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Abstract

“Concepts” are an essential language feature needed to support generic pro-
gramming in the large. Concepts allow for succinct expression of bounds on type
parameters of generic algorithms, enable systematic organization of problem do-
main abstractions, and make generic algorithms easier to use. In this paper we
formalize the design of a type system and semantics for concepts that is suitable
for non-type-inferencing languages. Our design shares much in common with the
type classes of Haskell, though our primary influence is from best practices in
the G+ community, where concepts are used to document type requirements for
templates in generic libraries. The technical development in this paper defines an
extension to System F and a type-directed translation from the extension back to
System F. The translation is proved sound; the proof is written in the human read-
able but machine checkable Isar language and has been automatically verified by
the Isabelle proof assistant. This document was generated directly from the Isar
theory files using Isabelle’s support for literate proofs.
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1 Introduction

Generic programming is an effective methodology for developing reusable software
libraries. Musser and Stepanov developed the methodology in the late 1980’s [32, 33]
and applied it to the construction of sequence and graph algorithms in Scheme, Ada,



and C. Inthe early 1990's they shifted focus te&hd took advantage of templates [46]

to construct the Standard Template Library [45] (STL). The STL became part of the
C~ Standard, which brought generic programming into the mainstream. Since then,
generic programming has been successfully applied in the creation of generic libraries
for numerous problem domains [4,24,38,41,43,48,50].

A distinguishing characteristic of generic programming is that generic algorithms are
expressed in terms of properties of types, rather than in terms of any particular type. A
generic algorithms can be used (more importantly, reused) with any type that has the
necessary properties. (Support for generic programming in a statically typed language
thus requires type parameterization.)

A fundamental issue in providing language support for generic programming is how to
express the set of admissible types for a given algorithm, or equivalently, how to design
a type system that can check calls to a generic (type-parameterized) algorithm and
separately check the implementation of the algorithm. An important complementary
issue is providing the run-time mechanism by which user-defined operations, such as
multiplication for aBigint type, are connected with uses of operations inside a generic
algorithm, such as a call o« x in an algorithm parameterized on the number type.

In today’s programming languages there are three common approaches to addressing
these issues: subtype bounds, type classes, and by-name operation lookup. We briefly
describe each of these approaches below and show examples in Figure 1.

Subtype Bounds(Figure 1 (a)) In object-oriented languages, bounds on type parame-
ters are typically expressed via subtyping [7,8,37]. When a generic function constrains
a type parameter to be a subtype of an interface, objects passed to the generic function
must carry along the necessary operations. This approach is used in Eiffel [28] and in
the generics extensions to Java [6] and C# [23, 29].

Type Classeg(Figure 1 (b)) In Haskell, type classes are used to describe the set of
admissible types to a generic function [49]. A type class contains a list of required
operations, and a type is declared to belong to a type class through an instance dec-
laration that provides implementations of the required operations. If a type parameter
to a generic function is constrained to be an instance of a type class, operations from
the appropriate instance declaration are implicitly passed into the generic function. A
type class is similar to an object-oriented interface in that it specifies a set of required
operations. However, unlike interfaces, type classes are not themselves types (e.g., one
cannot declare a variable with a type class as its type).

By-Name Operation Lookup (Figure 1 (c)) In CLU [26] and Cforall [11], a generic
function declares the name and signature of all the operations it needs. Then at a call to
the generic function, the enclosing scope must contain definitions of functions with the
appropriate names and signatures. These functions are then passed implicitly into the
generic function. The approach used in i€ similar in that individual operations are
found based on their names. However, a generic function does not explicitly declare
which operations it needs. Instead, nhame resolution in the body of the function is
performed after instantiation, using argument-dependent lookup [16].

In [12] we implemented a generic graph library (based on the Boost Graph Library [42])



public interface Number<U> {
public U mult(U other);

class Number a where

public class BigInt implements Number<Bigint> { mult - a —a —a

public BigInt mult(BigInt x) { ... }

}

public class Square {
<T extends Number<T>>
T square(T x) { return x.mult(x); }

instance Number Int where
mult = (%)

square :: Number a =a —a
square x = mult x x

public static void main(String[] args) { - .
square(BigInt(4)): main = square (4::Int)

(b) Type classes: parameter
} “a” must be an instance of

the Number type class.
(a) Subtyping: parameter T must extend the Number in-
terface.

template <class Number>
Number square(Number x) {
return mult(x, x);

}

int mult(int x, inty) { return x x y; }

int main() {
return square(4);

}

(c) By-name operation lookup: a
function with the name “mult” is
found for type int.

Figure 1: Common approaches to realizing generic programming.



using programming languages in each of the above three categories. We carefully eval-
uated each language with respect to support for generic programming and found that
although these approaches were able to support generic programming to varying de-
grees, none was ideal. The primary limitation was that existing languages do not fully
capture the essential feature of generic programming, nacwlgepts

In the parlance of generic programming, concepts are used to express sets of admis-
sible types to an algorithm. More specifically, a concept is defined as a collection
of abstractions, membership in which is defined by a list of requirements. Concepts
as specifications were formalized in the generic programming literature [21, 22, 51],
but are more widely known through their use in the documentation-ofe@plate
libraries [5, 44].

Contributions. The current practice of generic programming is impeded because no
existing language provides all the features and abstractions needed to support generic
programming. In this paper we capture the essence of the necessary language ab-
stractions in a small formal system. Our primary contribution is Syst€maFsimple
language based on System F [13, 40] that explicitly includes concepts. Our design of
FS reflects a decade of experience in generic library construction+iriT€chnically,
System F is unique because 1) it provides scoped concept and model declarations,
2) concepts integrate nested types and type sharing in a type class-like feature, and 3)
it explores the design space of type classes for non-type-inferencing languages. The
formal developments in this paper were carried out using the Isabelle/Isar proof assis-
tant [34, 35]. We define Systenf'Fand a translation from®to F and prove that the
translation is sound. The proof is expressed in the Isar proof language, a language that
is both human readable and machine checkable, and the proofs have been verified in
Isabelle. This document was generated directly from the Isar theory files.

Road map. Concepts have a number of similarities to the type classes of Haskell [15,
49] and F¥ has a number of similarities (and differences) with existing work, which we
discuss in Section 2. In Section 3 we provide a brief introduction to Isabelle and Isar.
In Section 4 we review System F, formalize its type system in Isabelle, and prove a few
properties that are necessary for our proof that the translation ffota F is sound. In
Section 5 we introduce the syntax df lnd present some examples that demonstrate
generic programming in® We define both the type system and dynamic semantics
of F& in terms of a type-directed translation to System F (similar to the translation of
type classes to System F in [15]). We present an informal description of the translation
in Section 6 and the Isabelle formalization in Section 7. We prove that the translation
is sound in Section 8. Section 9 discusses future work and concludes.

2 Related Work

Of existing languages, Haskell's type classes are the most similar to concepts. They are
based purely on parametric polymorphism, as are concepts. A fundamental difference

between our approach and that of type classes is that we are targeting languages without
Hindley-Milner style type inference. This gives our design more freedom in other



aspects. For example, irfRwo concepts may share the same member name (as do
classes in object-oriented languages) whereas in Haskell two type classes in the same
module may not share the same member name. In addition, our design is based on
experience in the field of generic library construction. One of the primary lessons
learned from that experience is the need for modularity, especially for good scoping
rules. As a result, concepts and models fraFe expressions, not declarations (as are
type classes and instances in Haskell), and they obey the usual lexical scoping rules.
The advantages of lexically scoped concepts and models are discussed in Section 5.

Another lesson we learned is that support for associated types is important. In our
study [12] we found that without associated types, interfaces of generic algorithms be-
come cluttered with extra type parameters to the point of causing scalability problems,
and internal helper types of abstract data types must be exposed, thereby breaking
encapsulation. In response to our study, Chakrawvetryl proposed an extension to
Haskell for associating algebraic data types with concepts [9]. Our work differs from
thatin [9] in three ways. First, our associated types are not algebraic data types but sim-
ply requirements for a type definition; all that is necessary for generic algorithms. The
second difference is that we include same-type constraints, which are vital for generic
algorithms that use associated types. Associated types and same-type constraints will
be treated in Part 2 of the technical report. Third, we include concept inheritance (re-
finement) in our formalism. Earlier extensions to Haskell [10, 19] address some of the
same issues solved by associated types, but they did not address the problems of clutter
and encapsulation.

In Standard ML [30], a rough analogy can be made between ML signatures®and F
concepts, and between ML structures affdrRodels. However, there are significant
differences. Fist, functors are module-level constructs and therefore provide a more
coarse-grained mechanism for parameterization than do generic functions. More im-
portantly, functors require explicit instantiation with a structure, thereby making their
use more heavyweight than generic functions fnd¥ Haskell, which perform auto-
matic lookup of the required structure. The associated types and same-type constraints
of FS are roughly equivalent to types nested in ML signatures and to type sharing. We
reuse some implementation techniques from ML such as a union/find based algorithm
for deciding type equality [27]. There are numerous other languages with parameter-
ized modules [1, 14, 39] that also require explicit instantiation with a structure.

As discussed in the introduction, many object-oriented languages choose to express
bounds on type parameters via subtyping [6, 23, 28, 29]. For a detailed account of the

problems we encountered with the subtype-based approach we refer the reader to our
study [12].

In some sense, our work combines some of the best features of Haskell and ML relative
to generic programming. However, there are non-trivial details to combining these
features and these details are discussed in detail in this paper.



3 Introduction to Isabelle and Isar

Isabelle is a generic proof assistant, and Isabelle/HOL is the version of Isabelle that
supports reasoning in higher-order logic. The Isar proof language is a front end to
Isabelle that provides both a human readable presentation and a machine checkable
formalism. We provide a short introduction to Isabelle and Isar here, which we hope is
enough to enable the reader to understand this paper. For a more detailed introduction
we refer to the reader to [34, 35].

The following is an example proof in Isar. The lemma proves that the length of two
lists appended is the sum of the length of the two lists. The lemgjth-appenchas

been given to the lemma so that we can use it in other proofs. Like most proofs in
this document, this proof is by induction. The induction is on theldi$t Isabelle
encompasses an ML-like functional language, complete with support for data types.
Since there are two constructors for the list data type, there will be two cases for the
induction. A long dash indicates the start of a comment.

lemmalength-appendv Is2. length(Is1@Is2) = length Is1+ length Is2
proof (induct Is])

— The first case is for the empty list. The keyword “show” indicates that a subgoal of the
lemma is to be proved. The phrase “by simp” indicates that the statement will be proved using
Isabelle’s simplifier, which expands definitions, in this case length and append, and performs
some simple arithmetic and logic.

showYIs2. length([] @ Is2) = length[] + length Is2by simp
next— The second case is for whégl = x#xs The keyword “fix” introduces fresh variables.

fix x xs— The keyword “assume” introduces one or more premises. We often use the label IH
for an induction hypothesis.

assumelH: V Is2. length(xs@ Is2) = length xs+ length Is2

showV Is2. length((x#xs) @ Is2) = length(x#xs) + length Is2

proof clarify — “clarify” decomposes logical constructs suchvasnd —.

fix Is2— The “have” below states an intermediate result.

havelength ((x#xs) @ Is2) = length(x#(xsQls2)) by simp

— The keyword “also” indicates equational reasoning. The ellipses stand for the previous
right-hand side.

also have... = 1 + length(xsQls2) by simp

— Previously proven statements can be used via the “from” keyword followed by the labels
for the statements.

also fromIH have... =1 + length xs+ length Is2by simp

— The keyword “ultimately” indicates we are finished with the equational reasoning and have

the first left-hand side equal to the last right-hand side
ultimately have length((x#xs) @ Is2) = 1 + length xs+ length Is2by simp
— “thus” is like “show”, but uses the previous statement.
thus length((x#xs) @ Is2) = length(x#xs) + length Is2by simp

ged
ged

The followingtreetype is an example of Isabelle’s facility for defining algebraic data
types.

datatype ‘a tree= Leaf ‘a | Node'a tree ‘a tree



Isabelle provides two facilities for the definition of recursive functions. The first re-
stricts definitions to primitive recursive functions, but automatically ensures termina-
tion. There must be a pattern match against the input data type, which decomposes
the data into its parts. Then a recursive call must refer to one of the parts. The type
constructor= is for (total) functions.

constsheight:: ‘a tree=- nat

primrec

height(Leaf ¥ =0

height(Node a i) = 1 + max(height g (height b

The second facility allows for the definition of total recursive functions, but the user
must provide a measure function that decreases with each recursive call. Isabelle will
attempt to automatically prove that the measure decreases. If Isabelle fails, the user
must provide the appropriate lemmas to allow the termination proof to succeed. Below
is a version of quick sort for lists. A lemma concerning the length of a filtered list is
needed to prove terminatioBucis the constructor for natural numbers that adds one.

lemmafilter-length length(filter f xs) < Suc(length x$
by (simp add less-Suc-eq-le

constsquicksort:: nat list=- nat list
recdef quicksort measure length

quicksort[] = ||

quicksort(x#xs) = quicksortfilter (A y. y<x) xs) @ [x] @ quicksortfilter (A y. Xx<y) xs)
(hints recdef-simpfilter-length)

Another important feature of Isabelle is the inductive definition of sets, which will be
used in this paper to define judgments of various forms, especially typing judgments.
The well typed terms of the simply-typedcalculus serves as an example of an in-
ductively defined set. The following data types represent the types and terms of the
simply-typedA-calculus. Nice syntax for the data type constructors is defined in the
parentheses.

datatype stlc-type= Fun stlc-type stlc-typénfixl — 100) | Bot (L 100)
datatype stlc-term= Vrbl nat (-) | Apply stlc-term stlc-terni---) | Abs nat stlc-terng -. -)

The set of well typed terms is actually a triple, consisting of a type assignment, a term,
and its type. Several labeled introduction rules are defined for the set.

constswell-typed:: ((nat=- stlc-typg x stlc-termx stlc-typg set
inductive well-typedintros
stlc-var. (T, 'x, I' x) € well-typed
stlc-app [ (T, el 7—7') € well-typed (T, €2 1) € well-typed]
= (T, el- e2 7’) € well-typed
stlc-abs (I'(x:=7), e, 7’) € well-typed=> (T, A x. &, 7—7") € well-typed

The double arrow—=> is Isabelle’s meta-level implication, afdP; Q ] = Riis an
abbreviation fol®P = Q = R. The notatiorl'(x:=7) stands for function update:

f(a:=b) =M ifx=athenbelse fx



Figure 2: Types and Terms of System F

st € Type Variables
x,y,d € Term Variables

n €N
orvi=t| T 7| 7xxT | VT
fooom=a | F() | g7 f [ AL f | fI7]

| letx=finf | (f,....f) | nthfn

The following creates nice syntax for membership in the inductively defined set.

syntaxwell-typed:: [nat = stlc-type stlc-term stlc-typé = bool (- - - : - [52,52,52] 51)
translationsI'+e: 7 = (T, g, 7) € well-typed

Isabelle has a facility for typesetting any implication as an inference rule with a hor-
izontal bar, which will be used throughout this paper for the introduction rules of in-
ductively defined sets.

Fel:t—7' I'ke2:7 F'x:=71)Fe:7’
Vi (sTLc-APP)  ————————(STLC-ABS)
I'ele2: 7 'Exxe:r—r

4 SystemF

System F, the polymorphic lambda calculus, is the prototypical tool for studying type
parameterization [13,40]. Figure 2 presents the abstract syntax for the types and terms
of System F. Type abstractions and functions have multiple parameters, instead of the
more standard single parameter, to facilitate the translation ffertoFF. Tuples are
included in the language to serve as the runtime representation of models,leind a
expression serves to further simplify the translation. Several constants not included
here will be used in the examples, suchiggfor recursion), but these are not included

in the formalization because they are trivial to add.

It is possible to write generic algorithms in System F, as demonstrated in Figure 3, with
a polymorphicsum function. The function is written in the higher-order style, passing
the type-specifiadd andzero as parameters. However, this approach does not scale:
practical algorithms typically require dozens of type-specific operations.

The following data types are used to represent types and terms of System F in Isabelle.
Shorthand syntax for the data type constructors is given in the parentheses next to each
constructor. Dashes in the syntax are place-holders for arguments.

typesvar = nat
datatypety = VarT var (‘- ) | ArrowT ty listty(fn - — - ) | AllT var list ty (V -. -)
| TupleT ty list({(-) ) | BoolT| IntT



Figure 3: Higher Order Sum in System F

let sum =
(At
fix (A sum : fn(list t, fn(t,t)—t, t)—t.
Als @ list t, add : fn(t,t)—t, zero : t.
if null[t](Is) then zero
else add(car[t](Is), sum(cdr[t](Is), add, zero)))) in

let Is = consJint](1, cons]int](2, nil[int])) in
sum[int](Is, iadd, 0)

datatype trm = Var var (‘- ) | App trm trm list(infixI - )
| Lam var list ty list trm(X -:-. - ) | LetTrm var trm trm(let - := - in - )
| Forall var list trm (A -. - ) | Inst trm ty list(-[-] )
| Tuple trm list({-) ) | Nth trm nat| Boolean bool Integer int

4.1 Type Substitution

The process of instantiating a type abstraction substitutes types for occurrences of the
parameters in the body of the abstraction. For example, take the identify fuitttion
At.ax:t. x whose type ig/t.t—t. Instantiating the identity functioia [int] substitutes

int for t, resulting inAx:int.x which has the typat—int.

As defined here, type abstractions have multiple parameters, so a list of types will be
simultaneously substituted for a list of parameters. The following auxiliary function
will be used to search through a list of variables and a corresponding list of types to
find the type for a variable (and the position of the variable in the list).

constslookup:: [var, var list, t list, naf = (‘t x nat) option

primrec
lookup x[] vs i= None
lookup x(k#ks) vs i=

(case vs of] = None| v#vs' = if k = x then Somév,i) else lookup x ks VgSuc )

There are several ways to define substitution. The standard definition is used here and
the variable convention is relied on to assure that free variables are not captured during
substitution [3]. The recursive function below implements substitution. The nested list
in the ty datatype prevents the use of IsabellgBnrec facility, sorecdefis used to

define substitution. The following two lemmas are needed to prove termination. The
first states that ik is in ss thensize xis less tharsize(fn ss— t). The second states

that if if X is in 7s, thensize xis less tharsize(rs).

lemmaty-list-tcl x € set ss— size X< Suc(ty-list-sizel sst size )
by (induct ss rulelist.induct, auto)

10



lemmaty-list-tc2 x € setrs — size x< Suc(ty-list-size2rs)
by (inductrs rule list.induct auto)

constssub-ty:: (var list x ty list x ty) = ty

recdefsub-ty measure) p. size(snd(snd p))
sub-ty(ts, s, ‘t) = (case(lookup t tsTs 0) of None=-‘t | Some(7,i) = 7)
sub-tyts, 7s, fnos — 1) = fn (map(\ o. sub-tyts,7s,0)) oS) — sub-tyts,7s,7)
sub-tyts, 7S,V ss 7) = (V ss sub-tyts,7s,7))
sub-tyts, s, (o)) = (map(A o. sub-tyts,rs,0)) os)
sub-tyts, s, BoolT) = BoolIT
sub-tyts, s, IntT) = IntT

(hints recdef-simpty-list-tc1 ty-list-tcg

The following abbreviations are used for substitution. The notation for substitution
on a list of types is slightly different to decrease Isabelle’s parsing time. (It increases
greatly when there is ambiguity).

[ts—79T = sub-ty(ts, s, 7)
{ts—7s}os=map(\o. sub-ty(ts, 7s, o)) os

4.2 Type Equality

The presence of universal types complicates type equality, since thevtypes and

Vv s.s—s should be equal even though they are syntactically different. Two types are
equal when a renaming of bound variablespnversion) can make them syntactically
equal. A renaming will be represented as a function from variables to variables. The
following function updates a renaming with a series of variable bindings.

constsextend: [‘a list, ‘alist, ‘a= ‘a) = (‘a= 'a)
primrec
extend]vs T=T
extend(k#ks) vs T= (case vs of] = T | v#vs= T(k:=v))

Figure 4 defines the type equality judgment.

4.3 Type Rules for System F

The type rules will refer to a typing environment that map eadiound variable to its
type.

typesTenv= (var x ty) set

The following notation is used to insert a binding into the environment.
Fxr={(x,7)}uTl

The following function adds a list of bindings to the environment.

constspushs-env: ('k x v) set= k list= v list= ('k x v) set(-,-:-)

11



Figure 4: Equality of types in System F up to the renaming of bound type variables.
[ 1

t=Ts (F-EQV) TErp7rs=718 TI—FT:T’(FE .
Thp's="t © Trrpfnrs—r=frs’'— 7’ ©

extendtstsTFp 7 =17’ T s=r1s'
T (F-EQA) SRTSETS (ceom)

ThrVisT=Vts. 7/ Thp (1) = (8)
T g BoolT=BoolT (F-EQB) T kg IntT = IntT (F-EQI)

Thkrpr=1' TEr7rs=r18
TkEpr7rs=71"718

TEr[ =] (F-EQN) (F-EQQ)

primrec
T,[):irs= (T:(k x V) seb)
T, (x#xs):7s= (casers of [| = I' | r#7s= (I',Xs78),X:7)

The domain of an environment is defined as follows.
domI'={x|37.(x,7) €T}

The type rules for System F also keep track of which type variables are in scope, to en-
sure that the parameters of a type abstraction are disjoint with all other type parameters
in scope and thereby maintain the variable convention. Thus the environment includes
both the typing environment for term variables and a set of type variables.

record Fenv=
tys:: Tenv
tvars:: var set

The type rules must also ensure thabound variables do not appear as free variables
in the environment. Thév function computes the free type variables of a type,land
the bound type variables.

constsftv :: ty = nat set
recdef ftv measure size
fiv (1) = {t}
ftv (fn7s— 7) = J (map ftvrs) U ftv 7
ftv (V ts. 7) = ftvT — setts
ftv ((rs)) = J (map ftvrs)
ftv BoolT= {}
ftv IntT = {}
(hints recdef-simpty-list-tc1 ty-list-tc3
constsbtv:: ty = nat set
recdef btv measure size

btv ('t) = {}

12



btv (fn7s— 7) = |J (map btvrs) U btv r
btv (V ts. 7) = btvr U set ts
btv ((rs)) = J (map btvrs)
btv BoolT= {}
btv IntT = {}
(hints recdef-simpty-list-tc1 ty-list-tc3

where we have overloadéd for a list of sets as defined belofaldr is used instead of
foldl becausdoldr follows the natural structure of a list, which makes it easier to work
with when performing induction on lists.

U Is=foldropuUls

ftv is extended to typing environments with the following definition.
FIVE=J{V|3Ix7. (X, 7) e T AV =ftvr}

The type rules for System F are presented in Figure 5.

4.4 Properties of System F

In this section, some basic properties of System F will be proved, properties concerning
substitution, environments, and well typing that are needed later in the report.

A few facts about the lookup function are needed. The first lemma states that lookup
fails when the item does not appear in the list of keys. The “is” keyword introduces an
abbreviation for the proposition to be proved. The keyweitiesigefers to the current
subgoal.

lemmalookup-fails vV x (vs:'v list) i. x ¢ set ks— lookup x ks vs i= None(is ?P kg
proof (induct kg show?P [] by simp
next fix k ksassumelH: ?P ksshow ?P (k#ks)
proof clarify fix x and vs: v list and i assumexmemx ¢ set(k#ks)
showlookup x(k#ks) vs i= None
proof (cases vsassumevs= || thus ?thesisby simp
next fix v vs' assumevs vs= v#vs' from vs xmem IHshow ?thesisby auto
ged
ged
ged

The next lemma characterizes the pre and post-conditions for a successful lookup. The
use of “obtain” corresponds to the elimination of an existential.

lemmalookup-succeeds
V t (rs::'v list). t € set tsa length ts= lengthrs
— (Vi.(3J.i<jA(j—1i)<lengthtsAtsl(j—i) =t Alookup ttsrsi= Somersl(j—i),j)))
(is?Pt9y
proof (induct t§ show?P [] by simp
next fix k ksassumelH: ?P ksshow ?P (k#ks)
proof clarify fix t and rs::'v listand i
assumeM: t € seik#ks) and L: length(k#ks) = lengthrs

13



Figure 5: Type Rules for System F

X, 7) € tysT’
u(WT-F-VAR)
I'kp'x:T
F'rre:fnos r es: o’ id s=os
a il r i Fros=o (WT-F-APP)
I'trpe-es: 7

I(tys:=tysT' xsos)Fre: 7 set xsn dom tysl” = () |xg = |09 (W

I'tFrp AXxsos. e:fnos— 7
ABS)
l'Fre:Vis.o |ts| = |79
(WT-F-TAPP)
I'Fpery: [ts—>790
I'(tvars:=tvarsT Usetty Fre: o
settsn tvarsT" = () settsN FTV (tysT') =0 distinct ts
(WT-F-TABS)
I'FrpAtse:Viso
Il'Fre: I(tys:=tysT',x:o)) Fr €': X & dom tysl’
re:o (tys:=tysl'xa) Fpe': 7 ¢ Y wr-r-LET)
IFrpletx:=ein€:r
r es: 7S I'tre:(rs Sy =
ﬂ(WT-F-TUPLE) reiiry A T(WT-F—NTH)
Tkr (€9 : (19 I'FrpNthei: 7

I' -z Boolean b BoolT (wT-F-BoOL) I' kg Integer b: IntT (WT-F-INT)

I'kre:r l'Erpes:7

s
WT-F-CONS
I'Erees: 778 ( )

Db [ (WT-F-NiL)
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from L obtain 7 s’ wherets: 7s = 7#7s’ by (inducts rule list.induct auto)
show3j. i <j A (j—i) < length(k#ks) A (k#k9)!(j—i) =t
A lookup t(k#ks) Ts i= Some(rs!(j—i),j)
proof (cases t= k) assumeta: t = k from ta tsshow ?thesisby auto
next assumda: t # k
from ta M L ts IH obtain j 7' where|: Suc i< j andjilk: (j — Suc ) < length ks
and ksji: ks! (j — Suc ) = tandtsi: 7s'(j — Suc) =7’
and lts: lookup t ksrs’ (Suc ) = Some(7'j) by (auto, blasf)
from | havel2: i <j by simp
from | haveij: Suc(j — Suc ) =j — i by arith
from ksiji tsihave (k#ks)!(Suc(j — Suc ) =t A (r#7s")!(Suc(j — Suc )) = 7’ by simp
with ij ts have A: (k#ks)!(j — i) =t A sl(j—i) = 7' by simp
from jilk haveB: (j — i) < length(k#ks) by (simp arith)
from lts ts ta Ahave C: lookup t(k#Kks) 7s i = Some(rs!(j—i),j) by simp
from 12 A B Cshow ?thesisby simp
ged
ged
ged

Next some basic facts about substitution are proved. Substitution on a list of types
commutes with append. Substitution also commutes with the nth function, which is
derived directly from the fact that the map function commutes with nth. Substitution
does not change the length of a list of types.

lemmasubst-appendv tsrsos’. {ts—7s}(0sQos’) = {ts—7S}os@ {ts—TS}os’
by (inductos rule list.induct, auto)

lemmasubst-nthY itsos. i < lengthts — ({ts—os}r9)!i = [ts—o|(7dli)
using nth-mapby simp

lemma subst-lengthV tsos. lengthTs = length({ts—os}7s)
by (inductrs rule list.induct auto)

If the variables to be substituted do not occur in the type, then substitution does not
change the type. Before proving this, the following function is needed to formalize the
notion of occurring type variables.

constsotv:: ty = nat set
recdefotv measure size
otv (‘t) = {t}
otv(fnrs— 7) = |J (map otvrs) U otv 7
otv(V ts. 7) = otvr U set ts
otv ({(rs)) = J (map otvrs)
otv BoolT= {}
otv IntT = {}
(hints recdef-simpty-list-tc1 ty-list-tc3

The proof is by induction on the structure of types. The induction rule that Isabelle has
generated based on the datatype definition is a mutual induction with three parts. The
first part is for types and the second and third parts are for lists of types.
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lemma no-otv-subst-is-id-mutual
(V tsps. settsnotvr = {} — [ts—psT =7)
A (V tsps. settsn | (map otvrs) = {} — {ts—ps}rs=19)
A (V tsps. settsn |J (map otvrs) = {} — {ts—ps}rs=19)
by (induct rule ty.induct simp add lookup-fails auto)

corollary no-otv-subst-ty-is-idv tsgs. settsnotvr = {} — [ts—oegr =71
using no-otv-subst-is-id-mutudly simp

The next proof is a standard result called the Substitution Lemma [3]. Again the proof
is by induction on types. The following two abbreviations will be used for the proposi-
tions to be proved.

constdefssub-lemma-ty: ty = bool
sub-lemma-ty M= (V xs ys Ls Nsset xsn setys= {} A setxsn | (map otv L$ = {}
A length xs= length NsA length ys= length LsA distinct xs
— [ys—Ls|([xs>NgM) = [xs—{ys—Ls}Ng([ys—Ls|M))
constdefssub-lemma-tys ty list = bool
sub-lemma-tys M= (V xs ys Ls Nsset xsn setys= {} A setxsn|J (map otvL$ = {}
A length xs= length NsA length ys= length LsA distinct xs
— {ys—Ls}({xs—Ns}Ms) = {xs—{ys—Ls}Ns} ({ys—Ls}Ms))

The lemma as normally stated would require that

setxan |J (map ftv L§ = {}

however, by the variable convention we also have

setxsan |J (map btv L$ = {}

Thus we make the variable convention explicit, and include the premise
setxan |J(mapotv L$ = {}

The following fact about the union of a list of sets will be needed in the proof.

lemmaunion-list-elem-subseY i. i < length Is— Isli C | JIs
by (induct Is simp clarify, case-tac jauto)

The case foM = 't is the non-trivial part of the lemma. The rest of the cases are either
immediate or are proved directly from their induction hypotheses.

lemma substitution-lemma-vasub-lemma-ty‘t)
proof (simp only sub-lemma-ty-defclarify)
fix xs ysand Ls::ty list and Ns:ty list
assumedisj-xs set xsN set ys= {} and disj-xl: set xa0 | J (map otv L$ = {}
and Ixn: length xs= length Nsand lyl: length ys= length Lsand dxs distinct xs
let 2P = [ys—Ls]([xs—Ns (1)) = [xs—{ys—Ls}Ng([ys—~Ls|(t))
havet € set xsv t ¢ set xshy simp
moreover { assumetxs t € set xsfrom disj-xs txshavetys t ¢ set yshy auto
from txs Ixnobtain i whereixs: i < length xsand xsi: xdi =t
and Itn: lookup t xs Ns 6= Some(Ndli,i)
using lookup-succeedsf t xs Ns Qby auto
from Itn have [ys—Lg]([xs—Ng (‘t)) = [ys—Ls|(Ndi) by simp
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also have. .. = [xs—{ys—Ls}Ng(‘t)
proof —
from txs Ixnobtain j wherejxs: j < length xsand xsj: xdj =t
and Itnp: lookup t xs({ys—Ls}Ns) 0 = Some({ys—Ls}Nsdj, j)
using lookup-succeedsf t xs{ys—Ls}Ns ( by auto
from dxs ixs jxs xsi xdpjaveij: i = j usingdistinct-conv-nthy auto
from ij jxs Ixn have[ys—Ls|(Ndi) = {ys—Ls}Ndli using subst-nthby simp
also fromij Itnp have... = [xs—{ys—Ls}Ng(‘t) by simp
ultimately show ?thesisby simp
ged
also fromtyshave... = [xs—{ys—Ls}Ng([ys—Lg(‘t)) by (simp add lookup-failg
finally have ?P by simp
} moreover { assumetxs t ¢ set xs
havet € setysv t ¢ set yshy simp
moreover { assumetys t € setys
from tys lylobtain i whereiys: i < length ysand ysi: ydi =t
and Itl: lookup t ys Ls 6= Some(Lsli,i) using lookup-succeedsf t ys Ls Q by auto
from txs Itl have [ys—Ls|([xs—Ng(‘t)) = Lsli by (simp add lookup-failg
also have. .. = [xs—{ys—Ls}Ng(Lsli)
proof —
from lyl iys have (map otv Lgli C [ (map otv L$
using union-list-elem-subsfdf i map otv L§by simp
with lyl iys disj-xIhaveset xsn otv (Lsli) = {} by auto
thus ?thesisusing no-otv-subst-ty-is-ithy auto
ged
also fromtl have... = [xs—{ys—Ls}Ng([ys—Lsg|(‘t)) by simp
finally have ?P by simp
} moreover { assumetys t ¢ setys
from tys txshave[ys—Lg|([xs—Ng(‘t)) = ‘t by (simp add lookup-failg
also fromtys txshave. .. = [xs—{ys—Ls}Ng([ys—Ls|(‘t)) by (simp add lookup-failg
finally have ?P by simp
} ultimately have ?P by blast
} ultimately show ?P by blast
ged

lemma substitution-lemma-mutuaub-lemma-ty M\ sub-lemma-tys Ms sub-lemma-tys Ms
by (induct rule ty.induct, simp only substitution-lemma-vasimp-all)

corollary substitution-lemmaset xsN setys= {} A setxsn |J (map otv L$ = {}
A length xs= length NsA length ys= length LsA distinct xs
— [ys—Lg)([xs—>NgM) = [xs—{ys—Ls}Ng([ys—LsM)
using substitution-lemma-mutudly simp

If the variables irysdo not occur inrMsthen the Substitution Lemma can be simplified
to the following.

corollary substitution-lemmaz2
assumessys set xs0 set ys= {} and xsls set xsn |J (map otv L$ = {}
and ysM: set ysn otv M = {} and xsNs length xs= length Ns
and ysls length ys= length Lsand dxs distinct xs
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shows[ys—Lg|([xs—=NgM) = [xs—{ys—Ls}NgM
proof —
from xsys xsls ysM xsNs ysls dxs
have [ys—Ls|([xs—=NgM) = [xs—{ys—Ls}Ng([ys—Ls|M)
using substitution-lemmapply blastdone
also fromysMhave. .. = [xs—{ys—Ls}NgM
using no-otv-subst-ty-is-idby simp
finally show ?thesisby simp
ged

A couple facts concerning type environments will be needed. The first fact is a kind of
associativity and the second fact is that pushing bindings on the environment commutes
with set union.

lemmapushs-env-assoc
V dts (Sd:dt),dsdts= S (d#ds):(dt#dts)
apply (induct-tac d$ apply simpapply clarify apply (case-tac dtsby auto

lemma push-union-commute

vV S Sdts (Sdsdts) US' = ((S:Teny U S'),ds(dts:ty list)

apply (induct-tac d$ apply simpapply clarify apply (case-tac dfsapply simp
proof —

fix a list S Sand dts:ty list and aa lista

assumelH: v (S:Teny S’ (dts:ty list). Slist:dtsu S’ = (SuU S'),list:dts

and dts dts= aa # lista
from dtshave (S,a # list:dts) U S’ = insert (a,aa) (S/ist:lista U S') by simp

also from IH have. .. = insert(a,aa) ((SU S),list:lista) by auto

also fromdtshave. .. = (SU S),a # list:dtsby simp

finally show Sja # list:dtsU S’ = (SU S'),a # list:dtsby blast
ged

Type equality is reflexive.

lemma extend-refl-id (Au. u) = extend Is I \u. u) by (induct Is auto)

lemmaf-equal-refl-mutual(id -r 7 = 7) A (id |Er 0S=09) A (id |Er 0S= 09)
apply (induct rule ty.induct) apply auto
proof (rule f-eqa
fix list::var list and ty assumeE: (Au. u) Fr ty =ty
have (Au. u) = extend list list(Au. u) by (simp add extend-refl-id
with E show (extend list list(Au. u)) g ty = ty by simp
ged

corollary f-eg-reft id -r o = o by (simp add f-equal-refl-mutual
corollary f-eqs-reflid =r os= osby (simp add f-equal-refl-mutual

Type equality is also symmetric and the following lemma extends symmetry to lists of
types.

lemmaf-eqs-symmA os’. T = 0s=08' = T |=r 08’ =058
apply (inductes rule list.induct) apply (ind-cases T=r [] = oS/, simp
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apply (case-tacrs’) apply simpapply (ind-cases T=r aflist = [], simp
proof auto
fix a list aa lista
assumelH: A 0s". T Ep list = 08" = T Er o5’ = list
andE: T = a# list = aa# lista
from E haveT = list = lista by (rule inv-f-eqc simp)
with IH havels: T |=r lista = list by simp
from E haveT Fr a= aaby (rule inv-f-eq¢ simp)
hencea: T - aa= aby (rule f-eg-symm
from alsshowT |=r aa#lista = a#list by simp
ged

If two lists of terms are well typed, then appending the lists results in a well typed list
of terms.

lemmawt-f-appendV S7sfs rs". SEr fs: 7sA SkEr fs’: 78’ — SEp fs@fs’: rsQrs’
by (induct fs rule list.induct auta, rule inv-wt-f-nil, auto,
rule inv-wt-f-consauto, rule wt-f-cons auto)

Alpha-conversion on types should not affect well typing. This trivial fact requires a
fair amount of work to prove, so we simply state the following as axioms for now.

axioms
equal-preserves-wf Skre: r;idkp 7 =7'] = Skrpe: 7’
equal-preserves-wit§ S=r es: 7s;id Erp 7s=75'] = Sl=r es: 78’

The variables occurring in a type are free or bound.

lemma otv-ftv-btv (otvr = ftv = U btv 7)
A (U (map otvrs) = | (map ftvrs) U |J (map btvrs))
A (U (map otvrs) = | (map ftvrs) U | (map btvrs))
by (induct rule ty.induct auto)

5 Introduction to System F©

The syntax for types and terms of s presented in Figure 6. Type abstractions in
FG have awhere clause that requires certain types to model certain concepts. There is
a correspondingvhere clause in the universal type constructor. The termsfso
include concept and model declarations, and model member access expressions.

To illustrate the features of; we evolve thesum function from Figure 3. To be
generic, thesum function should work for any element type that supports addition, so
we will capture this requirement in a concept. Mathematicians already have a name
for a slightly more generalized concept:Samigroup is some type together with an
associative binary operation (such as addition or multiplication) “iytle Semigroup
concept is defined as follows.

concept Semigroup(t) {
binary_op : fn(t,t)—t;
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Figure 6: Types and Terms ofF

c € Concept Names
s,t € Type Variables
x,y,z € Term Variables
p,0,7 ==t | fn (T)— > 7 | Vi where & models c. 7
e n=x | e(@) | \y:7.e
| At where @ models c. e | e[7]
| concept c(t){refines c¢(); T:7;}ine
| model ¢(T) {T=e¢;}ine
| <c(T)>.x

}

The generisum function requires more than just addition; it also requires a zero el-
ement of the appropriate type. Again, mathematicians have a name for this concept:
a Monoid, which is aSemigroup with an identity element. In generic programming
terminology, we say thaflonoid is arefinemenbf Semigroup and definéonoid in F&
accordingly.

concept Monoid(t) {
refines Semigroup(t);
identity_elt : t;

}

To completely reflect the mathematical definition of a monoid, itleatity_elt must
satisfy the following axioms for any objegtof typet. Unfortunately, expressing this
requirement is outside the scope of tHe tiype system.

binary_op(identity_elt, x) = x = binary_op(x, identity_elt)

A particular type, such ast, is said tomodela concept if it satisfies all of the require-
ments in the concept. In%; an explicit declaration is used to introduce a model of a
concept (corresponding to an instance declaration in Haskell). The following declares
int to be a model oSemigroup andMonoid, using integer addition for the binary op-
eration and for the identity element. The type system checks the body of the model
against the concept definition to ensure all required operations are provided and that
there are model declarations in scope for each refinement.

model Semigroup(int) {
binary_op = iadd;

}

model Monoid(int) {
identity_elt = 0;

}
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A model can be found via the concept name and type, and members of the model can
be extracted with the dot operator. For example, the following would returiadlke
function.

<Monoid(int)>.binary_op

With the Monoid concept defined, we are ready to write a gensuira function. Since

the function has been generalized to work with any type that has an associative binary
operation with an identity element (no longer necessarily addition), a more appropriate
name for this function isccumulate. As in System F, type parameterization ifi &
provided by theA expression. However,Fadds awhere clause to the\ expression

for listing requirements on the type parameters.

let accumulate = (A t where t models Monoid. /«xbody/)

The concepts, models, and where clauses collaborate to provide a mechanism for im-
plicitly passing operations into a generic function. As in System F, a generic function
is instantiated by providing type arguments for each type parameter.

accumulatelint]

In System F, instantiation substituties for t in the body of theA expression. In £,
instantiation also involves the following steps:

1. int is substituted fot in the where clause.

2. For each required model in the where clause, the lexical scope of the instantiation
is searched for a matching model declaration.

3. The models are implicitly passed into the generic function.

Now consider the body of thaccumulate function. The model requirements in the
where clause serve as proxies for actual model declarations. Thus, the bachyuofulate

is type-checked as if there were a model declaratiodel Monoid(t) in the enclosing
scope. The<> notation is used inside the body to access the binary operator and
identity element of thélonoid.

let accumulate =
(A t where t models Monoid.
fix (A accum : fn(list t)— t.

Als : list t.
let binary_op = <Monoid(t)>.binary_op in
let identity_elt = <Monoid(t)>.identity_elt in
if null[t](Is) then identity_elt
else binary_op(carlt](Is), accum(cdr(t](Is)))))

It would be more convenient to writénary_op instead of the explicit member access:
<Monoid(t)>.binary_op. However, such a statement would be ambiguous without the
incorporation of overloading into the language. For example, suppose that a generic
function has two type parametessandt, and requires each to bévmnoid. Then a call
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Figure 7: Generic Accumulate

concept Semigroup(t) {
binary_op : fn(t,t)—t;

}in

concept Monoid(t) {
refines Semigroup(t);
identity elt : t;

}in

let accumulate =
(A t where t models Monoid.
fix (A accum : fn(list t)— t.

Als : list t.
let binary_op = <Monoid(t)>.binary_op in
let identity_elt = <Monoid(t)>.identity_elt in
if null[t](Is) then identity_elt
else binary_op(carft](Is), accum(cdr(t](Is))))) in

model Semigroup(int) {
binary_op = iadd;

}in

model Monoid(int) {
identity_elt = 0;

}in

let Is = cons[int](1, consl[int](2, nil[int])) in
accumulatel[int](Is)

to binary_op might refer to eitheMonoid(s)>.binary_op or <Monoid(t)>.binary_op.
The addition of function overloading td*Fis future work.

The complete program for this example is in Figure 7. As with Systenf*FAsFan
expression-oriented programming language. The concept and models declarations are
like let; they extend the lexical environment for the enclosed expression (afti) the

The lexical scoping of models declarations is an important feature“ofald one

that distinguishes it from Haskell. We illustrate lexical scoping of models with an
example. The mathematical definition of monoid is quite general—it only requires a
binary operation and an identity element with respect to that operation. That operation
need not be addition and the identity element need not be zero. The integers with
multiplication as the binary operation and unity as the identity element also form a
monoid. ThisMonoid is expressed in F as follows.

model Semigroup(int) {
binary_op = imult;

22



Figure 8: Intentionally Overlapping Models

let sum =
model Semigroup(int) {
binary_op = iadd;

}in
model Monoid(int) {
identity_elt = 0;

} in accumulatefint] in

let product =
model Semigroup(int) {
binary_op = imult;

}in
model Monoid(int) {
identity elt = 1;

} in accumulate[int] in

let Is = consJint](1, cons]int](2, nil[int])) in
(sum(ls), product(ls))

model Monoid(int) {
identity_elt = 1;
}

Borrowing from Haskell terminology, this second definitionSafmigroup andMonoid

creates overlapping model declarations, since there are now two models declarations
for Semigroup(int) and Monoid(int). Overlapping model declarations are problematic
since they introduce ambiguity: wheiecumulate is instantiated, which model (with

its corresponding binary operation and identity element) should be used?

In F&, overlapping models declarations can coexist so long as they appear in sepa-
rate lexical scopes. In Figure 8 we createn andproduct functions by instantiating
accumulate in the presence of different models declarations. This example would not
type check in Haskell even if the two instance declarations were to be placed in dif-
ferent modules, because instance declarations implicitly leak out of a module when
anything in the module is used by another module.

6 Informal Description of the Translation

We describe a translation fronf®Fto System F that is similar to the type-directed
translation of Haskell type classes presented in [15]. The translation described here

23



is intentionally naive, since its main purpose is to communicate the semantiés of F
There is extensive literature on techniques for producing more optimized results [2,
18]. The main idea behind the translation is to represent models with dictionaries that
map member names to values, and to pass these dictionaries as extra arguments to
generic functions. Here tuples represent dictionaries, so the model declarations for
Semigroup(int) and Monoid(int) translate to a pair ot expressions that bind freshly
generated dictionary names to the tuples for the models.

model Semigroup(int) {
binary_op = iadd;

}in

model Monoid(int) {
identity_elt = 0;

}in /x rest «/

—

let Semigroup_61 = (iadd) in
let Monoid_67 = (Semigroup_61,0) in /x rest /

The accumulate function is translated by removing thehere clause and wrapping
the body in a\ expression with a parameter for each model requirement iwtlees
clause.

let accumulate = (A t where t models Monoid. /«xbodyx/)
B
let accumulate =

(A t. (A Monoid_18:(fn(t,t)—t)xt. /x body /)

The accumulate function is now curried, first taking a dictionary argument and then
taking the normal arguments.

accumulatel[int](Is)
—
((accumulate[int])(Monoid_67))(Is)

In the body ofaccumulate there are model member accesses. These are translated into
tuple member accesses.

let binary_op = <Monoid(t)>.binary_op in
let identity_elt = <Monoid(t)>.identity_elt in
E.

let binary_op = (nth (nth Monoid_18 0) 0) in
let identity_elt = (nth Monoid_18 1) in

<Monoid(t)>.binary_op could also have been writtenSemigroup(t)>.binary_op, with
the same result. As mentioned before, Wiere clause introduces proxy model decla-
rations for each type requirement. In addition, Were clause introduces proxies for
all refinements. This enables the useSemigroup, sinceMonoid refinesSemigroup.
Note that only a single dictionary is passed iat@umulate, and that the dictionary
for Semigroup is found inside the dictionary faMonoid, as shown in Figure 9. During
translation a table is used to map a concept and type, sudngigroup(t), to a dictio-
nary name and a dictionary path. In this example, the dictionary nansefiagroup(t)
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Monoid(t) Semigroup(t)

Y

binary_op

identity_elt

Monoid(t) := Monoid_18,[]

Semigroup(t) := Monoid_18,[0]

Figure 9: Dictionary representations for the modeétsoid(t) and Semigroup(t). Also
shown is the model environment, which maps a model to its dictionary name and dic-
tionary path.

is Monoid_18, and the dictionary path i®], since theSemigroup dictionary is in the
first slot of theMonoid dictionary.

The translation for the entire accumulate example is show in Figure 10.

7 Formal Semantics of

This section describes the Isabelle/Isar formalization of a semantic§ feiaFa type-
directed translation to System F. The types and termsoéife represented with the
following data types.

¢

datatypetyg= VarTG var (‘- ) | ArrowG tyg list tyg(fn- — - )
| AlIG var list (var x (tyg list)) list tyg (V - where - -)
| BoolG| IntG
typeswhere-clause= (var x (tyg list)) list
typesrefinements= (var x (tyg list)) list
datatype trmg= VarG var (- ) | AppG trmg trmg lis{(infix| - )
| LamG var list tyg list trmg A -:-. - ) | LetTrmG var trmg trmdlet-:=-1in-)
| ForallG var list where-clause trm@A - where - - ) | InstG trmg tyg list(-[-] )
| BooleanG boo| IntegerG int
| ConceptG var var list refinements var list tyg list trmg
(concept {-) { refines:-:-; }in-)
| ModelG var tyg list var list trmg list trmgmodel -(-) { - =-; } in-)
| ModelMemG var tyg list vaf(-(-)).- )

7.1 Type Substitution

The definition of simultaneous substitution on types fni& given below, again using
Isabelle’srecdeffacility. The following lemmas are needed to prove termination. The
presence of thehere clause in type applications slightly complicates the proof.

lemmatyg-list-tcl o € setos — sizeo < Suc(tyg-list-sizelss + sizer)
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Figure 10: Translation of the Accumulate Example

let accumulate =
(At
AMonoid_18:(fn(t,t)—t)«t.
fix (A accum:(fn(list t)—t).
(A Is:list t.
let binary_op = (nth (nth Monoid_18 0) 0) in
let identity_elt = (nth Monoid_18 1) in
if null[t](Is) then identity_elt
else binary_op(cart](Is),accum(cdr[t](Is)))))) in

let Semigroup_61 = (iadd) in
let Monoid_67 = (Semigroup_61,0) in

let Is = consJint](1,cons][int](2,nil[int])) in
(accumulate[int](Monoid_67))(Is)

by (inductos rule list.induct, auto)

lemmatyg-list-size2-elto € setos — sizes < Suc(tyg-list-sizeZrs)
by (inductos rule list.induct, auto)

lemmawhere-list-tc [ o € setos; (c, 0s) € set wg]
= sizeo < Suc(nat-tyg-list-x-list-size wg- sizer)
apply (induct ws rule list.induct) apply simp
proof clarify
fix a b list
assumelH: [ o € setos; (c, os) € set list]
= sizeo < Suc(nat-tyg-list-x-list-size list- sizer)
and sss o € setosand css (c,05) € set((a,b)#list)
showsizeo < Suc(nat-tyg-list-x-list-siz€(a, b) # list) + sizer)
proof (cases(c,0s) = (a,b))
assumeeq (c,08) = (a,b)
from ssshavesizeo < Suc(tyg-list-size2rs) by (simp add tyg-list-size2-elt
with eqshow ?thesisby simp
next assumeneg (c,os) # (a,b)
from neq cshavecss2 (c,os) € set listby auto
from sss css2 Ilshow ?thesisby simp
ged
ged

constssub-tyg:: (var list x tyg list x tyg) = tyg

recdef sub-tyg measuré\ p. size(snd(snd p))
sub-tydts, 7s, ‘t) = (case(lookup t tsts 0) of None=- 't | Some(7,i) = 7)
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sub-tydts, 7s, fnos — 7) = fn (map(\ o. sub-tydts,7s,0)) os) — sub-tydts,7s,7)
sub-tydts, 7s, V ss where wsr) =
(V ss whergmap (A w. (fstw, map (A o. sub-tydts,7s,c)) (snd w)) ws).
sub-tydts,7s,7))
sub-tydts, Ts, BoolG) = BoolG
sub-tydts, s, IntG) = IntG
(hints recdef-simptyg-list-tc1 where-list-t¢

The following notation is reused for substitution ofi Eypes and lists of types. New
notation is introduced for applying a substitution to the requirementsvhreee clause.

[ts—7s|T = sub-tyg(ts, 7S, T)
{ts—7s}os= map(Ao. sub-tyg(ts, 7s, o)) oS
{ts—7sws= map(Aw. (fstw, map(Ao. sub-tyg(ts, 7s, 7)) (snd w)) ws

The list nth function commutes with substitution, and the length of a list of types is
invariant under substitution.

lemmasubstg-nthV i 7 tsos. (rs:tyg list)li = (7::tyg) Ai < lengthrs
— ({ts—os}rs)li = [ts—o9|T using nth-mapby simp

lemmasubstg-lengthV tsos. length(7s::tyg list) = length({ts—os}7s)
by (inductrs rule list.induct auto)

7.2 Type Equality

Type equality for ¥, shown in Figure 11, is nearly the same as that for F. The differ-
ence is that there is a new judgménj=,. ws= ws' for comparing two where clauses.

7.3 Concept Environments and Translation of Types

The typing context for £ includes information about concepts and models. The con-
cept environment is a set that maps concept names to the following record of informa-
tion.

record concept-info=
params:: var list
rfn :: refinements
mem-nms:var list
meme-tys: tyg list
typesCenv= (var x concept-infg set

Since type annotations appear in the syntax of System F @malF translation must
also convert types. The main goal of the type translation is to remowehire clause
associated witl/'s and replace it with a function type whose parameters are the types
of the dictionaries. The judgmef - 7 ~» 7 translates an ¥ type to an F type in

the context of concept environme@t This judgment also plays the role of defining
well-formed F* types (just ignore the parts after the). The judgmenC = 75~ 78’
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Figure 11: Equality of types inFup to the renaming of bound type variables.
|

TErs=7s Thr=r71

!/
TH's=Ts (FG-EQV) -(FG-EQP)

Trfnrs—r=fnrs’ =7

extend tst§T -7 =7’ extend ts t§T =, ws= ws’
TV ts where wsT =V ts’ where ws 7’

T+ BoolG=BoolG FG-EQB) TF IntG=IntG (FG-EQI)
Thkr=1' TErs=7s
TeEr7rs=r1"18

TEos=os TE-rs=rs’
_:_:':‘-OT (C,Qgs)ms = (c):, os)rs’ (Fe-EQRQ

(FG-EQA)

TE[ =[] (FG-EQN)

(FG-EQQ)

TE:[]=][ (FG-EQRN)

Figure 12: The translation of types fron¥Fo F. The judgment for well-formed types
of F& can be obtain by ignoring the parts after
[

CF 't ~ 1 (TRANS-VAR)

ClErsw 18 Chr~1'
— (TRANS-FUN)

Cfnrs—71~fnrs’ =7

C aq WS~ S Ch7~ 7' distinct ts (TRANS-ALL)
CFV tswhere wst ~ V ts. fnds— 7’

C BoolG~~ BoolT (TRANS-BOOL) CF IntG ~~ IntT (TRANS-INT)

Chr~r' CkE7s~ 18

CkE [~ [] (TRANS-NIL) CErrsw s

(TRANS-CONS)

c,ci)eC
) _ (c.ci) € _ -
CE71s~ 7S CEarfnci~ ds CE mem-tys ci~ oS |7s| = |params cj ®
C 4 cTs~ [params oi»7s({(6s@ 0S))
D)

CE4[] ~ [] (RS-DS-NIL)

ChgCT8~ 0 CEars~ ds

RS-DS-CONS)
Ckaq (c, 79)-rs ~> §-05 ( )
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translates a list of types. The judgméht-; ¢ os ~ 7 specifies the construction of a
dictionary typer from a concept instantiated with type argumends. The judgment

C =4 rs ~ 7sfinds dictionary types for each requirement iwteere clause, or for a

list of refinements in a concept definition. Figure 12 presents the definitions of these
judgments.

Adding entries to the concept environment does not affect type and dictionary transla-
tion. This is proved by a straightforward induction on the translation judgments.

lemma grow-env-pres-trans
(Crr~7'— (VC.CCC' —C'kr~1")
AN(CETs~w 18— (VC.CCC' — C'=15~ 795)
A(Chkgcos~T17'— (VC.CCC'— C'FqcCcos~ 7))
A(ClEgrs~1s'— (VC.CCC'— C'[Eqrs~ 75)
apply (induct rule trans-ty-trans-tys-reg-dict-regs-dicisduct)
apply simpapply simpapply simpapply simpapply simpapply simp
apply simpprefer 2 apply simpprefer 2 apply simp
proof clarify
fix Cdsoststs’cciC’
assumecC: (c, ci) € CandIH1: VC. CCC'— C' =75~ 78’
andIH2: VC'.CC C'— C' =4 rfnci~ Js
andIH3: VC’. C C C’ — C' = mem-tys ci~ oS
and L: lengthrs = length(params c¢j and CCp C C C’
from CCp cChavecCp (c,ci) € C’ by auto
from cCp CCp IH1 IH2 IH3 L r-dshowC’ -4 ¢ 7S~ [params ci-7s|((6s @ os)) by simp
ged

7.4 Model Environments

The model environment contains information about the model declarations that are in
scope and plays an important role in the translation frdmtd F. Each model will

be translated to a dictionary (represented with a tuple) containing member operations
of the model and nested tuples for each refined concept. Each model declaration is
translated to &t expression that binds the tuple-creation expression to a fresh variable

that will serve as the name of the dictionary.

typesmodel-info= var x tyg list x var x (nat list)
typesMenv= model-info set

The model environment stores, for each model, the name of the concept being modeled,
the type arguments for the type parameters of the concept, a dictionary name, and
a sequence of natural numbers. This sequence gives the path from the top level of
the dictionary down to the sub-dictionary for the model. In the typing rule for type
abstraction, models are added to the model environment for each requirement in the
where clause. In addition, models for all inherited concepts are added to the model
environment. The paths in the model environment for these “super” models will point
to the appropriate place in the dictionary of the “derived” model that was required in
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Figure 13: The addition of models to the environment according to the requirements in

awhere clause.
[

(c,ci)eC — model-defined es M
M’'={(c,7s,d,ng} UM C I |rfn ci| {params cisTsrfncidns M = M "’

- (FLAT-M-
Ck,crsdns M= M
)
C =, 0rsd ns M= M (FLAT-MS-ZERO)
rsi; = (', 75") Chyc'rs'dns@[ij]M = M’ CkyirsdnsM =M"
(FLAT-MS-

Clk, Sucirsdns M=M"
SuQ)

CH[[]M= M (ADD-MODELS-NIL)

Chycosd|M= M’ CrwsdsM=M"
CH(c, ps)-ws dds M= M"’

(ADD-MODELS-CONYS)

the where clause. The addition of models to the environment is formalized with the
three judgments defined in Figure 13.

The judgmentC + ws ds M= M’ adds models to model environmevtfor thewhere
clausews resulting inM’. The judgmenC +, c s d ns M= M’ processes a single
requirement ancC |, i rs d ns M= M’ is for processing refinements. It would
have been preferable to encode these judgments as functions, but they are not primitive
recursive, and Isabelle does not support general recursive functions that are mutually
recursive. Thenodel-definedunction used in Figure 13 is defined as follows.

model-defined es M= 3dns (c, 7s,dng € M

7.5 Model Member Lookup and Access

The translation of model member access expressions, suckl@sid(s)>.binary_op,
requires that we find the type fbinary_op and the path tbinary_op through the dictio-

nary. The judgments in Figure 14 map a member name, concept, and type arguments
to the type of the member and its dictionary path.

In the translation of a model member access expression, a series of tuple access ex-
pressions is produced. The access follows a specified path through the dictionary (as
in Figure 9), and is accomplished by timk-nthfunction.

consts
mk-nth:: [trm, nat lisf = trm
primrec
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Figure 14: Look up the member of a model and return the type of the member and the
dictionary path to the member.
[

(c,ciyeC lookup x(mem-nms ¢i(mem-tys gi0 = Some(T, i) (Lm-w)
CH’ x c7s ns= [params ci~7s|7 ns@ [|rfn ci| + ]
(c,ciyeC
lookup x(mem-nms ¢i(mem-tys gi0 = None CE" x |rfnci| c rs ns= 7 ns’(uv| R)
CH’ xcrsns= 7 ns
(c,ciyeC (rfnci) = (¢/, 78) CH’ x ¢’ {params ci-7s}rs'ns@ [i] = 7 ns’(LM

CE"xSucicrsns= 7ns
RS1)

CE’xicrsns= 7ns

5 - -(LM-RS2)
CE’xSucicrsns= 7ns

mk-nth-nit mk-nth d[] =d
mk-nth-consmk-nth d(n#ns) = mk-nth(Nth d n ns

In the translation of type application expressions, the type abstraction, which has been
translated into a normal function, is applied to the dictionaries that satisiyhdee
clause. Since the dictionaries may be nested inside the dictionary of a more refined
model, a series of tuple accesses is produced to obtain the right dictionary, again us-
ing mk-nth The mk-nthsfunction processes a list of dictionaries and paths, invoking
mk-nthfor each dictionary and path.

consts
mk-nths:: [nat list, nat list lisf] = trm list
primrec
mk-nthg]] nns= ]
mk-nths(d#ds) nss= (case nss of] = [] | (ns#nsg = (mk-nth(‘d) ns)#(mk-nths ds ng$

7.6 Translation from FC to F

The rules defining the translation fron¥ Fo F are presented in Figure 15. The type
system for € can be obtained from the translation by ignoring what appears after
the ~. As mentioned before, the typing environment includes a concept and model
environment in addition to the usual type assignments for variables, which are bundled
into the following record.

typesTGenv= (var x tyg) set
record FGenv=
tyvars:: var set
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vars:: TGenv
concepts: Cenv
models: Menv

The following convenience functions are for manipulating the environment.

I'xsrs=TI'( vars:= (varsI'),xst9)
I',concept c cie I'(| concepts= insert(c,ci) (conceptd")))
I',model mi= I'( models:= insert mi(modelsl")))

The typing rule for concept declarations requires that the concept being declared must
not appear in the type of the body. The following formalizes what it means for a concept
name to appear in a type.

C occurs in typess Vv ¢ occurs intyper € OCcurs in wsv € occurs in typer
coccursintype fas— r c occurs in type&/ ts where wsr

c occurs in typer V ¢ occurs in typess
c occurs in types-7s

) Cc occurs in ws
c occurs in(c, 7S)-Ws

c occurs in(c’, 7s)-ws

As in System F, the rule for type abstraction refers to the free type variables in the
environment, which in turn refers to the free type variables in a type. We define the
following recursive function to compute the free type variables in a type. The pattern
of the recursion is the same as for substitution, so we reuse the termination lemmas.

constsftvg :: tyg = nat set
recdefftvg measure size
ftvg (t) = {t}
ftvg (fn7s— 7) = |J (map ftvgrs) U ftvg
ftvg (V ts where wst) = (|J (map(X p. |J (map ftvg(snd p)) ws) U ftvg7) — set ts
ftvg BoolG= {}
ftvg IntG= {}
(hints recdef-simptyg-list-tc1 where-list-t¢
constsbtvg:: tyg=- nat set
recdefbtvg measure size
btvg(‘t) = {}
btvg (fn 7s — 7) = |J (map btvgrs) U btvgr
btvg (V ts where wst) = (|J (map(X p. J (map btvg(snd p)) ws) U btvgr) U set ts
btvg BoolG= {}
btvg IntG= {}
(hints recdef-simptyg-list-tc1 where-list-t¢

constdefsbtv-cpt:: concept-info=- var set

btv-cpt c= set(params ¢ U |J (map (A p. J (map btvg(snd p))(rfn c))U | (map btvg
(mem-tys t)
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constdefsbtvc:: Cenv=- var set
btveC=J{V.(3 ccd (ccd) e C
AV = set(params cd U |J (map(X p. U (map btvg(snd p)) (rfn cd))
U J (map btvg(mem-tys ctl)) }
The free type variables in a typing environment is then defined as follows.

FTVgr = U{V |3Ix7. (X, 7) e AV =ftvgr}

8 The Translation is Sound

The main theorem of this paper is that the translation frémd¥+ defined in Figure 15

is sound. Thatis, the output terms are well-typed in System F. The proof is by induction
on the derivation of the translation. There are two extra conditions that are needed for
the induction: the concept environment must be “sane” and there must be a System F
typing environment that corresponds to tHe tiyping environment.

8.1 Concept Environment Sanity Conditions

Figure 16 formalizes the following sanity conditions on the concept environment.

1. Concept definitions are unique.
2. The type parameters for a concept are distinct.

3. All types that appear in a concept definition must be well-formed (and thereby
have a corresponding System F type).

4. When a concept refines another concept, the other concept must already be de-
fined.

5. The type variables occuring in the body of a concept are a subset of the type
parameters of the concept.

8.2 Environment Correspondence

Figure 17 defines the correspondence between the typing environmeiit fordrthe
typing environment for the translated terms of System F. We wWititer Sto mean
the F¥ environmentT is in correspondence with the System F environn@rthe
correspondence for normal variables is straightforward(x|fr) is in varsT', then
there must be a’ such thatonceptd" - 7 ~ 7'and(x,7’) isin S

The correspondence for the model environment is more involved. If nfodeld,ns)
is in modelsl” and if the pathns = [}, then the dictionary variabld for that model
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Figure 15: Translation from¥to F

I'(models= M, tyvars:= tyvarsI" U sett§ - e: o ~ f
set tsn tyvarsI' = () settsN FTVg(varsT") =0
distinct ts concepts =g Ws~ 7S concept§’ - ws ds model§' = M

I' - A ts where wse: V ts where wso ~~ A ts. (A ds7s. f)

(FG-TABS)

I'ke:V ts where wso ~~ f
ts| = || modelsl’ = {ts—7s}ws~~ dsnns concept¥ = 75~ 78’

I'F e[rg : [ts—75o ~ f[r8] - mk-nths ds nns

(FG-TAPP)

¢ ¢ dom concept¥ conceptd” |=4 rs~ 7S concepts’ = o5~ o8’
T',conceptccke: 7~ f ci = (params= ts, rfn = rs, mem-nms= Xs mem-tys= o)
distinctts  |xg = |os| L (map(Ap. | (map ftvg(snd p)) rs) C setts
U (map ftvgos) C set ts (c, 7) ¢ c-occurs-ty

FG-
I'+ (concept c t refines rsxs: os; } ine) : 7~ f (
CPT)
— model-defined gs (modelsl") (c, ci) € conceptd” conceptd” |= oS~ o8’
xs=mem-nmsci TI'|=es:os~fs os= {params oi-ps}mem-tys Ci
conceptd” =4 rfn ci ~~ dts modeld” = {params ci-ps}rfn ci ~~ dsns
de= (mk-nths ds n® fs) |params cj = |gs| I',;model(c, gs, d, [|) Fe: 7~ f(FG
' (model cos{ xs=es }ine): 7~ letd:=deinf
MDL)
(c, s, d, ns) € modelsl’ conceptd” F> x c7s ns= 7 ns’
(FG-MEM)

I'F ({cr9).X) : T ~ mk-nth(‘d) ns’

(%, 7) € varsT’

(FG-VAR)
I'EX:7~ X
TFe:fnos— 7~ f I'l=es:os' ~fs id=os=o0s’
(FG-APP)
I'e-es:T~f-.fs
I,xsoske: 1~ f conceptd” = s~ oS’ xd = |os
7 - P s o8 psi=los o

I'F Axsos. e:fnos— 7~ Axsos’. f
I' - BooleanG kb BoolG~+ Boolean bEG-BoOL)
I' - IntegerG i: IntG ~~ Integer iFG-INT)
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M k= (c, 7s)-ws~ d-dsnsnns

I~ [0
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Figure 16: Concept Environment Sanity

CEarfnc~ s
C E mem-tys e~ oS distinct(params ¢ |mem-nms [c= |mem-tys
(J (map(Ap. | (map ftvg(snd p)) (rfn c)) C set(params ¢

U (map ftvg(mem-tys &) C set(params ¢

WF-C
Chkcok ( )

() ok (WF-Ccs-NIL)

n¢ domC C+ c ok Co
{(n,c)} U C ok

k
(WF-CS-CONYS)

must be bound i to the dictionary type for that model. If the patihs+ [], then the
dictionary variabled must be bound to some dictionary typén Sand following the
pathnsfrom 7 yields the sub-dictionary type’ for this model. The following is the
inductive definition for following a path through a dictionary type.

TS —NS—T’

T—[]—=7 (P-NIL) E—— (P-cON9)

The environment correspondence is used in four cases of the main theorefg-vee
case uses the correspondence to obtain the System F type for the variatfg-tape
fg-md| andfg-memcases use the correspondence to show that their use of dictionaries
is well typed.

8.3 Properties of Sane Concept Environments
This section collects a few properties of sane concept environments.
1. For a given concept name there is at most one concept definition.

2. Adding to the concept environment does not affect concept sanity judgements.

3. All concepts in a sane concept environment are sane.

The first lemma and its corollary prove that each concept has a unique definition.

lemmaunique-concept-mutual
(C+ cd ok— True) A (C ok— (c,cd) € C A (c,cd’) € C — cd = cd’)
by (induct rule wf-concept-wf-concept-erduct auto)
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Figure 17: Correspondence between thetipeing environment and the System F
environment needed to type the output of the translation. This correspondence is an
invariant that is maintained by the translation.

[ |

I' ~ S= 3Sv Smconceptd" -, varsI' ~ SvA conceptd” -, modelsl’ ~~ SmA tvars S=
tyvarsI’ A tys S= SmuU Sv

Chy @~ 0 (CV-NIL)
Cky,V~S ChT7~
Chy VX7~ Sxer

Chm 0~ 0 (CM-NIL)
Ctc.M~S ChgCTS~ T
Chkwm {(c,7s,d,[)} UM ~ Sd:7

7_/
(cv-conyg

(cM-CcONY)

CrmM~S ns# [| (d,7) €S CrqcTs~ 7' T—NS—

T,
CM-DROP
Chum {(c,75,d,ng} UM ~~ S ( )

corollary unique-concept] C ok; (c,cd) € C; (c,cd’) € C] = cd = cd’
using unique-concept-mutudly blast

The next properties is that “weakening” the environment by adding more concept defi-
nition does not affect judgements about a concept definition’s sanity.

lemma grow-env-pres-wf-concept&C - cd ok—
(VC.CCC'AC'ok— C'tcd oK) A (C ok— True)
apply (induct rule wf-concept-wf-concept-efnduct)
prefer 2 apply simpprefer 2 apply simp
proof clarify
fix C os rsand c::concept-infoaand C’
assumers: C =4 rfn ¢ ~ 7sand ms C |= mem-tys &~ oS
and dp: distinct (params ¢ and len: length(mem-nms t= length(mem-tys &
and rftv: |J (map(Ap. U (map ftvg(snd p)) (rfn c)) C set(params ¢
and mftv |J (map ftvg(mem-tys §) C set(params ¢
and ccp C C C’and cpok C’ ok
from ccp cpok rshaversp: C’ =4 rfn ¢ ~ 7s using grow-env-pres-tranby blast
from ccp cpok meiavemsp C’ = mem-tys e~ osusing grow-env-pres-tranby blast
from rsp msp dp len rftv mftshowC’ - ¢ okusing wf-c by blast
ged

corollary grow-env-pres-c-ak] C+ cd ok C'ok; CC C'] = C’F cd ok
using grow-env-pres-wf-concepépply blastdone

The third property is that if a concept is in a sane concept environment, then the concept
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is sane.

lemma c-mem-implies-c-ok-mutual
(CF ciok— True) A (Cok— (V cci. C okA (c,ci) € C — CF ciok))
apply (induct rule wf-concept-wf-concept-efnduct)
apply simp+t apply clarify apply (case-taqca,ci) = (n,c))
using grow-env-pres-c-olapply blastusing grow-env-pres-c-oky blast

corollary c-mem-implies-c-aK C ok; (c,ci) € C] = CF ci ok
using c-mem-implies-c-ok-mutulbly blast

8.4 Properties of the Type Translation

This section establishes several properties of the translation from typ&stmtifpes
in System F.

The inversion lemma for the translation of a concept instantiation to a dictionary type is
heavily used. The following lemma is an easier to use variant of that inversion lemma.
Instead of a conclusion that gives the existence of a concept definition for cantept
lemma instead includes a premise for the concept defindibwhich the conclusion
gives its results in terms of.

lemmainv-r-d2:
assume®d: C 4 c s~ 7 and Cok C okand cC: (c,cd) € C
shows3 dsos7s’. C = ps~ 78" A C |=4 rfn cd ~ ds
A C = mem-tys cd~ os A lengthgs = length(params cg
AT = ({params cé~>7s'}(5s@Q os))
proof —
from D obtain dsos ps’ cd’ where cpC: (c,cd’) € C and rs-rsp C = oS~ oS’
and Ds: C =4 rfn cd’ ~ dsand ms-ssC = mem-tys cli~ os
and Irsp: length gs = length(params cd)
and T: 7 = ({params cd— ps'}(6sQos)) by (rule inv-r-d, auto)
from Cok cC cpChavecd-cdp cd = cd’ by (rule unique-concept
from cd-cdphaveDs2 C =, rfn cd ~~ §s by simp
from cd-cdphavems-ss2C = mem-tys cd~ osby simp
from cd-cdp Irsphavelrsp2: lengthes = length(params cd by simp
from cd-cdp ThaveT2: 7 = ({params cd— gs'}(5sQos)) by simp
from rs-rsp Ds2 ms-ss2 Irsp2 Tshow ?thesisby auto
ged

The next lemma states that the type translation is a function. The proof is a mutual
induction on the four type translation judegements.

lemmafun-dict-trans-ty
(CkT~1'—Cok— (V7".ChT~1"—71'=171"))
AN(CETsS~ 18— Cok—> (V 78".C =715~ 78" — 78’ = 18""))
A (Chq4c oS~ dt — C ok— (V dt’. C k4 C g5~ dt’ — dt’ = dt))
A (C Eq ws~ dts— C ok— (V dts’. C =4 ws~ dts’ — dts’ = dts))
(is(CFT~71'—?P1CT ) A (Cl=TS~ 78 — ?P2 C7S7S)
A (ChqcCps~ dt — ?P3 C cos di) A (C =4 ws~ dts— ?P4 C ws dt)
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apply (induct rule trans-ty-trans-tys-reg-dict-regs-dicisduct)
apply clarify apply (rule inv-trans-va) apply simpapply simp
prefer 3 apply clarify apply (rule inv-trans-boo) apply simpapply simp
prefer 3 apply clarify apply (rule inv-trans-in} apply simpapply simp
prefer 3 apply clarify apply (rule inv-trans-ni) apply simpapply simp
prefer 5 apply clarify apply (rule inv-rs-ds-ni) apply simpapply simp
proof —
fix C7 r'rs7s assume?P2 Crsts’and ?P1 Cr 7’
thus ?P1 C(fnrs— 1) (fn s’ — 7') apply clarify by (rule inv-trans-fun auto)
next
fix C dsT 7’ ts wsassume?P4 C wsisand ?P1 Cr 7’
thus ?P1 C(V ts where wst) (V ts. fnds— 1)
apply clarify by (rule inv-trans-all2 auto)
next
fix CT 7’/ rs7s’assume?P1 Cr 7' and ?P2 Crs7s’
thus ?P2 C(7 # 7s) (17’ # 75') apply clarify by (rule inv-trans-consauto)
next
fix C §sosTs7s’ ¢ and ci::concept-infeassumecC: (c,ci) € C
and IH1: ?P2 Crs s’ and IH2: ?P4 C(rfn ci) dsand IH3: ?P2 C(mem-tys dios
show?P3 C crs ([params oi»7s]({ds@ 05)))
proof clarify
fix dt’ assumeCok C okand D: Ct4 c 75~ dt’
from D Cok cCobtain 6s’ os’ 7"’
wherets-tspp C = s~ 78"’ and r-dsp C =4 rfn ci ~ s’
and ms-sp C = mem-tys ci~ os’
and dtp: dt’ = ({params ci~7s"’}(§s'@cos’)) usinginv-r-d2 by blast
from IH1 Cok ts-tspphavetseq s’ = 7s’’ by simp
from IH2 Cok r-dsphavedseq s = ds’ by simp
from IH3 Cok ms-sphavemseq os = s’ by simp
from dtp tseq dseq msespowdt’ = [params ci~7s]((6s @ os)) by simp
ged
next
fix C 6 ds7s c rsassume?P3 C crsd and ?P4 C rsés
thus ?P4 C((c,7s)#trs) (6#4s) apply clarify by (rule inv-rs-ds-consauto)
ged

The length of type list is invariant under translation. The number of requirements in
where clause is equal the length of the list of dictionary types.

lemmatrans-length
(Ck7~ 7' — True) A (C |= os~ os’ — lengthos = lengthos’)
A (Chgq € s~ dt — True) A (C [=q rs ~ dts— length rs= length dt3
by (induct rule trans-ty-trans-tys-req-dict-regs-dicisduct auto)

corollary trans-length-tysC |= os~ os’ = lengthos = lengthos’
using trans-lengthapply blastdone

corollary trans-length-r-d C |=4 rs ~ dts= length rs= length dts
using trans-lengthapply blastdone
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If the list of typesos translates tars’, then the ith element aofs translates to the ith
element ofrs’.

lemmatrans-nth-helper
(CET~ 7"—True) A (C = o5~ 08’ — (V i < lengthos. C+ asli ~ os'li))
A (ChqC s~ dt — True) A (C =4 s~ dts— True)
apply (induct rule trans-ty-trans-tys-reg-dict-regs-dicisduct)
apply autoapply (case-tac) apply autodone

corollary trans-nth [ C = os~ o05';i < lengthos] = C+ osli ~ osli
using trans-nth-helpeiby blast

The next few lemmas and definitions build up to the proof that type translation re-
spects substitution. The following fact characterizes the affect of substitution on free
variables.

lemma ftv-subst-tylength ts= lengthos = ftv [ts—ogT C (ftv 7 — settg U | (map ftvos)

The proof will be a induction on the structure of types, and thus a mutual induction
proving the following two statements.

constdefsftv-subst-ty: ty = bool
ftv-subst-tyr =
(V ts (os:ty list). length ts= lengthos
— ftv [ts—ogT C (ftv T — settg U |J (map ftvos))
constdefsftv-subst-tys: ty list = bool
ftv-subst-tyss= (V ts (os:ty list).
length ts= lengthos
— |J (map ftv(sub-tys tsrs 7s)) C (|J (map ftvrs) — set tg U |J (map ftvos))

The case for variables is the only interesting case. There are two subcases to consider,
whent is substituted, and when it is not.

lemma ftv-subst-var ftv-subst-ty(‘t)
proof (simp only ftv-subst-ty-defclarify)
fix ts os xassumexfv: x € ftv [ts—o9g't and xfss x ¢ | J (map ftvos)
and len: length ts= lengthos
showx € ftv (‘t) — setts
proof (cases & set t9
assumetts: t € set ts
from tts lenobtain i wherel: i < length tsand L: lookup t tsos 0= Some(osli,i)
using lookup-succeedsf t tsos ( by auto
hencest: [ts—os|'t = osli by simp
from I len haveiss i < length(map ftvos) using length-magby simp
from isshave (map ftvos)!i C |J (map ftvos) using union-list-elem-subsédty blast
with stisshaveftv [ts—og't C|J (map ftvos) using nth-mapby simp
with xfv xfsshave Falseby autothus ?thesisby simp
next
assumetts: t ¢ set ts
from tts havelookup t tsos 0= Noneby (rule lookup-failg
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with xfv ttsshow ?thesisby simp
ged
ged

lemma ftv-subst-mutualftv-subst-tyr A ftv-subst-tyss A ftv-subst-tys-s
apply (induct rule ty.induct) apply (rule ftv-subst-vay
apply (simp blast)+ apply simp+ apply blastapply simpby (simp blast)

corollary ftv-subst-tylength ts= lengthos
= ftv [ts—os)T C (ftvr — settg U |J (map ftvos)
using ftv-subst-mutuaby simp

corollary ftv-subst-tyslength ts= lengthos
= |J (map ftv{ts—os}rs) C (|J (map ftvrs) — settg U J (map ftvos)
using ftv-subst-mutuaby simp

corollary ftv-subst-ty2
assumeditts: ftv 7 C set tsand len: length ts= lengthos
showsftv [ts—og)T C | J (map ftvos)
proof —
from lenhaveftv [ts—os|t C (ftv 7 — set t§ U | (map ftvos)
by (rule ftv-subst-ty
with ftts show ?thesisby auto
ged

corollary ftv-subst-tys2
assumeditts: | (map ftvrs) C set tsand len: length ts= lengthos
showsl J (map ftv{ts—os}rs) C |J (map ftvos)
proof —
from lenhavel (map ftv{ts—os}rs) C (|J (map ftvrs) — settg U |J (map ftvos)
by (rule ftv-subst-tys
with ftts show ?thesisby auto
ged

The translation never adds free variables to a type. This is proved by induction on the
translation judgments, with the only interesting case being the case for a requirement
in awhere clause.

lemmatrans-reduces-ftv
(CkT1~7'— Cok— ftv 7' C ftvg 1)
A (CE 78~ 78’ — C ok— |J (map ftvrs’) C | (map ftvgrs))
A (Chg € gs~ dt — C ok — ftv dt C |J (map ftvges))
A (Czaq rs~ dts— C ok— [ (map ftv dt§ C | (map (X p. |J (map ftvg(snd p)) rs))
apply (induct rule trans-ty-trans-tys-reg-dict-regs-dicisduct)
apply simpapply (simp blast) apply (simpblast) apply simpapply simpapply simp
apply (simp blast) prefer 2 apply simpprefer 2 apply (simp blast)
proof clarify
fix C and és::ty listand os 7s s’ ¢ ci x
assumecC: (c, ci) € Candts-tsp C = 75~ 75’
and xfds x € ftv [params ci-7s']({§sQos))
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and IH1: |J (map ftvrs’) C |J (map ftvgrs)
and IH2: | J (map ftvds) C J (map(Ap. | (map ftvg(snd p)) (rfn ci))
and IH3: | (map ftvos) C |J (map ftvg(mem-tys gi)
and Its: length7s = length(params cj and Cok: C ok
from Cok cChaveciok: C - ci ok by (rule c-mem-implies-c-gk
from ciok haversps |J (map(Ap. U (map ftvg(snd p)) (rfn ci)) C set(params cj
by (rule inv-wf-g simp)
from ciokhavemsps|J (map ftvg(mem-tys gi) C set(params cJ by (rule inv-wf-¢ simp)
from ts-tsp ltshaveltsp: length(params cj = lengthrs’ by (simp add trans-length
from IH2 rspshavefdsps | (map ftvés) C set(params c) by simp
from fdsps Itsphave
A: | (map ftv({params ci~7s}ds)) C | (map ftvrs’) by (rule ftv-subst-tysp
from IH3 mspshavefssps | (map ftvos) C set(params cj by simp
from fssps Itsghave
B: U (map ftv({params ci=7s'}as)) C | J (map ftvrs’) by (rule ftv-subst-tysp
from A Bhaveftv [params ci>7s']({(§sQos)) C | (map ftvrs’)
by (inductds rule list.induct auto)
with IH1 xfdsshowx € |J (map ftvgrs) by auto
ged

Substitution respects type translation That is; ffanslates ta-’, then[ts—7g|7 trans-

lates to[ts—7s']7/, provided thatrs translates tars’. The proof is by induction on

the derivation of the translation. There are two interesting cases, for translating type
variables, and the case for translating a concept instantiationhe@ clause. This

first lemma handles the translation of type variables.

lemma subst-respects-trans-vafC - (VarTG t) ~ (VarT t)
— (V ts7s s’ distinct tsA length ts= lengthrs A C |= 75~ 78’
— CF [ts—79(VarTG 1) ~ [ts—7s|(VarT t)))
proof (clarify)
fix ts::var listand s s’
assumeD: distinct tsand L: length ts= lengthrsand ts-tsp C = 75~ 78’
showC F [ts—75/(VarTG {) ~ [ts—7s/](VarT 1)
proof (cases & set tg
assumetm: t € set ts
from tm L obtain i whereil: i < length tsand tsi: tsli =t
and lts: lookup t tsTs 0= Some(7sli,i)
using lookup-succeedsf t tsTs 0 by auto
from ts-tsphavelengthrs = lengthrs’ by (rule trans-length-tys
with L haveL2: length ts= lengthrs’ by simp
from tm L2obtain i’ 7' where
ipl: i’ < length tsand tsip: tsli’ = t and tausip 7s"li’ = 7’
and ltsp: lookup t tsts’ 0 = Some(rs'li’;i’)
using lookup-succeedsf t ts7s’ 0] by auto
from D il ipl tsi tsip havei-ip: i = i’ using distinct-conv-nthy auto
note ts-tsp
moreover from L il havei < length7s by simp
ultimately have C - 7sli ~ 7sli by (rule trans-nth
with Its Itsp tausip i-ipshow ?thesishy auto
next
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assumetm: t ¢ set ts
from tmhavelookup t tsts 0= Noneby (rule lookup-failg
moreover from tm havelookup t tsrs’ 0 = Noneby (rule lookup-failg
ultimately show ?thesisby (simp add trans-van
ged
ged

The following abbreviations are used for the conclusions of the statements that will be
proved.

constdefssrt-ty :: [Cenvtyg,ty] = bool
srt-ty CT 7' = (V ts7s7s’. C = 7s~ 75’ A C ok A distinct tsA length ts= lengthrs
— C I sub-tydts,7s,7) ~» sub-tyts,7s',7"))
constdefssrt-tys:: [Cenvtyg listty list] = bool
srt-tys Crs7s' = (V tsosos’. C = os~ os’ A C ok A distinct tsA length ts= lengthos
— C |= sub-tygs ters 7s ~~ sub-tys ters’ rs’)
constdefssrt-dict :: [Ceny var, tyg list, ty] = bool
srt-dict C cps dt= (V ts7s7s’. (C |= 75~ 78" A C ok A distinct tsA length ts= lengthrs
— C 4 C (sub-tygs ts's gs) ~» sub-tyts,7s',dt)))
constdefssrt-ds:: [Ceny where-clausgty list] = bool
srt-ds C rs dts= (V ts7s7s’. C = 75~ 78" A C 0k A distinct tsA length ts= lengthrs
— C [=4 {ts—78}rs ~ {ts—7s}dty)

The case for translating a requirement iwigere clause is handled by the following
lemma.

lemma subst-respects-trans-dict
assumesC: (c, ci) € Candts-tsp C = 7s~ 75" and IH1: srt-tys Crs s’
and Rs C =, rfn ci ~ dsand IH2: srt-ds C(rfn ci) ds
and Ms: C = mem-tys ci~ osand IH3: srt-tys C(mem-tys Gios
and lts: length~s = length(params cj
showssrt-dict C cs [params ci~7s']((5s @ o))
proof (simp only srt-dict-def, clarify)
fix ts::var listand rsa:tyg listand rsa’:ty list
assumetsa-tsap C = rsa~» rsa’
and Cok: C okand dist: distinct tsand len: length ts= lengthrsa
let ?dt = [params ci~7s]({(§s @ o))
let ?ts= {ts—rsa}rsand ?tsp= {ts—rsa’}rs’
let ?ms= {ts—rsa}mem-tys cand ?ss= {ts—rsa’}os
let ?rs = {ts—7sd}(rfn ci) and ?ds= {ts—7sa’}ds
note cC moreover from tsa-tsap Cok dist len IHhave
ts-tsp C |= ?ts~ ?tspby simp
moreover noteRsand Ms
moreover from lts havelength{ts—rsa} s = length(params cj
using substg-lengtloy simp
ultimately have C 4 ¢ ?ts~ [params oi~?tsg({(dsQos)) by (rule r-d)
moreover have[params ci-?tsg((§sQos)) = [ts—7sa]?dt
proof —
— We can alpha-convert to change the concept parameters so that they are distitistfndm
from the variables irrsa’.
haveA: set(params c) N set ts= {} sorry
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have B: set(params cj N | J (map otvrsa’) = {} sorry
haveC: settsn otv ((§s@ os)) = {}
proof —
haveofb: otv ((§s@ os)) = ftv ((ds@ os)) U btv ({§sQ os))
using otv-ftv-btvby simp
from Cok cChaveciok: C - ci ok by (rule c-mem-implies-c-gk
from ciok havefrsps | J (map(Ap. | (map ftvg(snd p)) (rfn ci)) C set(params c)
by (rule inv-wf-¢ simp)
from ciok havefmsps|J (map ftvg(mem-tys gi) C set(params c)
by (rule inv-wf-g simp)
from Rs Cokhave|J (map ftvds) C |J (map(Ap. J (map ftvg(snd p)) (rfn ci))
using trans-reduces-ftby simp
with frspshavefdsps | (map ftvds) C set(params cj by simp
from Ms CokhavelJ (map ftvos) C |J (map ftvg(mem-tys i)
using trans-reduces-ftby simp
with fmspshavefssps|J (map ftvos) C set(params c) by simp
haveftv ((§s@ os)) = |J (map ftvds) U | (map ftvos)
by (inductés rule list.induct auto)
with fdsps fssphaveftv ({(§s@ os)) C set(params cj by auto
with A havetsfds set tsn ftv ((ds@ os)) = {} by auto
— We can alpha-convert the bound variables to be distinct tsom
havetshds set tsn btv ((6s @ os)) = {} sorry
from tsfds tshbds ofshow ?thesisby auto
ged
from ts-tsphavelength ?ts= length ?tspusing trans-lengthby blast
with Its haveD: length(params cj = lengthrs’
by (simp add subst-length substg-length
from tsa-tsaphavelengthrsa= lengthrsa’ usingtrans-lengthby blast
with lenhave E: length ts= length7sa’ by simp
from Cok cChaveC | ci ok by (rule c-mem-implies-c-gk
henceF: distinct (params c) by (rule inv-wf-¢ auto)
from A B C D E Fhave [ts—7sa]?dt = [params oi-?tsg((§sQos))
using substitution-lemmaapply blastdone
thus ?thesisby simp
ged
ultimately show C -4 ¢ {ts—7sa}Ts~~ sub-tyts,sa’,?dt) by simp
ged

The rest of the cases are trivial and proved automatically by Isabelle.

lemma subst-respects-trans

(Ch7~ 7' —srt-tyCTr7') A (C = 78~ 78’ — srt-tys Crs78’)

A (Chkq € s~ dt — srt-dict C cps di) A (C =4 rs ~» dts— srt-ds C rs dt$
apply (induct rule trans-ty-trans-tys-reg-dict-regs-dicisduct)

using subst-respects-trans-vapply simpapply simpapply simp

apply simpapply simpapply simpapply simp

using subst-respects-trans-diby simp+

corollary subst-r-d
assumed: C 4 ¢ os~ dtand Cok C okand dist: distinct ts
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and L: length ts= lengthrsand ts-tsp C = s~ 75’
showsC k4 ¢ {ts—7S} oS~ [ts+ 75'|dt
proof —
haveC |4 ¢ gs~ dt — srt-dict C cps dtusing subst-respects-trarts/ simp
with Cok D dist L ts-tsgshow ?thesisby auto
ged

corollary subst-ds
assume®ds: C |=4 rs ~~ dtsand Cok C okand dist: distinct ts
and L: length ts= lengthrsand ts-tsp C = 7s~ 75’
showsC =4 {ts— 78}rs ~~ {ts— s’} dts
proof —
haveC =4 rs ~~ dts — srt-ds C rs dtaising subst-respects-trartsy simp
with Cok Ds dist L ts-tsghow ?thesisby auto
ged

corollary subst-trans-ty
assume®Ds: C 7 ~ 7" and Cok C okand dist: distinct ts
and L: length ts= lengthrsand ts-tsp C = s~ 75’
showsC F [ts+— 787 ~ [tS+> 78']7’
proof —
haveC F 7 ~ 7/ — srt-ty C7 7’ using subst-respects-trarsy simp
with Cok Ds dist L ts-tsghow ?thesisby auto
ged

corollary subst-trans-tys
assume®ds: C |= s~ os’ and Cok C okand dist: distinct ts
and L: length ts= lengthrsandts-tsp C = s~ 75’
showsC = {ts+ 7S}os~ {ts— 75'}os’
proof —
haveC |= os~ s’ — srt-tys Cos os’ using subst-respects-trartsy simp
with Cok Ds dist L ts-tsghow ?thesisby auto
ged

If a concept is never referred to in a type, removing the concept from the environment
does not affect the translation of that type. We skip the proof of this straightforward
lemma due to time constraints.

lemmaremove-concept-pres-trans
(insert(c,ci) C 7~ 7' — (c,7) ¢ c-occurs-ty— Ck 7~ 7')
A (insert(c,ci) C = os~ as’ — (c,7) ¢ c-occurs-ty— C |= oS~ os)
A (insert(c,ci) C k4 € ps~ dt — (c,7) ¢ c-occurs-ty— C 4 € oS~ dt)
A (insert(c,ci) C |=q4 rs ~» dts— (c,7) ¢ c-occurs-ty— C =4 s ~ dts)
sorry

corollary remove-concept-pres-trans-ty
[insert(c,ci) C 7~ 7'; (c,7) ¢ c-occurs-ty] = CF 7~ 7’
using remove-concept-pres-tramy blast

Adding concepts to the environment (weakening) does not affect the translation of
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types.

lemmaadd-concept-pres-trans
(Ck7~ 7'— (V¥ cci. insert(c,ci) Ck 7~ 7))
A (CEos~ o5’ — (V cci. insert(c,ci) C = os~ 05'))
A (ChqcCpos~ dt— (V c’ci’.insert(c’,ci’) C kg4 C oS~ dt))
A (C g4 rs~ dts— (V cci. insert(c,ci) C =4 rs ~ dtg))
apply (induct rule trans-ty-trans-tys-reg-dict-regs-dicisduct)
usingr-d by auto

The type translation is a function. The premi3®kis need to ensure that the concept
environment contains no more than one definition for each concept name. Again, we
skip the proof due to time constraints.

lemma unique-trans-tys] C = 7s~ os; C 0k C =75~ 05’ | => 05 =05’
sorry

Next we prove a lemma concerning substitution and the translation of refinments to
dictionary types. The proof will use this basic fact about list append.

lemmaappend-eg-len/ Is1’Is2 Is2. [ length Is1= length IsZ; Is1 @ Is2 = Is1’ @ Is2’]
= Isl=Is1’' A Is2=Is2’ by (induct Is] simp case-tac Is1 simp simp

lemmarefine-dict-types
assume®d: C 4 c7s~~ (dts@os) and Cok C okand cC: (c, ci) € C
and L: length dts= length(rfn ci)
showsC =, {params cie7sfjrfn ci ~~ dts
proof —
from D Cok cCobtain dts’ os’ s’ wherets-tsp C = 7s~ 78’
and Ds: C =4 rfn ci ~ dts’
and Ipts: length7s = length(params cj
and tp: (dts@os) = ({params ci~7s'} (dts'@Qos’)) usinginv-r-d2 by blast
from tp have (dts@Qos) = ({params ci»7s'}dts'@{params ci»7s'}os’)
by (simp only subst-appengd
henceT: dtsQos = {params ci»7s'}dts'@{params ci~7s'}os’ by simp
from L havelength dts= length(rfn ci) .
also from Dshave. .. = length dts by (rule trans-length-r-d
also have. .. = length{params ci»7s’}dts’ using subst-lengttby simp
finally have L1: length dts= length{params ci~7s'}dts’ by simp
from T L1 append-eg-lehavedts dts= {(params cj — 7s'}dts’ by simp
from T L1 append-eg-lehavess os= {params oi»7s'}os’ by simp
— So we finally have the dictionary types for the refinements.
haveC |=, {params ci-rs}rfn ci ~ {params ci—7s'}dts’
proof —
from Cok cChaveciok: C - ci ok by (rule c-mem-implies-c-gk
from ciok havedist: distinct (params cj by (rule inv-wf-g simp)
from Cok Ds dist Ipts ts-tsphow ?thesisby (simp only subst-d$
ged
with dtsshow ?thesisby simp
ged
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Given that a list of E types translates to a list of F types, the ith fype translates to
the ith F type.

lemmatrans-tys-nth A Cos’i 7. [ C = os~ os;i < lengthos; osli = 7]
= CF 1~ o5l
proof (inductos rule list.induct simp)
fixalistCos'i T
assumelH: ACos’i 7. [C = list ~ os’;i < lengthlist list!i = 7] = CF 7~ 05!
and alss C = a# list ~ os’andil: i < length(a # list) and alit: (a# list) i =171
from alssobtain 7' 7s’ wheret-tp: CFa~ 7'and ssp s’ = 7'#7s’
and Itsp: C = list ~ 75’ by (rule inv-trans-consauto)
showCF 7~ os'!i
proof (cases)
assumeiz: i = 0from iz alit haveat: a = 7 by simp
from at t-tp ssp izhow ?thesisby simp
next fix j assumel: i = Suc j
from alit | haveljt: list!j = 7 by simp
from il | havejl: j < length listby simp
from ltsp jl ljt IH haveC F 7 ~ 7s'lj by blast
with | sspshow ?thesisby simp
ged
ged

8.5 Paths Through Dictionaries

There are several places in Figure 15 where the environment is extended with concepts,
models, or variables. In Section 8.6 we show that the environment correspondence
is maintained in each case. However, first we need several lemmas regarding paths
through dictionaries.

The following two lemmas extend a path through a dictionary. The first extends the
path to the sub-dictionary for a refinement. The second extends the path to a member
of the dictionary. Both lemmas are straightforward inductions on thernmath

lemmadict-path-to-super
Adtsdtosir. [i < length dtsdt = (dtsQos); 7—ns—dt | = 7—nsQ[i] —dtdi
proof (induct ng
fix dtsdtosir
assumdl: i < length dtsand dt: dt = (dtsQo's) and t-dt: 7—[]—dt
from t-dt haveeq 7 = dt apply (rule inv-path-ni) apply simpdone
from | have (dtsQos)!i = dtdi apply (simp add nth-appendl done
hence(dtsQos)!i—[]—dtdi by (simp add p-nil)
hence(dts @ os)—i#[]—dtdi by (rule p-con3
with eq dtshowr—[|Q[i]— dtdi by simp
next fix a list dts dtos i 7
assumelH: Adts dtosi. [i < length dtsdt = (dtsQos); T—list—dt] = 7—listQ[i] —dtdli
and|: i < length dtsand dt: dt = (dts@ o)
and P: (7, a # list, dt) € path-ty
from P obtain rswhere P2: (rdla, list, dt) € path-ty
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and T: 7 = (rs) apply (rule inv-path-conyapply simpdone
from | dt P2 IH have P3: sla—list@[i]—dtdi by simp
hence(rs)—a#(list Q [i])—dtdi by (rule p-con3
with T haver—a#(listQ[i])—dtdi by simp
thus 7— (a#list)Q[i]—dtdli by auto
ged

lemmadict-path-to-member
Adtsdtosir. [i < lengthos; dt=(dtsQos); T—ns—dt] = 7—nsQ[length dts-i] —osli
proof (induct ng
fix dtsdtos it
assumel: i < lengthosand dt: dt = (dtsQos) and t-dt: 7—[|—dt
from t-dt haveeqg = = dt apply (rule inv-path-ni) apply simpdone
from | have (dts@os)!(length dits+ i) = osli
apply (simp add nth-append-length-plyslone
hence(dts@os)!(length dts+ i)—[]—osli by (simp add p-nil)
hence(dts@os)—(length dtsti)#[]—osli by (rule p-cong
with eq dtshowr—[]@[length dts+ i]—osli by simp
next fix a list dts dtos i 7
assumelH: Adts dtosir. [i < lengthos; dt = (dts@ os); T—list—dt]
= 7—list@[length dts+ i]—odli
and|: i < lengthosand dt: dt = (dts@os) and P: 7—a#list—dt
from P obtain rswhere P2: rsla—list—dt
and T: 7 = (7s) apply (rule inv-path-consapply simpdone
from | dt P2 IH have P3: rsla—list@[length dts+ i]—osli by simp
hence(rs)—a#(list @ [length dts+ i])—osli by (rule p-cong
with T haver—a#(listQ[length dts+ i])—osli by simp
thus 7— (a#list)@[length dts+ i|—osli by auto
ged

The next lemma states that the ith entry in the dictionary type for corcépthe
dictionary type for the “super” concept. This lemma is proved by induction on the
refinement lists.

lemmadict-at-i: A Cdtsic 7s". [ C |zq4 s~ dts rsli = (¢/,7s"); Suc i< length dts]
= (3 dts'os’ci’. Cty ¢’ 78"~ dtdi A dtdi = (dts'Qos’)
A (¢’,ci’) € C A length(rfn ci’) = length dts)
apply (induct rs rule list.induct) prefer 2 apply clarify prefer 2
proof —
fix C dts iand c¢’::var and 7s"::tyg list
assumeDs: C =4 [] ~ dtsand L: Suc i< length dts
from Dshavedts= [] by (rule inv-rs-ds-ni| simp)
with L haveFalseby simp
thus 3 dts’os’ci’. Ck4 ¢’ 78"~ dtdi A dtdi = (dts’ @ o)
A (c',ci’) € C A length(rfn ci’) = length dts by simp
nextfixablist C dtsic s’
assumelH: A Cdtsic 7s’. [ C =4 list ~ dts listli = (¢, 7s'); Suc i< length dtg]
— (Fdts’ os’ci’. Ckq ¢’ 78"~ dtdi A didi = (dts’ @ 05"
A (¢’,ci’) € C A length(rfn ci’) = length dts)
andDs: C =4 (a, b) # list ~ dts
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and at: ((a, b) # list) !'i = (c’, 7s")
and |: Suc i< length dts
from Dsobtain 7 rswhereD: CH4 a b~ 7 and Ds2 C =4 list ~ 75
and dts dts= 7#7s by (rule inv-rs-ds-conssimp)
show3dts' os’ci’. Ct4 ¢’ 78"~ dtdi A dtdi = (dts' @ os’) A (¢',ci’) € C
A length(rfn ci’) = length dts
proof (cases)
assumeiz: i =0
from iz athaveeq (a,b) = (c’,7s’) by simp
from D eghaveD2: C 4 ¢’ 78’ ~+ 7 by simp
from D2 obtain §sos7s’’ ci wherecC: (¢’,ci) € Candts-tsp C = 78"~ 78’
and Ds: C =4 rfn ci ~ dsand Ms: C = mem-tys ci~ os
andtp: T = ({params ci>7s’'} (§sQos)) by (rule inv-r-d, auto)
from tp haveT: 7 = (({params ci»7s’’}§s@{params ci=7s'’}os))
by (simp only subst-appeng
from T D2 have
D3: Ck4 ¢’ 78"~ (({params ci»7s"}6s @ {params oi»7s"’}os)) by simp
from T iz dtshave
dtsi: dts! i = (({params ci>7s"’}ds @ {params ci-7s"’}os)) by simp
from Ds trans-lengtthavelength(rfn ci) = lengthds by blast
henceL: length(rfn ci) = length{(params cj — 7s'’}ds using subst-lengttby simp
from D3 dtsihaveD4: C -4 ¢’ 78’ ~~ dtdi by simp
from D4 dtsi cC Lshow ?thesisby blast
next fix j assumeij: i = Suc j
from 1ij dts haveJ: Suc j< lengthrsby simp
from ij at haveat2: list ! j = (c’,7s’) by simp
from Ds2 at2 J IHobtain dts’ os’ ci’ where D2: C -4 ¢’ 78’ ~ 73]
and at3: 7slj = (dts' @ ¢s’) and cC: (c’,ci’) € C
and L: length(rfn ci’) = length dt$ by blast
from D2 dts ijhaveD3: C -, ¢’ 78’ ~~ dtdi by simp
from dts ij at3haveat4: dtdi = (dts'‘@cs’) by simp
from D3 at4 cC Lshow ?thesisby auto
ged
ged

!

8.6 Preserving the Environment Correspondence

The environment correspondence defined in Figure 17 must be preserved in the face of
changes made to the environment. For examplig-mbs the variablessare added to

the variable environment, bound to the types To maintain the correspondence, we
also add the variablessto the System F environment, bound to the typs’s where
conceptd” = 7s~ 7s’. The following lemma is proved by induction on the judgment

C = rs~ 75’ (and the other judgments that it was mutually defined with).

lemma add-vars-preserves-var-env
(Ck7~ 7' — True)
A (CETs~ 78 — (¥ X8 CF, V ~ SA length xs= lengthrs
— Chy V X875~ SX875))
A (ClqCpS~ dt — True) A (C =4 Is ~» dts— True)
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apply (induct rule trans-ty-trans-tys-reg-dict-regs-dicisduct)
apply autoapply (case-tac xsusing cv-consby auto

The following lemma provides a convenient way to use the invariants captu€et jn
V ~~ S, This lemma is used in thig-var case of the main theorem.

lemmavar-mem-trans-implies
[CHo VS (XT)eV]= 3 7. Chr~7'AXT)EY
by (induct rule trans-var-envnduct, auto)

The next two “weakening” lemmas show that adding a concept to the environment does
not affect variable and model environment correspondences.

lemma add-concept-preserves-var-eiwt, V ~» S=>insert(c,ci) Ck, V ~» S
apply (induct rule trans-var-envinduct)
apply (simp add cv-nil) using add-concept-pres-trans cv-cobg auto

lemma add-concept-preserves-model-e6\M-,, M ~~ S= insert(c,ci) Ct,, M ~~ S
apply (induct rule trans-model-eninduct)
apply (simp add cm-nil) using add-concept-pres-trans cm-coagply simp
proof —
fix CM St 7'7rscadns
assumem-s insert(c, ci) CF,, M ~» Sand N: ns# ||
anddt: (d, 7) € Sand D: C+4 cars~ 7’ and P: path-tyr nst’
from D haveD2: insert(c,ci) C k4 caTs~ 7' using add-concept-pres-transy simp
from m-s N dt D2 Pshowinsert(c, ci) C -, insert(ca, 7s,d, ns) M ~~ S
by (rule cm-drop
ged

Next we prove several lemmas that show how the correspondence with a System F typ-
ing environment is preserved as models are added to the environment. First we show
that adding models for the where clause of a type abstraction preserves the correspon-
dence . In particular, if we start with some model environmdrin correspondence

with some System F environmeBtand ifdsare the dictionary variables for the added
models, andits are the types of the dictionaries for the models, then the new model
environmentM’ will correspond tcS,dsdts

lemmaadd-models-where-preserves
[CFwsds M= M’; C ok C =4 ws~ dtg Ct,,, M ~» S| = C+,,, M/ ~» Sdsdts

The judgmentC - ws ds M= M’ processes each requirement in the where clause
usingt,. The judgment-, adds a model to the environment and then ysgsto

add models for all of its concept refinements. We prove two lemmas with regards
to howt, and =, preserve the environment correspondence while adding models to
the environment. The first lemma, in Figure 18, handles the case whisrused on

a refinement, and thus the dictionary for the model will be a sub-dictionary of some
other model. The dictionary path will be non-empty in this case. The second lemma,
in Figure 19, handles when, is applied to a requirement in a where clause, when the
dictionary path for the model is empty. Figure 20 uses this lemma to show preservation
of the correspondence for all the requirements in the where clause.
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Figure 18: Adding models to the model environment for concept refinements preserves
the environment correspondence.
[

lemmaadd-models-rfns-pres
(Chycposdns M= M’ — (V St dtsos ci. C okA ns+# |]
A Chq € ps~ (dtsQos) A (d,7) € SA (c,ci) € C
A length(rfn ci) = length dtsA 7—ns—(dts@os) ACH,, M~ S
— Chkm M~ 9))

A(CEpirsdnsM= M’ — (V Sdtsr gs. CokA C =4 Is~ dts
A (d,7) € SA T—ns—(dts@os) Ai < length dtshn CF,,, M~ S
— Chkm M~ 9))

(is(Ck,cosdns M= M’'— ?P Ccpsdns M M)
A(CEpirsdnsM=M'— ?PSCirsdns MM))

proof (induct rule flat-m-flat-msinduct)

fix C::CenvandM M'M” rsccidins

assumecC: (c, ci) € Cand Mp: M’ = insert(c, s, d, n) M

and IH: ?PS C(length(rfn ci)) ({params ci~rs}rfn ci) d ns MM "

show?P Ccrsdns MM’

proof clarify fix St dtsos ci’ assumeCok C okand N: ns# ||
andD: Cl4 c7s~ (dtsQos) andDT: (d,7) € S
and cpC: (c,ci’) € C and L: length(rfn ci’) = length dts
and P: 7—ns—(dts@os) andm-s Ct,,, M~ S

from Cok cC cpChaveci-cip: ¢i = ci’ by (rule unique-concept

from L ci-cip haveL2: length dts= length(rfn ci) by simp

from D Cok cC L2haveDs2 C |=4 {params ci>7s]rfn ci ~ dts
by (rule refine-dict-types

from L2 havel3: length(rfn ci) < length dtsby simp

from m-s N DT D PhaveC I, insert(c,7s,d,ns) M ~» Shy (rule cm-drop

with Mp havemp-s C -, M’ ~ Sby simp

from Cok Ds2 DT P L3 mp-s IldhowC +,,, M"" ~~ Shy auto

ged
next fix C M d ns rsshow?PS C 0 rs d ns M Mby simp
next fix CM M’M’ rs’c¢’d i ns rsassumersi: rs ! i = (¢’, 7s')

and IH1: ?P C ¢ 7s'd (ns@[i]) M M’ and IH2: ?PS Cirsd ns MM "’
show?PS C(Suc i) rsdns M M’
proof clarify
fix S dtst osassumeCok: C okand Rs C =4 rs ~ dts
andDT: (d, 7) € Sand P: —ns—(dtsQ os)
and|: Suc i< length dtsandm-s C+,,, M ~~ S
from Rs rsi | Cokobtain dts’ os’ ci’ where
D: Ctkq4c’ 78"~ dtdi and dtsp dtdi = (dts'@os’)
and cC: (c¢’,ci’) € C and LR: length(rfn ci’) = length dts
using dict-at-i by blast
from D dtsphaveD2: C t-4 ¢’ 78’ ~ (dts'@os’) by simp
from | P have r—nsQli]—dtdi by (simp add dict-path-to-super
with | dtsphave P2: 7—nsQli]—(dts’ @ os’) by simp
from Cok D2 DT c¢C LR P2 m-s IHhavemp-s C I~,, M’ ~ Shy blast
from | havel2: i < length dtsby simp
from Cok Rs DT P I2 mp-s IH&howC I-,,, M’/ ~ Shy auto
ged
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The following corollary captures first half of Lemnaald-models-rfns-presvhich we
use in Lemmadd-models-req-preserves

corollary add-models-rfns-preservesC i, ¢ 7s d ns M= M’; C ok ns= [J;
Chkg4cT1s~ (dtsQos); (d,7) € S (c,ci) € C; length(rfn ci) = length dts
7—ns—(dtsQos); Ckm M~ S| = Ck,, M'~ S

using add-models-rfns-prelsy blast

The other place the model environment is extended is, of course, at model definitions.
The lemma in Figure 21 proves that we can add mdédek,d,[]) to the environment,

and the corresponding System F environment wilSuk([params oi-ps’|dtsQ os’),
whered is bound to the dictionary type for the model. The main work of the proof is
to showDt which states that the dictionary type is correct.

8.7 Model Member Lookup

In preparation for proving the case in the main theorem for model member access, we
need to show that the member access judgméneturns a type and dictionary path
ns’ such that the path leads to a typéthat is the translation of.

lemmadict-member[ C F* x c7s ns= 7 ns’; C ok C k-4 ¢ 78~ dt’; dt—ns—dt’]
= (3 7. dt—ns'—=7'ACk 7~ 1)

The member access judgmeritis mutually recursive with the judgmept® which

looks for a member among the refinements. Thus, our proof is an induction on the
derivation of both judgments. There are four cases to consider. The proof is fairly long
and tedious, so we summarize the proof here before presenting the proof itself. The
first case of the proof is when the membeappears in the current conceptWe rely

on the Lemmadookup-succeedwm get the type and position of the member. We then
use Lemmalict-path-to-membeto show that we can extend the current path to this
member. The second case is for wheéruses=" to find the member in a refinement.

We simply use the assumptions with the induction hypothesis. The third case is when
the ith refinement, concept with type argumentss’ has the member. This case is
complicated by the substitutions that occur for the type parameters of the concept .
The fourth case is for continuing on to the next refinement in concephis case is
trivial, since we just use the assumptions with the induction hypothesis. The following
is the proof in its entirety.

lemmalookup-found A x 7sij 7. lookup x tsrs i = Some(r, j) = X € set ts

apply (induct t9 apply simpapply (case-tacrs) apply simpapply simp
apply (case-tac a= x) by simp+

lemmadict-member-helper
(CF xcrsns= 7 ns’' — (V dtdt’. C okA Ct4c s~ dt’ A dt—ns—dt’
— (3 7. dt-=ns'>T'ACF T~ 7))
A (CE"xicrsns= 7 ns — (V dtdt'ci. CokA CH,4 c7s~ dt’ A dt—ns—dt’
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Figure 19: Adding models for a requirement imvhere clause preserves the environ-
ment correspondence.
[

lemma add-models-reqg-preserves
(ChycosdnsM=M'— (V ST.CokA CF4CpoS~ T ANS= ||
AChkm M~ S— Ch, M~ (SdiT)))
A(CEpirsdnsM= M'— (V Sdtsr gs. CokA C =4 s~ dtsA (d,7) €S
A T—ns—(dts@os) A i < lengthdtsA CF,,, M~ S— Ck,,, M/~ )
(is(Ct,cosdnsM=M’'— ?P Ccosd ns M M)
AN(CEpirsdnsM=M'— ?PSCirsdns MM))
proof (induct rule flat-m-flat-msinduct)
fix CMM'M” rsts’ccidns
assumeC: (c,ci) € C and Mp: M’ = insert(c,7s,d,ns) M
and IH: ?PS C(length(rfn ci)) ({params ci=7s}(rfn ci)) dns MM "
{ fix ST assumeCok C okandD: Ct4 c7s~» 7 and N: ns= [|
andm-sCt,, M~ S
from m-s Dhavemp-s C +,, insert(c,7s,d,[]) M ~» Sd:7 by (rule cm-con$
from D obtain dtsos 7s’ ci’ where cip: (c,ci’) € Candts-tsp C = 75~ 78’
and Dsp C =4 rfn ci’ ~ dtsand Its: lengthTs = length (params cf)
and tp: T = ({params clh—7s'}(dtsQos)) by (rule inv-r-d, auto)
from Cok C ciphaveci-cip: ci = ci’ by (rule unique-concept
let ?Tup= ({params ci~7s'}dts@ {params ci~>7s'}os)
from ci-cip tphaveT: 7 = ?Tupby (simp only subst-appeng
from T N haveP: 7—ns—?Tupusing p-nil by simp
from Cok cip ci-ciphavedistinct (params cj
using c-mem-implies-c-ok inv-wfizy blast
with Cok Dsp ci-cip Its ts-tspave
Ds2 C =4 {params ci»7s]}(rfn ci) ~~ {params ci-7s'}dtsby (simp only subst-d
haveDT: (d,r) € Sd:7 by simp
from Dsp ci-ciphaveL: length(rfn ci) < length{params ci»7s’}dts
using trans-length-r-d subst-lengtby simp
from Cok Ds2 DT P L mp-s Mp N IHaveC I, M”’ ~ Sd:7 by blast
} thus ?P C c7s d ns M M’ by simp
next fix C M d ns rsshow?PS C 0 rs d ns M Mby simp
nextfix CMM'M” s’ ¢’ dins rsassumersi: rs!i = (c/, 7s')
andF: Ct, ¢’ 7s'd ns@ [i] M = M’and IH2: ?PS Cirsd ns MM "
show?PS C(Suc ) rsdns M M’
proof clarify fix S dtsr osassumeCok C okand Rs C =4 rs ~ dts
andDT: (d, 7) € Sand P: 7—ns—(dtsQos)
andl: Suci<lengthdtsandm-s C+,, M ~~ S
from Rs rsi | Cokobtain dts’' os’ ci’ where D: C 4 ¢’ 78"~ ditdli
and dtsp dtdi = (dts'@os’) and cpC: (c’,ci’) € C
and LR: length(rfn ci’) = length dts using dict-at-i by blast
from | P haver—nsali]—dtdi by (simp add dict-path-to-super
with dtsphave P2: 7—nsQ[i]— (dts'@os’) by simp
from F Cok D dtsp DT cpC LR P2 mfmve
mp-s C ., M’ ~ Sby (simp add add-models-rfns-preserves
from | havel3: i < length dtsby simp
from Cok Rs DT P 13 mp-s IH&howC ,,, M"' ~ Shy auto
ged
ged 52
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Figure 20: Adding models for the where clause of a type abstraction preserves the
environment correspondence.
[

lemmaadd-models-where-preserves
Chwsds M= M'= (A dts S| C ok C =4 ws~> dts CF,, M ~» S]
=— ChF,, M’ ~ Sdsdts A length ds= length dt$
proof (induct rule add-modelsnduct)
fix C M dts SassumeD: C =4 [] ~» dtsandm-s C+,,, M ~~ S
from D havedn: dts= [] by (rule inv-rs-ds-ni] simp)
henceS= S [J:dtsby simp
with m-s dnshowC +,,, M ~~ S[J:dts A length[] = length dtsby auto
next fix CMM’M” pos cddswsdts S
assumeF: Ct, cosd[| M= M’
andIH: A dts S[C ok C =4 ws~ dts Ct,,, M~ §
= Cl,, M” ~ Sdsdts A length ds= length dts
and Cok C okand Ds: C |=4 (C,pS)#wWs~- dtsandm-s Ct,,, M ~~ S
from Dsobtain dt dts' whereD: C +, ¢ gs~ dtand Dsp C =4 ws~~ dts’
and DTS dts= dt#dts’ by (rule inv-rs-ds-consauto)
from F Cok D m-s add-models-req-presernves/e
mp-sd C -, M’ ~» Sd:dt by blast
from Cok Dsp mp-sd IHhave
mpp-spC ., M"' ~~ (Sd:dt),dsdts’ A length ds= length dts by simp
from DTShave (S,d:dt),dsdts’ = S (d+#£ds):dtsby (simp only pushs-env-assgc
with mpp-sp DTShowC ,,, M’ ~ S (d#ds):dts A length(d#£ds) = length dtsby simp
ged
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Figure 21: Adding a model to the model environment for a model definition preserves
the environment correspondence.
[

lemmaadd-model-preserves
assumeg-s I' ~ Sand Cok conceptd” okand C: (c, ci) € conceptd”
and rs-rsp conceptd” = oS~ ps’ and Ds: conceptd” =4 rfn ci ~ dts
and ss-sspconceptd” |= oS~ os’ and memtysos = {params ci-gs} (mem-tys i
and Ips: length(params c) = lengthgs
showsI",model(c,0s,d,[]) ~ S tys:= (tys 9,d:({{params ci—ps'}dts@os’))))
proof —
let ?Gp= I",model(c, gs, d, []) and ?sdts= {params oi- s'}dts
from g-sobtain Sv Snwherev-s conceptd” -, varsT' ~ Sv
and m-s conceptd” ,,, modelsl’ ~ Smand tvsg tvars S= tyvarsT'
and s: tys S= SmuU Svby auto
from v-shavev-s2 concepts ?Gp-, vars ?Gp~ Svby simp
from m-shavem-s2 concepts ?Gp-,, modelsI’ ~ Smby simp
haveDt: concepts ?Gp-4 € g~ (?sdtsQ os’)
proof —
from C have C2: (c,ci) € concepts ?Gjoy simp
from rs-rsphavers-rsp2 concepts ?Gp= gs ~ s’
by (simp add add-concept-pres-trans
from DshaveDs2 concepts ?Gp=4 (rfn ci) ~ dts
by (simp add add-concept-pres-trans
from Cok Chaveciok: conceptd” I ci ok by (rule c-mem-implies-c-gk
from ciok obtain os’’ where ms-sspconceptd” = mem-tys ci~ os’’
by (rule inv-wf-¢ auto)
from ms-ssphave ms-ssp2concepts ?Gp= mem-tys ci~ os’’
by (simp add add-concept-pres-trans
from Ipshavelrs: lengthes = length(params cj by simp
from C2 rs-rsp2 Ds2 ms-ssp2 Irs
haveconcepts ?Gp4 € oS ~ [params o~ ps']((dts@os’’)) by (rule r-d)
henceD: concepts ?Gp-4 C oS~ ((?sdts@ {params ci— gs'}os’"))
using subst-appendy simp
from Cok Chavedist: distinct (params c) using c-mem-implies-c-ok inv-wfizy blast
from Cok ms-ssp2 dist Ips rs-rspizve
concepts ?Gp= {params ci— ps}(mem-tys ¢i~» {params ci~ gs'}os”’
using subst-trans-tyby simp
with memtyshave concepts ?Gp= os~» {params ci— gs'}as’’ by simp
with Cok ss-sshaveoss’ = {params ci~ ¢s'}os’ using fun-dict-trans-tyby simp
with D show ?thesisby simp
ged
from m-s2 Dthavem-s3 concepts ?Gp-,,, models ?Gp~ Smd:(?sdts@ os’)
using cm-congby simp
from shaves2 tys Sd:(?sdts@ os’y = Smd:(?sdtRss’) U Svby simp
from v-s2 m-s3 s2 tvsghow ?thesisby auto
ged
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A (c,ci) € CAi <length(rfnci) — (3 7. dt—nS'—=7' A CF 7~ 7))
(is (CH’ x c7s ns= 7 ns' — ?P C x crs nst ns))
A (CE" xicrsns= 7 ns — ?PS C xi crs nst ns'))
proof (induct rule lookup-mem-lookup-mem:isduct)
fix C::Cenvand 7 7s ¢ ciins X
assumecC: (c, ci) € C and F: lookup x(mem-nms ¢i(mem-tys gi0 = Some(r, i)
show?P C x crs ns[params oi~787 (ns@ [length(rfn ci) + i])
proof clarify fix dt dt’
assumeCok: C okand D: C -4 ¢ 7s ~» dt” and P: dt—ns—dt’
from D Cok cCobtain dsos s’ wherets-tsp C = 75~ 78’
and Ds: C =4 rfn ci ~ dsand ms-ssC = mem-tys ci~ oS
and ltsp: lengths = length(params cj
and T: dt’ = ({params ci~7s'} (§sQos)) usinginv-r-d2 by blast
let ?DS= {params ci~7s’}dsand ?SS= {params ci-7s'}os
from T haveT2: dt’ = (?DS@?S$ using subst-appently auto
from Cok cChave C - ci ok by (rule c-mem-implies-c-gk
henceltn: length(mem-tys gi = length(mem-nms giby (rule inv-wf-¢ simp
from F havexms x € set(mem-nms giby (rule lookup-foundl
from xms Itnobtain i’ where Ip: i’ < length(mem-nms gi
and mipt: (mem-nms ¢li’ = x
and F2: lookup x(mem-nms gi(mem-tys ¢i 0 = Somé(mem-tys gili’;i’)
using lookup-succeedsf x mem-nms ci mem-tys dilly auto
from F F2 mipthavemit: (mem-tys gili = 7 by auto
from F F2 Ip havell: i < length(mem-nms giby simp
from ms-sshavelength(mem-tys gi = length ?SS
using trans-length-tys subst-lengbly simp
with 11 Itn havel2: i < length ?S®y arith
from 12 T2 Phavedt—(ns@ [length ?DS+ i])—?SSi by (rule dict-path-to-member
moreover from Ds havelength ?DS= length(rfn ci)
using trans-length-r-d subst-lengtby auto
ultimately have A: dt—(ns@ [length(rfn ci) + i])—?SSi by simp
haveB: C - [params ci->79T ~ ?S3i
proof —
from Cok cChavedist: distinct (params cj
using c-mem-implies-c-ok inv-wfiay blast
from Cok ms-ss dist Itsp ts-tdpavemss C |= {params ci>7s}(mem-tys gi~ ?SS
by (simp only subst-trans-tys
havelength(mem-tys i = length{params ci—7s}(mem-tys qi
using substg-lengttoy simp
with 11 Itn haveilsm: i < length{params ci—7s}(mem-tys giby arith
from mit I1 Itn have mit2: ({params ci-7s}mem-tys gili = [params ci—79T
using substg-nttby simp
from mss ilsm mitahow ?thesisby (rule trans-tys-nth
ged
from A Bshow3r’. dt—(ns@ [length(rfn ci) + i])—7’ A Ct [params cis7s|T ~ 7'
by auto
ged
next
fix C 7 7S c ci ns néx
assumecC: (c, ci) € C and F: lookup x(mem-nms ¢i(mem-tys ¢gi0 = None
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and L: C |=" x length(rfn ci) ¢ 7s ns= 7 ns’
and IH: ?PS C x(length(rfn ci)) ¢ 7s nst ns’
show?P C x crs nst ns'
proof clarify
fix dt dt’ assumeCok: C okand D: C -4 ¢ s~ dt’and P: dt—ns—dt’
from D Cok cCobtain §sos7s’ wherets-tsp C |= 75~ 78’
and Ds: C =4 rfn ci ~ dsand ms-ssC = mem-tys ci~ oS
and ltsp: lengths = length(params cj
and T: dt’ = ({params ci— 7s}(§sQos)) usinginv-r-d2 by blast
from Cok D P cC IHshow3 7’. dt—ns'—7’ A C 7 ~~ 7/ by blast
ged
next
fix Ct rs7s’cc’ciinsnsx
assumecC: (c, ci) € Cand ri:rfnci!i= (¢, 7s")
andL: CF’ x ¢’ {params oi»7s}7s'ns@ [ij = 7 ns’
and IH: ?P C x ¢ {params ci>7s}rs’ (ns@[i]) T ns’
show?PS C x(Suc ) ¢ 7s nst ns’
proof clarify
fix dt dt’ cia
assumeCok C okand D: C 4 ¢ 7s~ dt’ and P: dt—ns—dt’
and ciaC: (c, cia) € Cand|: Suc i< length(rfn cia)
from Cok cC ciaChaveci-cia: ci = cia by (rule unique-concept
from D Cok cCobtain ésos s’ wherets-tsp C = 75~ 75"/
and Ds: C =4 rfn ci ~ dsand ms-ssC = mem-tys ci~ oS
and Its: lengths = length(params c)
and T: dt’ = ({params ci— 75''}(6s@Qcs)) usinginv-r-d2 by blast
let ?2DS= {params ci— 7s’’}dsand ?SS= {params ci— 7s"}os
from T subst-appentiave T2: dt’ = (?DS@?S$ by auto
haveD2: C 4 ¢’ {params ci»7s}7s’ ~ ?DSi
proof —
havesil: Suc i< lengthds
proof —
from Ds havelength(rfn ci) = lengthéds by (rule trans-length-r-g
moreover with | ci-cia have Suc i< length(rfn ci) by simp
ultimately show ?thesisby simp
ged
from Ds ri sil obtain dts’ os’ ci’ where cpD: C -, ¢’ 78’ ~ sl
and cpC: (¢’,ci’) € C  usingdict-at-i by blast
from Cok cChavedist: distinct (params cj
using c-mem-implies-c-ok inv-wfay blast
from Cok cpD dist Its ts-tsp
haveC k4 ¢’ {params ci»7s}rs’ ~ [params ci»7s'’](dsli) by (simp only subst-r-d
moreover from sil have ?DSi = [params ci— 7s"](dsli) by (simp only subst-nth
ultimately show ?thesisby simp
ged
from Ds ci-ciahavelengthds = length(rfn cia) using trans-length-r-dby simp
hencelength ?DS= length(rfn cia) using subst-lengttby simp
with | havel2: i < length ?DSoy simp
from 12 T2 Phave P2: dt—nsQli]—?DSi by (rule dict-path-to-super
from Cok D2 P2 IHshow37'. dt—ns'—7' A CF 7 ~ 7/ by auto
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ged
next
fix C T 7s cins nsx
assumeC = xic7sns= 1 ns'
and IH: vdt dt'ci. C okA Ct4 c7s~ dt’ A dt—ns—dt’ A (¢, ci) € C
Ai <length(rfnci) — (37" dt—-ns'—=7'ACk 7~ 1)
showV dt dt’ ci. C okA C 4 c TS~ dt’ A dt—ns—dt’ A (c, ci) € C
A Suci< length(rfn ci) — (37" dt—-ns'—7'ACkF 7~ 7')
proof clarify
fix dt dt’ ci
assumeCok C okand D: Ct4 c 7S~ dt’
and P: dt—ns—dt’and cC: (c, ci) € C
and |: Suc i< length(rfn ci)
from | havel2: i < length(rfn ci) by simp
from CokDP cCI2IH
show3d 7’ dt—ns'—7' A C+ 7 ~ 7/ by auto
ged
ged

corollary dict-member
[CH® xcrsns= 7 ns’; C ok C,4 c7s~ dt’; dt—ns—dt’]
= (3 7. dt—-ns'—=7'ACk 7~ 1)
using dict-member-helpeapply blastdone

8.8 Properties of Dictionary Access

There are three places in the translation where the translation must produce System F
terms that evaluates to a dictionary.f¢ntapp a list of dictionaries is needed to satisfy

the requirements of the where clause of the type abstraction. fg-tinell dictionaries
corresponding to the refinements in the concept are needégkniem the dictionary

for the specified model must be accessed, and then the appropriate member extracted.
The functionmk-nthis used to construct a System F term to access a dictionary, and
the mk-nthsfunction constructs a list of terms that access a list of dictionaries. In this
section we prove thahk-nthandmk-nthsproduce well typed System F terms.

The first lemma states thatk-nthproduces well typed terms and is a proof by induction
on the derivation of the path—ns—dt.

lemmamk-nth-wt r—ns—dt = (A S de Skr de: 7 = Sty mk-nth de nsdt)
proof (induct rule path-tyinduct)
fix 7 S deassumeStr de: 7
thus S+ mk-nth d€]] : 7 by simp
next fix 7' rsnns S de
assumelH: AS de St de: 7sin = Sk mk-nth de ns 7’ and d-wt: S+ de: (rs)
from d-wthave St Nth de n: 7sln by (simp add wt-f-nth)
with IH showSFr mk-nth de(n # ns) : 7/ by simp
ged

The following lemma is needed to prove tmak-nthsproduces well typed terms. This
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lemma provides a more convenient way to access the invariants expressed,bivi
~ S The proof is by induction on the derivation 6f-,, M ~» S.

lemmamodel-trans[CF,, M ~ S (c,7s,d,ns) € M |
= 3 77.Chscrs~1'A(d, T) € SAT—NS>T")
proof (induct rule trans-model-eninduct simp
fix CM St rsacada
assumelH: (¢, 7s,d,ns) e M =37 7. Ckqc7S~ 7' A (d, 7) € SA path-tyr ns7’
andD: Ct4 carsa~ 7 andM: (¢, 7s, d, ns) € insert(ca, 7sa da, [|) M
show3rar’. Crkscrs~ 7' A (d, 7a) € SdaT A path-tyra nst’
proof (cased(c, 7s, d, ns) = (ca 7sa da, []))
assumeeq (c, 7s, d, ns) = (ca, 7sa da, [])
from eq DhaveD2: C+,4 c s~ 7 by simp
from eghavedt: (d, ) € Sda by simp
from eghaveP: 7—ns—7 using p-nil by simp
from D2 dt Pshow ?thesishy auto
next assumeneq (c, 7s, d, ns) # (ca, 7sa da, [])
from neq MhaveM2: (c, 7s, d, ns) € M by auto
from M2 IH show ?thesisby auto
ged
next fix C M St 7’/ rsa ca da nsa
assumeC t,, M~ Sand IH: (c, 7s,d, ng) e M =
77 . Chqcrs~ 7'A(d, 7) € SAT—NS>T’
andnsa# [] and dt: (da, ) € SandD: C+,4 catsa~ 7’
and P: 7—nsa—7'and M: (c, 7s, d, ns) € insert(ca, 7sa da, nsa) M
show3 T 7. CtqcTs~ 7' A (d, 7) € SA path-tyr nst’
proof (cased(c, 7s, d, ns) = (ca, Tsa da, nsa)
assumeeq (c, 7s, d, ns) = (ca, 7sa da, nsa)
from eq DhaveD2: Ct-4 c 7s~ 7' by simp
from eq dthavedt2: (d,7) € Shy simp
from eq Phave P2 7—ns—7’ by simp
from D2 dt2 P2show ?thesisby auto
next assumeneg (c, 7s, d, ns) # (ca, 7sa da, nsa
from neq MhaveM2: (c, 7s, d, ns) € M by auto
from M2 IH show ?thesisby auto
ged
ged

The proof of Lemmank-nths-wtthatmk-nthsproduces well typed terms, is by induc-
tion on the derivation of the translatidh = ws~- dsnns

lemmamk-nths-wtM = ws~- ds nns=> (A T C V S dts[ C ok
(tyvars=T, vars= V, concepts= C, models= M) ~ S, C =4 ws~» dts]
= S|=r (mk-nths ds nns: dts)
proof (induct rule fg-whereinduct)
fix ' TCV Sdts
assumeDs: C =4 [] ~ dts
from Dshavedts= [] by (rule inv-rs-ds-ni| simp)
also haveS = mk-nths]] [] : [] by (simp add wt-f-nil)
ultimately show S = mk-nthg[] [] : dtsby simp
nextfix M rscddsnnsnswsT CV Sdts
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assumeM: (c, 7s, d, ns) € M and W: M |=ws~- ds nns
andIH: AT CV Sdts [ C ok (tyvars=T, vars=V, concepts= C, models= M)) ~ S
C [=q WS~ dts] = S|=r mk-nths ds nnsdts
and Cok C okand g-s (tyvars= T, vars=V, concepts= C, models= M)) ~ S
and D: C =4 (c,75)#ws~ dts
from g-sobtain Sv SnwhereT: Ct,, M ~» Smand TV: tvars S=T
and S tys S= SmU Svby auto
from M T model-transobtain 7 7' whereD2: C4 c 7S~ 7’
and dt-sm (d,7) € Smand P: 7—ns—7’ by blast
from dt-sm Shavedt-s (d,r) € tys Sby simp
from dt-shavewt-d: Sk ‘d : 7 by (rule wt-f-var)
from P wt-dhave A: Skr mk-nth(‘d) ns: 7’ by (rule mk-nth-w}
from D obtain dt dts' where Dt: C -4 c 7s~~ dtand Ds: C =4 ws~ dts’
and dts dts= dt#dts’ by (rule inv-rs-ds-consauto)
from D2 Cok Dthave ' = dt using fun-dict-trans-tyapply blastdone
with dtshavedts2 dts= 7'#dts’ by simp
from Cok g-s Ds IHhaveB: S = mk-nths ds nnsdts’ by simp
from A BhaveS|=r (mk-nth(‘d) ns)#(mk-nths ds nns: 7'#tdts’ by (rule wt-f-cong
with dts2have S =r (mk-nth(‘d) ns)#(mk-nths ds nns: dtsby simp
thus S |=r mk-nths(d # ds) (ns# nng) : dtsby simp
ged

8.9 The Main Theorem

The main theorem, that the translation produces well-typed terms of System F, is
proved by mutual induction on derivations Bf- e: 7 ~ f and ofI" = es: 78 ~

fs. Comments are embedded in the proof that summarize the main points of each sub-
case.

theorem fg-pres-ty

Tre:rT~f—

(Vv S conceptd OKAT ~ S— (3 7". Skr f : 7/ A conceptd - 7~ 77)))

A E=es: 78w fs—

(V S conceptd’ kAT ~ S— (3 78". S| fs: s’ A conceptd” |= 75~ 78')))

(is(CFe:7~~f—2Pl7f)A (T Ees: s~ fs— ?PSI" 7sf9))
proof (induct rule fg-fg-listinduct)

— Casefg-tabs The sub-terneis translated in an environment extended with models for each
requirement in the where clause. We use the lemma from Figure 20 to show that the environment
correspondence holds for the extended environment. We then invoke the induction hypothesis
for I'(models= M) I e: o ~~ f and assemble the typing derivation for the output tdrts. (A
dsrs. f).

fix MT" o 7s ds e fand ts::var list and ws

assumeDs:conceptd’ =4 ws~+ 7sand M: conceptd” - ws ds(modelsl’) = M

and dist: distinct tsand e-f: I'(models.= M|)(tyvars:= tyvarsI' U setty - e: o ~ f
and IH: ?P (I'(models= M|)(tyvars:= tyvarsI" U set t§)) o f
show?PT (V ts where wso) (A ts. (A ds7s. f))
proof clarify
fix SassumeCok conceptd” okandg-s I" ~~ S
from g-sobtain Sv Smwherev-s conceptd” F, varsT ~» Sv
and m-s conceptd” ,,, modelsl’ ~ Smand sv tvars S= tyvarsT’
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and s-svmtys S= SmuU Svby auto
from M Cok Ds m-shave mp-sd conceptd” +,,, M ~» Smds7s A length ds= lengthrs
by (rule add-models-where-preseryes
let ?Gp=TI'( models= M |)( tyvars:= tyvarsI" U set tg)
and ?Sp= (tys= (SmuU Sv),ds s, tvars= tvars SU set t9
haveeq (Smds7s) U Sv= (SmuU Sv),dsTs by (simp only push-union-commuje
from sv v-s mp-sdhave ?Gp~~ (tys= (Smds7s) U Sy, tvars= tvars SU set t§) by auto
with eghavegp-sp ?Gp~~ ?Spby simp
from Cokhave Gpok concepts ?Gp oky simp
from Gpok gp-sp IHobtain 7’ where wt-f: ?Spkr f : 7" and s-tp concepts ?Gp- o ~ 7’
by blast
from wt-f haveft: ?Spk¢ f : 7" by simp
let ?Sp2= (tys= SmUSy, tvars= tvars SU set t9
from ft havewtf: ?SpZtys:= (tys ?Sp2,ds7s) Fr f : 7/ by simp
havedsty: set dsn dom(tys ?Sp2 = {} sorry — Can alpha-convert to get this
from wtf mp-sd dstyhavewtlf: ?Sp2-r X ds7s. f : fn s — 7/ using wt-f-absby auto
let ?Sp3= (tys= SmUSy, tvars= tvars 9
from witlf havewtlf2: ?Sp3 tvars:= tvars ?Sp3J setty 7 A ds7s. f : fnrs— 7' by simp
havetstsp set tsn tvars ?Sp3= {} sorry — alpha-convert to get this
havetsfs set tsn FTV (tys ?Sp3 = {} sorry — alpha-convert to get this
from witlf2 tstsp tsfs dishavesp3 ?Sp3~r (A ts. (Ads7s.f)): (V ts. fnTs — )
by (rule wt-f-tabg
from s-svmhave S= ?Sp3by simp
with sp3haveA: Skr (Ats. (A ds7s.f)): (V ts. fn7s— 7') by auto
from s-tphaves-tp2 conceptd™ + o ~ 7’ by simp
from Ds s-tp2 dishaveB: conceptd” -V ts where wso ~~ (V ts. fn7s — 77)
by (rule trans-all)
from ABshow (3 7. Skp Ats. (A ds7s.f): 7/ A conceptd F V ts where wso ~ )
by auto
ged
next — Casefg-tapp We must show that the output term, which is the applicafiprs’] -
mk-nths ds nni&s well typed. We use the induction hypothesis to show thatwell typed and
Lemmamk-nths-wifrom Section 8.8 to show that the resultrok-nthss well typed.
fix ' o rsts'ds e fnns ts ws
assumee-f: ' e: V tswhere wso ~ f and IH: ?PT" (V ts where wso) f
and Its: length ts= lengthTs and Ws modelsl’ = {ts—7s}ws~ ds, nns
and ts-tsp conceptd’ = 75~ 75’
show?PT ([ts—750) (f[rs] - mk-nths ds nns
proof clarify
fix SassumeCok conceptd” okandg-s I" ~» S
from Cok g-s IHobtain 7’ wherewt-f: Skp f : 7/
and alls-tp: conceptd” - V ts where wso ~ 7’ by blast
from alls-tp obtain 7"’ cswhere Rs conceptd” =4 WS~ oS
and s-tpp conceptd” - o ~ 7' and dist: distinct ts
andtp: 7' =V ts. fnos — 7' by (rule inv-trans-all2 simp
from wt-f tphavewt-f2: Sk f : V ts. fnos — 7'/ by simp
from ts-tsphavelengthrs = length7s’ by (simp add trans-length
with Its haveltsp: length ts= length7s’ by simp
from wt-f2 ltsphave St f[7s] : [ts—7s'|(fnos— 7’) by (rule wt-f-tapp
henceA: Sk f[rs'] : (fn (sub-tys tsrs’ os) — ([ts—7s']7”)) by simp
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from Rs Cok dist Its ts-tspave Rs2 conceptd” =4 {ts—7s}ws~ {ts—7s}os
by (rule subst-d$
from Ws Cok g-s RsBaveB: S=r mk-nths ds nns{ts—7s'}osby (simp add mk-nths-w}
haveeq id Er {ts—7s'}os= {ts—7s'}osby (rule f-eqs-ref)
from A B eghaveC: St (f[rs'] - mk-nths ds nis: [ts—7s']7"' by (rule wt-f-app
from s-tpp Cok dist Its ts-tshave D: conceptd” F [ts—7So ~ [ts—7s']T"
by (rule subst-trans-ty
from C D show3r'. Sk f[rs’] - mk-nths ds nns7’ A
conceptd I [ts—75|o ~ 7' by blast
ged
next— Casefg-cpt The sub-terneis translated in an environment extended with the new con-
cept. To invoke the induction hypothesis we must show that the new environment corresponds to
a System F environment, which is handled by the lemmas from Section 8.6. From the induction
hypothesis we gef(c, ci)} U conceptd - 7 ~» 7/, from which we haveonceptd - 7~ 7’
because is not permitted to appear in
fix CT and os::tyg listand os’ 7 s cand ci::concept-info
and e f and rs::where-clausend ts xs
assumeCD: ¢ ¢ dom(conceptd”) and R: conceptd” =4 s~ 7S
and ss-sspconcepty” |= oS~ o8’
and Cl: ci = (params=ts, rfn = rs, mem-nms= xs mem-tys= os))
ande-f: (I',conceptccit-e: 7~ fandIH: ?P (I',conceptc ¢ 7 f
and Ixs: length xs= lengthos and dist: distinct ts
andfrs: |J (map(Ap. J (map ftvg(snd p)) rs) C set ts
and fms | (map ftvges) C set ts
and O: (c,7) ¢ c-occurs-ty
show?PT 7 f
proof clarify
fix SassumeCok conceptd” okandg-s I" ~» S
have Cok2 conceptqT",concept c cj ok
proof simp
from R ss-ssp dist Ixs Cl frs fnfve Clok: conceptd F ci ok by (simp add wf-c)
from CD Clok Cokshowinsert(c,ci) (conceptd”) ok by (simp add wf-cs-con$
ged
from g-sobtain Sv Snwhere v-s conceptd” I, varsT' ~» Sv
and m-s conceptd” ,,, modelsl’ ~ Smand sv: tvars S= tyvarsT’
and s-svmtys S= SvU Smby auto
from v-shavev-s2 conceptqI",concept ¢ cj -, varsI’ ~» Sv
using add-concept-preserves-var-ey simp
from m-shavem-s2 conceptqT",concept ¢ ¢j ., modelsl’ ~» Sm
using add-concept-preserves-model-drwsimp
from sv v-s2 m-s2 s-svimaveg-s2 I',concept ¢ ci~ Shy auto
from Cok2 g-s2 IHobtain 7’ wherewt-f: (S f, 7/) € wt-f
and t-tp: concept{T',concept ¢ i - 7 ~ 7' by blast
from t-tp havet-tpb: insert(c, ci) (conceptd’) - 7 ~ 7' by simp
from t-tpb Ohavet-tp2: conceptd - 7 ~ 7’
by (rule remove-concept-pres-transyty
from wt-f t-tp2show3 7’. (S f, ) € wt-f A conceptd” + 7 ~ 7’ by blast
ged
next — Casefg-mdt The output term will belet d := de in f), wherede is the term for the
dictionary for the model. We use Lemmak-nths-wto show that the part of the dictionary for
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refinements is well typed. We will use the induction hypothesis to get a well-fiygedwever,
we first show that adding the model to the environment preserves the environment correspon-
dence. We invoke Lemmadd-model-preservee prove this.
fix I" os oS’ os T ¢ cid de ds dts e es ffs ns xs
assumeC: (c, ci) € conceptd” and rs-rsp. conceptd” = oS ~ o8’
and memnsxs= mem-nms cand es-fsI" = es: s~ fs
assumelH1: ?PST" os fsand memtysos = {params ci— s} (mem-tys qi
and Ds: conceptd” =4 rfn ci ~ dts
assumeW: modelsl” = {params ci—ps}rfn ci ~ ds ns
and D: de= (mk-nths ds n& fs) and Ips: length(params c) = lengthes
and IH2: ?P (I',model(c,ps,d,[])) 7 f
let ?Gp=I",model(c, ¢s, d, [])
show?PT 7 (letd:=deinf)
proof clarify
fix SassumeCok conceptd” okandg-s I" ~~ S
from Cok g-s IH1obtain os’ where
wt-fs S|=r fs: os’ and ss-sspconceptd” = os~ os’ by blast
from Cok Chavedist: distinct (params c}
using c-mem-implies-c-ok inv-wfizy blast
let ?sdts= {params oi~¢s'}dts
from Ds Cok dist Ips rs-rsppave
Ds2 conceptd’ =4 {params ci—ps}}(rfn ci) ~~ ?sdtsby (rule subst-d§
from W Cok g-s Dshave
wt-mk S |=r mk-nths ds ns?sdtsby (simp add mk-nths-w}
from wt-mk wt-fshave S =r (mk-nths ds nsQ@ fs: ?sdts@ os’
by (simp add wt-f-append
henceSkr (mk-nths ds n& fs) : (?sdts@ os’) by (rule wt-f-tuple
with D havewt-de St de: (?sdts@ os’) by simp
from Cokhave Cok2 concepts ?Gp oky simp
let ?Sp= S(tys:= (tys 9,d:(?sdtsQ os')))
from g-s Cok C rs-rsp Ds ss-ssp memtys Ips
haveg2-s ?Gp~~ ?Spby (rule add-model-preservis
from Cok2 g2-s IHZobtain 7’ where wt-f: ?Sp-¢ f : 7/
and t-tp: conceptgT",model(c,ps,d,[])) - 7 ~ 7’ by blast
havedS d ¢ dom(tys § sorry — d is fresh
from wt-de wt-f dShaveA: Skr letd:=dein f: 7/ by (rule wt-f-let)
from t-tp haveB: conceptd™ - 7 ~ 7' by simp
from ABshow3r’. (S letd:=deinf, 7’) € wt-f A conceptd + 7 ~~ 7' by auto
ged
next — Casefg-mem We take advantage of the environment correspond€&nee Sto obtain
the patho—ns—dt from the dictionaryd to the appropriate sub-dictionary for this model. We
then use Lemmadict-memberfrom Section 8.7 to extend the path to the appropriate member.
Lemmamk-nth-wtshows thamk-nth(‘d) ns’is well typed.
fix T::FGenvand 7 7s ¢ d ns néx
assumeM: (c, 7s, d, ns) € models" and F: conceptd” F* x c7s ns= 7 ns’
show?PT 7 (mk-nth(‘d) ns')
proof clarify
fix SassumeCok conceptd” okandg-s I'" ~~ S
from g-sobtain Sv Snwhere v-s conceptd” I, varsT’ ~» Sv
and m-s conceptd” ,,, modelsl’ ~ Smand sv: tvars S= tyvarsT’
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and s-svmtys S= SvU Smby auto
from M m-s model-trangbtain o dt where D: conceptd 4 ¢ 7S~ dt
and DS (d,o) € Smand P: 0 —ns—dt by blast
from DS s-svnhaveDS2 (d,o) € tys Shy auto
from F Cok D P dict-membeobtain 7’ where P2: ¢ —ns'—’
and t-tp: conceptd” - 7 ~ 7’ by blast
from DS2havewt-d: St ‘d : o by (rule wt-f-var)
from P2 wt-dhavewt-nth Sk mk-nth(‘d) ns’: 7' by (rule mk-nth-wj
from wt-nth t-tpshow
7" (S mk-nth(‘d) ns’, 7’) € wt-f A conceptd + 7 ~~ 7' by auto
ged
next — Casefg-var. Again we rely on the environment correspondeice> S This time we
use it to obtain the translation of typefor variablex.
fix I'::FGenvand 7 x assumeXT: (x,7) € varsT’
show?PT 7 (‘X)
proof clarify
fix SassumeCok conceptd” okandg-s " ~» S
from g-sobtain Sv Smwherev-s conceptd” +, varsT’ ~ Sv
and m-s conceptd” ,,, modelsl’ ~~ Smand sv: tvars S= tyvarsT’
and s-svmtys S= SvU Smby auto
from v-s XT var-mem-trans-impliesbtain 7’ where
t-tp: conceptd + 7 ~ 7' and XTP: (x,7’) € Svby blast
from XTP s-svnhave XTP2 (x,7') € tys Shy simp
from XTP2havewt-x: Sk X : 7/ by (rule wt-f-var)
from wt-x t-tpshow3 7’ Sk ‘x : 7/ A conceptd” - 7 ~ 7/ by auto
ged
next— Casefg-app This case is straightforward.
fix T osos’ 1 e es ffassumeH1: ?PT (fnos— 7) f and IH2: ?PST o' fs
and ss-spid = os= os’
show?PT 7 (f - fs)
proof clarify
fix SassumeCok conceptd” okandg-s " ~~ S
from Cok g-s IH1obtain 7' wherewt-f: Sk f : 7/
and t-tp: conceptd’ - fnos — 7 ~ 7’ by blast
from Cok g-s IH2obtain s’ where wt-fs Sl=F fs: 78’
and ss-tp conceptd” |= os’ ~ 75’ by blast
from t-tp obtain 7'/ 7s’" where ss-tpp conceptd’ = o5~ 78"’
and s-tpp conceptd - 7 ~ 7" andtp: 7' =fn 18"’ — 7"’
by (rule inv-trans-fun blast)
from tp wt-f havewt-f2: Sk f : fn7s” — 7'/ by simp
— Need to change lemnfan-dict-trans-tyto take into accound alpha-equal types
from Cok ss-tp ss-tpp ss-$paveeq id = 75’ = s’ using fun-dict-trans-tysorry
from eghaveeq2 id =r 78" = 75’ by (rule f-egs-symm
from wt-fs eghavewt-fs2 Sl=r fs: 7s’’ by (rule equal-preserves-wis
from wt-f2 wt-fs eqgzhavewt-ap Sk f - fs: 7'/ by (rule wt-f-app
from s-tpp wt-apshow3 7" Skr f - fs: 7/ A conceptd” - 7 ~ 7/ by auto
ged
next— Casefg-abs In this case the sub-termis translated in an environment extended with vari-
able bindings for the parameters. We use a lemma from Section 8.6 to show that the environment
correspondence is maintained.
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fix I osos’ 1 e f xsassumelH: ?P (', xsos) T f and ss-sspconceptd” = os~ o’
and Ixs: length xs= lengthos
from ss-ssphavelengthos = lengthos’ by (simp add trans-length
with Ixs havelxs2 length xs= lengthos’ by simp
show?PT (fnos— 7) (A xs0¢s'. f)
proof clarify
fix SassumeCok conceptd” okandg-s "~ S
haveeq conceptgI',xsos) = conceptd” by (simp add push-vars-def
have meq models(I",xscs) = modelsl” by (simp add push-vars-def
from g-sobtain Sv Smwherev-s conceptd” +, varsT ~» Sv
and m-s conceptd” ,,, modelsl’ ~ Smand sv tvars S= tyvarsT’
and s-svmtys S= SvU Smby auto
from ss-ssp v-s Ixeaveconceptd F, (varsT'),xsos~ Svyxsos'’
using add-vars-preserves-var-efyy simp
with eghavev-s2 conceptgT",xsos) I, (varsT'),xsos~ Suxsos’ by simp
from m-s eq medpavem-s2 conceptqI',xsos) k-, models(I",xso's) ~» Smby simp
have (Svxsos’) U Sm= (SvU Snj,xsos’ using push-union-commutay simp
hences-svm2 (SvU Sm),xsos’ = SmU (Svyxsos’) by auto
obtain S'wheresp S’ = (SvU Sm),xsos’ by simp
from s-svm2 sphavesp-svmS’ = SmuU (Svxsos’) by simp
let ?Sp= S(tys:= (tys 9,xsos’)
from sv v-s2 m-s2 sp-svhavel' xsos~ Stys:= S')
using trans-env-def push-vars-déf/ auto
with s-svm sfhaveg-s2 I',xsos ~ ?Spby simp
from eq Cokhave Cok2 conceptgI',xscs) ok by simp
from Cok2 g-s2 IHobtain 7’ where wt-f: ?Spt5 f : 7/
and t-tp: conceptgT',xsos) - 7 ~ 7’ by blast
from t-tp eghavet-tp2: conceptd” - 7 ~ 7' by simp
havexsds set xsn dom(tys § = {} sorry — can alpha-convert xs to get this
from wt-f xsds Ixshavewt-l: Skr A xsos'. f : fnos’ — 7/ by (rule wt-f-abg
from ss-ssp t-tp2
haveT: conceptd” I fn os — 7 ~» fn 08’ — 7' by (rule trans-fun
from wt-I T
show3d 7. Skr Axsos’. f: 7/ Aconceptd -fnos— 7~ 7/
by auto
ged
next — Casefg-boot This case is trivial.
fix I'::FGenvand b
{fixS
have St Boolean b: BoolT by (rule wt-f-boo))
moreover haveconceptd” - BoolG~~ BoolT by (rule trans-boo)
ultimately have 37’. S Boolean b: 7’ A conceptd” - BoolG~ 7’
by blast
} thus VS conceptd” kAT ~» S—
(37" SkF Boolean b: 7/ A conceptd” - BoolG~ 7’) by simp
next— Casefg-int: This case is trivial.
fix I'::FGenvand i
{ fix Shave St Integer i: IntT by (rule wt-f-int)
moreover haveconceptd” i IntG ~~ IntT by (rule trans-inj
ultimately have 37'. Sk Integer i: 7’ A conceptd” F IntG ~ 7’ by blast
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} thus VS conceptd” ok AT ~ S— (37". Skr Integer i: 7' A conceptd - IntG ~ 7)
by simp
next— Casefg-nil: This case is trivial.
fix ' showV S. conceptd" ok AT ~» S— (378" Sk=F [ : 78" A conceptd” = [] ~ 75)
proof clarify
fix ShaveA: Si=r [] : [] by (rule wt-f-nil)
haveB: conceptd |= [] ~ [] by (rule trans-nil)
from ABshow3rs’. Skr [|: 7’ A conceptd” = || ~ 75’ by auto
ged
next — Casefg-cons This case is straightforward.
fix 't rseesffs
assumelH1: VS conceptd’ oKA T ~» S— (37" Skp f : 7/ A conceptd - 7 ~ 7)
and IH2: VS conceptd” ok AT ~ S— (375" S=F fs: 78’ A conceptd” |= 75~ 75')
showV S conceptd” ok AT ~» S— (378" Skr f # fs: 78’ A conceptd” =7 # 7S~
78')
proof clarify
fix SassumeCok conceptd” okandg-s " ~~ S
from Cok g-s IH1obtain 7' wherewt-f: Sk f : 7/
and t-tp: conceptd’ - 7 ~ 7’ by blast
from Cok g-s IH2obtain 7s’ wherewt-fs S fs: 75’
and ts-tsp conceptd” = 7s~~ 75’ by blast
from wt-f wt-fshave A: S = f#fs: 7'#71s’ by (rule wt-f-cong
from t-tp ts-tsphaveB: conceptd” = 7#7s ~ 7'#7s’ by (rule trans-con$
from A Bshow3rs’. Skr f # fs: 78’ A conceptd” = 7 # s~ 75’ by auto
ged
ged

9 Conclusion

The main contribution of this report is the development of a language, nafnetidt
captures the essence of concepts and thus language support for generic programming.
We present a formal type system for the language and provide semantics via a transla-
tion to System F. We prove the translation preserves typing, and thus type soundness
for FS.

The language definition was formalized using the Isabelle proof assistant, and the proof
of soundness for the translation was written in the Isar language and verified using
Isabelle. This was a fairly difficult proof engineering task, but the definition‘oMas
sharpened considerably as a result. One aspect of the proof we did not formalize in
Isabelle was the use of the variable convention: we assumed that bound variable could
be renamed. The standard solution to this issue is to change to De Bruijn indices. We
chose not to use De Bruijn indices for this report because they are more difficult to
reason about. However, rewriting the proof to use De Bruijn indices should now be a
straightforward, but tedious, task.

There are several language features that are important for generic programming that
we do not cover in this report. Those features include:
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Associated TypesPart 2 of this report will extend Fwith associated types.

Implicit instantiation of type abstractions. Ideally we would introduce a subsump-
tion rule based on Mitchell’s containment relation [31]. However, that relation is unde-
cidable [47]. There are two interesting restrictions that are decidable: no coercion un-
der a function arrow [25] and restriction of type arguments to monomorphic types [36].
We plan further investigation in this area.

Statically resolved function overloading as is found in € and Java. This is needed
to remove the clutter of model member access suchMenoid(t)>.binary_op.

Named models as in [20]. This provides a mechanism for managing overlapping
models, and is a straightforward addition 6.F

Parameterized modelgequivalent to parameterized instances in Haskell) are impor-
tant for models that use parameterized type sudistas >.

Defaults for concept membergas in Haskell) provide a mechanism for implementing
arich interface in terms of a few functions.

Algorithm specialization is used in & to provide automatic dispatching to different
versions of an algorithm based on properties of a type, such as an iterator providing ran-
dom access. The natural way to add this towould be to have function overloading
based on the where clauses of generic functions [17].
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