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This paper presents the fundamental concepts underpinning MoL S, a framework for exploring and applying

many variations of algorithms for one datamining problem: mining a database relation for Approximate Func-
tional Dependencies (AFDs). An engineering approach to AFD mining suggests a framework which can be
customized with plug-ins, yielding targetability and improved performance. This paper organizes familiar
approaches for navigating a search spaces and introduces a new concepts to define and utilize variations of

those spaces.

1 INTRODUCTION

This paper presents the fundamental concepts under-
pinning MoL S, aframework for exploring and apply-
ing many variations of algorithms for one data min-
ing problem. While theimplementation of this system
targetsjust one problem, Approximate Functional De-
pendency (AFD) mining, we present the underlying
concepts in the hope that these concepts will moti-
vate similar developments concerning other data min-
ing problems that share similar search concerns.

The use of mined information in applications has
become both more prevalent and more diverse in re-
cent years. In order to meet the diverse needs of
these applications, developers often create ad hoc ex-
tensions of black box mining systems. We advocate
that the solution should instead be a mining frame-
work that allowsthe use of afamily of algorithmsthat
result from users customizing existing or novel mod-
ules. To truly provide flexibility, the search algorithm
itself must be modularized. In this paper we under-
take a conceptual approach to constructing an algo-
rithm as a set of plug-ins and present the design of a
framework, MoLS, in accordance with that approach.
Preliminary results from this case study present cus-
tomizations and evidence improved performance (En-
gle and Robertson, 2008).

There is no single algorithm which could meet
all of the known or unforeseen future needs of devel-
opers, so instead a mining system must be designed
to accommodate a family of algorithms and cus-
tomizations. Accommodating a family of algorithms
requires a deep understanding of how algorithms find
and verify results. It isthe combination of designing
with customization in mind and understanding how
customizations impact finding results that make a
framework approach possible. The resulting frame-
work is also an ideal testbed for efficiency-based
customizations. There are three fundamental ques-
tions which characterize this family of agorithms:

(i): how are search spaces demarcated?
(if): how does an algorithm move through spaces?
(iii): how is approximateness measured and how
does the cost of measurement fare in the face
of search space combinatorics?

The problem domain of this case study is the
discovery of Approximate Functional Dependencies
(AFD’s) in aninstance of adatabase relation. Extend-
ing the notion of Functional Dependency (FD), (see
any database text, e.g. (Ramakrishnan and Gehrke,
2002)), an AFD is an FD which almost holds, where
amost is defined by a parametrized measure and
threshold. The search space in this domain is based
on combinatorially huge powerset lattices.



Understanding the range of AFD mining ago-
rithms of course began with existing techniques (see
83 below), but that range exhibited limited variation.
Our own investigations broadened the range by mean-
ingfully posing question (i) (Engle and Robertson,
2008). That paper answered question (i) by introduc-
ing Lozenge Search (LS), but did little to allow cus-
tomizations in answering question (ii). It was these
results which motivated the desire for a framework
which encapsulated each question, thus allowing vari-
ations at every level of the algorithm in a clean and
uniform way.

After establishing definitions and conventions
(82), we identify the salient features of other AFD
miners (83). Next we discuss the foundational back-
ground of the problem domain (84) in order to under-
stand the range of variations that a framework must
handl e, and then outline how the architecture provides
the intended modularity (85).

2 DEFINITIONS

The paper uses the following conventions:
e Risarelation schemaandr isan instance of R.
e AB.,C,--- areindividual attributes of R.
e X,Y,Z

s Tyt

.. are sets of attributes.

e X —Y isarule apair of subsets of R; henceforth
Y has only one attribute.

e LHS abbreviates Left Hand Side; RHS, Right
Hand Side; BU, Bottom UP; TD, Top Down; BFS,
Breadth First Search; DFS, Depth First Search.

Definition 2.1

X — A is a parent of W — A when W C X and
|X| = |W +1|. Additionadly, child, descendant, and
ancestor have their usua interpretation with respect
to parent.

The characterization of how close a rule isto an
FD is done with an approximation measure ¢ eval-
uated on r. All that is required of ¢ is (a) that it
map rules into [0,1], with (X — Y) = 0 iff the FD
X —Y holdsand (b) ¢ ismonotone non-increasing as
the LHS grows.

Since every rule has some approximation value,
a threshold € is specified as an upper bound for ac-
ceptable rules;, henceforth € is assumed to have a
fixed (yet arbitrary) value. A rule X — Y is called
apass rule when ¢(X — Y) < € and afail rule when
¢(X —Y)>e. A minimal pass (minP) rulesis a
pass rule al of whose children fail; maxF is defined
symmetrically.

The terms lattice and sub-lattice have standard
meanings for the powerset of some collection of at-
tributes. These meanings are augmented when ap-
plied to AFDs since arule has both a LHS and RHS.
A rule lattice is a lattice of LHS attribute sets which
all share the same RHS attribute.

3 RELATED WORK

Mining for AFDs is a specialized subtopic within the
broad range of data mining activities. There are two
commonly cited AFD mining algorithms: TANE and
an algorithm which we denote as B& B.

TANE, the most widely used AFD mining algo-
rithm, was developed by a group at University of
Helsinki. Their work included development of the g5
measure (Kivinen and Mannila, 1995) and a partition-
based data structure which facilitates efficient evalu-
ation of g3 (Huhtala et al., 1999). At its core, TANE
uses atraditional bottom-up BFS. Other than specify-
ing the parameter € and of course the data set to be
mined, TANE allows no customizations.

B&B, reported in (Bell and Brockhausen, 1995),
originally mined for FDs and was extended in (Matos
and Grasser, 2004) to mine for AFDs using the g5
approximation measure. Lopes et al.combined B&B
and TANE with formal concept analysis in a frame-
work, though it is unclear how different plug-ins
could be used in that framework.

The original motivation for AFD mining was to
extend FD-based query optimization (Giannellaet a.,
2002; llyas et al., 2004). More recently, researchers
have used AFDs to model probabilistic relationship
for prediction (Andritsos et a., 2004; Aussem et al.,
2007; Wolf et al., 2007a; Wolf et a., 2007b; Nambiar
and Kambhampati, 2004).

4 FOUNDATIONAL CONCEPTS

A good modular implementation is only possible
when it is based on an even better conceptual analy-
sis. Performing such analysis is even more important
when developing a framework that supports a broad
family of agorithms. Hence, this section discerns
significant fundamental s of the problem domain, then
addresses the more familiar topic of moving through
a lattice (question (ii)), and finally discusses the de-
marcation of the global search space (question (i)) in
light of the discussion of question (ii).

Question (iii) is answered straight-forwardly by
encapsulating the evaluation of ¢. Encapsulating
measure evaluation sharpens the focus on the other



aspects of the framework design and facilitates the
use of different measures. As the framework is in-
dependent of measures and the means by which mea-
sures are calculated, an exploration in measures can
be found (Giannella and Robertson, 2004).

4.1 Monotonicity and Inferencing

Monatonicity is used in a variety of data mining al-
gorithms to prune or terminate search since it guar-
antees that a threshold, once crossed, will not be re-
crossed. In the AFD context, the requirement that
an approximation measure is monotonic (clause (b)
in the characterization of ¢), guarantees that, when a
pass rule is found, it may be inferred that all its an-
cestors also pass. Symmetrically, descendants inherit
failure.! Because of thisinferencing, AFD miners re-
turn only minP rules, hopefully reducing a combina-
torial explosion in output.

The inference of pass status is the basis upon
which BFS AFD mining algorithms prune the search
space in order to eiminate non-minimal results; the
symmetric downward inference of failure is not used
(or even relevant) in BFS. However, inferencing
in both directions may be relevant in DFS algo-
rithms. Inference is beneficial because it can help
limit searching and because it may avoid the expen-
sive step of visiting the data in order to evaluate the
approximation measure. Traditional lattice mining
algorithms combine these two facets of inferencing
by pruning nodes which are neither evaluated nor ex-
plored; MoL S facilitatesinferencing that explores but
does not discard nodes.

4.2 Boundary Rules

The notion of boundary captures how monotonicity
divides the lattice into regions (technically, into semi-
lattices). The boundary is fundamenta because de-
sired result lie along it. This notion has appeared in
certain specialized applications (e.g. (Cong and Liu,
2002) or (Yan et a., 2004)) but rarely as a general
lattice-based concept. Inthe AFD context, the bound-
ary separates the pass region of alattice from the fail
region. A boundary rule is either a pass rule with at
least one failing child or a fail rule with at least one
passing parent. Not only can the status of any rule
be inferred from the boundary but the boundary itself
may beinferred from the sets of minP and maxF rules.

1These inferences are not the inferences associated with
FDs and Armstrong’s Axioms (Ramakrishnan and Gehrke,
2002), although properties of the InD measure generalize
Armstrong’s approach (Giannella, 2002).

There are three corollaries of the characterization
of the boundary. First, the minimum effort algo-
rithm evaluates the measure ¢ on exactly the minP
and maxF rule sets, assuming that these sets are pro-
vided by some oracle. Second, any algorithm that
evaluates ¢ on at least these sets is sound and com-
plete with respect to an exhaustive exploration of the
space. Third, any sound and compl ete algorithm must
evaluate @ on these sets.

These corollaries determine an optimal (but likely
unachievable) benchmark, suggesting how the frame-
work should be instrumented for performance evalu-
ation. They also suggest that a good algorithm should
find the boundary as quickly as possible and then ex-
plore that boundary in the most expeditions fashion.

4.3 Navigating a L attice

Navigation from node to node within a lattice takes
many forms. traditional BFS, DFS, and many nu-
anced variations motivated by boundary considera-
tions. The major question, (ii), breaks into two: what
are the candidate rules that should be considered for
visitation in the future and what is the order in which
these candidate rules should be visited.

An example of the framework’s application is pro-
vided by the well-known BU-BFS. BU-BFS answers
the first part by having fail rules add their parents as
candidates and the second part by ordering according
to level inthelattice. More simply, a FIFO queue suf-
fices, building the order into adatastructure; BU-DFS
usesaLIFO stack in asimilar manner.

From a software engineering perspective, provid-
ing a mechanism to specify visit order encapsulates a
complex decision process with asimple moduleinter-
face. Customization determines whether and when,
the framework carries out these decisions.

In another domain, Frequent Itemset Mining
(FIM), candidate generation has received con-
siderable attention and is often a maor factor
differentiating algorithms. We mention FIM only
to highlight a component which has received little
attention in AFD mining but is considered highly
significant in a different domain. A more elaborate
example of candidate generation is found in the
jumping algorithm (Dexters et a., 2006) which, asits
name implies, can generate rules several levels away.

4.4 Demarcating Global Search Space

This section addresses the possible answers to ques-
tion (i) above. Demarcation forms portions of the
global search space to be considered separately.



Although question (i) is generaly applicable to
many data mining algorithms, it is natural that it was
first meaningfully asked in the context of AFD min-
ing, where the search space has inherent structure:
n independent power-sets over n — 1 attributes rather
than a single powerset of n attributes. B&B use 4n4
independent power-sets while TANE use only one.

Unlike the wide variations in ways to navigate a
lattice, thereislimited flexibility availablein theways
to demarcate a space, aways involving an iteration
though attributes. At each iteration, a demarcated
subspace is constructed. For example, when the de-
marcated space is the set of all rules with afixed at-
tribute on the RHS and when the navigation is BU-
BFS, the framework implements B&B.

The approach which demarcates aspace by adding
one attribute at atime to the set of of active attributes
was proposed in (Engle and Robertson, 2008), with
the LS algorithm. In this approach, the order in which
attributes are added is highly significant. Preliminary
tests show that some orders tend to work much more
quickly. Furthermore, if the attributes were ordered
according to some aspect of the user’sinterest, the al-
gorithm that user could terminate the algorithm when
asignificant set of rules were discovered.

Within this fixed pattern of active space growth
and relying on domain considerations discussed
above, the framework can provide optimizations
and guarantees which the user need not consider.
Inferencing considerations can be used to to ensure
irredundant searches as the active space grows. In
LS, a projection of the boundary onto the active
space leads to to an effective and efficient way to
carry forward partial results as attributes are added.
Finally, the facts concerning the boundary alow the
framework to guarantee soundness and, if the search
is sufficiently extensive, completeness.

5 IMPLEMENTATION

A framework provides a skeleton independent of the
combination of plug-ins. We propose a design for
how conceptual elements of agorithms map to frame-
work plug-ins and discuss what aspects of search are
universal and therefore should occur in the skeleton.

The intent of proposing MoLS is to describe the
responsibilities of the framework and of the differ-
ent plug-ins. The skeleton alow users full control
of search customization without an excessive burden
from mechanics. The goal isto make plug-ins easier
to write and reusable so that proven portions of code
can bootstrap the writing of new agorithms.

5.1 Thelnvariant Framework

The framework architecture is shown in Fig. 1. The
figure indicates where the skeleton of the framework
accepts plug-ins (single-line boxes) and where it takes
on a more meaningful role (double-line boxes). The
dashed lines correspond to the bodies of respective
nested iterations.
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Global Iteration handles question (i). The plug-in
PickAttr returns the next attribute added to the active
set; DemSpace constructs the demarcated subspace
in the current iteration. This simple interface alows
the customization to dynamically choose the order in
which attributes are added. At the level of Global Iter-
ation, the framework only does set-up; the significant
work actually happens at the next level down, on a
per-lattice basis.

The most complex framework/plug-in interaction
occurs in the innermost block. As the figure shows,
there is a coroutine-like interaction between Naviga-
tor and NavManager, the portion of the framework
that manages searching a specific lattice. Similar to
the other portions of the framework, NavManager has
a number of bookkeeping tasks, such as removing
rules from the search queue for visitation and making
callsto the approximation measure.

No matter the implementation, every AFD mining
algorithm determines minP rulesin a similar manner.



Except for bottom-up BFS, determining which rules
are minP is a significant task, as a different naviga
tion is needed. For example, a top-down algorithm
must continue searching below minP rulesto find fail
rules and then somehow pass that information back
to parent rules to determine whether the minP defi-
nition is met. As we will discuss later, making the
framework responsible for this determination makes
customization much easier.

5.1.1 RuleStore

Recognizing that space costs may be as problematic
astime costsin the face of a combinatorial explosion,
NavManager has a single mechanism for storing in-
formation for both itself and for use by Navigator.
This mechanism is called the rule store. Rule store
information used by NavManager includes whether a
rule has been visited and the pass/fail status of avis-
ited rule. Thisinformation is used to determine minP
rules. The rule store and effects of using inferred
information can be found in (Engle and Robertson,
2009).

Asis often the case in algorithm implementation,
there is a “save or recompute” tradeoff pertaining to
the contents of the rule store. For example, should
pass/fail status information remain in the rule store
until the end of searching the lattice and then be used
to determine all minP rules in a single final pass or
should determination of minP rules be done incre-
mentally, allowing information to be discarded earlier
at the cost of rediscovering some of that information.

The rule store changes this tradeoff by provid-
ing a central point for inferencing, treating inferred
knowledge the same as knowledge from evaluation.
When information is added to the rule store, NavMan-
ager can infer the status of other rules and store that
knowledge additionally, providing the benefits of in-
ferencing without Navigator ever needing to under-
stand how it happens.

5.2 The Navigator Plugin

As noted above, navigation is a matter of generating
and ordering candidate rules. MoL S's mechanism for
thisisapriority queue, with distinct interfaces for en-
queing and for setting priorities. Having a priority
gueue, as opposed to a data structure implementing
FIFO or LIFO order, isitself innovative in data min-
ing systems; allowing the priority to change dynami-
caly ishighly so.

Candidate generation is expected to change little
from current practice, i.e. bottom-up algorithms gen-
erate parent rules and top-down would generate chil-
dren rules. Other generation tactics, such as jump-

ing to amore distant ancestor or descendant, require a
more significant use of the rule store and interactions
between Navigator and NavManager; details of this
interaction have not yet been fully determined.

The second, less commonly explored, part of nav-
igation is the priority indicating the order in which
candidate rules are considered. The use of priority or-
dering merely makes explicit what other algorithms
do implicitly, such as a breadth-first navigation using
a simple queue to obtain a FIFO order. Guiding ex-
ploration using priority ordering allows easy switch-
ing between navigation modes. For example, bottom-
up BFS gives higher priority to rules with fewer at-
tributes while bottom-up DFS prioritizes rule dlong a
path. By merely flipping the priority, adifferent mode
isimplemented.

The final part of navigation is determining when
to stop searching. As with other in other algorithmic
facets discussed above, MoL S makes explicit what is
implicit in other approaches. In particular, NavMan-
ager terminates the exploration of work on one lattice
when the queue for that |attice becomes empty or the
priority falls to zero. That is, the framework allows
NavManager to indicate that a candidate should not
be evaluated merely by setting the priority to zero.

5.21 ThePickNav Plugin

The ability to easily adjust the navigation mode natu-
rally raises the issue of determining the proper mode
for the current context; to this end, the navigation
mode can be chosen on a lattice-by-lattice basis. It
was shown in (Engle and Robertson, 2008) that com-
binations of algorithms could improve performance.
The PickNav plug-in implements this mode selection.
Whileit is possible that the navigation mode could be
changed in mid-lattice, this seems an unlikely way to
develop a correct and coherent implementation. Thus
PickNav is evoked only to initiate the exploration of a
|attice.

Theideaof selecting the best algorithm for aprob-
lem has received attention in the Al world (Smith-
Miles, 2008) and remains an open problem. In AFD
mining, Al could assist assist a particular PickNav
since higher-level reasoning is particularly applicable.

5.3 ThePickAttr and DemSpace Plugins

The space demarcation requirements deriving from
Section 4.4 are implemented with the PickAttr and
the DemSpace plug-ins. We split question(i) from
Section 1 into PickAttr and DemSpace because the
functionalities which each implements are expected
to exhibit very different change patterns. Search space
demarcation, implemented by DemSpace, may rarely



change, while the order of the global iteration, con-
trolled by PickAttr, islikely to be customized.

6 CONCLUSION

This paper describes the application of a software en-
gineering paradigm to the design and implementa-
tion of datamining software, resulting in aframework
for implementing AFD search algorithms. Consider-
ations of modularity were a primary factor in frame-
work design.

Datamining algorithms, particularly those mining
for AFDs, have always been designed as black box
systems. Though data mining algorithms are often
compared (particularly according to performance fac-
tors), heretofore there has not been a general analysis
of the generic commonalities and differences between
these algorithms. Hence this paper first presents and
discusses a a series of questions that create a concep-
tual breakdown for different tasksthat vary acrossdif-
ferent algorithms. This conceptual breakdown hasled
to aframework that facilitates customization of algo-
rithms at many levels of granularity.

The development of a highly customizable frame-
work has two benefits deriving from the original mo-
tivation for building a framework. The first allows
usersof AFDsto build customized systems based on a
common framework. The resulting design also makes
it easier to write algorithms, which in turn can al-
lows more variations of algorithmsto be explored and
tested.

The second benefit is the framework as a testbed
for experimenting with avariety of AFD mining algo-
rithms. The ease with which Navigator plug-ins can
be written allow algorithms to be prototyped easily
and correctly. Furthermore, MoLS allows compar-
ing new search approaches to traditional ones using
the same evaluation metrics. As atestbed, the frame-
work has succeeded far beyond our expectations. We
are continuing to understand new facets to the AFD
mining problem and develop agorithms (Engle and
Robertson, 2009). This strongly suggests that com-
parable frameworks would facilitate research in other
areas of data mining.
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