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Abstract

Workflows have been used to model repeatable tasks or operations in a number of different industries includ-
ing manufacturing and software. In recent years, workflows are increasingly used in distributed resources
and web services environments through resource models suchas grid and cloud computing. These workflows
often have disparate requirements and constraints that need to be accounted for during workflow orchestra-
tion. In this paper, we present workflow examples from different domains including bioinformatics and
biomedical, weather and ocean modeling, astronomy detailing their data and computational requirements.

1 Introduction

Workflows and workflow concepts have been used to model a repeatable sequence of tasks or operations in dif-
ferent domains including the scheduling of manufacturing operations, inventory management, etc. The advent
of internet and web services has seen the adoption of workflows as a means for business process manage-
ment [31] and as an integral component of cyberinfrastructure for scientific experiments [10, 16]. In addition,
the availability of distributed resources through grid andcloud computing models has enabled users to share
data and resources using workflow tools and other user interfaces such as portals.

Workflow tools allow users to compose and manage complex distributed computation and data in distributed
resource environments. Workflows might have different resource requirements and constraints associated with
them. For example, application workflows with stringent deadline driven requirements such as weather predic-
tion, economic forecasting are now increasingly run in distributed resource environments.

In this paper we discuss workflow examples from different domains: bioinformatics and biomedicine, weather
and ocean modeling, astronomy, etc. These examples have been obtained by talking to domain scientists and
computer scientists who composed and/or run these workflows. Each of these workflows have been modeled
using different workflow tools and sometimes the flow is even managed through scripts. For each workflow we
specify the running time of applications and input and output data sizes associated with each task node. Running
time of applications and data sizes for a workflow depend on a number of factors including user inputs, specific
resource characteristics and run-time resource availability variations [20]. Thus our numbers are approximate
estimates for typical input data sets that are representative of the general characteristics of the workflow.
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In the following sections, we provide a brief description ofthe project, workflow and usage model of the
workflows as available today. For each of the workflows, we also provide a DAG representation of the workflow
annotated with computation and data sizes. In addition the project and organization names and contact person
for the workflows are specified. This is not a complete list butrepresents the contributions by the individuals
and organizations that responded to the survey request.

The rest of the paper is organized as follows. Section 2 describes the weather and ocean modeling workflows
and Sections 3 describes the bioinformatics and biomedicine workflows. Sections 4 and 5 describe the astron-
omy and neutron science and computer science examples. In section 6 we discuss the use case scenarios and
the characteristics of the workflow and finally summarize oursurvey in section 7

2 Weather and Ocean Modeling

In the last few years the world has seen a number of severe natural disasters such as hurricanes, tornadoes,
floods, etc. The models used to study weather and ocean phenomenon use real-time observational data in
conjunction with a number of parameters that are varied to study the possible scenarios for prediction. In
addition the models must be run in a timely manner and information disseminated to disaster response agencies.
This creates the need forlarge scale modelingin the areas of meteorology and ocean sciences, coupled withan
integrated environmentfor analysis, prediction and information dissemination. Anumber of cyberinfrastructure
projects are building tools and constructing workflows to facilitate next-generation weather and ocean modeling
science.
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Figure 1: LEAD North American Mesoscale (NAM) initialized forecast workflow. The workflow processes terrain and
observation data to produce weather forecasts.

2.1 Mesoscale Meteorology

Project: Linked Environments for Atmospheric Discovery, TeraGrid Science Gateway
Websites:http://portal.lead.project.org
Tool: xbaya, GPEL, Apache ODE
Description: The Linked Environments for Atmospheric Discovery (LEAD) [17] is a cyberinfrastructure
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Figure 2: LEAD ARPS Data Analysis System(ADAS) initializedforecast workflow. The workflow processes terrain and
observation data to produce weather forecasts.

S t o r mD e t e c t i o n R e m o v eA t t r i b u t e sS p a t i a lC l u s t e r i n g
3 5 s e c s

6 6 s e c s
1 2 9 s e c s

2 M B1 K B

5 K B 9 K B
1 K B4 K B 1 K B

Figure 3: LEAD Data Mining Workflow workflow. The workflow processes weather data to identify regions where
weather phenomenon might be present.
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project that supports mesoscale meteorology. The infrastructure of LEAD needs to support real-time dynamic,
adaptive response to severe weather. A LEAD service workflowhas constraints on execution time and accuracy
due to weather prediction deadlines. The typical inputs to aworkflow of this type are streaming sensor data
[17, 27] that must be pre-processed and then used to launch anensemble of weather models. The model outputs
are processed by a data mining component that determines whether some ensemble set members must be
repeated to realize statistical bounds on prediction uncertainty. Figures 1, 2 and 3 show the workflows available
through the LEAD portal that include weather forecasting and data mining workflows [22]. Each workflow
task is annotated with computation time and the edges of the directed acyclic graph (DAG) are annotated
with file sizes. The weather forecasting workflows are largely similar and vary only in their preprocessing or
initialization step. While the data mining workflow can be run separately today, it can trigger forecast workflows
and/or steer remote radars for additional localized data inregions of interest [27]. More details of the LEAD
workflow use case scenarios are presented in section 6.1.

2.2 Storm surge modeling

Project: Southeastern Coastal Ocean Observing and Prediction Program (SCOOP)
Contact: Brian Blanton, Howard Lander, Steve Thorpe
Organization(s): Renaissance Computing Institute
Websites:http://www.renci.org/focusareas/disaster/scoop.php
Tool: [Scripts]
Description: Southeastern Universities Research Association’s (SURA)Southeastern Coastal Ocean Observ-
ing and Prediction (SCOOP) program is a distributed projectthat is creating an open-access grid environment
for the southeastern coastal zone to help integrate regional coastal observing and modeling systems [6, 28].

Storm surge modeling requires assembling input meteorological and other data sets, running models, processing
the output and distributing the resulting information. In terms of modes of operation, most meteorological and
ocean models can be run in hindcast mode, as an after fact of a major storm or hurricane, for post-analysis
or risk assessment, or in forecast mode for prediction to guide evacuation or operational decisions [28]. The
forecast mode is driven by real-time data streams while the hindcast mode is initiated by a user. Often it is
necessary to run the model with different forcing conditions to analyze forecast accuracy. This results in a large
number of parallel model runs, creating an ensemble of forecasts. Figure 4 shows a five member ensemble run
of tidal and storm-surge ADCIRC [24] model. For increased accuracy of forecast the number of concurrent
model runs might be increased. ADCIRC is a finite element model that is parallelized using Message Passing
Interface (MPI). The workflow has a predominaly parallel structure and the results are merged in the final step.

The SCOOP ADCIRC workflows are launched according to the typical six hour synoptic forecast cycle used by
the National Weather Service and the National Centers for Environmental Prediction (NCEP). NCEP computes
an atmospheric analysis and forecast four times per day at six hour intervals. Each of the member runs i.e. each
branch of the workflow gets triggered when wind files arrive through Local Data Manager (LDM) [7], an event-
driven data distribution system that selects, captures, manages and distributes meteorological data products.
The outputs from the individual runs are synthesized to generate the workflow output that is then distributed
through LDM.

In the system today each arriving ensemble member is handledseparately through a set of scripts and Java
code [28]. The resource selection approach [21] makes a real-time decision for each model run and uses
knowledge of scheduled runs to load-balance across available systems. However this approach does not have
any means of guaranteeing desired QoS in terms of completiontime.
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Figure 4: SCOOP workflow. The arriving wind data triggers ADCIRC that is used for storm-surge prediction during
hurricane season.

2.3 Floodplain Mapping

Project:North Carolina Floodplain Mapping Program
Contact: Howard Lander, Brian Blanton
Organization(s): Renaissance Computing Institute
Tool: [Scripts]
Description: The North Carolina Floodplain Mapping Program [4, 11] is focused on developing accurate
simulation of storm surges in the coastal areas of North Carolina. The deployed system today consists of a
four-model system that consists of the Hurricane Boundary Layer (HBL) model for winds, WaveWatch III
and SWAN for ocean and near-shore wind waves, and ADCIRC for storm surge. The models require good
coverage of the parameter space describing tropical storm characteristics in a given region for accurate flood
plain mapping and analysis. Figure 5 shows the dynamic portion of the workflow. Forcing winds for the
model runs are calculated by the Hurricane Boundary Layer(HBL) model that serve as inputs to the workflow.
The HBL model is run on a local commodity linux cluster. Computational and storage requirements for these
workflows are fairly large requiring careful resource planning. An instance of this workflow is expected to run
for over a day. The rest of the workflow today runs on RENCI’s Bluegene system [5].W a v eW a t c h I I IA d c i r c
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Figure 5: NCFS workflow. A multitude of models are run to modelthe storm surges in the coastal areas of North Carolina.
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3 Bioinformatics and Biomedical workflows

The last few years have seen large scale investments in cyberinfrastructure to facilitate Bioinformatics and
biomedical research. The infrastructure allows users to access databases and web services through workflow
tools and/or portal environments. We surveyed three major projects in the United States - North Carolina
Bioportal, cancer Biomedical Informatics Grid (caBIG), and National Biomedical Computational Resource
(NBCR) to understand the needs of this class of workflows. Significant number of these workflows involve
small computation but involve access to large-scale databases that need to be preinstalled on available resources.
While the typical use cases of today have input data sizes in the order of megabytes, it is anticipated that in the
future data sizes might scale to gigabytes.

3.1 Glimmer

Project: North Carolina Bioportal, TeraGrid Bioportal Science Gateway
Organization(s): Renaissance Computing Institute
Websites:
https://portal.renci.org/portal/

http://www.renci.org/focusareas/biosciences/motif.php

http://www.motifnetwork.org/

Tool: Taverna

Description: The North Carolina Bioportal and The TeraGrid Bioportal Science Gateway [29] provides ac-
cess to about 140 bioinformatics applications and a number of databases. Researches and educators use the
applications interactively for correlation, exploratorygenetic analysis, etc. The Glimmer workflow is one such
example workflow that is used to find genes in microbial DNA (Figure 6). The Glimmer workflow is sequential
and light on both compute and data. L o n g _ o r f se x t r a c tb u i l d _ i c mg l i m m e r 2

8 . 8 M B2 7 K B1 . 6 M B1 . 3 5 M B9 . 9 M B
2 s e c o n d s1 s e c o n d s5 s e c o n d s9 0 s e c o n d s

Figure 6: Glimmer workflow. A simple workflow used in educational context to find genes in microbial DNA.

3.2 Gene2Life

Project: North Carolina Bioportal, TeraGrid Bioportal Science Gateway
Organization(s): Renaissance Computing Institute
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Websites:
https://portal.renci.org/portal/

http://www.renci.org/focusareas/biosciences/motif.php

http://www.motifnetwork.org/

Tool: Taverna
Description: Let us consider the Gene2Life workflow used for molecular biology analysis. This workflow
takes an input DNA sequence, searches databases to find genesmatching the sequence. It globally aligns the
results and attempts to correlate the results based on organism and function. Figure 7 depicts the steps of the
workflow and the corresponding output at each stage. In this workflow the user provides a sequence that can
be a nucleotide or an amino acid. The input sequence performstwo parallel BLAST [9] searches, against
the nucleotide and protein databases respectively. The results of the searches are parsed to determine the
number of identified sequences that satisfy the selection criteria. The outputs trigger the launch of ClustalW, a
bioinformatics application that is used for the global alignment process to identify relationships. These outputs
are then passed through parsimony programs for analysis. The two applications that may be available for
such analysis are dnapars and protpars. In the last step of the workflow plots are generated to visualize the
relationships, using an application called drawgram. Thisworkflow has two parallel sequences.

T r e e F i l e s( p s a n d . p d f f i l e s )
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3 0 s e c o n d s 3 0 0 s e c o n d s3 0 0 s e c o n d s 3 0 s e c o n d s3 0 s e c o n d s 3 0 s e c o n d s4 K B4 K B 3 5 K B3 5 K B

b l a s t b l a s tc l u s t a l w c l u s t a l wd n a p a r s p r o t p a r sd r a w g r a m d r a w g r a m
Figure 7: Gene2Life workflow. The workflow is used for molecular biology analysis of input sequences. The dotted
arrows show the intermediate products from this workflow that are required by the user and/or might be used to drive
other scientific processes.

3.3 Motif Network

Project: Motif Network
Contact: Jeffrey Tilson
Organization(s): Renaissance Computing Institute
Websites:
http://www.renci.org/focusareas/biosciences/motif.php

http://www.motifnetwork.org/

Tool: Taverna
Description: The MotifNetwork project [32, 33], a collaboration betweenRENCI and NCSA, is building a
software environment to provide access to domain analysis of genome sized collections of input sequences.
The MotifNetwork workflow is computationally intensive. The first stage of the workflow assembles input data
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and processes the data that is then fed into Interproscan service. The concurrent executions of InterProScan is
handled through Taverna and scripts. The results of the domain “scanning” step are passed to an MPI code for
the determination of domain architectures. The motif workflow has a parallel split and merge paradigm where
preprocessing spawns a set of parallel tasks that operate onsubsets of the data. Finally, the results from the
parallel tasks are merged and feed into the multi-processorapplication.P r eI n t e r p r o s c a nI n t e r p r o s c a n I n t e r p r o s c a nP o s tI n t e r p r o s c a nM o t i f
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Figure 8: Motif workflow. A workflow used for motif/domain analysis of genome sized collections of input sequences.

3.4 MEME-MAST

Project: National Biomedical Computation Resource (NBCR)
Contact: Sriram Krishnan
Organization(s): San Diego Supercomputing Center (SDSC)
Websites:http://nbcr.sdsc.edu/
Tool: Kepler
Description: The goal of National Biomedical Computation Resource(NBCR) is to facilitate biomedical re-
search by harnessing advanced computational and information technologies. The MEME-MAST (Figure 9)
workflow deployed using Kepler [8, 23] allows users to discover signals or motifs in DNA or protein sequences
and then search the sequence databases for the recognized motifs. This is a simple workflow often used for
demonstration purposes. The workflow is a sequential workflow similar to Glimmer.

3.5 Molecular Sciences

Project: National Biomedical Computation Resource (NBCR)
Contact: Sriram Krishnan
Organization(s): San Diego Supercomputing Center (SDSC)
Websites:http://nbcr.sdsc.edu/
http://gemstone.mozdev.org

Tool: Gemstone
Description: An important process in the drug-design process is understanding the three-dimensional atomic
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Figure 9: MEME-MAST workflow. A simple demonstration workflow used to discover signals in DNA sequences.

B A B E L
L i g h t P r e pP D B 2 P Q R G A M E S SA P B SQ M V i e w

6 0 s e c o n d s6 0 s e c o n d s
5 m i n u t e s1 0 m i n u t e s5 0 M B

5 m i n u t e s 1 4 0 K B1 2 0 K B
1 7 5 K B

1 0 0 K B

2 . 2 M B2 M B

Figure 10: Molecular Sciences workflow. The workflow is used to study atomic structures of proteins and ligands.
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structures of proteins and ligands. The Gemstone project, aclient interface to a set of computational chemistry
and biochemistry tools, provides the NBCR community accessto a set of tools that allows users to analyze
and visualize atomic structures. Figure 10 shows an examplemolecular science workflow. The workflow in
its current incarnation runs in an interactive mode where each step of the workflow is manually launched by
the user once the previous workflow task finishes. The first fewsteps of the workflow involve downloading the
desired protein and ligand from the Protein Data Bank (PDB) database and converting it to a desired format.
Concurrent preprocessing is done on the ligand using the Babel and LigPrep services. Finally GAMESS and
APBS are used to analyze the ligand and protein. The results are finally visualized using the QMView which is
done as an offline process. First few steps have small data andsmall compute and finally produce megabytes of
data.

3.6 Avian Flu

Project: National Biomedical Computation Resource (NBCR), Avian Flu Grid, Pacific Rim Application and
Grid Middleware Assembly (PRAGMA)
Contact: Sriram Krishnan
Organization(s): San Diego Supercomputing Center (SDSC)
Websites:http://nbcr.sdsc.edu/
http://www.pragma-grid.net/

http://avianflugrid.pragma-grid.net/

http://mgltools.scripps.edu/

Tool: [Scripts]/Vision
Description: The Avian Flu Grid project is developing a global infrastructure for the study of Avian Flu as
an infectious agent and as a pandemic threat. Figure 11 showsa workflow that is used in drug design. It is
used to understand the mechanism of host selectivity and drug resistance. The workflow has a number of small
preprocessing steps followed by a final step where upto 1000 parallel tasks are spawned. The the data products
from this workflow are small. P r e p a r e G P FA u t o G r i d1 K B
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Figure 11: Avian Flu workflow. A workflow used in drug design tostudy the interaction of drugs with the environment.

3.7 caDSR

Project: cancer Biomedical Informatics Grid (caBIG)
Contact: Ravi Madduri, Wei Tan, Cem Onyuksel
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Organization(s): Argonne National Laboratory
Websites:http://www.cagrid.org/
Tool: Taverna
Description: The cancer Biomedical Informatics Grid(caBIG) is a virtualinfrastructure that connects scientists
with data and tools towards a federated cancer research environment. Figure 12 shows a workflow using the
caDSR (Cancer Data Standards Repository) and EVS (Enterprise Vocabulary Services) services [2] to find all
the concepts related to a given context. The caDSR service isused to define and manage standardized metadata
descriptors for cancer research data. EVS in turn facilitates terminology standardization across the biomedical
community. This workflow is predominantly a query type workflow and the compute time is very small in the
order of seconds.

f i n d P r o j e c t s
f i n d C l a s s e sI n P r o j e c t sf i n d S e m a n t i cM e t a d a t a s e a r c h L o g i cC o n c e p t
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1 0 M B1 0 M B

1 5 M B1 0 M B 1 5 M B

5 s e c o n d s
5 s e c o n d s5 s e c o n d s 5 s e c o n d s

Figure 12: Cancer Data Standards Repository workflow. A workflow used to query concepts related to an input context.

4 Astronomy and Neutron Science

In this section we consider scientific workflow examples fromthe astronomy and neutron science community.

4.1 Astronomy workflow

Project: Pan-STARRS
Contact: Yogesh Simmhan
Organization(s): Microsoft Research
Websites:http://pan-starrs.ifa.hawaii.edu/public/
http://www.ps1sc.org/

Description: The goal of the Pan-STARRS’s (Panoramic Survey Telescope And Rapid Response System)
project [18] is a continuous survey of the entire sky. The data collected by the currently deployed prototype
telescope ’PS1’ will be used to detect hazardous objects in the Solar System, and other astronomical studies
including cosmology and Solar System astronomy. The astronomy data from Pan-STARRS is managed by the
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teams at John Hopkins University and Microsoft Research through two workflows. The first PSLoad workflow
(Figure 13) stages incoming data files from the telescope pipeline and loads them into individual relational
databases each night. Periodically the online production databases that can be queried by the scientists, are
updated with the databases collected over the week by the PSMerge workflow(Figure 14). The infrastructure to
support the PS1 telescope data is still under development. Both the Pan-STARRS workflows are data intensive
but require coordination and orchestration of resources toensure reliability and integrity of the data products.
The workflows have a high degree of parallelism achieved by working on small subsets of the data.P r e p r o c e s sC S V B a t c h P r e p r o c e s sC S V B a t c h…n = 1 � � 5L o a d C S VF i l e i n t oL o a d D B L o a d C S VF i l e i n t oL o a d D B… n = 1 0L o a d C S V … ……

N = 8 0 0
V a l i d a t eL o a d D B V a l i d a t eL o a d D BE n d

1 – 1 0 0 M B
~ 1 0 0 M B 1 0 s e c s

5 s e c o n d s
3 0 s e c o n d s 1 – 1 0 0 M B5 s e c o n d s

Figure 13: PSLoad workflow. Data arriving from the PS1 telescope is processed and staged in relational databases each
night. C o l d D B &L o a d D Bp r e p r o c e s s C o l d D B &L o a d D Bp r e p r o c e s s…N = 1 6

M e r g e D B M e r g e D B…N = 3 0 0 ´ 6 0 0 M e r g e D B3 h r s1 m i n
5 m i n s

U p d a t eP r o d u c t i o nD B 1 h rV a l i d a t eM e r g e V a l i d a t eM e r g e
1 0 0 M B1 0 0 M B1 0 0 M B2 T B

~ 2 T B ~ 2 . 0 3 T B
Figure 14: PSMerge workflow. Each week, the production databases that astronomers query are updated with the new
data staged during the week.

4.2 McStas workflow

Project: Spallation Neutron Source (SNS), Neutron Science TeraGridGateway(NSTG)
Contact: Sudharshan Vazhkudai, Vickie E. Lynch
Organization(s): Oak Ridge National Laboratory
Websites:http://neutrons.ornl.gov/
Description: Neutron science research enables study of structure and dynamics of molecules that constitute
materials. Neutron Source SNS at Oak Ridge National Laboratory connect large neutron science facilities that
contain instruments with computational resources such as the TeraGrid [25]. The Neutron Science TeraGrid
Gateway enables virtual neutron scattering experiments. These experiments simulate a beam line and enables
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experiment planning and experimental analysis. Figure 15 shows a virtual neutron scattering workflow using
McStas, VASP, and nMoldyn. VASP and nMoldyn are used for molecular dynamics calculations and McStas
is used for neutron ray-trace simulations. The workflow is computationally intensive and currently runs on
ORNL supercomputing resources and TeraGrid resources. Theworkflow’s initially steps run for a number of
days and are then followed by additional compute intensive steps. The workflow is sequential and has small
data products.

Figure 15: McStats Workflow. This workflow is used for Neutronray-trace simulations.

5 Computer Science Examples

Workflow tools are increasingly being used in different scenarios both in scientific as well as business processes.
In addition programming constructs such as map and reduce facilitate problems to be composed as distinct work
units with stated dependencies. In this section we explore some examples that illustrate workflows whose users
are often computer scientists or programmers.

5.1 Animation

Rendering computer animation frames is fairly time consuming. Distributed rendering on multiple proces-
sors has been known to provide significant speedups over running on a single processor [13]. The animation
workflow is based on distributed rendering that is commonly used today for frame generation. The animation
workflow has map-reduce style programming model where work is distributed and the results are gathered
and synthesized for the final result. The computational and data sizes are rough numbers used for illustra-
tion [12, 37].

5.2 Performance Measurement Workflow

Applications running in distributed environments like Grid and cloud computing resources often experience
significant changes in performance. Benchmarking and performance experiments are often critical in these
environments to determine the best binary for a given set of resources. Tilson et al. [34] describe a way to use
workflow tools to facilitate the benchmarking of a large number of variable parameters including compiler, link
and runtime flags (Figure 17).
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Figure 16: Animation workflow. The rendering work is distributed across a multitude of nodes.

C o m p i l e L i n k
E x e c u t e E x e c u t e E x e c u t e…

U p d a t eD a t a b a s e
Figure 17: Performance Measurement workflow. The workflow isused for benchmarking applications with various
compiler, link and runtime flags.
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5.3 Load balancing as a workflow

Recent computing models have resulted in application middleware investigating mechanisms to dynamically
manage the resource pool. Cloud computing services such as Amazon EC2 [1] allow users and applications to
increase their resource pool on increased load and decreasethe number of resources when the load drops. When
considering the load from different users or applications that use a defined resource pool we can consider the
entire load managed by the middleware to be a “workflow of workflows” where the task dependency might be
based on number of concurrent resources available. For example if there are four independent tasks(Figure 18)
and just one resource the workflow would be a simple sequential workflow. However if there were two resources
available, two tasks would run and then subsequently the remaining two tasks would run. Similarly if three
resources were available, three tasks would initially execute in parallel. A similar strategy would be followed
for workflows where in addition to the workflow dependencies,execution dependency is created between two
tasks that need to run on the same resource (shown by dotted lines). In the figure 18 three workflows are
scheduled on three processors. In this case the head nodes ofthe workflow are scheduled on the workflows.
Subsequently, the two parallel tasks from workflowa is scheduled with one of the parallel tasks from workflow
b. In this case, there is an execution dependency between workflow b’s second task and the first task from
workflow c.

In a more general case consider a cloud computing application that might procure more resources as the load
increases and reduce the number of resources as the load decreases. Thus the resources procured or allotted
might themselves be represented as a workflow task graph(Figure 19) where each node in the graph represents
the resource slot. a b c db cd

a ca bd d a b cJ o b s aa aa bb bb cc ccaa aa bb bb
c

c cc
Figure 18: Load balancing workflow. When jobs or workflows arescheduled on resources, a dependency is created from
the resource availability constraint. In the left side of the figure, we show how jobs a, b, c, d might be scheduled on
one, two or three processors. When scheduled on one processor, the jobs get mapped sequential resulting in a virtual
dependency where job b must wait for job a to finish. Similarlyfor workflows, if we were to schedule them on three
processors, in addition to their workflow task dependency, their execution dependency is determined by the execution of
one or more of the tasks from other workflows.

6 Discussion

In this paper we have presented a number of workflows from different domains. The workflows have varying
requirements and constraints. In this section we provide a higher level discussion on use case scenarios, work-
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Figure 19: Resource profile as a workflow. A dynamic application manager might procure resources as load increases
and release resources as load falls below a threshold. The resource profile over time can be represented as a workflow
structure.

flow characteristics. Additionally, the workflow examples demonstrate the required support in next-generation
workflow and resource management tools to support dynamic and cloud computing environments.

6.1 Use case scenarios

It is often important to understand the use case scenarios for the workflows. Workflows are used in a number of
different scenarios - a new workflow might be initiated in response to dynamic data or a number of workflows
might be launched as part of an educational workshop. In addition, the user might want tospecify constraints
to adjust the number of worklows to run based on resource availability [30].

User-initiated workflows.The typical mode of usage of science cyberinfrastructure iswhere a user logs into
the portal and launches a workflow for some analysis. The userselects a pre-composed workflow and supplies
the necessary data for the run. In this scenario, we need mechanisms to procure resources and enable workflow
execution, provide recovery mechanisms from persistent and transient service failures and adapt to resource
availability or recover from resource failures during workflow execution. The user might also want the ability
to pause the workflow at the occurrence of a predefined event, inspect intermediate data and make changes
during workflow execution.

The lead, bioinformatics and biomedicine(section 3 workflows are all user-initiated workflows either through
portal environments.

Workflow priorities Let us consider a scenario of an educational workshop with multiple competing users.
Resources are typically reserved for this event through out-of-band mechanisms for advanced reservation. In
this scenario resource allocation needs to be based on existing load on the machines, resource availability, the
user priorities and workflow load. The bounded set of resources available to the workshop might need to be
proportionally shared among the workflow users. If there is aweather event during the workshop, resources
might need to be reallocated and conflicting events might need some arbitration.

The lead, bioinformatics and biomedical(section 3) workflows are also used in education workshops with often
competing or competing user needs.
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Dynamic Event. A number of scientific workflows get triggered by newly arriving data. Multiple dynamic
events and their scale might need priorities between users for appropriate allocation of limited available re-
sources. Resources must be allocated to meet deadlines. Additionally, to ensure successful completion of tasks,
we might need to replicate some of the workflow tasks for increased fault tolerance. It is possible that with ad-
vance notice of upcoming weather events, we might want to anticipate the need for resources and try to procure
them in advance.

The weather forecasting, storm surge modeling (Figure 4), flood-plain mapping (Figure 5) and the astronomy
workflows(Figures 13 and 14) are launched with the arrival ofdata.

Advanced User Workflow Alternatives and Constraints.An advanced user might want to provide a set of
constraints (e.g. time deadline) on a workflow.

Scientific processes such as weather prediction, financial forecasting have a number of parameters and com-
puting an exact result is often impossible. To improve confidence in the result, it is often necessary to run a
minimal number of the workflows. There is a need to run multiple workflows (i.e.workflow sets) that need to be
scheduled together. Thus for workflow sets, users specify that they minimally require M out of N workflows to
complete by the deadline. Thus in the weather forecasting workflow, the user might specify that fewer parallel
ensemble members could be run to get a quicker result. Alternatively the user might be willing to sacrifice
forecast resolution to get some early results which might then define the rest of the workflow.

These scenarios illustrate the need for an adaptation framework that implementsonline planning and control
of workflowsto assess resource needs, proactively adapt to failures andworkflow needs based on priorities and
policies specified by the user.

6.2 Workflow Types

The workflows described in this paper vary significantly in their computational and data requirements. A
number of the bioinformatics workflows often have tasks thatare based on querying large databases in order
of minutes for the task execution. In other cases we see each of the tasks of the workflow require computation
time on the order of hours or days on multiple processors. In some cases sub-parts of the workflow might
also present different characteristics. In addition, the sizes of the intermediate data products might also vary.
Workflow management strategies for each of these workflows can vary and thus require the understanding of
the workflow to apply appropriate techniques. In this section we consider the characteristics that help classify
the workflow types that are observed. We also present the challenges that each of the workflow types present.

Structure. The size of the workflow is an important characteristic to determine resource requirements, etc. We
consider the tasks of the workflow as its structural characteristic. The size of the workflows that are deployed
today in most production environments are relatively small. The largest workflows in our set contain about a
couple of hundred independent tasks. The Avian Flu (Figure 11) and PanSTARRS(Figures 13 and 14) work-
flows has over a thousand nodes but the computation at each node is expected to take only a few minutes to
an hour. Scientists express a need to run larger sized workflows but are often limited by available resources or
workflow tool features that might be needed to support such large-scale workflows. Today, workflow tools have
limited composition support for large workflows - ability tospecify repeated tasks, display parts of a workflow,
etc. In addition, they have little or no support to specify resource requirements, conditions or other constraints
on part or the entire workflow. It is also often difficult in grid environments today to scale workloads up or
down due to batch queue wait times and other factors. In addition to the total number of tasks in a workflow it
is also important to consider the width and length of the workflows. The width of the workflow (i.e. maximum
number of parallel branches) determines the concurrency possible and the length of the workflow characterizes
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the makespan (or turnaround time) of the workflow. We observethat in our workflow examples, the larger sized
workflows such as the Motif workflow (Figure 8) and the astronomy workflows (Figures 13 and 14) the width
of the workflow is significantly larger than the length of the workflow.

Pattern. The workflows that we surveyed depict the basic control flow patterns such as sequence, parallel split,
synchronization [35]. The parallel split-synchronization pattern has similarities to the map-reduce programming
paradigm. A number of workflows divide the work units into distinct work units and the results are then
combined - e.g. Animation (Figure 16), Motif workflow (Figure 8), Pan-STARRS workflows (Figures 13 and
14).

Computation. In addition to the structure and pattern of a workflow it is important to understand the com-
putational requirements. In the presented workflow examples we observe that computational time required
by the workflows can vary from a few seconds to several days. A number of the bioinformatics workflows
depend on querying large databases and have small compute times. Some examples include the Glimmer work-
flow (Figure 6), Gene2Life (Figure 7), caDSR (Figure 12). Similarly the initial parts of the LEAD forecast
workflow(Figures 1 and 2) and the LEAD data mining workflows (Figure 3) have small computational load.
A number of the workflows including the forecasting parts of the LEAD workflow, Pan-STARRS workflows
(Figures 13 and 14), SCOOP (Figure 4), SNS (Figure 15), Motif(Figure 8), NCFS (Figure 5) have medium to
large sized compute requirements.

Data. The workflows are associated with different types of data including input data, backend databases,
intermediate data products, output data products. A large number of the bioinformatics applications often
have small input and small data products but often rely on huge backend databases that are queried as part
of task execution. These workflows require that the databases be pre-installed on various sites and resource
selection is often based on selecting the resources where the data might be available. Workflows such as LEAD
(Figures 1 and 2), SCOOP (Figure 4), NCFS (Figure 5) and Pan-STARRS workflows (Figures 13 and 14) have
fairly large sized input, intermediate and output data products. The Glimmer workflow (Figure 6) has similar
sized input and output data products but its intermediate data products are smaller. In today’s production
environments workflows often compress data products to reduce transfer times through intermediate scripts
etc. When scheduling workflows on resources, a number of dataissues need to be considered including the
availability of the required data as well as the data transfer time of both input and output products.

The combination of the structural and pattern characteristics, the computational and data sizes helps in under-
standing the workflow requirements when making planning andadaptation decisions.

6.3 Multiple workflows

The user interacts with applications through various portal and graphical interfaces for workflow tools. Work-
flow management techniques today are focused on managing single workflows in a distributed environment like
the grid [26, 36]. However portal environments facilitate simultaneous multi-user access to the same workflows
and underlying resources. In addition, a number of scientific explorations including the weather and ocean
modeling (Section 2) often require a large number of parallel runs to be launched to study different parameters
to increase result accuracy.

Competing workflows. Portal and gateway environments allow a number of workflows from different users
to be launched simultaneously. In such cases workflows from different users are often competing for the same
resource. In addition, in LEAD a weather forecasting workflow will need to have higher priority than a work-
flow launched by a user in an educational workshop. Workflow management techniques needs to account for
the different classes of workflow users when allocating resources.

18



Data sharing and reuse.When multiple workflows exist in the system, there is an opportunity to save com-
putational time by reusing data products from identical executions [15]. However in these situations it is also
important to manage data privacy concerns when managing data products from potentially competing work-
flows.

Workflow set. Scientists often conduct parametric or exploratory studies that involve launching multiple par-
allel workflows. The workflows might share data products between them and/or use the same set of resources.
We use the termworkflow setto refer to workflows that need to be scheduled together to meet their relationship
constraint such as data dependencies or the M of N constraintmentioned earlier. In addition, there might be
workflows from different users which have the same priority and similar constraints requiring them to be man-
aged to ensure fairness. There is limited capabilities to beable to ensure such policies in the workflow engines
available today.

Thus we need tools and mechanisms to manage competing workflows or workflow sets in a system. Workflow
tools will need to support the multiple workflow scenario or “workflow of workflows”. In addition, as we move
to more dynamic resource environments such as cloud systems, tools such as the Dryad execution engine [19]
or MapReduce [14] might be useful for managing execution of multiple workflows.

6.4 Workflow Capabilities

Workflow tools have limited capabilities today to allow users to specify constraints and other expectations from
their workflows. We investigate some such constraints that users might need to express in conjunction with
workflow descriptions through workflow composition tools.

Exploratory. Scientific explorations often have uncertainties that might need to be resolved during runtime.
Input data sizes can vary largely affecting the characteristics of the workflow. In a number of explorations
scientists and their workflows interact with real-time datacollecting instruments such as the Large Hadron
Collider (LHC) [3], sensors, radars [17, 27], etc. Thus in some cases while a general structure of the workflow
might be known, the exact characteristics of the workflow is determined during execution.

Interactive. Business workflows and scientific explorations often require a “human-in-the-loop” as part of the
workflow. Workflow management techniques often have to consider sub-parts of the workflow for scheduling
and adaptation.

Constraints. In addition to the workflow description, users often need to specify various constraints on the
workflow. The weather and ocean modeling workflows (Section 2) are time-sensitive. The workflow results
must be obtained in advance for weather response agencies tobe take appropriate action. In addition the cost
of resources (either allocation seconds on TeraGrid or realdollars on resources such as Amazon EC2) might be
a consideration for the end user.

6.5 Resource coordination.

Scientific workflows largely run in batch queue based grid environments and business workflows run on mono-
lithic corporate systems. However the advent of utility andcloud computing systems can change the interaction
mode. Cloud computing systems allows users to customize software environments allowing workflow tools to
be able to manage application specific software and data on the resources. In addition procuring resources in
advance for later workflow steps can be achieved with the new resource access mechanisms thus minimizing
workflow makespan by reducing resource wait times. Thus new mechanisms are required in workflow and
resource management tools.
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Workflow Name Total no.
of tasks

Max
width

Max task
processor
width

Computation Data sizes Pattern

LEAD Weather
Forecasting

6 3 16 hours megabytes
to gigabytes

Sequential

LEAD Data Mining 3 1 1 minutes kilobytes Sequential

Storm Surge 6 5 16 minutes-
hours

megabytes Parallel-merge

Flood-plain map-
ping

7 2 256 days gigabytes Mesh

Glimmer 4 1 1 minutes megabytes Sequential

Gene2Life 8 2 1 minutes kilobytes to
megabytes

Parallel

Motif 138 135 256 hours megabytes
to gigabytes

Parallel-split

MEME-MAST 2 1 1 minutes kilobytes Sequential

Molecular Sciences 6 2 1 minutes megabytes Parallel-merge

Avian Flu ∼ 1000 1000 1 minutes kilobytes to
megabytes

Parallel-split

caDSR 4 1 1 seconds megabytes Sequential

PanSTARRS Load ∼ 1600 -
41000

800 -
40000

1 minutes megabytes Parallel-split-
merge

PanSTARRS Merge ∼ 4900 -
9700

4800 -
9600

1 hours gigabytes to
terabytes

Parallel-split-
merge

McStats 3 1 128 days kilobytes to
megabytes

Sequential

Table 1: Workflow Survey Summary. The total number of tasks and the number of parallel tasks are useful in understand-
ing the structure of the workflow. The maximum processor width of a task helps us understand the number of processors
required simultaneously. The computation and data sizes shows a rough order of the time and the size of data products
from this workflow. Each of the workflow might include one or more patterns. Our goal is to capture the dominant pattern
seen in the workflow. Workflows are classified as Sequential (mostly tasks that follow one after the other), Parallel (mul-
tiple tasks run at the same time), Parallel-split(one task’s output feeds to multiple tasks), Parallel-merge(multiple tasks
merge into one task), Parallel-merge-split (both parallel-merge and parallel-split) and Mesh (where task dependencies are
interleaved).
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7 Summary

Understanding the characteristics of the workflows and other capabilities and constraints desired from the work-
flow is necessary for applying specific orchestration techniques. In this paper we have investigated workflows
from various domains that have different structures, computational and data requirements. We summarize the
results of the workflow survey and their characteristics in Table 1.
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