ci7→τs′}dts
using trans-length-r-d subst-lengthby simp

from Cok Ds2 DT P L mp-s Mp N IHhaveC `m M ′′ S,d:τ by blast
} thus ?P C cτs d ns M M′′ by simp

next fix C M d ns rsshow?PS C 0 rs d ns M Mby simp
next fix C M M ′ M ′′ τs′ c′ d i ns rsassumersi: rs ! i = (c′, τs′)

and F: C `[ c′ τs′ d ns@ [i] M ⇒ M ′ and IH2: ?PS C i rs d ns M′ M ′′

show?PS C(Suc i) rs d ns M M′′

proof clarify fix S dtsτ σs assumeCok: C okand Rs: C |=d rs dts
and DT: (d, τ) ∈ Sand P: τ−ns→〈dts@σs〉
and I : Suc i≤ length dtsand m-s: C `m M S

from Rs rsi I Cokobtain dts′ σs′ ci ′ whereD: C `d c′ τs′ dts!i
and dtsp: dts!i = 〈dts′@σs′〉 and cpC: (c′,ci ′) ∈ C
and LR: length(rfn ci ′) = length dts′ usingdict-at-i by blast

from I P haveτ−ns@[i]→dts!i by (simp add: dict-path-to-super)
with dtsphaveP2: τ−ns@[i]→〈dts′@σs′〉 by simp
from F Cok D dtsp DT cpC LR P2 m-shave
mp-s: C `m M ′ Sby (simp add: add-models-rfns-preserves)

from I haveI3: i ≤ length dtsby simp
from Cok Rs DT P I3 mp-s IH2showC `m M ′′ Sby auto

qed
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Figure 20: Adding models for the where clause of a type abstraction preserves the
environment correspondence.

lemmaadd-models-where-preserves:
C ` ws ds M⇒ M ′ =⇒ (

V
dts S. [[ C ok; C |=d ws dts; C `m M S ]]

=⇒ C `m M ′ S,ds:dts∧ length ds= length dts)
proof (induct rule: add-models.induct)
fix C M dts SassumeD: C |=d [] dtsand m-s: C `m M S
from D havedn: dts= [] by (rule inv-rs-ds-nil, simp)
henceS= S,[]:dtsby simp
with m-s dnshowC `m M S,[]:dts∧ length[] = length dtsby auto

next fix C M M ′ M ′′ %s c d ds ws dts S
assumeF: C `[ c %s d [] M ⇒ M ′

and IH :
V

dts S. [[ C ok; C |=d ws dts; C `m M ′ S]]
=⇒ C `m M ′′ S,ds:dts∧ length ds= length dts

and Cok: C okand Ds: C |=d (c,%s)#ws dtsand m-s: C `m M S
from Dsobtain dt dts′ whereD: C `d c %s dt and Dsp: C |=d ws dts′

and DTS: dts= dt#dts′ by (rule inv-rs-ds-cons, auto)
from F Cok D m-s add-models-req-preserveshave
mp-sd: C `m M ′ S,d:dt by blast

from Cok Dsp mp-sd IHhave
mpp-sp: C `m M ′′ (S,d:dt),ds:dts′∧ length ds= length dts′ by simp

from DTShave(S,d:dt),ds:dts′ = S,(d#ds):dtsby (simp only: pushs-env-assoc)
with mpp-sp DTSshowC `m M ′′ S,(d#ds):dts∧ length(d#ds) = length dtsby simp

qed
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Figure 21: Adding a model to the model environment for a model definition preserves
the environment correspondence.

lemmaadd-model-preserves:
assumesg-s: Γ Sand Cok: conceptsΓ ok and C: (c, ci) ∈ conceptsΓ
and rs-rsp: conceptsΓ |= %s %s′ and Ds: conceptsΓ |=d rfn ci dts
and ss-ssp: conceptsΓ |= σs σs′ and memtys: σs= {params ci7→%s}(mem-tys ci)
and lps: length(params ci) = length%s
showsΓ,model(c,%s,d,[]) S(| tys:= (tys S),d:(〈{params ci7→%s′}dts@σs′〉)|)

proof −
let ?Gp= Γ,model(c, %s, d, []) and ?sdts= {params ci7→%s′}dts
from g-sobtain Sv Smwherev-s: conceptsΓ `v varsΓ Sv
and m-s: conceptsΓ `m modelsΓ Smand tvsg: tvars S= tyvarsΓ
and s: tys S= Sm∪ Svby auto

from v-shavev-s2: concepts ?Gp̀ v vars ?Gp Svby simp
from m-shavem-s2: concepts ?Gp̀ m modelsΓ Smby simp
haveDt: concepts ?Gp̀ d c %s 〈?sdts@ σs′〉
proof −
from C haveC2: (c,ci) ∈ concepts ?Gpby simp
from rs-rsphavers-rsp2: concepts ?Gp|= %s %s′

by (simp add: add-concept-pres-trans)
from DshaveDs2: concepts ?Gp|=d (rfn ci) dts
by (simp add: add-concept-pres-trans)

from Cok Chaveciok: conceptsΓ ` ci ok by (rule c-mem-implies-c-ok)
from ciok obtain σs′′ wherems-ssp: conceptsΓ |= mem-tys ci σs′′

by (rule inv-wf-c, auto)
from ms-ssphavems-ssp2: concepts ?Gp|= mem-tys ci σs′′

by (simp add: add-concept-pres-trans)
from lpshave lrs: length%s= length(params ci) by simp
from C2 rs-rsp2 Ds2 ms-ssp2 lrs
haveconcepts ?Gp̀ d c %s [params ci7→ %s′](〈dts@σs′′〉) by (rule r-d)
henceD: concepts ?Gp̀ d c %s (〈?sdts@ {params ci7→ %s′}σs′′〉)
usingsubst-appendby simp

from Cok Chavedist: distinct(params ci) usingc-mem-implies-c-ok inv-wf-cby blast
from Cok ms-ssp2 dist lps rs-rsp2have
concepts ?Gp|= {params ci7→ %s}(mem-tys ci) {params ci7→ %s′}σs′′

usingsubst-trans-tysby simp
with memtyshaveconcepts ?Gp|= σs {params ci7→ %s′}σs′′ by simp
with Cok ss-ssphaveσs′ = {params ci7→ %s′}σs′′ using fun-dict-trans-tyby simp
with D show?thesisby simp

qed
from m-s2 Dthavem-s3: concepts ?Gp̀ m models ?Gp Sm,d:〈?sdts@ σs′〉
usingcm-consby simp

from s haves2: tys S,d:〈?sdts@ σs′〉 = Sm,d:〈?sdts@σs′〉 ∪ Svby simp
from v-s2 m-s3 s2 tvsgshow?thesisby auto

qed
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∧ (c,ci) ∈ C ∧ i ≤ length(rfn ci) −→ (∃ τ ′. dt−ns′→τ ′∧ C ` τ  τ ′)))
(is (C `[ x c τs ns⇒ τ ns′−→ ?P C x cτs nsτ ns′)
∧ (C |=[ x i c τs ns⇒ τ ns′−→ ?PS C x i cτs nsτ ns′))

proof (induct rule: lookup-mem-lookup-mem-rs.induct)
fix C::Cenvand τ τs c ci i ns x
assumecC: (c, ci) ∈ C and F: lookup x(mem-nms ci) (mem-tys ci) 0 = Some(τ , i)
show?P C x cτs ns[params ci7→τs]τ (ns@ [length(rfn ci) + i])
proof clarify fix dt dt′

assumeCok: C okand D: C `d c τs dt ′ and P: dt−ns→dt ′

from D Cok cCobtain δsσs τs′ where ts-tsp: C |= τs τs′

and Ds: C |=d rfn ci δs and ms-ss: C |= mem-tys ci σs
and ltsp: lengthτs= length(params ci)
and T: dt ′ = 〈{params ci7→τs′}(δs@σs)〉 using inv-r-d2by blast

let ?DS= {params ci7→τs′}δs and ?SS= {params ci7→τs′}σs
from T haveT2: dt ′ = 〈?DS@?SS〉 usingsubst-appendby auto
from Cok cChaveC ` ci ok by (rule c-mem-implies-c-ok)
henceltn: length(mem-tys ci) = length(mem-nms ci) by (rule inv-wf-c, simp)
from F havexms: x∈ set(mem-nms ci) by (rule lookup-found)
from xms ltnobtain i ′ where Ip: i ′ < length(mem-nms ci)
and mipt: (mem-nms ci)!i ′ = x
and F2: lookup x(mem-nms ci) (mem-tys ci) 0 = Some((mem-tys ci)!i ′,i ′)
using lookup-succeeds[of x mem-nms ci mem-tys ci 0] by auto

from F F2 mipthavemit: (mem-tys ci)!i = τ by auto
from F F2 Ip haveI1: i < length(mem-nms ci) by simp
from ms-sshave length(mem-tys ci) = length ?SS
using trans-length-tys subst-lengthby simp

with I1 ltn haveI2: i < length ?SSby arith
from I2 T2 Phavedt−(ns@ [length ?DS+ i])→?SS!i by (rule dict-path-to-member)
moreover from Dshave length ?DS= length(rfn ci)
using trans-length-r-d subst-lengthby auto

ultimately have A: dt−(ns@ [length(rfn ci) + i])→?SS!i by simp
haveB: C ` [params ci7→τs]τ  ?SS!i
proof −
from Cok cChavedist: distinct(params ci)
usingc-mem-implies-c-ok inv-wf-cby blast

from Cok ms-ss dist ltsp ts-tsphavemss: C |= {params ci7→τs}(mem-tys ci) ?SS
by (simp only: subst-trans-tys)

have length(mem-tys ci) = length{params ci7→τs}(mem-tys ci)
usingsubstg-lengthby simp

with I1 ltn have ilsm: i < length{params ci7→τs}(mem-tys ci) by arith
from mit I1 ltn havemit2: ({params ci7→τs}mem-tys ci)!i = [params ci7→τs]τ
usingsubstg-nthby simp

from mss ilsm mit2show?thesisby (rule trans-tys-nth)
qed
from A Bshow∃ τ ′. dt−(ns@ [length(rfn ci) + i])→τ ′∧ C ` [params ci7→τs]τ  τ ′

by auto
qed

next
fix C τ τs c ci ns ns′ x
assumecC: (c, ci) ∈ C and F: lookup x(mem-nms ci) (mem-tys ci) 0 = None
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and L: C |=[ x length(rfn ci) c τs ns⇒ τ ns′

and IH : ?PS C x(length(rfn ci)) c τs nsτ ns′

show?P C x cτs nsτ ns′

proof clarify
fix dt dt′ assumeCok: C okand D: C `d c τs dt ′ and P: dt−ns→dt ′

from D Cok cCobtain δsσs τs′ where ts-tsp: C |= τs τs′

and Ds: C |=d rfn ci δs and ms-ss: C |= mem-tys ci σs
and ltsp: lengthτs= length(params ci)
and T: dt ′ = 〈{params ci7→ τs′}(δs@σs)〉 using inv-r-d2by blast

from Cok D P cC IHshow∃ τ ′. dt−ns′→τ ′∧ C ` τ  τ ′ by blast
qed

next
fix C τ τs τs′ c c′ ci i ns ns′ x
assumecC: (c, ci) ∈ C and ri : rfn ci ! i = (c′, τs′)
and L: C `[ x c′ {params ci7→τs}τs′ ns@ [i] ⇒ τ ns′

and IH : ?P C x c′ {params ci7→τs}τs′ (ns@[i]) τ ns′

show?PS C x(Suc i) c τs nsτ ns′

proof clarify
fix dt dt′ cia
assumeCok: C okand D: C `d c τs dt ′ and P: dt−ns→dt ′

and ciaC: (c, cia) ∈ C and I : Suc i≤ length(rfn cia)
from Cok cC ciaChaveci-cia: ci = cia by (rule unique-concept)
from D Cok cCobtain δsσs τs′′ where ts-tsp: C |= τs τs′′

and Ds: C |=d rfn ci δs and ms-ss: C |= mem-tys ci σs
and lts: lengthτs= length(params ci)
and T: dt ′ = 〈{params ci7→ τs′′}(δs@σs)〉 using inv-r-d2by blast

let ?DS= {params ci7→ τs′′}δs and ?SS= {params ci7→ τs′′}σs
from T subst-appendhaveT2: dt ′ = 〈?DS@?SS〉 by auto
haveD2: C `d c′ {params ci7→τs}τs′ ?DS!i
proof −
havesil: Suc i≤ lengthδs
proof −
from Dshave length(rfn ci) = lengthδs by (rule trans-length-r-d)
moreover with I ci-cia haveSuc i≤ length(rfn ci) by simp
ultimately show ?thesisby simp

qed
from Ds ri sil obtain dts′ σs′ ci ′ wherecpD: C `d c′ τs′ δs!i
and cpC: (c′,ci ′) ∈ C usingdict-at-i by blast

from Cok cChavedist: distinct(params ci)
usingc-mem-implies-c-ok inv-wf-cby blast

from Cok cpD dist lts ts-tsp
haveC `d c′ {params ci7→τs}τs′ [params ci7→τs′′](δs!i) by (simp only: subst-r-d)
moreover from sil have?DS!i = [params ci7→ τs′′](δs!i) by (simp only: subst-nth)
ultimately show ?thesisby simp

qed
from Ds ci-ciahave lengthδs= length(rfn cia) using trans-length-r-dby simp
hencelength ?DS= length(rfn cia) usingsubst-lengthby simp
with I haveI2: i < length ?DSby simp
from I2 T2 PhaveP2: dt−ns@[i]→?DS!i by (rule dict-path-to-super)
from Cok D2 P2 IHshow∃ τ ′. dt−ns′→τ ′∧ C ` τ  τ ′ by auto
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qed
next
fix C τ τs c i ns ns′ x
assumeC |=[ x i c τs ns⇒ τ ns′

and IH : ∀ dt dt′ ci. C ok∧ C `d c τs dt ′∧ dt−ns→dt ′∧ (c, ci) ∈ C
∧ i ≤ length(rfn ci) −→ (∃ τ ′. dt−ns′→τ ′∧ C ` τ  τ ′)

show∀ dt dt′ ci. C ok∧ C `d c τs dt ′∧ dt−ns→dt ′∧ (c, ci) ∈ C
∧ Suc i≤ length(rfn ci) −→ (∃ τ ′. dt−ns′→τ ′∧ C ` τ  τ ′)

proof clarify
fix dt dt′ ci
assumeCok: C okand D: C `d c τs dt ′

and P: dt−ns→dt ′ and cC: (c, ci) ∈ C
and I : Suc i≤ length(rfn ci)

from I haveI2: i ≤ length(rfn ci) by simp
from Cok D P cC I2 IH
show∃ τ ′. dt−ns′→τ ′∧ C ` τ  τ ′ by auto

qed
qed

corollary dict-member:
[[ C `[ x c τs ns⇒ τ ns′; C ok; C `d c τs dt ′; dt−ns→dt ′ ]]
=⇒ (∃ τ ′. dt−ns′→τ ′∧ C ` τ  τ ′)
usingdict-member-helperapply blastdone

8.8 Properties of Dictionary Access

There are three places in the translation where the translation must produce System F
terms that evaluates to a dictionary. Infg-tapp, a list of dictionaries is needed to satisfy
the requirements of the where clause of the type abstraction. In thefg-mdl, dictionaries
corresponding to the refinements in the concept are needed. Infg-mem, the dictionary
for the specified model must be accessed, and then the appropriate member extracted.
The functionmk-nthis used to construct a System F term to access a dictionary, and
themk-nthsfunction constructs a list of terms that access a list of dictionaries. In this
section we prove thatmk-nthandmk-nthsproduce well typed System F terms.

The first lemma states thatmk-nthproduces well typed terms and is a proof by induction
on the derivation of the pathτ−ns→dt.

lemmamk-nth-wt: τ−ns→dt =⇒ (
V

S de. S`F de: τ =⇒ S`F mk-nth de ns: dt)
proof (induct rule: path-ty.induct)
fix τ S deassumeS`F de: τ
thus S`F mk-nth de[] : τ by simp

next fix τ ′ τs n ns S de
assumeIH :

V
S de. S`F de: τs!n =⇒ S`F mk-nth de ns: τ ′ and d-wt: S`F de: 〈τs〉

from d-wt haveS`F Nth de n: τs!n by (simp add: wt-f-nth)
with IH showS`F mk-nth de(n # ns) : τ ′ by simp

qed

The following lemma is needed to prove thatmk-nthsproduces well typed terms. This
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lemma provides a more convenient way to access the invariants expressed byC `m M
 S. The proof is by induction on the derivation ofC `m M S.

lemmamodel-trans: [[ C `m M S; (c,τs,d,ns) ∈ M ]]
=⇒ (∃ τ τ ′. C `d c τs τ ′∧ (d, τ) ∈ S∧ τ−ns→τ ′)

proof (induct rule: trans-model-env.induct, simp)
fix C M Sτ τsa ca da
assumeIH : (c, τs, d, ns) ∈ M =⇒ ∃ τ τ ′. C `d c τs τ ′∧ (d, τ) ∈ S∧ path-tyτ nsτ ′

and D: C `d ca τsa τ and M: (c, τs, d, ns) ∈ insert(ca, τsa, da, []) M
show∃ τa τ ′. C `d c τs τ ′∧ (d, τa) ∈ S,da:τ ∧ path-tyτa nsτ ′

proof (cases(c, τs, d, ns) = (ca, τsa, da, []))
assumeeq: (c, τs, d, ns) = (ca, τsa, da, [])
from eq DhaveD2: C `d c τs τ by simp
from eqhavedt: (d, τ) ∈ S,da:τ by simp
from eqhaveP: τ−ns→τ usingp-nil by simp
from D2 dt Pshow?thesisby auto

next assumeneq: (c, τs, d, ns) 6= (ca, τsa, da, [])
from neq MhaveM2: (c, τs, d, ns) ∈ M by auto
from M2 IH show?thesisby auto

qed
next fix C M Sτ τ ′ τsa ca da nsa
assumeC `m M Sand IH : (c, τs, d, ns) ∈ M =⇒
∃ τ τ ′. C `d c τs τ ′∧ (d, τ) ∈ S∧ τ−ns→τ ′

and nsa 6= [] and dt: (da, τ) ∈ Sand D: C `d ca τsa τ ′

and P: τ−nsa→τ ′ and M: (c, τs, d, ns) ∈ insert(ca, τsa, da, nsa) M
show∃ τ τ ′. C `d c τs τ ′∧ (d, τ) ∈ S∧ path-tyτ nsτ ′

proof (cases(c, τs, d, ns) = (ca, τsa, da, nsa))
assumeeq: (c, τs, d, ns) = (ca, τsa, da, nsa)
from eq DhaveD2: C `d c τs τ ′ by simp
from eq dthavedt2: (d,τ) ∈ Sby simp
from eq PhaveP2: τ−ns→τ ′ by simp
from D2 dt2 P2show?thesisby auto

next assumeneq: (c, τs, d, ns) 6= (ca, τsa, da, nsa)
from neq MhaveM2: (c, τs, d, ns) ∈ M by auto
from M2 IH show?thesisby auto

qed
qed

The proof of Lemmamk-nths-wt, thatmk-nthsproduces well typed terms, is by induc-
tion on the derivation of the translationM |= ws ds,nns.

lemmamk-nths-wt: M |= ws ds, nns=⇒ (
V

T C V S dts. [[ C ok;
(|tyvars= T, vars= V, concepts= C, models= M|) S; C |=d ws dts]]
=⇒ S |=F (mk-nths ds nns) : dts)

proof (induct rule: fg-where.induct)
fix Γ T C V S dts
assumeDs: C |=d [] dts
from Dshavedts= [] by (rule inv-rs-ds-nil, simp)
also haveS |=F mk-nths[] [] : [] by (simp add: wt-f-nil)
ultimately show S |=F mk-nths[] [] : dtsby simp

next fix M τs c d ds nns ns ws T C V S dts
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assumeM: (c, τs, d, ns) ∈ M and W: M |= ws ds, nns
and IH :

V
T C V S dts. [[ C ok; (|tyvars= T, vars= V, concepts= C, models= M|) S;

C |=d ws dts]] =⇒ S |=F mk-nths ds nns: dts
and Cok: C okand g-s: (|tyvars= T, vars= V, concepts= C, models= M|) S
and D: C |=d (c,τs)#ws dts

from g-sobtain Sv SmwhereT: C `m M Smand TV: tvars S= T
and S: tys S= Sm∪ Svby auto

from M T model-transobtain τ τ ′ whereD2: C `d c τs τ ′

and dt-sm: (d,τ) ∈ Smand P: τ−ns→τ ′ by blast
from dt-sm Shavedt-s: (d,τ) ∈ tys Sby simp
from dt-shavewt-d: S`F ‘d : τ by (rule wt-f-var)
from P wt-dhaveA: S`F mk-nth(‘d) ns: τ ′ by (rule mk-nth-wt)
from D obtain dt dts′ whereDt: C `d c τs dt and Ds: C |=d ws dts′

and dts: dts= dt#dts′ by (rule inv-rs-ds-cons, auto)
from D2 Cok Dthaveτ ′ = dt using fun-dict-trans-tyapply blastdone
with dtshavedts2: dts= τ ′#dts′ by simp
from Cok g-s Ds IHhaveB: S |=F mk-nths ds nns: dts′ by simp
from A BhaveS |=F (mk-nth(‘d) ns)#(mk-nths ds nns) : τ ′#dts′ by (rule wt-f-cons)
with dts2haveS |=F (mk-nth(‘d) ns)#(mk-nths ds nns) : dtsby simp
thus S |=F mk-nths(d # ds) (ns# nns) : dtsby simp

qed

8.9 The Main Theorem

The main theorem, that the translation produces well-typed terms of System F, is
proved by mutual induction on derivations ofΓ ` e : τ  f and ofΓ |= es : τs 
fs. Comments are embedded in the proof that summarize the main points of each sub-
case.

theorem fg-pres-ty:
(Γ ` e : τ  f −→
(∀ S. conceptsΓ ok∧ Γ S−→ (∃ τ ′. S`F f : τ ′∧ conceptsΓ ` τ  τ ′)))

∧ (Γ |= es: τs fs−→
(∀ S. conceptsΓ ok∧ Γ S−→ (∃ τs′. S |=F fs : τs′∧ conceptsΓ |= τs τs′)))

(is (Γ ` e : τ  f −→ ?PΓ τ f ) ∧ (Γ |= es: τs fs−→ ?PSΓ τs fs))
proof (induct rule: fg-fg-list.induct)
— Casefg-tabs: The sub-terme is translated in an environment extended with models for each

requirement in the where clause. We use the lemma from Figure 20 to show that the environment
correspondence holds for the extended environment. We then invoke the induction hypothesis
for Γ(|models:= M|) ` e : σ f and assemble the typing derivation for the output termΛ ts. (λ
ds:τs. f ).
fix M Γ σ τs ds e fand ts::var list and ws
assumeDs:conceptsΓ |=d ws τs and M: conceptsΓ ` ws ds(modelsΓ) ⇒ M
and dist: distinct tsand e-f: Γ(|models:= M|)(|tyvars:= tyvarsΓ ∪ set ts|) ` e : σ f
and IH : ?P (Γ(|models:= M|)(|tyvars:= tyvarsΓ ∪ set ts|)) σ f

show?PΓ (∀ ts where ws. σ) (Λ ts. (λ ds:τs. f ))
proof clarify
fix SassumeCok: conceptsΓ ok and g-s: Γ S
from g-sobtain Sv Smwherev-s: conceptsΓ `v varsΓ Sv
and m-s: conceptsΓ `m modelsΓ Smand sv: tvars S= tyvarsΓ
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and s-svm: tys S= Sm∪ Svby auto
from M Cok Ds m-shavemp-sd: conceptsΓ `m M Sm,ds:τs∧ length ds= lengthτs
by (rule add-models-where-preserves)

let ?Gp= Γ(| models:= M |)(| tyvars:= tyvarsΓ ∪ set ts|)
and ?Sp= (|tys= (Sm∪ Sv),ds:τs, tvars= tvars S∪ set ts|)

haveeq: (Sm,ds:τs) ∪ Sv= (Sm∪ Sv),ds:τs by (simp only: push-union-commute)
from sv v-s mp-sdhave?Gp (|tys= (Sm,ds:τs) ∪ Sv, tvars= tvars S∪ set ts|) by auto
with eqhavegp-sp: ?Gp ?Spby simp
from CokhaveGpok: concepts ?Gp okby simp
from Gpok gp-sp IHobtain τ ′ wherewt-f : ?Sp`F f : τ ′ and s-tp: concepts ?Gp̀ σ τ ′

by blast
from wt-f haveft: ?Sp`F f : τ ′ by simp
let ?Sp2= (|tys= Sm∪Sv, tvars= tvars S∪ set ts|)
from ft havewtf : ?Sp2(|tys:= (tys ?Sp2),ds:τs|) `F f : τ ′ by simp
havedsty: set ds∩ dom(tys ?Sp2) = {} sorry — Can alpha-convert to get this
from wtf mp-sd dstyhavewtlf : ?Sp2̀ F λ ds:τs. f : fn τs→ τ ′ usingwt-f-absby auto
let ?Sp3= (|tys= Sm∪Sv, tvars= tvars S|)
from wtlf havewtlf2: ?Sp3(| tvars:= tvars ?Sp3∪ set ts|) `F λ ds:τs. f : fn τs→ τ ′ by simp
havetstsp: set ts∩ tvars ?Sp3= {} sorry — alpha-convert to get this
havetsfs: set ts∩ FTV (tys ?Sp3) = {} sorry — alpha-convert to get this
from wtlf2 tstsp tsfs disthavesp3: ?Sp3̀ F (Λ ts. (λ ds:τs. f )) : (∀ ts. fn τs→ τ ′)
by (rule wt-f-tabs)

from s-svmhaveS= ?Sp3by simp
with sp3haveA: S`F (Λ ts. (λ ds:τs. f )) : (∀ ts. fn τs→ τ ′) by auto
from s-tphaves-tp2: conceptsΓ ` σ τ ′ by simp
from Ds s-tp2 disthaveB: conceptsΓ ` ∀ ts where ws. σ (∀ ts. fn τs→ τ ′)
by (rule trans-all)

from A Bshow(∃ τ ′. S`F Λ ts. (λ ds:τs. f ) : τ ′∧ conceptsΓ ` ∀ ts where ws. σ τ ′)
by auto

qed
next — Casefg-tapp: We must show that the output term, which is the applicationf [τs′] ·
mk-nths ds nnsis well typed. We use the induction hypothesis to show thatf is well typed and
Lemmamk-nths-wtfrom Section 8.8 to show that the result ofmk-nthsis well typed.
fix Γ σ τs τs′ ds e f nns ts ws
assumee-f: Γ ` e : ∀ ts where ws. σ f and IH : ?PΓ (∀ ts where ws. σ) f
and lts: length ts= lengthτs and Ws: modelsΓ |= {|ts7→τs|}ws ds, nns
and ts-tsp: conceptsΓ |= τs τs′

show?PΓ ([ts7→τs]σ) (f [τs′] · mk-nths ds nns)
proof clarify
fix SassumeCok: conceptsΓ ok and g-s: Γ S
from Cok g-s IHobtain τ ′ wherewt-f : S`F f : τ ′

and alls-tp: conceptsΓ ` ∀ ts where ws. σ τ ′ by blast
from alls-tpobtain τ ′′ σs whereRs: conceptsΓ |=d ws σs
and s-tpp: conceptsΓ ` σ τ ′′ and dist: distinct ts
and tp: τ ′ = ∀ ts. fn σs→ τ ′′ by (rule inv-trans-all2, simp)

from wt-f tp havewt-f2: S`F f : ∀ ts. fn σs→ τ ′′ by simp
from ts-tsphave lengthτs= lengthτs′ by (simp add: trans-length)
with lts have ltsp: length ts= lengthτs′ by simp
from wt-f2 ltsphaveS`F f [τs′] : [ts7→τs′](fn σs→ τ ′′) by (rule wt-f-tapp)
henceA: S`F f [τs′] : (fn (sub-tys tsτs′ σs) → ([ts7→τs′]τ ′′)) by simp
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from Rs Cok dist lts ts-tsphaveRs2: conceptsΓ |=d {|ts7→τs|}ws {ts7→τs′}σs
by (rule subst-ds)

from Ws Cok g-s Rs2haveB: S|=F mk-nths ds nns: {ts7→τs′}σsby (simp add: mk-nths-wt)
haveeq: id |=F {ts7→τs′}σs= {ts7→τs′}σs by (rule f-eqs-refl)
from A B eqhaveC: S`F (f [τs′] · mk-nths ds nns) : [ts7→τs′]τ ′′ by (rule wt-f-app)
from s-tpp Cok dist lts ts-tsphaveD: conceptsΓ ` [ts7→τs]σ [ts7→τs′]τ ′′

by (rule subst-trans-ty)
from C D show∃ τ ′. S`F f [τs′] · mk-nths ds nns: τ ′∧

conceptsΓ ` [ts7→τs]σ τ ′ by blast
qed

next — Casefg-cpt: The sub-terme is translated in an environment extended with the new con-
cept. To invoke the induction hypothesis we must show that the new environment corresponds to
a System F environment, which is handled by the lemmas from Section 8.6. From the induction
hypothesis we get{(c, ci)} ∪ conceptsΓ ` τ  τ ′, from which we haveconceptsΓ ` τ  τ ′

becausec is not permitted to appear inτ .
fix C Γ and σs::tyg list and σs′ τ τs cand ci::concept-info
and e f and rs::where-clauseand ts xs

assumeCD: c /∈ dom(conceptsΓ) and R: conceptsΓ |=d rs τs
and ss-ssp: conceptsΓ |= σs σs′

and CI: ci = (|params= ts, rfn = rs, mem-nms= xs, mem-tys= σs|)
and e-f: (Γ,concept c ci) ` e : τ  f and IH : ?P (Γ,concept c ci) τ f
and lxs: length xs= lengthσs and dist: distinct ts
and frs:

S
(map(λp.

S
(map ftvg(snd p))) rs) ⊆ set ts

and fms:
S

(map ftvgσs) ⊆ set ts
and O: (c,τ) /∈ c-occurs-ty

show?PΓ τ f
proof clarify
fix SassumeCok: conceptsΓ ok and g-s: Γ S
haveCok2: concepts(Γ,concept c ci) ok
proof simp
from R ss-ssp dist lxs CI frs fmshaveCIok: conceptsΓ ` ci ok by (simp add: wf-c)
from CD CIok Cokshow insert(c,ci) (conceptsΓ) ok by (simp add: wf-cs-cons)

qed
from g-sobtain Sv Smwherev-s: conceptsΓ `v varsΓ Sv
and m-s: conceptsΓ `m modelsΓ Smand sv: tvars S= tyvarsΓ
and s-svm: tys S= Sv∪ Smby auto

from v-shavev-s2: concepts(Γ,concept c ci) `v varsΓ Sv
usingadd-concept-preserves-var-envby simp

from m-shavem-s2: concepts(Γ,concept c ci) `m modelsΓ Sm
usingadd-concept-preserves-model-envby simp

from sv v-s2 m-s2 s-svmhaveg-s2: Γ,concept c ci Sby auto
from Cok2 g-s2 IHobtain τ ′ wherewt-f : (S, f , τ ′) ∈ wt-f
and t-tp: concepts(Γ,concept c ci) ` τ  τ ′ by blast

from t-tp havet-tpb: insert(c, ci) (conceptsΓ) ` τ  τ ′ by simp
from t-tpb Ohavet-tp2: conceptsΓ ` τ  τ ′

by (rule remove-concept-pres-trans-ty)
from wt-f t-tp2show∃ τ ′. (S, f , τ ′) ∈ wt-f ∧ conceptsΓ ` τ  τ ′ by blast

qed
next — Casefg-mdl: The output term will be(let d := de in f), wherede is the term for the
dictionary for the model. We use Lemmamk-nths-wtto show that the part of the dictionary for
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refinements is well typed. We will use the induction hypothesis to get a well-typedf. However,
we first show that adding the model to the environment preserves the environment correspon-
dence. We invoke Lemmaadd-model-preservesto prove this.
fix Γ %s%s′ σs τ c ci d de ds dts e es f fs ns xs
assumeC: (c, ci) ∈ conceptsΓ and rs-rsp: conceptsΓ |= %s %s′

and memns: xs= mem-nms ciand es-fs: Γ |= es: σs fs
assumeIH1: ?PSΓ σs fsand memtys: σs= {params ci7→%s}(mem-tys ci)
and Ds: conceptsΓ |=d rfn ci dts

assumeW: modelsΓ |= {|params ci7→%s|}rfn ci ds, ns
and D: de= 〈mk-nths ds ns@ fs〉 and lps: length(params ci) = length%s
and IH2: ?P (Γ,model(c,%s,d,[])) τ f

let ?Gp= Γ,model(c, %s, d, [])
show?PΓ τ (let d := de in f)
proof clarify
fix SassumeCok: conceptsΓ ok and g-s: Γ S
from Cok g-s IH1obtain σs′ where
wt-fs: S |=F fs : σs′ and ss-ssp: conceptsΓ |= σs σs′ by blast

from Cok Chavedist: distinct(params ci)
usingc-mem-implies-c-ok inv-wf-cby blast

let ?sdts= {params ci7→%s′}dts
from Ds Cok dist lps rs-rsphave
Ds2: conceptsΓ |=d {|params ci7→%s|}(rfn ci) ?sdtsby (rule subst-ds)

from W Cok g-s Ds2have
wt-mk: S |=F mk-nths ds ns: ?sdtsby (simp add: mk-nths-wt)

from wt-mk wt-fshaveS |=F (mk-nths ds ns) @ fs : ?sdts@ σs′

by (simp add: wt-f-append)
henceS`F 〈mk-nths ds ns@ fs〉 : 〈?sdts@ σs′〉 by (rule wt-f-tuple)
with D havewt-de: S`F de: 〈?sdts@ σs′〉 by simp
from CokhaveCok2: concepts ?Gp okby simp
let ?Sp= S(|tys:= (tys S),d:〈?sdts@ σs′〉|)
from g-s Cok C rs-rsp Ds ss-ssp memtys lps
haveg2-s: ?Gp ?Spby (rule add-model-preserves)
from Cok2 g2-s IH2obtain τ ′ wherewt-f : ?Sp`F f : τ ′

and t-tp: concepts(Γ,model(c,%s,d,[])) ` τ  τ ′ by blast
havedS: d /∈ dom(tys S) sorry — d is fresh
from wt-de wt-f dShaveA: S`F let d := de in f : τ ′ by (rule wt-f-let)
from t-tp haveB: conceptsΓ ` τ  τ ′ by simp
from A Bshow∃ τ ′. (S, let d := de in f, τ ′) ∈ wt-f ∧ conceptsΓ ` τ  τ ′ by auto

qed
next — Casefg-mem: We take advantage of the environment correspondenceΓ S to obtain
the pathσ−ns→dt from the dictionaryd to the appropriate sub-dictionary for this model. We
then use Lemmadict-memberfrom Section 8.7 to extend the path to the appropriate member.
Lemmamk-nth-wtshows thatmk-nth(‘d) ns′ is well typed.
fix Γ::FGenvand τ τs c d ns ns′ x
assumeM: (c, τs, d, ns) ∈ modelsΓ and F: conceptsΓ `[ x c τs ns⇒ τ ns′

show?PΓ τ (mk-nth(‘d) ns′)
proof clarify
fix SassumeCok: conceptsΓ ok and g-s: Γ S
from g-sobtain Sv Smwherev-s: conceptsΓ `v varsΓ Sv
and m-s: conceptsΓ `m modelsΓ Smand sv: tvars S= tyvarsΓ
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and s-svm: tys S= Sv∪ Smby auto
from M m-s model-transobtain σ dt whereD: conceptsΓ `d c τs dt
and DS: (d,σ) ∈ Smand P: σ−ns→dt by blast

from DS s-svmhaveDS2: (d,σ) ∈ tys Sby auto
from F Cok D P dict-memberobtain τ ′ whereP2: σ−ns′→τ ′

and t-tp: conceptsΓ ` τ  τ ′ by blast
from DS2havewt-d: S`F ‘d : σ by (rule wt-f-var)
from P2 wt-dhavewt-nth: S`F mk-nth(‘d) ns′ : τ ′ by (rule mk-nth-wt)
from wt-nth t-tpshow
∃ τ ′. (S, mk-nth(‘d) ns′, τ ′) ∈ wt-f ∧ conceptsΓ ` τ  τ ′ by auto

qed
next — Casefg-var: Again we rely on the environment correspondenceΓ S. This time we
use it to obtain the translation of typeτ for variablex.
fix Γ::FGenvand τ x assumeXT: (x,τ) ∈ varsΓ
show?PΓ τ (‘x)
proof clarify
fix SassumeCok: conceptsΓ ok and g-s: Γ S
from g-sobtain Sv Smwherev-s: conceptsΓ `v varsΓ Sv
and m-s: conceptsΓ `m modelsΓ Smand sv: tvars S= tyvarsΓ
and s-svm: tys S= Sv∪ Smby auto

from v-s XT var-mem-trans-impliesobtain τ ′ where
t-tp: conceptsΓ ` τ  τ ′ and XTP: (x,τ ′) ∈ Svby blast

from XTP s-svmhaveXTP2: (x,τ ′) ∈ tys Sby simp
from XTP2havewt-x: S`F ‘x : τ ′ by (rule wt-f-var)
from wt-x t-tpshow∃ τ ′. S`F ‘x : τ ′∧ conceptsΓ ` τ  τ ′ by auto

qed
next — Casefg-app: This case is straightforward.
fix Γ σsσs′ τ e es f fsassumeIH1: ?PΓ (fn σs→ τ) f and IH2: ?PSΓ σs′ fs
and ss-sp: id |= σs= σs′

show?PΓ τ (f · fs)
proof clarify
fix SassumeCok: conceptsΓ ok and g-s: Γ S
from Cok g-s IH1obtain τ ′ wherewt-f : S`F f : τ ′

and t-tp: conceptsΓ ` fn σs→ τ  τ ′ by blast
from Cok g-s IH2obtain τs′ where wt-fs: S |=F fs : τs′

and ss-tp: conceptsΓ |= σs′ τs′ by blast
from t-tp obtain τ ′′ τs′′ wheress-tpp: conceptsΓ |= σs τs′′

and s-tpp: conceptsΓ ` τ  τ ′′ and tp: τ ′ = fn τs′′→ τ ′′

by (rule inv-trans-fun, blast)
from tp wt-f havewt-f2: S`F f : fn τs′′→ τ ′′ by simp
— Need to change lemmafun-dict-trans-tyto take into accound alpha-equal types
from Cok ss-tp ss-tpp ss-sphaveeq: id |=F τs′ = τs′′ using fun-dict-trans-tysorry
from eqhaveeq2: id |=F τs′′ = τs′ by (rule f-eqs-symm)
from wt-fs eqhavewt-fs2: S |=F fs : τs′′ by (rule equal-preserves-wts)
from wt-f2 wt-fs eq2havewt-ap: S`F f · fs : τ ′′ by (rule wt-f-app)
from s-tpp wt-apshow∃ τ ′. S`F f · fs : τ ′∧ conceptsΓ ` τ  τ ′ by auto

qed
next — Casefg-abs: In this case the sub-term is translated in an environment extended with vari-
able bindings for the parameters. We use a lemma from Section 8.6 to show that the environment
correspondence is maintained.
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fix Γ σsσs′ τ e f xsassumeIH : ?P (Γ,xs:σs) τ f and ss-ssp: conceptsΓ |= σs σs′

and lxs: length xs= lengthσs
from ss-ssphave lengthσs= lengthσs′ by (simp add: trans-length)
with lxshave lxs2: length xs= lengthσs′ by simp
show?PΓ (fn σs→ τ) (λ xs:σs′. f )
proof clarify
fix SassumeCok: conceptsΓ ok and g-s: Γ S
haveeq: concepts(Γ,xs:σs) = conceptsΓ by (simp add: push-vars-def)
havemeq: models(Γ,xs:σs) = modelsΓ by (simp add: push-vars-def)
from g-sobtain Sv Smwherev-s: conceptsΓ `v varsΓ Sv
and m-s: conceptsΓ `m modelsΓ Smand sv: tvars S= tyvarsΓ
and s-svm: tys S= Sv∪ Smby auto

from ss-ssp v-s lxshaveconceptsΓ `v (varsΓ),xs:σs Sv,xs:σs′

usingadd-vars-preserves-var-envby simp
with eqhavev-s2: concepts(Γ,xs:σs) `v (varsΓ),xs:σs Sv,xs:σs′ by simp
from m-s eq meqhavem-s2: concepts(Γ,xs:σs) `m models(Γ,xs:σs) Smby simp
have(Sv,xs:σs′) ∪ Sm= (Sv∪ Sm),xs:σs′ usingpush-union-commuteby simp
hences-svm2: (Sv∪ Sm),xs:σs′ = Sm∪ (Sv,xs:σs′) by auto
obtain S′ wheresp: S′ = (Sv∪ Sm),xs:σs′ by simp
from s-svm2 sphavesp-svm: S′ = Sm∪ (Sv,xs:σs′) by simp
let ?Sp= S(|tys:= (tys S),xs:σs′|)
from sv v-s2 m-s2 sp-svmhaveΓ,xs:σs S(|tys:= S′|)
using trans-env-def push-vars-defby auto

with s-svm sphaveg-s2: Γ,xs:σs ?Spby simp
from eq CokhaveCok2: concepts(Γ,xs:σs) ok by simp
from Cok2 g-s2 IHobtain τ ′ where wt-f : ?Sp`F f : τ ′

and t-tp: concepts(Γ,xs:σs) ` τ  τ ′ by blast
from t-tp eqhavet-tp2: conceptsΓ ` τ  τ ′ by simp
havexsds: set xs∩ dom(tys S) = {} sorry — can alpha-convert xs to get this
from wt-f xsds lxs2havewt-l: S`F λ xs:σs′. f : fn σs′→ τ ′ by (rule wt-f-abs)
from ss-ssp t-tp2
haveT: conceptsΓ ` fn σs→ τ  fn σs′→ τ ′ by (rule trans-fun)
from wt-l T
show∃ τ ′. S`F λ xs:σs′. f : τ ′∧ conceptsΓ ` fn σs→ τ  τ ′

by auto
qed

next — Casefg-bool: This case is trivial.
fix Γ::FGenvand b
{ fix S
haveS`F Boolean b: BoolT by (rule wt-f-bool)
moreover haveconceptsΓ ` BoolG BoolT by (rule trans-bool)
ultimately have ∃ τ ′. S`F Boolean b: τ ′∧ conceptsΓ ` BoolG τ ′

by blast
} thus ∀S. conceptsΓ ok∧ Γ S−→

(∃ τ ′. S`F Boolean b: τ ′∧ conceptsΓ ` BoolG τ ′) by simp
next — Casefg-int: This case is trivial.
fix Γ::FGenvand i
{ fix ShaveS`F Integer i: IntT by (rule wt-f-int)
moreover haveconceptsΓ ` IntG IntT by (rule trans-int)
ultimately have ∃ τ ′. S`F Integer i: τ ′∧ conceptsΓ ` IntG τ ′ by blast
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} thus ∀S. conceptsΓ ok∧ Γ S−→ (∃ τ ′. S`F Integer i: τ ′∧ conceptsΓ ` IntG τ ′)
by simp

next — Casefg-nil: This case is trivial.
fix Γ show∀S. conceptsΓ ok∧ Γ S−→ (∃ τs′. S |=F [] : τs′∧ conceptsΓ |= [] τs′)
proof clarify
fix ShaveA: S |=F [] : [] by (rule wt-f-nil)
haveB: conceptsΓ |= [] [] by (rule trans-nil)
from A Bshow∃ τs′. S |=F [] : τs′∧ conceptsΓ |= [] τs′ by auto

qed
next — Casefg-cons: This case is straightforward.
fix Γ τ τs e es f fs
assumeIH1: ∀S. conceptsΓ ok∧ Γ S−→ (∃ τ ′. S`F f : τ ′∧ conceptsΓ ` τ  τ ′)
and IH2: ∀S. conceptsΓ ok∧ Γ S−→ (∃ τs′. S |=F fs : τs′∧ conceptsΓ |= τs τs′)

show∀S. conceptsΓ ok∧ Γ S−→ (∃ τs′. S |=F f # fs : τs′ ∧ conceptsΓ |= τ # τs 
τs′)
proof clarify
fix SassumeCok: conceptsΓ ok and g-s: Γ S
from Cok g-s IH1obtain τ ′ wherewt-f : S`F f : τ ′

and t-tp: conceptsΓ ` τ  τ ′ by blast
from Cok g-s IH2obtain τs′ wherewt-fs: S |=F fs : τs′

and ts-tsp: conceptsΓ |= τs τs′ by blast
from wt-f wt-fshaveA: S |=F f#fs : τ ′#τs′ by (rule wt-f-cons)
from t-tp ts-tsphaveB: conceptsΓ |= τ#τs τ ′#τs′ by (rule trans-cons)
from A Bshow∃ τs′. S |=F f # fs : τs′∧ conceptsΓ |= τ # τs τs′ by auto

qed
qed

9 Conclusion

The main contribution of this report is the development of a language, named FG, that
captures the essence of concepts and thus language support for generic programming.
We present a formal type system for the language and provide semantics via a transla-
tion to System F. We prove the translation preserves typing, and thus type soundness
for FG.

The language definition was formalized using the Isabelle proof assistant, and the proof
of soundness for the translation was written in the Isar language and verified using
Isabelle. This was a fairly difficult proof engineering task, but the definition of FG was
sharpened considerably as a result. One aspect of the proof we did not formalize in
Isabelle was the use of the variable convention: we assumed that bound variable could
be renamed. The standard solution to this issue is to change to De Bruijn indices. We
chose not to use De Bruijn indices for this report because they are more difficult to
reason about. However, rewriting the proof to use De Bruijn indices should now be a
straightforward, but tedious, task.

There are several language features that are important for generic programming that
we do not cover in this report. Those features include:
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Associated Types.Part 2 of this report will extend FG with associated types.

Implicit instantiation of type abstractions. Ideally we would introduce a subsump-
tion rule based on Mitchell’s containment relation [31]. However, that relation is unde-
cidable [47]. There are two interesting restrictions that are decidable: no coercion un-
der a function arrow [25] and restriction of type arguments to monomorphic types [36].
We plan further investigation in this area.

Statically resolved function overloading, as is found in C++ and Java. This is needed
to remove the clutter of model member access such as<Monoid(t)>.binary op.

Named models, as in [20]. This provides a mechanism for managing overlapping
models, and is a straightforward addition to FG.

Parameterized models(equivalent to parameterized instances in Haskell) are impor-
tant for models that use parameterized type such aslist<T>.

Defaults for concept members(as in Haskell) provide a mechanism for implementing
a rich interface in terms of a few functions.

Algorithm specialization is used in C++ to provide automatic dispatching to different
versions of an algorithm based on properties of a type, such as an iterator providing ran-
dom access. The natural way to add this to FG would be to have function overloading
based on the where clauses of generic functions [17].
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Geǹeve 20, Switzerland, 1998.

[17] J. J̈arvi, J. Willcock, and A. Lumsdaine. Algorithm specialization and concept
constrained genericity. InConcepts: a Linguistic Foundation of Generic Pro-
gramming. Adobe Systems, Apr. 2004.

[18] M. P. Jones. Dictionary-free overloading by partial evaluation. InPartial Evalu-
ation and Semantics-Based Program Manipulation, Orlando, Florida, June 1994
(Technical Report 94/9, Department of Computer Science, University of Mel-
bourne), pages 107–117, 1994.

67



[19] M. P. Jones. Type classes with functional dependencies. InEuropean Sympo-
sium on Programming, number 1782 in LNCS, pages 230–244. Springer-Verlag,
March 2000.

[20] W. Kahl and J. Scheffczyk. Named instances for Haskell type classes. In R. Hinze,
editor, Proc. Haskell Workshop 2001, volume 59 ofENTCS, 2001. See also:
http://ist.unibw-muenchen.de/Haskell/NamedInstances/.

[21] D. Kapur and D. Musser. Tecton: a framework for specifying and verifying
generic system components. Technical Report RPI–92–20, Department of Com-
puter Science, Rensselaer Polytechnic Institute, Troy, New York 12180, July
1992.

[22] D. Kapur, D. R. Musser, and X. Nie. An overview of the tecton proof system.
Theoretical Computer Science, 133:307–339, Oct. 1994.

[23] A. Kennedy and D. Syme. Design and implementation of generics for the .NET
Common Language Runtime. InProceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI), pages 1–
12, Snowbird, Utah, June 2001.
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