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Abstract— Instruments and sensors and their accompanying
actuators are essential to the conduct of scientific research. In
many cases they provide observations in electronic format and
can be connected to computer networks with varying degrees
of remote interactivity. These devices vary in their architectures
and type of data they capture and may generate data at various
rates. In this paper we present an overview of the design goals and
initial implementation of the Common Instrument Middleware
Architecture (CIMA), a framework for making instruments and
sensors network accessible in a standards-based, uniform way,
and for for interacting remotely with instruments and the data
they produce. Some of the issues CIMA addresses include:
flexibility in network transport, efficient and high throughput
data transport, the availability (or lack of) computational, storage
and networking resources at the instrument or sensor platform,
evolution of instrument design, and reuse of data acquisition and
processing codes.1

I. I NTRODUCTION

Grid computing [1] is proving to be a useful paradigm
for organizing and harnessing distributed resources. By pro-
visioning the fruits of fundamental computer science research
as services for such as scheduling and authentication, it is
bringing distributed computing into the everyday lives of
working scientists. As the convergence between web services
and grid computing continues in standards such as the WS-
Resource Framework, we expect to see this trend continue,
aided by the complementary nature of web services and grid
computing.

With this goal, current grid computing research [2][3] under-
standably focuses primarily on the marshalling of computation
and data, and their integration at loci of analysis and synthesis.
This focus has spawned the notion of computation and data
Grids, respectively. Less well investigated, however, are the
sources themselves of data, such as scientific instruments and
sensors. These are still largely off-line to downstream grid
components, and are poorly integrated as grid entities. This is
acceptable if data is viewed as a static resource after whose
archival only does scientific activity begin.

1This work is partially supported by NSF SCI-0330568.

In reality, however, the collection of data is as much a
part of the scientific process as its analysis. Data collection
is not a rote procedure, and often interacts profoundly with
interpretation and analysis, whether by human or machine.
Ignoring this interaction can lead to inefficient use of computa-
tional and human resources, and limits the development of new
cyberinfrastructure techniques such as Dynamic Data-Driven
Application Simulations (DDDAS) [4], autonomic computing,
and software agents.The disadvantages of keeping instruments
off the grid are further exacerbated by three trends in sci-
entific research: (1) increasing investments in geographically
extended, international collaborations organized around large
shared instrument resources, (2) increasing real-time use of
instruments by remote researchers both for first-look activities
and pipelined data handling, and (3) increasing deployments
of large-scale sensor networks.

We thus see a need for bringing instruments2 on the grid as
first-class members, and the Instrument Middleware Project
seeks to facilitate this task by researching and developing
a set of standards and software components. Together these
will form the Common Instrument Middleware Architecture
(CIMA), which can be then used to grid-enable a variety
of instruments, ranging from large shared resources to tiny
wireless controllers such as the Berkeley Mote sensor pack-
age [5][6][7], as well as embedded PC-104 and VME-based
controller systems.

By promulgating a common set of concepts and interfaces,
we hope to increase interoperability between instruments and
software. This interoperability will extend along a number
of different axes. For example, data analysis software can
be insulated from different versions of functionally similar
instruments, thereby increasing the flexibility and durability
of instrument software. Common interfaces will also promote
interdisciplinary collaboration by facilitating compatibility be-
tween applications and instruments developed by different
communities. A common instrument middleware will also

2We consider each instrument to consist of a set of sensors arranged
hierarchically and physically grouped together on a platform with spatial
location and orientation. However, we will make references to instruments
and sensors interchangeably.



extend the accessibility of instruments to new classes of users,
such as high schools and minority-serving institutions.

CIMA is based on the emerging Open Grid Services Ar-
chitecture (OGSA) [8] being developed by the Global Grid
Forum (GGF) [9]. OGSA includes the Open Grid Services
Infrastructure (OGSI) [8], which is used to define a common
interface to all OGSA Grid services, and the OGSA Grid
Data Service Specification [10], which defines an interface to
access data. OGSI uses the web Service Definition Language
(WSDL) [11] to specify interfaces to services.

Currently CIMA is implemented in support of an X-ray
crystallography application at the Indiana University Molec-
ular Structure Center (IUMSC) and several other crystallo-
graphic laboratories. CIMA interfaces to a robotic optical
telescope are also being developed for the observatory at
the Morgan-Monroe Station located at Morgan-Monroe State
Forest (MMSF).

The paper is organized as follows. Section II gives the
design goals of CIMA, while in section III the approach taken
to achieve these goals are described. Sections IV and V
present the architecture and implementation, respectively. A
case study is given in section VI and future work on CIMA
is proposed in section VII. Section VIII briefly describes the
related work while section IX concludes with a summary of
the work.

II. D ESIGN GOALS

We intend CIMA to be usable in a wide variety of scientific
scenarios, across a wide variety of instruments and sensors.
The goals were derived from considering a representative
subset of plausible scenarios.

Significant to the design of CIMA is the difference between
the two similar, but distinct scenarios:remote accessand
distributed operation. Remote access allows a scientist work-
ing off-site to access the instrument. Full support for remote
access would allow such a scientist to perform all the tasks
that she could perform if she were on-site. Fundamentally,
however, the instrument is still administratively, institutionally,
and technologically conventional; with all operational aspects
such as control, data, and analysis primarily handled at a
centralized location.

Distributed operation, on the other hand, is a more pro-
found development in scientific instruments. In distributed
operation, the functions of the conventional instrument site
itself are distributed within a virtual organization that may
consist of the scientist’s institution, a minimal instrument site,
and third parties such as a data warehousing site. This has
the potential to significantly change the way instruments are
developed and encourage innovation, by essentially allowing
many researchers to simultaneously investigate new software
tools and infrastructure. By applying the appropriate grid
technologies, each of these researchers can essentially interact
with the instrument as if she were the sole user, and explore
innovations that in a conventional, centralized setting, would
have an unacceptable impact on other users.

Some of the requirements for distributed operation that we
have identified for inclusion in CIMA are listed below.

Boot-strappable. A central design requirement was that
CIMA applications must be able to develop an operational
model of the instrument from a minimum of external knowl-
edge, which requires that each function of the instrument
be completely and accurately described. This requirement
will encourage the kind of loose-coupling that promotes
interoperability, thus reducing the burden of managing and
administering a large variety of instruments.

Interoperable. Interoperability is very useful in collab-
orations, where one research group needs access togrid-
enabled instruments maintained by another group through
the architecture. In order to achieve this, the specification
of a sensor should be complete enough so that third party
applications can access it without additional information. Also,
minor changes to sensor functionality should not require deep
code changes in acquisition or analysis packages.

Another goal in CIMA was to make the functionality inde-
pendent of the data structures being used. This was achieved
by using aparcel, which is a XML document of the data and
meta data involved. More details of the “parcel” can be found
in Section IV-E.

Efficient. Some instruments and sensors, especially when
aggregated, may generate data at high rates. Efficient transport
is thus important for CIMA. If the data rate is higher than the
rate at which the system can transfer them, then there could be
data loss or system crashes. Even though buffering could be
used to handle mismatches between the data rates for a short
period, it will not be possible to operate indefinitely, since the
buffers would overflow.

Lightweight. Sensors may need to be deployed at locations
subject to electrical and processing power constraints. For
example, a seismic sensor located underwater in deep sea will
have all these constraints in addition to bandwidth limitations.
While it is unlikely that a computer will be associated with
each of such sensors, computers should be situated as closely
as possible. The computer located in such a remote area may
have limited processing power and memory. Therefore, CIMA
implementations should require a minimum of computing,
storage, and network resources. Although the usual limiting
resource is power, network bandwidth constraints or inter-
mittent connectivity may create secondary requirements for
additional short term or persistent storage at the sensor. This
creates tradeoffs in memory allocation between data buffers
and program address space.

Support for intermediaries. Intermediaries are important
for signal processing or buffering functions between a sensor
and the consumer. This off-loads the work of serving multiple
consumers from the sensor to an intermediary. The interme-
diary can have one input stream from the sensor and multiple
output streams for the consumers. Intermediary also can act
as security gateways for the sensor node by allowing only
particular intermediaries to connect to it. Also, filters can be
implemented at the intermediate nodes.
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III. A PPROACH

We have taken several approaches to meet the goals. These
are outlined in the following sub sections.

A. Layered Specification

To provide reusability and interoperability of instrument
interfaces, we strive for layered specifications. For example,
a lower-layer specification corresponding to a pressure sensor
should be reusable with that corresponding to a temperature
sensor, with minimal modifications, for example. Then an
application written for one sensor would have a fair degree
of functionality (i.e., require minimal code changes) even
with another sensor. The ultimate goal of this approach is to
promote the reuse of code components between applications.

B. Plug-Ins

While the processing required for sending and receiving data
is consistent among different type of instruments, different
instruments and sensors may require different code to read;
and the construction and interpretation of data messages would
be specific to each of them. We use plug-ins to perform these
specific functions. Therefore, a plug-in would be required at
the data originating point as well as at the final destination.

Intermediaries, which just forward every incoming message,
do not need to have a plug-in as they are not required to
interpret the message. However, an intermediary that needs to
perform some processing of the message, such as calculate the
average of data values and send only the result, would need
to have a plug-in to perform such tasks.

C. Loose Coupling

Loose-coupling encourages interoperability by minimizing
the dependencies between the system components, such as
sensor, data consumer, and intermediaries. This loose-coupling
is achieved by implementing a document-oriented message
passing model. Each message, whether data or control, would
be an XML document containing the data along with some
metadata required to interpret them.

D. Ontology

One shortcoming of instruments and sensors is that the
applications that use them (e.g., data acquisition codes) must
have a complete operational model of the instruments and
sensors they work with built in as lines of code. This makes
maintaining investments in these codes difficult and expensive
when the underlying instrument hardware is improved. A
primary design goal for this project is to externalize the instru-
ment description so that applications can build an operational
model “on the fly”. This approach makes it possible to preserve
investments in data acquisition codes as instrument hardware
evolves, and to allow the same code to be used with several
similar types of instruments or sensors. This is particularly
important in situations where the instrument or sensors and
the related acquisition and analysis codes are in their early
stages of development and undergoing rapid change.

E. Hierarchical

Instruments are hierarchical in nature. An example would
be a crystallography application consisting of a positioning
system (goniostat), a CCD array for imaging, and a cryo-
cooling unit to preserve the crystal being studied. The entire
ensemble can be considered as a hierarchical instrument
containing a detector, positioning system and environmental
controls. Another example from optical astronomy would be
to partition the observatory into dome controls, environmental
conditions, telescope positioning, optics selection, and imaging
detectors.

Client applications are simplified if they can access one
stream of data as opposed to multiple streams. This could be
achieved if the top level instrument can aggregate the data
from lower level instruments. The parent instrument should
be able to provide information about its children such as their
interfaces, data rates and other meta data, so that a client
application may query the parent and retrieve them.

In CIMA, instruments may be arranged as a hierarchy.
In this arrangement a parent instrument is considered to be
composed of multiple child instruments in a nested manner,
with no limit to the depth of nesting or to the actual location
of the child components. This is achieved using plug-ins at
each parent instrument. The plug-in aggregates data from its
child instruments, re-sending the composite as if all the data
is being generated by the parent.

F. Push and Pull Models

Data messages may be “pulled” on demand at the cost of a
request-response cycle, or they can be directly “pushed” when
scheduled (or as available) from the sensor to the receiver
using one-way messages. Both models are useful, depending
on the application requirements, with the pull model usually
being more convenient, but the push model usually being more
efficient. Since the push model does not require a request-
response, multiple messages can be batched into single system
call, for example. CIMA supports both models.

In the push model, the consumer maintain some type of
end-point to which the sensor can stream-in data. Since we are
grid-enabling sensors, the most natural choice for this endpoint
would be a grid service endpoint.

However, if the consumer is only interested in receiving
a single value (current value) from the sensor (e.g,. current
temperature), then a pull-model would be more suitable.

IV. A RCHITECTURE

A. Instrument Model

Our current instrument model is shown in Figure 1. An
instrument consists of one or more sensors. Each sensor may
serve zero or more consumers. A consumer can receive data
from one or more sensors. The communication between a
sensor and a consumer forms a virtual link, which we call
a channel. We are currently also designing a set of default
ports.
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Fig. 1. Instrument Model

Fig. 2. Communication via the Channel

B. Channels

The application consists ofchannelsandplug-in modules. A
channel provides a generic framework for the communication
while the plug-ins implement application-specific functionali-
ties.

As shown in Figure 2, the channel handles all the commu-
nications between the sensor and the data consumer. Specific
plug-in modules, both at the sensor end and the consumer end,
implement the sensor-specific behavior.

The Channel has two modes of operation, namely the Source
(sensor end) and the Sink (consumer end). Each mode runs
a grid service instance for receiving messages (control and
data) from the other. The Channel Source’s grid service mainly
handles control information from the data consumer, such
as registering with the sensor to receive sensor data and
unregistering to stop receiving data. It also responds to one-
time requests for sensor data. The grid service at the Channel
Sink receives streaming data and status messages such as
“sensor data not available” from the sensor.

A data consumer can chose to receive a single data value
(request-response or pull model) or continuously receive data
values (streaming or push model). The consumer must have a
grid service at its end for the push model, while this is not a
requirement in the case of the pull model.

In the pull model, the consumer sends a request for sensor
data and the sensor responds with the current value of its data.
However, in push model, first the consumer registers with the
sensor to receive data, indicating the data rate required and its

port number to which it wants the data to be sent.The sensor
then starts a thread which will continuously poll its sensor data
at the requested rate and send them to the requested port at the
consumer. The thread will continue to run until it receives an
un-register request from the consumer or after a given number
of attempts to send data fails.

In push model, the consumer also specifies the interval
between two data messages. The sensor then starts sending
messages at the rate determined by this interval. For example,
a temperature reading can be sent every five seconds. However,
If the consumer registers with a zero interval, then data is sent
as and when they are available. This methods is used when
the rate at which data being generated is not known.

C. Communication Protocols

We have used SOAP [12], since it is the most widely
accepted standard for web Services. The current implemen-
tation of the channel uses gSOAP [13] to handle the serial-
ization/deserialization of SOAP messages and the communi-
cation. HTTP is used as the transport layer.

In addition to using HTTP, we have also developed proto-
type systems which uses Antelope [14] and Binary XML for
Scientific Applications (BXSA), respectively for the transport
layer. Antelope provides an Object Ring Buffer (ORB), which
enables buffering between the instrument and the ultimate
receiver. The buffer is useful to compensate for mismatches
between the sender’s and receiver’s data rates as well as to
store data temporarily in cases where the receiver goes offline
for short periods.

In BXSA, an XML infoset [15] is sent as binary data,
as opposed to the usual textual format. This could signifi-
cantly improve performance when sending large amounts of
numerical data. Also, BXSA provides the same interfaces
available for accessing textual XML, eliminating the need for
separate APIs, data model and a type system. We are looking
at possibilities of using BXSA with CIMA.

D. Data Structures

Different sensors generate data in different formats. For
example, a temperature sensor data would typically be a
double precision value while in the case of a image detector,
it would be a binary file of the image.

One approach for accommodating different types of data
formats is to provide generic methods such asSendDouble(),
SendBinary(), SendString(), etc corresponding to each data
type. This would enable the Application Programmers to use
the appropriate methods depending on their sensor data.

This approach has several disadvantages. The first is that the
API becomes dense with a method having to be implemented
for each data type. Also, providing support for a new data
type would require adding new methods, thereby changing the
interface.

Another problem with this approach surfaces if there is
an intermediary between the sensor and the end consumer,
as shown in Figure 3. A given sensor or a consumer may
implement only the methods corresponding to the data types

4



Fig. 3. Intermediary between sensor and end consumer

they use. In contrast, the intermediary will have to implement
the methods corresponding to all the data types. The effort for
this would not be worth it if the intermediary’s task is only
forwarding data.

Therefore, it was required to have some common data type,
which can be made transparent to those that do not need to
interpret the data. We came up with the “Parcel” (section IV-
E) structure, which is an XML document, as a solution to this
problem.

E. Parcel

The data out of a channel should be presented in a manner
such that intermediaries can handle it without specific knowl-
edge of the data. To enable this, we wrap data in an abstraction
known as a parcel.

A Parcel is an XML document, which contains data and
meta data about a message being sent. It may contain control
information or data.

A Parcel may contain the following elements:

• Type is a URN that uniquely identifies the type of the
parcel. Application-level parcel handlers will recognize
the type of the parcel, and unwrap it. For example, JPEG
might be a parcel type.

• ID is given as a URI.
• Location indicates the location of the parcel data. If the

data is contained within the parcel, this field would be
inline.

• Encoding indicates the encoding of the data. Intermedi-
aries use this to know how the data must be handled.
Binary is one encoding.

• Body is the actual parcel data, if the location isinline.

All the fields except for location and body (if location is
inline) are optional.

Following is an example of acontrol message, where a
consumer registers with a sensor to receive streaming data
every 5 seconds.

<Parcel>
<ID>http://<consumer-ip>/<consumer-port>

/2005/02/25/0001</ID>
<Type>http://www.cs.indiana.edu

/2004/register</Type>
<Descriptor>

<XMLParser>libxml</XMLParser>
</Descriptor>
<Location>inline</Location>
<Encoding>XML</Encoding>
<Body>

<Time>2005-02-25T11:31:22Z</Time>
<Consumer>

<Host>tiger.cs.indiana.edu</Host>
<Port>2000</Port>

</Consumer>
<DataInterval>5</DataInterval>

</Body>

</Parcel>

Following is an example of adata message, containing
temperature information.

<Parcel>
<ID>http://<sensor-ip>/<sensor-port>

/2005/02/25/0991</ID>
<Type>http://www.cs.indiana.edu

/2004/temperature</Type>
<Descriptor>

<XMLParser>libxml</XMLParser>
</Descriptor>
<Location>inline</Location>
<Encoding>XML</Encoding>
<Body>

<Time>2005-02-25T17:24:30Z</Time>
<Temperature>23.453</Temperature>

</Body>
</Parcel>

F. Sensor Ontology

A key objective of the CIMA approach is to make the
instrument or sensor self describing and to push the production
of metadata about what the instrument is producing as far
toward the instrument. The former objective, self description,
assists components downstream in the data acquisition and
reduction process to understand and manage the instrument
or sensor effectively (e.g., apply appropriate conversions and
calibrations). The latter objective, annotating the data coming
from an instrument, provides information needed for proper
curation of the data. The development of these components
is based on a CIMA ontology for instruments and sensors,
which is based on the OWL Description Logic formalism.
OWL-DL was chosen for several reasons: it makes the de-
scription amenable to machine reasoning tasks, it facilitates
distributed development and extension of the CIMA ontology
and, through inferencing, makes it possible to check the
consistency of the ontology even across multiple developers
and sites. In addition, XML Schema approaches and products
such as sensorML (http://vast.nsstc.uah.edu/SensorML/) and
ISO schema for location (ISO-19115) and time (ISO-19108)
can be leveraged as XML Schema datatypes from within the
RDF specification of the ontology, i.e., instances of the CIMA
ontology can refer to resources that are XML documents based
on these Schemata or can use types from XML Schemata to
type RDF resources.

The CIMA instrument model consists of several levels as
illustrated Figure 4.

At the outer level is the observatory, the location of one or
more instruments with related functionality. An example of an
observatory is a crystallography bay containing a goniostat a
CCD array, and several temperature probes used to collect data
for an X-ray diffraction crystallography experiment. Within
the observatory are one or more instruments. Instruments are
devices designed to provide a specific set of functionality,
such as the goniostat or CCD in the example. Within the
instrument there may be several sensors which provide obser-
vations of measurable quantities and actuators which control
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Fig. 4. Overview of the CIMA instrument ontology model

Fig. 5. Some of the OWL classes used to describe a CIMA instrument

the instrument. In the example, the individual thermocouples
and hygrometers are sensors. The goniostat positioning system
is an example of an actuator.

The class structure of a portion of the ontology is shown in
Figure 5. In addition to the Observatory, Instrument, Sensor
and Actuator classes there are others to describe the nature of
the sensor’s location, observables, their units and the details
of how a sensor is accessed. Each sensor and actuator has
an associated response model that provides information about
the accuracy, dynamic range, resolution, and calibration infor-
mation. In the current model each instrument is represented
through a web Services interface with associated WSDL.
The instrument’s WSDL along with details of ports and
operations is available as instances of the WSDLInterface and
WSDLInterfacePort classes in the ontology.

Section VI-B illustrates how a thermocouple might be
represented.

Fig. 6. Source and Sink classes

Fig. 7. Categorizing modules into layers

V. I MPLEMENTATION

A. Plug-ins

Plug-ins are implemented using polymorphism. Source and
Sink are base classes having the virtual methodsread() and
receive(), respectively (Figure 6). These methods need to be
overridden by the plug-in developer such that they behave
appropriately according to the data involved. For example, in
a plug-in developed for a Labjack [16] board (LabjackSource
class), read() constructs and returns a parcel from the data
read from the sensor connected to the Labjack board. A
corresponding plug-in is required at the receiver end to extract
the data.

Once the plug-ins are developed, writing sensor and con-
sumer programs would be a trivial task.

If an intermediary is only involved in parcel forwarding, a
plug-in is not required, since the base class methods provide
the required functionality. However, if the intermediary must
perform some processing of the data before forwarding, such
as inserting the time at which the parcel was received, a plug-
in with the required functionality is required.

B. Streaming Mode

An in-memory table of consumer information, such as URL
and port, is maintained by the channel at the sensor end. This
is used in push mode of operation. Entries are inserted into the
table when consumers register with the sensor and removed
when they un-register.

C. Modules

In order to make components as generic and reusable
as possible, we separated the functionality among several
modules. The modules were categorized in to different layers
as shown in Figure 7.

The Communication modulemainly handles receiving re-
quests for sensor data and maintaining a list of interested (reg-
istered) consumers. It also performs encoding and decoding of
messages. The functionality is independent of the application
domain and the data being sent.
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The Instrument Representation (IR) module, as the name
suggests, provides the functionalities to represent an instru-
ment. It provides an interface for the other modules to interact
with the physical sensor. For example, an IR for a temperature
sensor would have an API to get the current temperature.
Another example is if the IR represents a camera, it would
provide an API to get the path name of the current image file.

In most cases, the raw data read from the IR would need
to be modified to some other value or format. This is handled
by thePre-processing module. For example, if the IR for the
temperature sensor returns the Kelvin figure, it may need to be
converted to the corresponding Celsius value before sending
it over. In the case of an IR for binary data, the binary file
may need to be Base64 encoded [17].

The Application Specific moduleis the least generic one
among all the modules. It provides functionalities such as
storing the received data and meta data onto a database, saving
binary files at a given location, deciding on which ports to run
a grid service on a given machine, etc.

VI. CASE STUDIES

A. Crystallography System

The Crystallography system consists of a CCD image detec-
tor and several sensors measuring environmental conditions,
such as temperature, pressure and humidity. There is also a
sensor to monitor the level of liquid nitrogen, which is used
for cooling the crystals. All these detectors and sensors are
each accessed by an Instrument Representation (IR) in CIMA.

A crystallographer registers with each of the IR’s in order
to receive CCD images and the corresponding sensor readings.
The IR’s will then start sending the required information at the
requested rate and to the requested endpoint. These are stored
in a database at the receiver’s end and are made accessible
from a browser via a web portal.

B. Thermocouple Example

This section illustrates how a thermocouple might be de-
scribed in RDF.

Consider the following example, where a thermocouple is
used to measure temperature, through a voltage measurement
and a calibration curve. This calibration, and hence the mea-
sured temperature, may be derived from standard tables for the
type of thermocouple used, or through a carefully performed
manual calibration against a primary standard. The description
of such a thermocouple in RDF might look something like the
following:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<!-- Default namespace is "http://cima.org/" -->
<rdf:RDF

xmlns="http://cima.org/"
xmlns:rdf="&rdf;"
xmlns:rdfs="&rdfs;">

<Description
my_key="CIMA:A7DB-2287-E7DB-6745"
my_name="TC7443"/>

<WSDL
uri="http://kaplab.iu.edu/TC_service.wsdl"
uri_namespace="http://kaplab.iu.edu

/ns/TC_service">

<binding_template xml:space=’preserve’>
<!-- CDATA BLOCK OF WSDL -->

</binding_template>
</WSDL>
<Characteristics

idesc="K-type thermocouple on 16 bit A/D"/>
<Calibration

Port_name="thermocouple_reading"
type="vector">

<value>
30, 1.179, 35, 1.397, 40, 1.606,
45, 1.813, 50, 2.020, 55, 2.225

</value>
</Calibration>
<port

data_format="u16"
name="thermocouple_reading"
signal="voltage"
port_direction="OUT"
port_type="INTEGER"/>

</rdf:RDF>

The schema consists of four main parts: a description that
identifies the specific instrument platform, information about
how to use the service (a WSDL document for the service or a
URI pointer to it), calibration information for this instrument,
and the characteristics of the data produced by each channel.
The latter may seem redundant to the WSDL document but
it provides a place to put semantic information about the
instrument’s control and data channels and additional type
information which may be necessary if WSDL types are too
opaque for application code to parse.

After the application has queried the instrument for a de-
scription, it can parse the description to extract an operational
model of the underlying instrument and information about
how to interact with the instrument’s service ports. In this
example the application finds that there is one data (OUT)
port that provides a voltage signal as a 16 bit unsigned
integer. Furthermore the application can consult the CIMA
RDF Schema to determine what voltage means and how best
to handle this data in a computational or user interface context.

VII. F UTURE WORK

A main concern in any distributed systems would be secu-
rity. The data would need to be protected from unauthorized
access if they involve sensitive research data or if there are
privacy issues, such as in the case of a series of images of a
laboratory environment.

At a minimum, transport level security will be provided
using Secure Socket Layers [18]. The consumers would need
to sign their messages requesting for sensor data. The sensor
would also sign the messages with data, to ensure the authen-
ticity of the sender, as well as the integrity of messages.

Another additional feature would be filtering data depending
on some criteria. The criteria will be based on the data values,
the sender, and/or the recipient. For example, a consumer may
be interested in receiving temperature values only if the values
are greater than 100 F.

Filter conditions can be specified and processed using
XPath [19]. Since the data messages are XML documents,
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an XPath processor can easily filter the messages given the
query.

VIII. R ELATED WORK

Distributed real-time systems using TAO CORBA [20].
The TAO ORB is a leading effort to incorporate real-time
functionality into CORBA, especially to support avionics
applications. As such TAO emphasizes bounded (low) latency
communications and fault tolerance. Although CORBA is
a general specification, many implementation-specific details
make interoperability difficult. We believe that web services
provide a more open and interoperable basis for building
distributed computing systems, and that performance issues
can be addressed through binary XML standards.

Architecture for Accessing Data Streams on the
Grid [21]. Plale has developed a flexible architecture for
real-time access to streaming data. She develops a taxonomy
for data streams which can be used to determine when a
data stream system can be characterized as a data resource
accessible through a Grid Data Service. She then realizes such
a service through the dQUOB [22] real-time query system. We
envision that CIMA can be used to shield such a system from
the peculiarities of individual instruments.

EPICS [23]. The Experimental Physics and Industrial Con-
trol System (EPICS), developed at the Accelerator Technology
(AT-8) group at Los Alamos National Lab) and the Advanced
Photon Source (APS) at Argonne National Lab, consists of
an architecture for building scalable control systems and a
collection of code and documentation comprising a software
toolkit. EPICS is based on the idea of virtual channels between
acquisition code and the underlying hardware. Although well
designed for high data rate applications its complexity has
limited use outside of accelerator facilities. A preliminary
mapping of EPICS process variables to a CIMA interface has
been designed.

Astronomical Instrument Markup Language
(AIML) [24]. AIML is a NASA project to create an
XML DTD for the HAWC airborne camera and related
systems [25]. The aim was to create a representation of
the control and data systems primarily as a specifications
document to coordinate work between hardware and software
engineering groups. AIML was also used to develop
simulations of the hardware and to generate user interfaces.
The vocabulary used in the AIML DTD was drawn primarily
from the hardware engineering effort and included a large
percentage of project-specific terminology, but the project
has laid some useful foundations for developing general
ontologies for instruments.

Universal Plug and Play (UPnP) [26][27]. UPnP is a
Microsoft standard to allow devices to interact over an IP
network using a zero configuration approach. Basics include
using DHCP to acquire an address, a network registry scheme
for service discovery based on pre-assigned device codes, and
an on-line documentation system to allow users to map device
codes to capabilities. The Salutation Consortium [28] is similar
effort by Japanese gadget makers and NIST.

IX. SUMMARY

The wide usage of instruments and sensors has spawned
the need for re-usable middleware architectures, with the
ability to connect instruments with minimal configurations. In
this paper we presented the Common Instrument Middleware
Architecture (CIMA), which provides a framework for such
requirements.

The main objective CIMA was grid-enabling instruments.
We have implemented Instrument Representations (IRs) with
grid service interfaces. The instruments are self describing
with the aid of ontologies.

CIMA is currently implemented in beta testing mode in a
Crystallography application at the Indiana University Molecu-
lar Structure Center with applications to other instruments and
sensors in development.
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