
ParaXML: A Parallel XML Processing Model on the Multicore CPUs

Wei Lu, Dennis Gannon

Computer Science Department, Indiana University
{welu,gannon}@cs.indiana.edu

Abstract

XML has emerged as the de facto standard interoperable
data format for the web service, the database and docu-
ment processing systems. The processing of the XML doc-
uments, however, has been recognized as the performance
bottleneck in those systems; as a result the demand for high-
performance XML processing grows rapidly. On the hard-
ware front, the multicore processor is increasingly becom-
ing available on desktop-computing machines with quad-
core shipping now and 16 core system within two or three
years. Unfortunately almost all of the present XML pro-
cessing algorithms are still using serial processing model,
thus being unable to take advantage of the multicore re-
source. We believe a parallel XML processing model should
be a cost-effective solution for the XML performance issue
in the multicore era. In this paper, we present a general-
purpose parallel XML processing model, ParaXML, de-
signed for multicore CPUs. General speaking, ParaXML
treats the XML document as the general tree structure and
the XML processing task as the extension from the parallel
tree traversal algorithm for the classic discrete optmization
problems. The XML processing, however, has quite distinct
characteristics from the classic discrete optmization prob-
lems, thus demanding the special treatments and the fine-
grained tuning technologies. ParaXML internally adopts a
fine-grained work-stealing scheme to dynamically control
the load balance among the parallel-running threads, and
a novel approach is also introduced to trace the stealing
actions and the running results to facilitate the reducing of
those parallel-running results. Besides, ParaXML provides
the tuning options, particularly for the large XML docu-
ments, to control the trade-off between the parallelism gain
and task-partitioning overhead. To show the feasibility and
effectiveness of the ParaXML model, we demonstrate our
parallel implementations of three fundamental XML pro-
cessing tasks based on the ParaXML: traversal, serializing
and parsing. The empirical study in this paper shows that
those parallel implementations substantially improved the

performance and scale well on a multicore machine.

1 Introduction

As manufacturers have encountered difficulties to further
exponential increases in clock speeds, they are increasingly
utilizing the march of Moore’s law to provide multiple cores
on a single chip. The multicore processor is rapidly becom-
ing the mainstream on desktop-computing machines with
quad-core shipping now and 16 core system within two or
three years. Tomorrows computers will have more cores
rather than exponentially faster clock speeds. The architec-
tural changes benefit only those software with thread level
concurrency in mind and therefore have little value for most
existing software. Consequently, the good time when peo-
ple merely rely on the faster CPU clock to speed up the
software execution is over [25], the software must exploit
the parallelism and concurrency somehow so that it can take
advantage of multicore resource.

By overcoming the problems of syntactic and lexi-
cal interoperability, the acceptance of XML as the lingua
franca for information exchange has freed and energized re-
searchers to focus on the more difficult (and fundamental)
issues in large-scale systems. The very characteristics of
XML that have led to its success, however, such as its ver-
bose and self-descriptive nature, can incur significant per-
formance penalties. The XML document processing has
been identified as the performance bottleneck for the large
scale distributed systems and database systems [5, 16]. Here
the processing refers not only to the basic XML serializa-
tion/parsing, but also to various higher level tasks, such as
Schema validation, XPath query and XSLT transformation.

Various techniques have been proposed to improve the
performance of XML processing, ranging from the schema-
specific solutions [15, 6] to the streaming model [27], to the
hardware acceleration [26]. However those approaches are
either designed for a specific task, or assuming the exis-
tence of some preconditions, such as the streaming context.
Moreover they are inherently designed to be serial without

1

any parallelism in mind, thus unable to take advantage of
the multicore CPUs. Hence, we believe a novel XML pro-
cessing model with the ability of exploiting the parallelism
is a more general and cost-effective solution in this multi-
core era.

Parallelism could be used in a number of ways. One
approach would be to use pipelining. In this approach,
XML processing could be divided into a number of stages.
Each stage would be executed by a different core. This ap-
proach may provide speedup, but software pipelining is of-
ten hard to scale well, due to synchronization, load-balance
and memory access costs. The more promising and scal-
able one is a data-parallel approach. Here,the XML docu-
ment would be divided into some number of partitions, and
each core would work on the partitions independently. As
all the partitions are processed, the parallel-running results
are merged. A XML document essentially represents a tree-
structured data model, which usually is implemented in the
Document Object Model (DOM), and the document self is
just the serialization of this tree model in a depth-first, left-
to-right traversing order (i.e., the document order). There-
fore our idea is if we can adopt those data-parallel based tree
traversal formulas [20, 9] on the XML documents we can
obtain the parallel XML processing algorithms naturally.

In this paper, we introduce ParaXML, a data-parallel
XML processing model designed for the multicore sys-
tem. ParaXML is not just for a specific XML processing
task. Instead, it is a general-purpose model severing as the
programming paradigm for the potential parallelizations of
various XML tasks. ParaXML originates in the parallel
tree traversal solutions of the discrete optimization prob-
lems [20, 10]; it treats the XML document as the general
tree structure and the processing on the XML as the ex-
tension of the parallel tree traversal algorithm. Internally,
ParaXML adopts a work-stealing engine, implemented in
in C#, to dynamically partition the task and control the
load balance among the multiple threads, which process dis-
jointed partitions of the XML document in parallel.

The XML processing, however, has quite distinct charac-
teristics from those discrete optimization problems. Unlike
the discrete optimization problems, XML processing usu-
ally needs a more complicated result handling procedure,
such as result accumulation. As a result, ParaXML intro-
duced a novel way to trace the stealing actions and paral-
lel running results so that the final result can be found and
reduced. Moreover, compared with the discrete optimiza-
tion problems the XML processing has the much smaller
but more regular problem space, thus being more sensi-
tive to the potential synchronization overhead. Therefore
ParaXML provides several fine tuning technologies to con-
trol the trade-off between the parallelism and the related
overhead.

In order to show the feasibility and effectiveness of the

ParaXML model, in this paper we present our parallel im-
plementations of three fundamental XML processing tasks:
traversal, serializing and parsing. Each parallel implemen-
tation is built upon the ParaXML engine, but with its own
processing task and context. The experiments in this pa-
per shows that all the three parallel implementations (i.e.,
traversal, serializing and parsing) obtain the substantial per-
formance gain and scale well on a multicore machine

Operating systems usually provide access to multiple
cores via kernel threads (or LWPs). In this paper, we gener-
ally assume that threads are mapped to hardware threads to
maximize throughput, using separate cores when possible.
We consider further details of scheduling and affinity issues
to be outside the scope of this paper.

The rest of the paper is organized as follows. Section 2
describes the background knowledge about the load balanc-
ing techniques. Then in the section 3 we present the design
and implementation of the kernel of ParaXML, the stealing-
based load balancing mechanism, in detail. The ParaXML
model is introduced in Section 4. Section 5 describes the
parallel implementations of XML traversal, serializing and
parsing and their performance experiments result.

2 Load Balancing Techniques

In term of the ease of the parallelization, the tree struc-
ture is a double-edged sword. At one side it is fairly easy to
partition a tree into several disjoint sub-trees or sub-forests,
and each of them can be assigned to the different threads for
the parallel processing. On the other side, a tree structure is
a awkward one from the perspective of the load balancing.
Since the size and the shape of a tree can’t be estimated until
it is walked through, we can’t determine the real workload
associated with a subtree or a subforest. It is very likely that
two threads are assigned with two subtrees with various pro-
cessing complexity, and when one finishes processing and
becomes idle another thread is still busy for working. By
the Amdahl’s law [1] the imbalanced workload distribution
will prevent the parallel algorithm from being scalable and
efficient.

Numbers of approaches have been proposed to address
the load balance issue. The static load balancing ap-
proaches [21], solve the problems by defining a cutoff depth
of the tree, under which each subtree will be treated as the
task for the threads. If the cutoff depth is selected prop-
erly, there will be enough subtrees and it makes the load
imbalanced situation less likely happen. Obviously, the ef-
fectiveness of this approach depends on the shape of the
tree structure and the cutoff depth, which usually is a priori
knowledge.

Instead of planing the load balance before the parallel ex-
ecution, the dynamic load balancing scheme partitions and
distributes the tasks during the running time. Stealing based

2

scheme is the one of the approaches that have been widely
used in the shared-memory environment[8, 3]. By the steal-
ing based scheme every thread works on its own local task
queue and whenever it runs out of the task it steals the task
from other thread’s task queue. The advantage of the steal-
ing based scheme is that the load redistribution is on de-
mand and dynamic, thus regardless of the shape of the tree
the overall workload distribution tends to be balanced. Fur-
thermore, the potential performance overhead is inherently
low since the stealing, once happened, only interfere the
victim thread. The dynamic characteristic, however, incurs
more sophisticated interaction across the threads. Great
care should be taken to the design and the implementation
of the synchronization and communication. otherwise the
their cost could easily offset the performance gain brought
by the parallelism. Also the effectiveness of the stealing
scheme is based on the assumption that the owner thread ac-
cesses its local task-queue much more frequently than thief
thread does, and it is the thief thread, but not the owner
thread, should pay any cost caused by the stealing.

3 ThreadCrew

The ThreadPool class of the .NET framework con-
sists of a global task queue and a number pre-created
threads, each getting/putting the task from/into the global
queue. Although ThreadPool is a handy tool for the gen-
eral concurrent programming, it is inappropriate for num-
bers of parallel formulas which are highly sensitive to any
performance overhead. First of all, obviously the global
task queue of the pool is the dominant performance bot-
tleneck due to the intensive lock contention by all threads.
Furthermore, as each new task generated by the thread will
be put back to the global queue and probably be fetched by
other threads, the data locality and the cache hitting ratio
are going to be low.

In order to provide higher performance for the parallel
tree-based processing, we implement a stealing based load
balancing class ThreadCrew. Just as the ThreadPool,
a ThreadCrew represents a set of threads. However the
number of threads in a ThreadCrew is fixed, and all the
threads are supposed to be running on the respective cores
simultaneously. Instead of maintaining a global queue, each
thread in the ThreadCrew has its own local task queue,
which can minimize the content and maximize the data lo-
cality as well. When a thread is out of work from its local
task queue, it tries to steal the work from other threads in the
crew. The difference between the two classes is depicted in
the Fig.1.

The application invokes the ThreadCrew by calling

ThreadCrew . Execu te (O b j e c t i n i t T a s k ,
TaskHandle t a s k H a n d l e) ;

Application

Application

Figure 1. Figure (a) : the structure of the
ThreadPool. Figure (b) : the structure of the
ThreadCrew.

, where the initTask refers to the task the ThreadCrew
is going to execute at the beginning and the taskHandle
is a call-back function, which will be invoked by the
ThreadCrew to process a task. The signature of the call-
back function is defined as

d e l e g a t e void TaskHandle (O b j e c t t a s k ,
O b j e c t p a r t i a l R e s u l t) ,

where task refers the task object passed by the
ThreadCrew and the partialResult argument refers
the accumulated result the current thread has generated.

Each thread in the ThreadCrew has three running
phases: 1) Waiting, 2) Working and 3) Stealing. At the
beginning, all the threads will block-wait on a barrier, which
will be opened once the application assigns the initial task
to the crew. The initial task is directly pushed into the first
thread’s task-queue, and the caller will synchronously wait
on the barrier until the finishing of the initial task. Once the
barrier is opened, all the threads enter the working phase si-
multaneously. During this phase, each thread gets the task
by popping its local queue, then executes the task. If new
task is generated, it will be pushed back into the local queue
of the thread. The thread keeps running until the local queue
is empty. At that moment, the thread becomes a thief and
enter the stealing phase. Based on the stealing policy the
thief picks one thread in the crew as the victim, and try to
steal the task from the victim’s task-queue. If the stealing
succeeded, the thief goes back to the working phase with
the stolen task; otherwise the thief keeps stealing until the
termination condition is detected. The pseudo code is listed
as below:

whi le (t rue)
{

phase1 : / / w a i t i n g phase
block−w a i t on a b a r r i e r ;

phase2 : / / work ing phase
whi le (l o c a l t a s k−queue n o t empty) {

g e t t a s k from t h e l o c a l t a s k−queue ;
p a s s t h e t a s k t o t h e TaskHandle c a l l b a c k f u n c t i o n ;

}
phase3 : / / s t e a l i n g phase

whi le (t rue) {
i f (t e r m i n a t i o n i s d e t e c t e d)

break ;
p i c k a v i c t i m from t h e o t h e r t h r e a d s ;
t r y t o s t e a l a t a s k from t h e v i c t i m ’ s t a s k−queue ;
i f (s t e a l i n g s u c c e e d)

3

Thief

Thief

Thief

BottomTop

...

Local task−queueOwner

Figure 2. The stealing-oriented deque

goto phase2 ;
}

}

3.1 Lock-free Deque

In the ThreadCrew, those local task-queues are shared
by the multiple threads. Each local task-queue is owned by
its owner thread, meanwhile it may be accessed by multiple
thieves simultaneously. As a shared resource, the local task-
queue has to be protected to ensure the mutually exclusion.
We could use a single lock to protect the whole task-queue,
but this coarse grained synchronization makes the lock be
a hot spot which inevitably becomes the system bottleneck.
Alternatively, as shown in Fig. 2 we can enables the fine-
grained synchronization by using a deque data structure on
which the owner thread and the thieves access the differ-
ent ends separately. Moreover the stealing scenario has one
more nice characteristic: there is only one owner for each
deque.

Based on that, Arora, Blumofe and Plaxton [2] proposed
a lock-free stealing-oriented deque structure known as ABP-
Deque. In ABP-Deque, the owner thread treats the deque as
a normal stack and it always pops/pushes the task from the
top of the deque, whereas the multiple thieves steal the task
from the deque by popping from the bottom. The ABP-
Deque uses the Compare-And-Swap atomic operation (i.e.,
CAS) instead of the lock to solve the mutual exclusion so
that the threads will never be blocked for the contention.
Three major methods are provided by ABP-Deque:

• PushTop() : called by the owner to push the data into
the top of the stack

• PopTop() : called by the owner to pop the date from
the top of the stack

• PopBottom() : called by multiple thieves to steal the
data from the bottom

The crux of the APB-Deque is the owner thread doesn’t
need to perform any CAS operation as long as there is more
than one item in the queue, while the thief always needs to
call CAS for every stealing. In other word, for most time
the owner thread will present the exact performance as the

one of the serial execution whereas it is the thief who pays
the cost of the contention. Nonetheless the thieves may also
benefit from the stealing-from-bottom policy if the task at
the bottom of the stack carries more work load than the one
at the top. For example for a tree depth-first traversal algo-
rithm, during the traversing the node at the bottom of the
stack is the one being at the highest level of the tree, which
is more likely to have more children nodes to explore.

3.2 Victim-Selection Policy

The victim-selection policy address which thread in the
crew is selected by the thief thread. The simplest policy is
picking the victim randomly. Another easy one is the global
round-robin, in which the victim thread is picked in the
round-robin fashion. Besides, ThreadCrew provides one
more policy: Pick-The-Richest, by which the thread with
longest task queue always be selected as the victim. For the
present multicore processor, which has relative small num-
ber of cores, we believe the Pick-The-Richest policy should
lead to the better result as it incurs less failed stealing. How-
ever when the number of cores growing the querying and
sorting of the length of all the queues will be prohibited, the
other two policies will be more promising.

3.3 Stealing Tracing

When executing a task the thread sometimes will gener-
ate the result, such as the query result or traversal output.
During the execution, new sub-tasks will be created and
pushed into the local task-queue; and they may be stolen
by other threads before the owner thread gets them. Con-
sequently, as long as the stealing happens during the exe-
cution, the generated result by the owner thread only covers
the part of the final result of the original task. We call the re-
sult as the partial result of the task. In other word, the final
result of the current task consists of the partial result gen-
erated by the owner thread and the partial results generated
by the thieves.

In order to trace those partial results generated by the
thieves, we modified the ABP-Deque algorithm. In our
modification, after the stealing the thief is required to leave
a clue, following which the future partial result can be lo-
cated. The clue basically is a reference to a Stealing-stub
object, which consists of a partial result object and a list of
the references to other stealing-stubs. Before stealing the
victim, the thief first generate an empty stealing stub. As
shown in the Fig.3, when the PopBottom() methods of
the victim’s task-queue is invoked by the thief, instead of
removing the task object at the bottom from the queue as
the original ABP-queue does, the task object in the bottom
entry is replaced by the reference to the empty stealing stub
provided by the thief.

4

BottomTop

Thief
...

Thief
...

���
��
���
��
���
��
���
��

+

���
��
���
��
� �� �� �� �� �

���
��

+���
��
			
		

� �� �� �� �� �

+

...

Initial
steaing stub

Stealing stubs
generated by thief

���
��

���
��
���
��

...

Owner Local task−queue

Partial
Result

Figure 3. Left: the tracing of the stealing actions, Right: the stealing-stub tree.

After getting the task, the thief holds the empty steal-
ing stub as its root stealing stub during the execution of the
stolen task. The partial result of the stealing stub will be
passed to the taskHandle, which may gradually change
its value. Note that once a thief begins to execute the stolen
task, it may generate new tasks, which may also be stolen by
other threads even including the original owner from whom
the task was stolen. Thus the stealing and the replacing will
be done in the recursive fashion.

Once the local task-queue becomes empty, the owner
thread will copy all the existent stealing stubs, each repre-
senting a stealing and referring to the result generated by the
thief, from the local queue into the stealing-stub reference
list of the root stealing stub. The order among the stealing
stubs in the task-queue is preserved. As we will see, this
order will play an important role for gluing the partial result
together. As shown in the Fig.3, when the entire execution is
terminated, all the stealing stubs form a tree structure rooted
from the initial partial result.

4 Parallel XML Processing Model

As we mentioned, A XML document essentially rep-
resents a tree-structured data model, which usually is im-
plemented in the Document Object Model (DOM), and the
document self is just the serialization of this tree model in
the document order. Most XML tasks currently are imple-
mented in the serial model and are basically extended from
the classical depth-first tree walk algorithm, so our parallel
model starts at the parallel XML DOM traversal implemen-
tation.

With ThreadCrew it is quite easy to imple-
ment the parallel DOM traversal by simply invok-
ing ThreadCrew.Execute() with the traversal
TaskHandle shown below.

void TaskHandle (XmlElement t a s k , o b j e c t p a r t i c a l R e s u l t)
{

v i s i t s t h e e l e m e n t ;

expand t h e e l e m e n t and from r i g h t t o l e f t push
a l l i t s c h i l d r e n i n t o t h e l o c a l t a s k−queue

}

The traversal TaskHandle will be invoked by the threads
in the ThreadCrew whenever an element is going to be vis-
ited. Although logically the traversal TaskHandle has lit-
tle difference from the classical serial algorithm, the internal
execution of the parallel algorithm is distinct. In the paral-
lel execution the emptiness of the local task queue doesn’t
necessary mean that the entire tree has been visited since
it is most likely that other threads have stolen some nodes
from the task queue, however this implication has to be true
for a serial algorithm. Also the thread can’t just stop the
execution when its task queue is empty; other threads may
be suffering from the heavy workload at this moment and
the thread should try to steal some sub-trees from others to
achieve the load balance. Finally the tree nodes fed to the
TaskHandle() function aren’t necessary to be consecu-
tive in the document order since some nodes may be stolen
from other threads, whereas the document order is guaran-
teed for the serial algorithm. Fortunately, the above detail
has been hidden by the ThreadCrew, and is transparent to
the user.

Although the above simple implementation is correct, it
has no way to obtain any performance win by the paral-
lelism for the real XML tasks. That is because XML doc-
uments have quite distinct characteristics from the classical
discrete optimization problems. For the discrete optimiza-
tion problems usually we assume that the shape of the tree
(i.e., the searching space) is arbitrary and even infinite. The
structure of most XML documents, however, is much more
regular and even can be described in the schema, such as
XML-Schema. Particularly, a large XML file usually con-
tains one or more large arrays, presenting a flat structure.
For example, the XML documents used in the scientific ap-
plications usually only contain a single large array of num-
bers. Additionally, instead of simply searching for the goal
XML tasks usually need a more complicated result handling
procedure. In short, in order to achieve the efficient paral-
lelization we need to introduce special tunning mechanisms
based on the characteristics of XML documents.

5

Cutoff Depth
...

The first region
is for owner
by default

Other regions are pushed into
the task−queue so that the thieves
can see them

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

No more partitioning

Figure 4. Region based task partitioning and
depth based partitioning control

4.1 Region-based Task Partitioning

Like those parallel formulas for the discrete optimiza-
tion problem, we can treat the individual element node in
the XML as an task, which will either be processed by the
owner or be stolen by the thief. This approach, however,
incurs the significant performance overhead, thus being im-
practical, particularly for the large XML document contain-
ing large arrays. First of all, the owner needs to explicitly
push/pop every element node into its local task-queue, and
the frequent stack operations can easily dominate the entire
performance. Secondly, the stealing will become extremely
inefficient. The thief will spend most the time on stealing a
leaf node, finishing the execution quickly and back to steal-
ing again. The worse thing is the stealing-sub tree could
become even larger than the DOM tree.

Our solution is increasing the granularity of the task
which will cover a region of sibling nodes rather than one
single node. As shown in the fig.4 when an element node
is expanded, all its children is first divided into continuous
regions, each of which will be pushed into the local task-
queue. To give the owner thread the priority, the first region
is guaranteed to leave to the owner thread without yielding
any chance to the thieves. The number of the regions is
same as the number of the threads in the crew so that each
thread will have the chance to obtain one region; when the
number of children is less than the number of the threads, a
simple dividing-in-half policy is adopted.

4.2 Depth-based Partitioning Control

While the region-based partitioning is about how the task
is partitioned, the technique introduced here is about when
the task should be partitioned. As we know, the sole purpose
of the task partitioning is for the work sharing. The parti-
tioning itself, however, may incur nontrivial performance
overhead. Most DOM implementations implement the chil-
dren list of a node as a single linked list, thus partitioning
entails at least an extra scanning of all children of current
node. XMLDocument of .NET library even aggravates

T3

T4

T1

T3

T1

T4

root

a cb

yx

Stealing−Stub

T2

T2

Figure 5. The left part shows a stealing
scenario and the implicit partitionning re-
sult; The right part shows the corresponding
stealing-stub tree.

the problem as it doesn’t cache the children number[7],
that means to get this number before dividing the children
evenly one more scanning is needed. Also if the newly par-
titioned task is small in term of the size, the stealing will be
inefficient.

Due to the flat structure of large XML documents, it is
reasonable to estimate the size of the subtree by its depth,
namely the deeper the subtree located at, the smaller the
subtree might be. Hence to avoid generating tiny tasks, we
define a cutoff depth, under which all the subtrees are con-
sidered as small sized ones and no more task partitioning
will be applied on. The cutoff depth is similar to the tree
pruning technology widely used in the discrete optimiza-
tion solutions. However here the subtrees under the cut-
off depth is not really pruned from the tree; instead, they
are just invisible from the thieves. To support that, besides
the local task queue each thread maintains an internal stack
which is only visible to itself. Whenever the thread reaches
the cutoff depth during the traversing, it switches its work-
ing stack from the local queue to its internal stack and when
backtracking to the cutoff depth it switches back to the local
queue. When working on the internal stack the thread works
exactly same as what a serial implementation does, incur-
ring neither synchronization operations nor stealing actions.

The cutoff depth essentially controls the trade-off be-
tween the potential parallelism and the partitioning over-
head. It can be set up heuristically based on the schema of
the XML document. For example it could be the depth at
where the large array appears in the document.

4.3 Result Gluing

The result of the execution of ThreadCrew is a
stealing-stub tree. The type of partial result in a stealing-
stub is defined by the application. For example, the par-
tial result in the parallel XML serializing represents a string
fragment, while the partial result for the partial XML pars-
ing is a DOM fragment.

The stealing-stub tree essentially represents the dynamic
partitioning layout over the original XML document. As

6

illustrated in the Fig. 5, each stub in the tree corresponds
one partition on the document and its partial result is the
processing result over that partition. Recall that the thief
always steals from the bottom of the local-queue, it is not
hard to observe the below three observations.

Observation 4.1 The partition represented by each
stealing-stub covers the set of XML element nodes which
are contiguous in the XML document in term of the
document order.

That is because the partition is formed as the result of
traversing of the XML DOM tree in the document order
and only the nodes at bottom of the stack could be stolen,
thus each nodes in the partition must be contiguous in term
of the document order.

Observation 4.2 For a parent stealing-stub, its corre-
sponding partition precedes all the partitions covered by its
child stealing-stubs in the XML document in term of docu-
ment order.

That is because any child stealing-stub represents a stolen
element node or region, which was originally at the bot-
tom of the owner thread’s traversal stack, while the parent
stealing-stub represents those element nodes which were
pushed into the stack after the stolen node was pushed into.

Observation 4.3 For any stealing stub, its corresponding
partition precedes all the partitions covered by its right sib-
lings in the stealing-stub tree in term of document order.

Recall that we reserve the order of stealing-stubs when
copying them from the stack into the stealing-stub list of
the root stealing stub, so the order between the two siblings
is same as the order when they are pushed into the stack.

Based the above three observations, we see that when we
traverse the stealing-stub tree in the depth-first and left-to-
right order we are actually traversing the each partition over
the XML document in the exact document order. Thereby
to reduce the partial results together to form the final result,
we just need to traverse the stealing-stub tree in the depth-
first and left-to-right order, and glue all the particle results
one by one. The application should have its own method
to glue two consecutive partial results together during the
traversing.

5 Applications and Experiments

To show the feasibility and effectiveness of the ParaXML
processing model, in this section we present our parallel im-
plementations of three fundamental XML processing tasks:
traversal, serializing and parsing as well as their perfor-
mance experiments. We performed the experiments of all
the three parallel implementations on a 4-core machine,

which has 2GB memory and two Intel Xeon 5150 proces-
sors, each having two cores inside. The operating system is
Windows XP and the version of the .NET framework is 2.0.

We uses two XML benchmarks, XML benchmark and
the XMark, to generate the test files. The XML Bench-
mark [4], designed for XML parsers comparison generates
an XML document with a simple schema, which basically
is an array of the structure. The size of the generated docu-
ments is set to be 50M Bytes. Conversely, the XML docu-
ment generated by XMark [23], which examines the perfor-
mance of queries on the XML repositories, is much more
complicated. The file has more than 5 levels of depth and
from level 1 to level 4 each contains large arrays. The size
of the generated documents is set to be 59M Bytes.

5.1 Parallel Traversal

The parallel traversal is the foundation of the other paral-
lel XML tasks. According to the Amdahl’s law, the scalabil-
ity of a parallel algorithm is determined by the ratio of the
serial part of the algorithm. For the parallel traversing, each
visiting of a node undertakes the minimal workload, so the
scalability of the parallel traversal algorithm demonstrates
the guide line for other parallel XML tasks that built upon
it. In other word, for one parallel XML task, if it involves
more workload in each parallel visiting and those workload
are independent then the scalability of the parallel traver-
sal algorithm actually is the low bound of the scalability
that parallel XML task can have; however if those workload
will causes the contention on resources its scalability can be
worse than the parallel traversal algorithm.

Here, we define the parallel traversing task to find all
the elements in the document, whose name matches a given
simple query criteria. Our intention is to prove the concept
and a fully implementation of the parallel XPath query is
beyond the scope of this paper. The partial result passed
to the task handle is a list, containing the matched element,
The task handle scans every element in the region task. If
the element matches with the query criteria, it will be put
into the partial result (i.e., the list). When the processing on
a partition completed, the list contains all the matched ele-
ments in the partition; thereby the final result can be gotten
by concatenating every list in the stealing-stub tree.

The first experiment is performance on the XML docu-
ment generated by XMark and is to find the elements which
meet the query //person[@id="person0"]. We var-
ied the cutoff depth from 1 to 5 to determine its impact
on the performance. As shown in Fig.6, we see the cut-
off depth substantially affects the performance of the al-
gorithm. When it equals 2 or 3 we get the best perfor-
mance. Our second test is performed on the XML document
generated by XMLBench with the equivalent XPath query:
//shiporder[@orderid="011284"]. Fig.6 shows

7

 0

 50

 100

 150

 200

 1 1.5 2 2.5 3 3.5 4 4.5 5

w
al

lc
lo

ck
 ti

m
e

(m
s)

cutoff depth

XMark benchmark

seq.
1 thread
2 threads
3 threads
4 threads

 0

 100

 200

 300

 400

 500

 1 1.5 2 2.5 3 3.5 4

w
al

lc
lo

ck
 ti

m
e

(m
s)

cutoff depth

XMLBench benchmark

seq.
1 thread
2 threads
3 threads
4 threads

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 1.5 2 2.5 3 3.5 4

sp
ee

du
p

#threads

Speedup (XMark, cutoff = 3)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 1.5 2 2.5 3 3.5 4

sp
ee

du
p

#threads

Speedup (XmlBench, cutoff = 1)

Figure 6. The performance of the parallel traversing

that the best cutoff depth for this document is 1. This is ex-
pected since XMLBench file essentially is just one large ar-
ray under the root element. It should be noted that when the
cutoff depth is 1 the dynamical partition formed by the steal-
ing is equivalent as the static linear partition on the large
array. We also depict the speedup of the parallel traver-
sal for the two queries in Fig.6, in which the XMLBench
document presents a better speedup curve than the XMark
documents That is because the structure of XMLBench doc-
ument is much simpler than the one of XMark document so
that the load balance is easier to achieve on the XMLBench
document.

In the following experiments in this paper, we will use
the optimal value of the cutoff depth for the two documents
respectively, namely 1 for the XMLBench documents and 3
for the XMark documents.

5.2 Parallel XML Serialization

Given a DOM tree, we can serialize it into the XML
document by simply traversing the DOM tree in the doc-
ument order and outputting the node content along the path.
Therefore the parallel serializing of a DOM tree can be di-
rectly extended from the parallel traversal algorithm pre-
sented previously with the extra content output operations.
Here the partial result in the stealing-stub is a buffer of char-

T1

T2T3T4

"<root><a><x>...</x>"

"<y>...</y>" "..." "<c>...</c>"

"<c>...</c>"

"..."

"<y>...</y>"

"<root><a><x>...</x>"

Figure 7. Gluing the serializing results

acters, representing the serializing result on the partition.
A special care, however,should be taken for the close tag

of a non-empty element. When a thread is serializing the
content of an element, it has no clue if it will process all
the content or only part of the content in case of stealing.
Therefore always having the thread output the close tag of
an element may leave the part the serialization out of its lex-
ical scope in the final serialization. Our solution is always
assigning the outputting the close tag of the last element of
the current region to the next task. Whenever a thread be-
gins executing a task, it first check if there is a close tag
needed to be outputted, if so it will first output the close tag
into its serialization buffer. In this manner if the next task
is stolen the thief will output the close tag, otherwise the
owner will output the close tag by itself but at the beginning
of the processing of the next task.

As illustrated in the Fig.7, the gluing procedure simply

8

depth-first traverses the stealing-stub tree and concatenates
the consecutive partial results (i.e., the string buffer) to-
gether. It should be noticed that the constructing the final
serialization is unnecessary for most applications since it
can be deferred to the point when the serialization is physi-
cally needed.

During the parallel serializing multiple threads may al-
locate the large string buffers simultaneously. However the
allocation by .NET garbage collector is not very scalable 1

particularly for the large objects whose allocation will be
done serially [22]. Furthermore, when the memory usage
exceeds the budget the GC will suspend all threads to col-
lect the garbage memory. In order to minimize the impact
of the GC, we preallocate the string buffer for each thread
before the parallel execution, and have each thread write the
content into its specific buffer without any interference.

Fig. 8 demonstrates the performance of the parallel se-
rializing algorithm on the two benchmark documents with
the optimal cutoff depth value. As expected, the parallel
serializing algorithm present the better scalability than par-
allel traversal algorithm did on both benchmark documents.
For example in the 4-core test, the speedup of parallel se-
rializing is 2.8x for the XMark document and 3.2x for the
XMLBench document. Clearly, it is mainly due to the extra
independent serializing work done by the threads in paral-
lel.

5.2.1 Parallel C14N

An XML document can have multiple various but valid se-
rializations. However this valid variation is problematic for
those octet-stream based applications (e.g., signature calcu-
lation). To address this issue, XML canonicalization, ab-
breviated as C14N, defines the canonical form for an XML
document, which is guaranteed to be identical if and only if
the content of the document is identical. For example, the
canonical form requires the superfluous namespace decla-
rations should be removed from each element and all the
attributes of one element should be lexicographically or-
dered by their qualified name. Certainly, those requirements
will impose extra nontrivial computation and some research
work [24] have identified the canonicalization processing
is the performance bottleneck of other higher level XML
tasks, such as XML signature which calculates the digest
over the canonical form.

In order to parallelize the canonicalization, we simply
augment the parallel XML serialization algorithm with the
C14N rules enforcement. From Fig. 8 we can see the canon-
icalization takes more time than the normal serializing pro-
cessing. More importantly, the extra work by the canoni-
calization makes the parallel canonicalization presents even

1in .NET only the generation 0 of the Garbage Collector allows the
concurrent allocation, but its size usually is very small

better scalability than the normal parallel serializing algo-
rithm.

5.3 Parallel XML Parsing and DOM
Building

The basic idea of the parallel XML parsing is having
multiple XML pull parsers parse the disjoint fragments of
a XML document and build the subtrees of the final DOM
in parallel. The pull parser is chosen because of its ability
of the fragment parsing, which means we can designate any
the valid document fragment for parsing. The parallel XML
parsing, however, has to face a special challenge: from a se-
quence of characters we can’t tell the tree structure directly,
thus unable to apply the ParaXML model as previous algo-
rithms did.

5.3.1 Preparsing and Skeleton

Our solution is two-stage processing of the XML
document[14], namely a quick sequential scan of the docu-
ment to identify the structure, followed by a complete paral-
lel parsing. We call the first scan stage the preparse, whose
sole purpose is to determine the topological structure of
the elements in the document. That means most syntactic
units defined by the XML specification, such as attributes,
namespaces, and even the tag name, can be ignored by the
preparse. Neither does the preparse need to verify any well-
formedness constraints. In other word the preparsing treats
the XML document as simply a sequence of unnamed start-
and end-tag pairs. As a result, the generated tree structure,
called skeleton, is much more light-weight than the DOM.
Representing one element in the document each node in the
skeleton only contains the lexical scope information of the
element in the document. We can view the skeleton as the
index of all well-formed fragments in the XML document.

We implement a C# version preparser and compare its
performance with the pull parsing (by XmlTestReader class
of .NET) and DOM building on the two benchmark docu-
ments. The pull parsing is designed to have the minimal
workload, namely only scanning the document without any
building. From the Fig. 10 we can see the preparsing is
about 3x faster than the simple pull parsing and 5x faster
than the DOM building.

5.3.2 Stealing based Parallel XML Parsing

With the skeleton, now we are able to apply the ParaXML
model to parallelize the XML parsing and DOM building.
The pull parser, XmlTestReader of .NET, can pull-parse
any fragment in the XML document as long as the frag-
ment contains any valid element content. Since now the
parallel XML parsing algorithm works on the skeleton, the
task here refers a region of skeleton sibling nodes in the

9

 0

 100

 200

 300

 400

 500

 600

 700

 800

seq 1 2 3 4

w
al

lc
lo

ck
 ti

m
e

(M
ill

is
ec

)

#threads

XMark benchmark

normal
c14n

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

seq 1 2 3 4

w
al

lc
lo

ck
 ti

m
e

(M
ill

is
ec

)

#threads

XMLBench benchmark

normal
c14n

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 1.5 2 2.5 3 3.5 4

sp
ee

du
p

#threads

Speedup (XMark)

normal
c14n

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 1.5 2 2.5 3 3.5 4

sp
ee

du
p

#threads

Speedup (XmlBench)

normal
c14n

Figure 8. The performance of the parallel serializing & canonicalization algorithms.

skeleton. Given a parsing task, the thread can figure out
the lexical offset and size of the corresponding fragment in
the document, and then creates a XmlTestReader object for
pull-parsing on this fragment.

The thread keeps pull-parsing the fragment and building
the DOM fragment as a normal serial parser does. How-
ever once the thread pulls out an open tag from the stream
it walks the skeleton one step in the depth-first,left-to-right
order. The purpose of this walking is to keep track of the
current parsing progress of the thread. The walking is re-
alized by popping up the local task-queue and pushing the
generated child-tasks bask as the previous algorithms did.
As a result, the local queue of the thread actually func-
tions as a “manifest” which reflects all the sub-fragments
the thread will parse in the future or the thieves can steal
right now. The procedure keeps running until the end of the
fragment has been reached or the local task queue is empty.
For the latter case, that means one or more sub-fragments in
the current fragment has been stolen and processed by other
threads.

When the multiple threads in the ThreadCrew pull-parse
the disjoint fragments in parallel, the partial result generated
by one thread is the forest of the DOM fragments, each cor-
responding to a skeleton node in the original region task. As
shown in the Fig.9, to glue the fragments together to form
the final DOM tree we can traverse the stealing-stubs tree

T2

��
��
��
��

���
���
���
���
���
���
���

���
���
���
���
���
���
��� ��

��
��
��

���
���
���
���
���
���
���

���
���
���
���
���
���
����

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��
��

���
���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��
��

���
���
���
���
���
���
���

���
���
���
���
���
���
���

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

T3

T1

T4

Figure 9. Gluing the DOM fragments gener-
ated by the parallel parsing

in the document order and appending the DOM fragments
(i.e., the partial result in one stealing-stub) under their par-
ent nodes in the DOM sequentially.

It should be noted that we are using our own simple
DOM implementation instead of the XMLDocument class
in the .NET library. It is because XMLDocument uses at-
omized string[7], to eliminate the duplicated strings in the
DOM. While this optimization saves the memory space, it
in deed impedes the efficient parallelism since whenever an
element is generated we need to mutual exclusively look up
a global name table.

10

 0

 200

 400

 600

 800

 1000

 1200

preparsing parsing building

w
al

lc
lo

ck
 ti

m
e

(M
ill

is
ec

)

XMark benchmark

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

preparsing parsing building

w
al

lc
lo

ck
 ti

m
e

(M
ill

is
ec

)

XMLBench benchmark

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 1.5 2 2.5 3 3.5 4

sp
ee

du
p

#threads

Speedup (XMark)

parsing (w/o pp)
parsing
building (w/o pp)
building

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 1.5 2 2.5 3 3.5 4

sp
ee

du
p

#threads

Speedup (XmlBench)

parsing (w/o pp)
parsing
building (w/o pp)
building

Figure 10. The performance of the parallel parsing & DOM-building algorithms

5.3.3 Measurement

First of all, we configure the parallel XML parsing al-
gorithm to only parse the document without building any
DOM structure. In other word, we are measuring the perfor-
mance of the parallel pull-parsing only. Fig. 10 illustrates
the speedup of the parallel pull parsing for the two bench-
mark documents. The speedup in the 4-core test is roughly
2.1x for the XMark document and 2.25x for the XMLBench
document respectively. In order to identify the scalability
bottleneck, we exclude the preparsing time from the total
time and calculate the speedup again. Now the speedup is
significantly improved: 3.4x for the XMark document and
3.7x for the XMLBench document on the 4-core test and
both are better than the parallel traversing. It clearly indi-
cates that the scalability bottleneck of the parallel algorithm
is at the serial preparsing, the parallel pull-parsing mecha-
nism itself scales well.

Based on the experiment result of parallel parsing, it is
reasonable to expect that the parallel DOM building, involv-
ing more memory allocation work, would obtain the same
or better scalability. However initially our experiment re-
sult shew the parallel DOM building doesn’t achieve the
expected performance, in fact it presents much worse scala-
bility then the parallel parsing. That implies the scalability
bottleneck has been shifted. By running the Intel VTune
performance analyzer, we observed that during the paral-

lel execution a number of garbage collections were trig-
gered when the large number of DOM nodes were created
in memory, thus leading the degradation of the scalability.

To circumvent the GC, again we adopt the thread-
specific object pool technology as we did in the parallel se-
rialization experiment. When building the DOM tree, the
thread obtain the new node object from its specific pool in-
stead of from the GC. In this manner each thread doesn’t
interferer with each other at all. Fig. 10 illustrates the per-
formance of the parallel DOM building algorithm with the
thread-specific object pool. The result now shows that the
speedup of the parallel DOM building is about same as the
parallel parsing.

It should be noticed that the preparsing doesn’t have to
be the serial bottleneck. Pan and Chiu [18] proposed a
parallel solution for the preparsing by using a speculative
meta-DFA. Alternatively, the skeleton, once generated, can
be kept separately as a index object so that the later paral-
lel processing on the same XML document can reuse the
skeleton directly without incurring any serial bottleneck.

6 Related Work

Our previous work [14] proposed the two-pass-scanning
based parallel XML parsing prototype, called PXP, which is
implemented in C++ and relies on the libxml2 for the real

11

parsing. PXP uses a simple request-response (“begging”)
scheme rather than the stealing scheme for the load balanc-
ing, so in general PXP will incur more overhead and un-
balanced distribution than ParaXML; also PXP had a hard
time for the result reducing. Based on PXP, Pan et al. [19]
introduces a static XML partitioning scheme for the paral-
lel XML parsing. Although the static scheme works well
for the XML document with a simple array structure, it is
hard to be a general solution for all kinds of XML docu-
ments. Also when the document structure becomes more
complicated the static partitioning stage will become the
serial bottleneck of the entire processing. In fact, for the
simple document with the array structure ParaXML model
behaves exactly as same as the static partition scheme does,
but in the dynamic manner. To solve the serial preparsing
bottleneck of the parallel XML parsing, Pan and Chiu. [19]
proposed a parallel solution for the preparsing. The XML
document is partitioned into multiple equal-sized chunks,
each is preparsed by one thread simultaneously. As a chunk
may not contain the valid XML content the preparser has
to assume all possible contexts and speculatively scan the
chunk by using a meta automaton. The parallelized prepars-
ing greatly improved the scalability of the parallel XML
parsing. K.Lu et al.[13] proposed a parallel model for the
XML query from the database perspective. Instead of fo-
cusing on the XML document in the share memory envi-
ronment, their work studies the data storage strategies and
data placement methods in a XML database system for the
potential parallel XML data query.

The stealing based load balancing scheme [3] is be-
coming more popular in the multicore era due to its dy-
namic and low-overhead characteristics. It has been widely
adopted in many areas, such as the garbage collection [8]
and the user-level parallel library(e.g., Intel Thread Build-
ing Block [12]). ParaXML inherits the lock-free stealing
algorithm from ABP-deque [2] with the extension for the
result tracing, which is needed by most XML tasks. As
mentioned earlier, parallel XML processing can essentially
be viewed as the parallel graph search algorithms for the
discrete optimization problems [20]. But parallel XML pro-
cessing doesn’t have the searching space as large as the one
of the discrete optimization problems, thus it is more sen-
sitive to any overhead and needs finer optimization control.
Also parallel XML processing introduces some new issues,
such as result reducing, which are not addressed by the gen-
eral parallel algorithms.

Skeleton concept was firstly proposed in the XML lazy
parsing [17]. However, the purpose of lazy parsing and par-
allel parsing are totally different, so the structure and the use
of the skeleton in the both algorithms differs fundamentally.

7 Conclusion

In this paper we present a parallel XML processing
model, ParaXML, which is designed for the multicore sys-
tem. Essentially ParaXml treats the XML processing as the
parallel tree traversal problem. By the stealing scheme and
the lock-free deque structure, ParaXML succeed in solv-
ing the key issue of the parallel program: load balancing
with low overhead. Also the stealing tracing mechanisms
in ParaXML eases the parallel results reducing. Consid-
ering the XML documents usually have a flat and regular
structure, ParaXML introduces two optimization technolo-
gies, region and depth-based partitioning control, and the
experiments shew that they are crucial to achieving the high
performance. We also present the parallel implementations
of XML traversing, serializing and parsing based on the
ParaXML. Our experiments results show those parallel im-
plementations substantially improved the performance and
scale well on a multicore machine. However not all soft-
ware components are ready for the multicore era, for ex-
ample the garbage collector and the default DOM library in
.NET runtime restricts the scalability of our parallel algo-
rithms.

8 Acknowledgment

Our C# implementation of the stealing based ABP
Deque algorithm used in this paper is developed based on
the pseudo code provided in the book, The Art of Multi-
processor Programming[11], by Maurice Herlihy and Nir
Shavit. We wish to thanks Nir Shavit for his important com-
ments on the pseudo code.

References

[1] G. M. Amdahl. Validity of the single processor ap-
proach to achieving large scale computing capabili-
ties. pages 483–485, 1967.

[2] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread
scheduling for multiprogrammed multiprocessors. In
SPAA ’98: Proceedings of the tenth annual ACM
symposium on Parallel algorithms and architectures,
pages 119–129, New York, NY, USA, 1998. ACM
Press.

[3] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.
Leiserson, K. H. Randall, and Y. Zhou. Cilk: an ef-
ficient multithreaded runtime system. In PPOPP ’95:
Proceedings of the fifth ACM SIGPLAN symposium on
Principles and practice of parallel programming, New
York, NY, USA, 1995. ACM Press.

12

[4] S. A. Chilingaryan. Xml benchmark project. http:
//xmlbench.sourceforge.net/, 2004.

[5] K. Chiu, M. Govindaraju, and R. Bramley. Inves-
tigating the limits of soap performance for scientific
computing. In HPDC ’02: Proceedings of the 11 th
IEEE International Symposium on High Performance
Distributed Computing HPDC-11 20002 (HPDC’02),
page 246. IEEE Computer Society, 2002.

[6] K. Chiu and W. Lu. A compiler-based approach to
schema-specific xml parsing. In The First Interna-
tional Workshop on High Performance XML Process-
ing, Satellite workshop of WWW2004 International
Conference, 2004.

[7] D. Esposito. Applied XML Programming For Micros-
fot .NET. Microsoft, 2003.

[8] C. Flood, D. Detlefs, N. Shavit, and C. Zhang. Par-
allel garbage collection for shared memory multipro-
cessors. In Usenix Java Virtual Machine Research and
Technology Symposium (JVM ’01), Monterey, CA,
2001.

[9] A. Y. Grama and V. Kumar. State of the art in parallel
search techniques for discrete optimization problems.
IEEE Transactions on Knowledge and Data Engineer-
ing, 11, 1999.

[10] A. Y. Grama and V. Kumar. State of the art in parallel
search techniques for discrete optimization problems.
IEEE Transactions on Knowledge and Data Engineer-
ing, 11, 1999.

[11] M. Herlihy and N. Shavit. The Art of Multiprocessor
Programming. Morgan Kaufmann, 2008.

[12] Intel. Tutorial of intel thread building block, 2006.

[13] K. Lu, Y. Zhu, W. Sun, S. Lin, and J. Fan. Paral-
lel processing xml documents. Database Engineering
and Applications Symposium, 2002.

[14] W. Lu, K. Chiu, and Y. Pan. A parallel approach to xml
parsing. In The 7th IEEE/ACM International Confer-
ence on Grid Computing, Barcelona, September 2006.

[15] M. Matsa, E. Perkins, A. Heifets, M. G. Kostoulas,
D. Silva, N. Mendelsohn, and M. Leger. A high-
performance interpretive approach to schema-directed
parsing. In WWW ’07: Proceedings of the 16th inter-
national conference on World Wide Web, 2007.

[16] M. Nicola and J. John. Xml parsing: a threat to
odatabase performance. In CIKM ’03: Proceedings
of the twelfth international conference on Information
and knowledge management, 2003.

[17] M. L. Noga, S. Schott, and W. Lowe. Lazy xml pro-
cessing. In DocEng ’02: Proceedings of the 2002
ACM symposium on Document engineering, 2002.

[18] Y. Pan, K. Chiu, Y. Zhang, and W. Lu. Parallel xml
parsing using meta-dfas. In 3rd IEEE International
Conference on e-Science and Grid Computing, Ban-
galore, India, 2007.

[19] Y. Pan, W. Lu, Y. Zhang, and K. Chiu. A static load-
balancing scheme for parallel xml parsing on multi-
core cpus. In IEEE International Symposium on Clus-
ter Computing and the Grid, Rio de Janeiro, 2007.

[20] V. N. Rao and V. Kumar. Parallel depth first search.
part i. implementation. Int. J. Parallel Program.,
16(6):479–499, 1987.

[21] A. Reinefeld. Scalability of massively parallel depth-
first search. In Parallel Processing of Discrete Opti-
mization Problems, volume 22 of DIMACS Series in
Discrete Mathem. and Theor. Comp, pages 305–322,
1995.

[22] J. Richter. CLR via C#. Microsoft, 2006.

[23] A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu,
I. Manolescu, M. J. Carey, and R. Busse. The XML
Benchmark Project. Technical Report INS-R0103,
CWI, Amsterdam, The Netherlands, April 2001.

[24] S. Shirasuna, A. Slominski, L. Fang, and D. Gannon.
Performance comparison of security mechanisms for
grid services. In 5th IEEE/ACM International Work-
shop on Grid Computing, 2004.

[25] H. Sutter. The free lunch is over: A fundamental turn
toward concurrency in software. Dr. Dobb’s Journal,
30, 2005.

[26] J. van Lunteren, J. Bostian, B. Carey, T. Engbersen,
and C. Larsson. Xml accelerator engine. In The First
International Workshop on High Performance XML
Processing, 2004.

[27] Y.Diao, P.Fischer, and M.J.Franklin. Yfilter: Efficient
and scalable of xml document. In The 18th Inter-
national Conference of Data Engineering, San Jose,
2002.

13

