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Abstract

Workflows have been used to model repeatable tasks or opesati a number of different industries includ-
ing manufacturing and software. In recent years, workflovesiacreasingly used in distributed resources
and web services environments through resource modelssugid and cloud computing. These workflows
often have disparate requirements and constraints thdttodee accounted for during workflow orchestra-
tion. In this paper, we present workflow examples from défégrdomains including bioinformatics and
biomedical, weather and ocean modeling, astronomy deggttieir data and computational requirements.

1 Introduction

Workflows and workflow concepts have been used to model at&peassequence of tasks or operations in dif-
ferent domains including the scheduling of manufacturipgrations, inventory management, etc. The advent
of internet and web services has seen the adoption of workfelsva means for business process manage-
ment [31] and as an integral component of cyberinfrastnectar scientific experiments [10, 16]. In addition,
the availability of distributed resources through grid arolud computing models has enabled users to share
data and resources using workflow tools and other user atesfsuch as portals.

Workflow tools allow users to compose and manage complextalistd computation and data in distributed
resource environments. Workflows might have different vese requirements and constraints associated with
them. For example, application workflows with stringentdigee driven requirements such as weather predic-
tion, economic forecasting are now increasingly run inriated resource environments.

In this paper we discuss workflow examples from different dors: bioinformatics and biomedicine, weather
and ocean modeling, astronomy, etc. These examples hameobened by talking to domain scientists and
computer scientists who composed and/or run these workfl&ash of these workflows have been modeled
using different workflow tools and sometimes the flow is eveamaged through scripts. For each workflow we
specify the running time of applications and input and otitfata sizes associated with each task node. Running
time of applications and data sizes for a workflow depend amnalxer of factors including user inputs, specific
resource characteristics and run-time resource avatiabiriations [20]. Thus our numbers are approximate
estimates for typical input data sets that are represeatafithe general characteristics of the workflow.



In the following sections, we provide a brief descriptiontbé project, workflow and usage model of the
workflows as available today. For each of the workflows, we plevide a DAG representation of the workflow
annotated with computation and data sizes. In addition tbjegt and organization names and contact person
for the workflows are specified. This is not a complete list feyresents the contributions by the individuals
and organizations that responded to the survey request.

The rest of the paper is organized as follows. Section 2 descthe weather and ocean modeling workflows

and Sections 3 describes the bioinformatics and biomeslisiorkflows. Sections 4 and 5 describe the astron-

omy and neutron science and computer science examplesctlaorsé we discuss the use case scenarios and
the characteristics of the workflow and finally summarize swnwvey in section 7

2 Weather and Ocean Modeling

In the last few years the world has seen a number of severeahalisasters such as hurricanes, tornadoes,
floods, etc. The models used to study weather and ocean plkeoonuse real-time observational data in
conjunction with a number of parameters that are varied wdysthe possible scenarios for prediction. In
addition the models must be run in a timely manner and inféionalisseminated to disaster response agencies.
This creates the need ftarge scale modelingn the areas of meteorology and ocean sciences, coupledawith
integrated environmerfor analysis, prediction and information disseminatiomuinber of cyberinfrastructure
projects are building tools and constructing workflows tlftate next-generation weather and ocean modeling
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Figure 1: LEAD North American Mesoscale (NAM) initializedrecast workflow. The workflow processes terrain and
observation data to produce weather forecasts.

2.1 Mesoscale Meteorology

Project: Linked Environments for Atmospheric Discovery, TeraGritle®ice Gateway
Websites:http://portal.lead.project.org

Tool: xbaya, GPEL, Apache ODE

Description: The Linked Environments for Atmospheric Discovery (LEADL7] is a cyberinfrastructure
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Figure 2: LEAD ARPS Data Analysis System(ADAS) initializeatecast workflow. The workflow processes terrain and
observation data to produce weather forecasts.
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Figure 3: LEAD Data Mining Workflow workflow. The workflow presses weather data to identify regions where
weather phenomenon might be present.



project that supports mesoscale meteorology. The infretstre of LEAD needs to support real-time dynamic,
adaptive response to severe weather. A LEAD service workldflasvconstraints on execution time and accuracy
due to weather prediction deadlines. The typical inputs ¥mekflow of this type are streaming sensor data
[17, 27] that must be pre-processed and then used to launshsamble of weather models. The model outputs
are processed by a data mining component that determinethevhgome ensemble set members must be
repeated to realize statistical bounds on prediction daitgy. Figures 1, 2 and 3 show the workflows available
through the LEAD portal that include weather forecasting data mining workflows [22]. Each workflow
task is annotated with computation time and the edges of itteetdd acyclic graph (DAG) are annotated
with file sizes. The weather forecasting workflows are largamilar and vary only in their preprocessing or
initialization step. While the data mining workflow can b@separately today, it can trigger forecast workflows
and/or steer remote radars for additional localized datagmons of interest [27]. More details of the LEAD
workflow use case scenarios are presented in section 6.1.

2.2 Storm surge modeling

Project: Southeastern Coastal Ocean Observing and PredictiondPno@COOP)

Contact: Brian Blanton, Howard Lander, Steve Thorpe

Organization(s): Renaissance Computing Institute

Websites:htt p: // wwv. renci . or g/ f ocusar eas/ di sast er/ scoop. php

Tool: [Scripts]

Description: Southeastern Universities Research Assaciation’s (SURRAitheastern Coastal Ocean Observ-
ing and Prediction (SCOOP) program is a distributed prdjeat is creating an open-access grid environment
for the southeastern coastal zone to help integrate relgioaatal observing and modeling systems [6, 28].

Storm surge modeling requires assembling input meteoicdbgnd other data sets, running models, processing
the output and distributing the resulting information. énmhs of modes of operation, most meteorological and
ocean models can be run in hindcast mode, as an after fact @ja@ storm or hurricane, for post-analysis
or risk assessment, or in forecast mode for prediction togevacuation or operational decisions [28]. The
forecast mode is driven by real-time data streams while thddast mode is initiated by a user. Often it is
necessary to run the model with different forcing conditiém analyze forecast accuracy. This results in a large
number of parallel model runs, creating an ensemble of &mtsc Figure 4 shows a five member ensemble run
of tidal and storm-surge ADCIRC [24] model. For increaseduaacy of forecast the number of concurrent
model runs might be increased. ADCIRC is a finite element rhitde is parallelized using Message Passing
Interface (MPI). The workflow has a predominaly parallelisture and the results are merged in the final step.

The SCOOP ADCIRC workflows are launched according to thecifsix hour synoptic forecast cycle used by
the National Weather Service and the National Centers fair&mmental Prediction (NCEP). NCEP computes
an atmospheric analysis and forecast four times per day avsir intervals. Each of the member runs i.e. each
branch of the workflow gets triggered when wind files arrivetigh Local Data Manager (LDM) [7], an event-
driven data distribution system that selects, captures)ages and distributes meteorological data products.
The outputs from the individual runs are synthesized to ggaehe workflow output that is then distributed
through LDM.

In the system today each arriving ensemble member is harsdipdrately through a set of scripts and Java
code [28]. The resource selection approach [21] makes direal decision for each model run and uses

knowledge of scheduled runs to load-balance across alagistems. However this approach does not have
any means of guaranteeing desired QoS in terms of complti
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Figure 4: SCOOP workflow. The arriving wind data triggers AIRC that is used for storm-surge prediction during
hurricane season.

2.3 Floodplain Mapping

Project:North Carolina Floodplain Mapping Program

Contact: Howard Lander, Brian Blanton

Organization(s): Renaissance Computing Institute

Tool: [Scripts]

Description: The North Carolina Floodplain Mapping Program [4, 11] isUdsed on developing accurate
simulation of storm surges in the coastal areas of North IZ&o0 The deployed system today consists of a
four-model system that consists of the Hurricane Boundayek (HBL) model for winds, WaveWatch |l
and SWAN for ocean and near-shore wind waves, and ADCIRCtéonssurge. The models require good
coverage of the parameter space describing tropical stbaracteristics in a given region for accurate flood
plain mapping and analysis. Figure 5 shows the dynamicgoni the workflow. Forcing winds for the
model runs are calculated by the Hurricane Boundary Lay@k(Hnodel that serve as inputs to the workflow.
The HBL model is run on a local commodity linux cluster. Cortgtional and storage requirements for these
workflows are fairly large requiring careful resource plann An instance of this workflow is expected to run
for over a day. The rest of the workflow today runs on RENCl'sdgjene system [5].
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Figure 5: NCFS workflow. A multitude of models are run to maithel sStorm surges in the coastal areas of North Carolina.



3 Bioinformatics and Biomedical workflows

The last few years have seen large scale investments inigflastructure to facilitate Bioinformatics and
biomedical research. The infrastructure allows users tess databases and web services through workflow
tools and/or portal environments. We surveyed three majofepts in the United States - North Carolina
Bioportal, cancer Biomedical Informatics Grid (caBIG),daNational Biomedical Computational Resource
(NBCR) to understand the needs of this class of workflows niaant number of these workflows involve
small computation but involve access to large-scale databihat need to be preinstalled on available resources.
While the typical use cases of today have input data sizdsioitder of megabytes, it is anticipated that in the
future data sizes might scale to gigabytes.

3.1 Glimmer

Project: North Carolina Bioportal, TeraGrid Bioportal Science Gredg
Organization(s): Renaissance Computing Institute

Websites:

https://portal.renci.org/portal/

http: //ww. renci . org/ f ocusareas/ bi osci ences/ notif. php
http://ww. noti f network. org/

Tool: Taverna

Description: The North Carolina Bioportal and The TeraGrid Bioportal Suwe Gateway [29] provides ac-
cess to about 140 bioinformatics applications and a numbdatabases. Researches and educators use the
applications interactively for correlation, explorataygnetic analysis, etc. The Glimmer workflow is one such
example workflow that is used to find genes in microbial DNAg(Fe 6). The Glimmer workflow is sequential
and light on both compute and data.
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Figure 6: Glimmer workflow. A simple workflow used in educait# context to find genes in microbial DNA.

3.2 GeneZ2Life

Project: North Carolina Bioportal, TeraGrid Bioportal Science Gredg
Organization(s): Renaissance Computing Institute
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Websites:

https://portal.renci.org/portal/

http://wwmv. renci.org/focusareas/ bi osci ences/ notif. php

http:// wwmv. moti f net wor k. or g/

Tool: Taverna

Description: Let us consider the Gene2Life workflow used for moleculaddgyg analysis. This workflow
takes an input DNA sequence, searches databases to findgatesng the sequence. It globally aligns the
results and attempts to correlate the results based onisngand function. Figure 7 depicts the steps of the
workflow and the corresponding output at each stage. In thikflow the user provides a sequence that can
be a nucleotide or an amino acid. The input sequence perfosmmgparallel BLAST [9] searches, against
the nucleotide and protein databases respectively. Thétsesf the searches are parsed to determine the
number of identified sequences that satisfy the selectiterier The outputs trigger the launch of Clustalw, a
bioinformatics application that is used for the global afigent process to identify relationships. These outputs
are then passed through parsimony programs for analysig tib applications that may be available for
such analysis are dnapars and protpars. In the last steg afdatkflow plots are generated to visualize the
relationships, using an application called drawgram. Wuoskflow has two parallel sequences.
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Figure 7: Gene2Life workflow. The workflow is used for molemubiology analysis of input sequences. The dotted
arrows show the intermediate products from this workflowt i@ required by the user and/or might be used to drive
other scientific processes.

3.3 Motif Network

Project: Motif Network

Contact: Jeffrey Tilson

Organization(s): Renaissance Computing Institute

Websites:

http: //ww. renci . org/ focusareas/ bi osci ences/ notif. php

http://ww. nmotifnetwork. org/

Tool: Taverna

Description: The MotifNetwork project [32, 33], a collaboration betweRBENCI and NCSA, is building a
software environment to provide access to domain analyisggeoome sized collections of input sequences.
The MotifNetwork workflow is computationally intensive. &ffirst stage of the workflow assembles input data



and processes the data that is then fed into Interproscaitaseihe concurrent executions of InterProScan is
handled through Taverna and scripts. The results of the oofeeanning” step are passed to an MPI code for
the determination of domain architectures. The motif wankfhas a parallel split and merge paradigm where
preprocessing spawns a set of parallel tasks that operaselsets of the data. Finally, the results from the
parallel tasks are merged and feed into the multi-processplication.
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Figure 8: Motif workflow. A workflow used for motif/domain alysis of genome sized collections of input sequences.

3.4 MEME-MAST

Project: National Biomedical Computation Resource (NBCR)

Contact: Sriram Krishnan

Organization(s): San Diego Supercomputing Center (SDSC)

Websites:htt p: // nbcr. sdsc. edu/

Tool: Kepler

Description: The goal of National Biomedical Computation Resource(NB@Ro facilitate biomedical re-
search by harnessing advanced computational and infemggthnologies. The MEME-MAST (Figure 9)
workflow deployed using Kepler [8, 23] allows users to disaosignals or motifs in DNA or protein sequences
and then search the sequence databases for the recognitiésl mbis is a simple workflow often used for
demonstration purposes. The workflow is a sequential wokksionilar to Glimmer.

3.5 Molecular Sciences

Project. National Biomedical Computation Resource (NBCR)

Contact: Sriram Krishnan

Organization(s): San Diego Supercomputing Center (SDSC)

Websites:htt p: // nbcr. sdsc. edu/

http://genstone. nozdev. org

Tool: Gemstone

Description: An important process in the drug-design process is unduistg the three-dimensional atomic
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Figure 9: MEME-MAST workflow. A simple demonstration workflaused to discover signals in DNA sequences.
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Figure 10: Molecular Sciences workflow. The workflow is usedtudy atomic structures of proteins and ligands.



structures of proteins and ligands. The Gemstone projegligt interface to a set of computational chemistry
and biochemistry tools, provides the NBCR community actess set of tools that allows users to analyze
and visualize atomic structures. Figure 10 shows an examplecular science workflow. The workflow in
its current incarnation runs in an interactive mode wheghesiep of the workflow is manually launched by
the user once the previous workflow task finishes. The firstsiaps of the workflow involve downloading the
desired protein and ligand from the Protein Data Bank (PDRalokase and converting it to a desired format.
Concurrent preprocessing is done on the ligand using thelBaid LigPrep services. Finally GAMESS and
APBS are used to analyze the ligand and protein. The regeltfnally visualized using the QMView which is
done as an offline process. First few steps have small dataraaliicompute and finally produce megabytes of
data.

3.6 Avian Flu

Project: National Biomedical Computation Resource (NBCR), Avian &lrid, Pacific Rim Application and
Grid Middleware Assembly (PRAGMA)

Contact: Sriram Krishnan

Organization(s): San Diego Supercomputing Center (SDSC)

Websites:htt p: // nbcr. sdsc. edu/

http:// wwv. pragma- grid. net/

http://avianflugrid. pragma-grid.net/

http://myl tool s.scripps. edu/

Tool: [Scripts]/Vision

Description: The Avian Flu Grid project is developing a global infrastwe for the study of Avian Flu as
an infectious agent and as a pandemic threat. Figure 11 shawwkflow that is used in drug design. It is
used to understand the mechanism of host selectivity arglrdsistance. The workflow has a number of small
preprocessing steps followed by a final step where upto 1@€dllpl tasks are spawned. The the data products
from this workflow are small.
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Figure 11: Avian Flu workflow. A workflow used in drug designdiudy the interaction of drugs with the environment.

3.7 caDSR

Project: cancer Biomedical Informatics Grid (caBIG)
Contact: Ravi Madduri, Wei Tan, Cem Onyuksel
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Organization(s): Argonne National Laboratory

Websites:ht t p: // ww. cagri d. or g/

Tool: Taverna

Description: The cancer Biomedical Informatics Grid(caBIG) is a virtirdfastructure that connects scientists
with data and tools towards a federated cancer researchoemeént. Figure 12 shows a workflow using the
caDSR (Cancer Data Standards Repository) and EVS (Ergergdcabulary Services) services [2] to find all
the concepts related to a given context. The caDSR serviggeto define and manage standardized metadata
descriptors for cancer research data. EVS in turn fa@gaerminology standardization across the biomedical
community. This workflow is predominantly a query type wookiland the compute time is very small in the
order of seconds.
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Figure 12: Cancer Data Standards Repository workflow. A Wowkused to query concepts related to an input context.

4 Astronomy and Neutron Science

In this section we consider scientific workflow examples fritvi astronomy and neutron science community.

4.1 Astronomy workflow

Project: Pan-STARRS

Contact: Yogesh Simmhan

Organization(s): Microsoft Research

Websites:http: //pan-starrs.ifa. hawaii.edu/ public/

http://ww. pslsc. org/

Description: The goal of the Pan-STARRS's (Panoramic Survey Telescop Rapid Response System)
project [18] is a continuous survey of the entire sky. Theadatllected by the currently deployed prototype
telescope 'PS1’ will be used to detect hazardous objectserSblar System, and other astronomical studies
including cosmology and Solar System astronomy. The astngrdata from Pan-STARRS is managed by the
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teams at John Hopkins University and Microsoft Researabugiin two workflows. The first PSLoad workflow
(Figure 13) stages incoming data files from the telescopelipg and loads them into individual relational
databases each night. Periodically the online productatalises that can be queried by the scientists, are
updated with the databases collected over the week by theeRfeMvorkflow(Figure 14). The infrastructure to
support the PS1 telescope data is still under developmenth tBBe Pan-STARRS workflows are data intensive
but require coordination and orchestration of resourcesnture reliability and integrity of the data products.
The workflows have a high degree of parallelism achieved bskiwg on small subsets of the data.
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Figure 13: PSLoad workflow. Data arriving from the PS1 tebgmcis processed and staged in relational databases each
night.
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Figure 14: PSMerge workflow. Each week, the production degab that astronomers query are updated with the new
data staged during the week.

4.2 McStas workflow

Project: Spallation Neutron Source (SNS), Neutron Science TeraGattway(NSTG)

Contact: Sudharshan Vazhkudai, Vickie E. Lynch

Organization(s): Oak Ridge National Laboratory

Websites:htt p: // neutrons. ornl . gov/

Description: Neutron science research enables study of structure arghdgs of molecules that constitute
materials. Neutron Source SNS at Oak Ridge National Labgratonnect large neutron science facilities that
contain instruments with computational resources suclhadéraGrid [25]. The Neutron Science TeraGrid
Gateway enables virtual neutron scattering experimertes@ experiments simulate a beam line and enables
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experiment planning and experimental analysis. Figurehtivs a virtual neutron scattering workflow using
McStas, VASP, and nMoldyn. VASP and nMoldyn are used for b dynamics calculations and McStas
is used for neutron ray-trace simulations. The workflow isnpatationally intensive and currently runs on
ORNL supercomputing resources and TeraGrid resourceswbhnidlow’s initially steps run for a number of
days and are then followed by additional compute intendiepss The workflow is sequential and has small
data products.
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Figure 15: McStats Workflow. This workflow is used for Neutmay-trace simulations.

5 Computer Science Examples

Workflow tools are increasingly being used in different so@s both in scientific as well as business processes.
In addition programming constructs such as map and rededgdte problems to be composed as distinct work
units with stated dependencies. In this section we explumesexamples that illustrate workflows whose users
are often computer scientists or programmers.

5.1 Animation

Rendering computer animation frames is fairly time conswyni Distributed rendering on multiple proces-

sors has been known to provide significant speedups oveimgimm a single processor [13]. The animation
workflow is based on distributed rendering that is commorggditoday for frame generation. The animation
workflow has map-reduce style programming model where wsrllistributed and the results are gathered
and synthesized for the final result. The computational aatd dizes are rough numbers used for illustra-
tion [12, 37].

5.2 Performance Measurement Workflow

Applications running in distributed environments like Gand cloud computing resources often experience
significant changes in performance. Benchmarking and pagnce experiments are often critical in these
environments to determine the best binary for a given setsfurces. Tilson et al. [34] describe a way to use
workflow tools to facilitate the benchmarking of a large nuanbf variable parameters including compiler, link
and runtime flags (Figure 17).
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Figure 16: Animation workflow. The rendering work is distited across a multitude of nodes.
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Figure 17: Performance Measurement workflow. The workflowmsed for benchmarking applications with various
compiler, link and runtime flags.
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5.3 Load balancing as a workflow

Recent computing models have resulted in application rewaie investigating mechanisms to dynamically
manage the resource pool. Cloud computing services suclmazén EC2 [1] allow users and applications to
increase their resource pool on increased load and dedieaeember of resources when the load drops. When
considering the load from different users or applicatidmst use a defined resource pool we can consider the
entire load managed by the middleware to be a “workflow of Wovks” where the task dependency might be
based on number of concurrent resources available. Formrahthere are four independent tasks(Figure 18)
and just one resource the workflow would be a simple sequevtikflow. However if there were two resources
available, two tasks would run and then subsequently thairéng two tasks would run. Similarly if three
resources were available, three tasks would initially ei@dn parallel. A similar strategy would be followed
for workflows where in addition to the workflow dependenciesgcution dependency is created between two
tasks that need to run on the same resource (shown by daties).li In the figure 18 three workflows are
scheduled on three processors. In this case the head nottes wbrkflow are scheduled on the workflows.
Subsequently, the two parallel tasks from workflawe scheduled with one of the parallel tasks from workflow
b. In this case, there is an execution dependency betweerflawrk’'s second task and the first task from
workflow c.

In a more general case consider a cloud computing applicétiat might procure more resources as the load
increases and reduce the number of resources as the loaghsgesr Thus the resources procured or allotted
might themselves be represented as a workflow task grapiv@-iy9) where each node in the graph represents

the resource slot.
0000 o 0 (®) 0
JloNclolole

Figure 18: Load balancing workflow. When jobs or workflows secbeduled on resources, a dependency is created from
the resource availability constraint. In the left side of figure, we show how jobs a, b, ¢, d might be scheduled on
one, two or three processors. When scheduled on one proc#ssgobs get mapped sequential resulting in a virtual
dependency where job b must wait for job a to finish. Similddyworkflows, if we were to schedule them on three
processors, in addition to their workflow task dependenirtexecution dependency is determined by the execution of
one or more of the tasks from other workflows.

6 Discussion

In this paper we have presented a number of workflows fronewifft domains. The workflows have varying
requirements and constraints. In this section we providiglaeh level discussion on use case scenarios, work-
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Figure 19: Resource profile as a workflow. A dynamic applaratinanager might procure resources as load increases
and release resources as load falls below a threshold. Foenae profile over time can be represented as a workflow
structure.

flow characteristics. Additionally, the workflow examplesnagonstrate the required support in next-generation
workflow and resource management tools to support dynantickud computing environments.

6.1 Use case scenarios

It is often important to understand the use case scenanidsdavorkflows. Workflows are used in a number of
different scenarios - a new workflow might be initiated inpesse to dynamic data or a number of workflows
might be launched as part of an educational workshop. Intiaddithe user might want tepecify constraints
to adjust the number of worklows to run based on resourceaditity [30].

User-initiated workflows.The typical mode of usage of science cyberinfrastructurghisre a user logs into
the portal and launches a workflow for some analysis. Theselects a pre-composed workflow and supplies
the necessary data for the run. In this scenario, we needaneths to procure resources and enable workflow
execution, provide recovery mechanisms from persistedtteamsient service failures and adapt to resource
availability or recover from resource failures during wibokv execution. The user might also want the ability
to pause the workflow at the occurrence of a predefined evespect intermediate data and make changes
during workflow execution.

The lead, bioinformatics and biomedicine(section 3 workfi@re all user-initiated workflows either through
portal environments.

Workflow priorities Let us consider a scenario of an educational workshop withipheli competing users.
Resources are typically reserved for this event throughobitand mechanisms for advanced reservation. In
this scenario resource allocation needs to be based omexisad on the machines, resource availability, the
user priorities and workflow load. The bounded set of resesii@vailable to the workshop might need to be
proportionally shared among the workflow users. If there wgeather event during the workshop, resources
might need to be reallocated and conflicting events mighd seene arbitration.

The lead, bioinformatics and biomedical(section 3) wokBare also used in education workshops with often
competing or competing user needs.
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Dynamic Event. A number of scientific workflows get triggered by newly amigi data. Multiple dynamic
events and their scale might need priorities between userappropriate allocation of limited available re-
sources. Resources must be allocated to meet deadlinegiofdty, to ensure successful completion of tasks,
we might need to replicate some of the workflow tasks for iaseel fault tolerance. It is possible that with ad-
vance notice of upcoming weather events, we might want icipate the need for resources and try to procure
them in advance.

The weather forecasting, storm surge modeling (Figure dydfiplain mapping (Figure 5) and the astronomy
workflows(Figures 13 and 14) are launched with the arrivalati.

Advanced User Workflow Alternatives and Constraint&\n advanced user might want to provide a set of
constraints (e.g. time deadline) on a workflow.

Scientific processes such as weather prediction, finanmiat&sting have a number of parameters and com-
puting an exact result is often impossible. To improve canfik in the result, it is often necessary to run a
minimal number of the workflows. There is a need to run mudtipbrkflows (i.e.workflow setsthat need to be
scheduled together. Thus for workflow sets, users spediyttiey minimally require M out of N workflows to
complete by the deadline. Thus in the weather forecastingflow, the user might specify that fewer parallel
ensemble members could be run to get a quicker result. Altiealy the user might be willing to sacrifice
forecast resolution to get some early results which mighnttiefine the rest of the workflow.

These scenarios illustrate the need for an adaptation Wwankethat implement®nline planning and control
of workflowsto assess resource needs, proactively adapt to failuresakflow needs based on priorities and
policies specified by the user.

6.2 Workflow Types

The workflows described in this paper vary significantly irithcomputational and data requirements. A
number of the bioinformatics workflows often have tasks tiratbased on querying large databases in order
of minutes for the task execution. In other cases we see ddhle tasks of the workflow require computation
time on the order of hours or days on multiple processors. omescases sub-parts of the workflow might
also present different characteristics. In addition, tlzesof the intermediate data products might also vary.
Workflow management strategies for each of these workflowsvaay and thus require the understanding of
the workflow to apply appropriate techniques. In this sectie consider the characteristics that help classify
the workflow types that are observed. We also present théeclgals that each of the workflow types present.

Structure. The size of the workflow is an important characteristic teed®ine resource requirements, etc. We
consider the tasks of the workflow as its structural charetie The size of the workflows that are deployed
today in most production environments are relatively smahe largest workflows in our set contain about a
couple of hundred independent tasks. The Avian Flu (Figdyeabhd PanSTARRS(Figures 13 and 14) work-
flows has over a thousand nodes but the computation at eaehinedpected to take only a few minutes to
an hour. Scientists express a need to run larger sized warktboit are often limited by available resources or
workflow tool features that might be needed to support sugjetacale workflows. Today, workflow tools have
limited composition support for large workflows - ability $pecify repeated tasks, display parts of a workflow,
etc. In addition, they have little or no support to specifgaerce requirements, conditions or other constraints
on part or the entire workflow. It is also often difficult in drenvironments today to scale workloads up or
down due to batch queue wait times and other factors. Iniaddib the total number of tasks in a workflow it
is also important to consider the width and length of the lovks. The width of the workflow (i.e. maximum
number of parallel branches) determines the concurrensgiple and the length of the workflow characterizes
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the makespan (or turnaround time) of the workflow. We obs#raein our workflow examples, the larger sized
workflows such as the Motif workflow (Figure 8) and the astmyonvorkflows (Figures 13 and 14) the width
of the workflow is significantly larger than the length of thenkflow.

Pattern. The workflows that we surveyed depict the basic control flotgpas such as sequence, parallel split,
synchronization [35]. The parallel split-synchronizatipattern has similarities to the map-reduce programming
paradigm. A number of workflows divide the work units into tdist work units and the results are then
combined - e.g. Animation (Figure 16), Motif workflow (Figur8), Pan-STARRS workflows (Figures 13 and
14).

Computation. In addition to the structure and pattern of a workflow it is mrant to understand the com-
putational requirements. In the presented workflow example observe that computational time required
by the workflows can vary from a few seconds to several days.uiber of the bioinformatics workflows
depend on querying large databases and have small compgte t5ome examples include the Glimmer work-
flow (Figure 6), Gene2Life (Figure 7), caDSR (Figure 12). Hanly the initial parts of the LEAD forecast
workflow(Figures 1 and 2) and the LEAD data mining workflowsg(ife 3) have small computational load.
A number of the workflows including the forecasting partsteé tEAD workflow, Pan-STARRS workflows
(Figures 13 and 14), SCOOP (Figure 4), SNS (Figure 15), Mbtdure 8), NCFS (Figure 5) have medium to
large sized compute requirements.

Data. The workflows are associated with different types of datduiiog input data, backend databases,
intermediate data products, output data products. A largehber of the bioinformatics applications often
have small input and small data products but often rely oretharkend databases that are queried as part
of task execution. These workflows require that the databheepre-installed on various sites and resource
selection is often based on selecting the resources whedata might be available. Workflows such as LEAD
(Figures 1 and 2), SCOOP (Figure 4), NCFS (Figure 5) and F&R&S workflows (Figures 13 and 14) have
fairly large sized input, intermediate and output data potsl. The Glimmer workflow (Figure 6) has similar
sized input and output data products but its intermediata deoducts are smaller. In today’s production
environments workflows often compress data products tocedansfer times through intermediate scripts
etc. When scheduling workflows on resources, a number ofidatees need to be considered including the
availability of the required data as well as the data trart#fiee of both input and output products.

The combination of the structural and pattern charactesisthe computational and data sizes helps in under-
standing the workflow requirements when making planningadaptation decisions.

6.3 Multiple workflows

The user interacts with applications through various paenta graphical interfaces for workflow tools. Work-
flow management techniques today are focused on managuylg giorkflows in a distributed environment like
the grid [26, 36]. However portal environments facilitatesgltaneous multi-user access to the same workflows
and underlying resources. In addition, a number of scienéifiplorations including the weather and ocean
modeling (Section 2) often require a large number of pdralies to be launched to study different parameters
to increase result accuracy.

Competing workflows. Portal and gateway environments allow a number of workflawmfdifferent users

to be launched simultaneously. In such cases workflows frffierent users are often competing for the same
resource. In addition, in LEAD a weather forecasting workflwill need to have higher priority than a work-
flow launched by a user in an educational workshop. Workflomagament techniques needs to account for
the different classes of workflow users when allocating veses.
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Data sharing and reuse.When multiple workflows exist in the system, there is an opputy to save com-
putational time by reusing data products from identicalceiens [15]. However in these situations it is also
important to manage data privacy concerns when managirggptatiucts from potentially competing work-
flows.

Workflow set. Scientists often conduct parametric or exploratory swidiat involve launching multiple par-
allel workflows. The workflows might share data products lestwthem and/or use the same set of resources.
We use the ternworkflow seto refer to workflows that need to be scheduled together td thee relationship
constraint such as data dependencies or the M of N constragntioned earlier. In addition, there might be
workflows from different users which have the same prioritg gimilar constraints requiring them to be man-
aged to ensure fairness. There is limited capabilities taldde to ensure such policies in the workflow engines
available today.

Thus we need tools and mechanisms to manage competing waskdloworkflow sets in a system. Workflow
tools will need to support the multiple workflow scenario workflow of workflows”. In addition, as we move
to more dynamic resource environments such as cloud systeaols such as the Dryad execution engine [19]
or MapReduce [14] might be useful for managing execution oltipie workflows.

6.4 Workflow Capabilities

Workflow tools have limited capabilities today to allow uséw specify constraints and other expectations from
their workflows. We investigate some such constraints tatsumight need to express in conjunction with
workflow descriptions through workflow composition tools.

Exploratory. Scientific explorations often have uncertainties that migred to be resolved during runtime.
Input data sizes can vary largely affecting the charadtesiof the workflow. In a number of explorations
scientists and their workflows interact with real-time datdlecting instruments such as the Large Hadron
Collider (LHC) [3], sensors, radars [17, 27], etc. Thus imgocases while a general structure of the workflow
might be known, the exact characteristics of the workflowatedmined during execution.

Interactive. Business workflows and scientific explorations often regaifhuman-in-the-loop” as part of the
workflow. Workflow management techniques often have to dmrssub-parts of the workflow for scheduling
and adaptation.

Constraints. In addition to the workflow description, users often needfdecfy various constraints on the
workflow. The weather and ocean modeling workflows (Sectiparg time-sensitive. The workflow results
must be obtained in advance for weather response agendiestédke appropriate action. In addition the cost
of resources (either allocation seconds on TeraGrid ordel#rs on resources such as Amazon EC2) might be
a consideration for the end user.

6.5 Resource coordination.

Scientific workflows largely run in batch queue based gridremments and business workflows run on mono-
lithic corporate systems. However the advent of utility atalid computing systems can change the interaction
mode. Cloud computing systems allows users to customizerae environments allowing workflow tools to
be able to manage application specific software and dataeoreffources. In addition procuring resources in
advance for later workflow steps can be achieved with the msource access mechanisms thus minimizing
workflow makespan by reducing resource wait times. Thus n@ehanisms are required in workflow and
resource management tools.
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Workflow Name Total no.| Max Max task| Computation Data sizes | Pattern
of tasks | width processor
width
LEAD Weather| 6 3 16 hours megabytes || Sequential
Forecasting to gigabytes
LEAD Data Mining || 3 1 1 minutes kilobytes Sequential
Storm Surge 6 5 16 minutes- megabytes || Parallel-merge
hours
Flood-plain  map-|| 7 2 256 days gigabytes Mesh
ping
Glimmer 4 1 1 minutes megabytes || Sequential
Gene2life 8 2 1 minutes kilobytes to| Parallel
megabytes
Motif 138 135 256 hours megabytes || Parallel-split
to gigabytes
MEME-MAST 2 1 1 minutes kilobytes Sequential
Molecular Sciences| 6 2 1 minutes megabytes || Parallel-merge
Avian Flu ~ 1000 1000 1 minutes kilobytes to| Parallel-split
megabytes
caDSR 4 1 1 seconds megabytes || Sequential
PanSTARRS Load || ~ 1600 -| 800 -1 minutes megabytes | Parallel-split-
41000 40000 merge
PanSTARRS Mergel ~ 4900 -| 4800 -|| 1 hours gigabytes to|| Parallel-split-
9700 9600 terabytes merge
McStats 3 1 128 days kilobytes to|| Sequential
megabytes

Table 1: Workflow Survey Summary. The total number of taskéthe number of parallel tasks are useful in understand-
ing the structure of the workflow. The maximum processor Wikt a task helps us understand the number of processors
required simultaneously. The computation and data sizessh rough order of the time and the size of data products
from this workflow. Each of the workflow might include one or ra@atterns. Our goal is to capture the dominant pattern
seen in the workflow. Workflows are classified as Sequentiak{ty tasks that follow one after the other), Parallel (mul-
tiple tasks run at the same time), Parallel-split(one taskitput feeds to multiple tasks), Parallel-merge(muétiplsks
merge into one task), Parallel-merge-split (both paratiekge and parallel-split) and Mesh (where task dependsiace
interleaved).

20



7  Summary

Understanding the characteristics of the workflows andrathpabilities and constraints desired from the work-

flow is necessary for applying specific orchestration teghes. In this paper we have investigated workflows

from various domains that have different structures, caiatmnal and data requirements. We summarize the
results of the workflow survey and their characteristics abl€ 1.
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