
Privacy-Preserving Genomic Computation Through
Program Specialization

Rui Wang
Indiana University

Bloomington
Bloomington, IN

wang63@indiana.edu

XiaoFeng Wang
Indiana University

Bloomington
Bloomington, IN

xw7@indiana.edu

Zhou Li
Indiana University

Bloomington
Bloomington, IN

lzcarl@indiana.edu

Haixu Tang
Indiana University

Bloomington
Bloomington, IN

hatang@indiana.edu

Michael Reiter
University of North Carolina at

Chapel Hill
Chapel Hill, NC

reiter@cs.unc.edu

Zheng Dong
Indiana University

Bloomington
Bloomington, IN

zhdong@indiana.edu

ABSTRACT
In this paper, we present a new approach to performing impor-
tant classes of genomic computations (e.g., search for homologous
genes) that makes a significant step towards privacy protection in
this domain. Our approach leverages a key property of the human
genome, namely that the vast majority of it is shared across humans
(and hence public), and consequently relatively little of it is sensi-
tive. Based on this observation, we propose a privacy-protection
framework that partitions a genomic computation, distributing the
part on sensitive data to the data provider and the part on the pu-
bic data to the user of the data. Such a partition is achieved through
program specialization that enables a biocomputing program to per-
form a concrete execution on public data and a symbolic execution
on sensitive data. As a result, the program is simplified into an
efficient query program that takes only sensitive genetic data as
inputs. We prove the effectiveness of our techniques on a set of
dynamic programming algorithms fundamental to genomic com-
puting. We develop a program transformation tool that automat-
ically instruments a legacy program for specialization operations.
We also demonstrate that our techniques can greatly facilitate se-
cure multi-party computations on large biocomputing problems.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Unauthorized access

General Terms
Security

Keywords
Privacy-Preserving Computation, Program Specialization, Human
Genome, Symbolic Execution, Dynamic Programming, Secure Multi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’09, November 9–13, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-352-5/09/11 ...$10.00.

Party Computation

1. INTRODUCTION
Recent progress in the study of the human genome has led to a

revolution in biomedical science, which promises a profound im-
pact on many aspects in people’s lives. These advances, how-
ever, do not come without introducing new concerns: genomic data
carry sensitive personal information such as genetic markers for
diseases, whose confidentiality is threatened by the increasing col-
lection and distribution of those data for medical research. To pro-
tect genome privacy, prior research suggests anonymizing genome
data before releasing them, through techniques such as DNA lattice
anonymization [51]. Such an approach, however, reduces the infor-
mation in the original data and as a result, undermines their utility
to genome research.

A straightforward approach that enables computations on ge-
nomic data without disclosing sensitive information to the party us-
ing data (called data consumer or DC in our research) is to simply
delegate all the computation tasks to the party providing the data
(called data provider or DP). Such a centralized treatment, how-
ever, is unviable because the DP can easily become a performance
bottleneck. In the case that the DC also holds sensitive inputs
to its computation, a secure multi-party computation (SMC) [73,
30] needs to be performed between these two parties. Recently, re-
searchers show that optimized SMC protocols work well on small-
scale genome computing tasks [36]. A realistic computation, how-
ever, often involves millions of nucleotides. For example, an align-
ment operation on even the smallest chromosome needs to work on
50 million nucleotides. So direct application of the existing SMC
techniques to such a task could incur unbearable computational,
spatial and communication overheads, as observed in the prior re-
search [36].

Many important genome studies, including search of homolo-
gous genes [7, 8, 40, 62, 10], comparison of syntenic regions across
multiple genomes [68, 47], and protein identification in proteomics [66,
72, 33, 18], utilize dynamic programming [69] and other algo-
rithms to compare a query DNA or protein sequence with the ge-
nomic sequences in a genome database. For example, in order to
determine the level of variation of a specific gene in the popula-
tion, a DC may request to compare a query gene sequence from
a reference genome to its homologous gene sequences from all
individual genomes in a personal genome database. The privacy
problem here is that these genomes contain some sensitive genetic

variations, which are mostly related to single nucleotide polymor-
phism (SNP) [45], a DNA variation that differs between members
of a species. These variations can be used to identify individu-
als and their personal health information such as genetic diseases,
and therefore should not be exposed the DC. On the other hand, it
is well known that genetic variations represent only a small frac-
tion of the entire human genome, as indicated by prior research [5]
(0.5 percent between two unrelated persons), as well as an analysis
in the Appendix (0.01 percent among a population of 1 million).
Though the sensitivity of individual SNPs [45] are yet to be deter-
mined, we can adopt a conservative approach that treats all SNPs as
sensitive data. Even in this case, nearly all human genes consist of a
vast majority of common (and definitely non-sensitive) nucleotides
that serve as part of the inputs to aforementioned research.

The above observation can be leveraged to protect sensitive ge-
netic information involved in a genomic computation, through dis-
tributing the computation between the DP and the DC: the DP un-
dertakes a small portion of the computation related to sensitive data
while the DC works on the rest part of a genome sequence that
involves only nonsensitive nucleotides. As a result, the computa-
tion can be accomplished without revealing sensitive nucleotides
to the DC. Partitioning a computation for privacy protection has
been studied in prior research [19, 17]. For example, Swift [19]
uses information-flow analysis to separate an application into the
parts that work on the data with different security levels. How-
ever, such an approach can be less applicable to many genome al-
gorithms that intertwine the operations on public data with those
on sensitive data. A prominent example is a category of dynamic
programming algorithms (DPA) deemed fundamental to aforemen-
tioned research: once a DPA encounters a sensitive nucleotide, all
the follow-up computation will all be related to it. As a result, an
information-flow analysis will tell us to put the whole computation
on the DP side, which we intend to avoid as the computation can
be very intensive when it involves large genome sequences (with
potentially terabyte of data [2]).

In this paper, we propose a new technique that applies program
specialization [37] to partition a genomic computation according to
the sensitivity levels of the genome data it works on. Our approach
allows the DC to compute over the genome sequences sanitized by
the DP, on which sensitive nucleotides are replaced with symbols.
This is achieved through a mixed execution: a concrete execution
on public data and a symbolic execution [44] on those symbols. As
a result, a biocomputing program can be effectively specialized into
a “query” program for the DP, which takes nothing but sensitive nu-
cleotides as its inputs. Given that sensitive nucleotides only take a
very small portion of the data a program processes, its specialized
query program is typically much more efficient, and can be easily
computed by the DP. For example, our techniques can convert a
DPA into a query that is also dynamic programming but substan-
tially faster. An efficient query not only saves the DP’s resources
but also significantly reduces the cost for performing an SMC pro-
tocol, should the DC also have sensitive inputs involved in the com-
putation. To control information leaks from the outcome of a query
program, we treat the program as a database query, and use a query
auditor (Section 3.4) to mediate the answers to the query.

To efficiently retrofit legacy biocomputing code with the capa-
bility to perform such distributed computations, we also designed
a source-to-source transformation tool. Our tool automatically an-
alyzes a legacy program, such as a function in a biocomputing li-
brary, to identify its variables and operations possibly related to
sensitive nucleotides, and instrument them with the code for mixed
executions. We implemented a prototype of the tool using Java and
evaluated it against real biocomputing libraries. Our experimental

study shows that our approach is particularly effective for a cate-
gory of genomic programs based on DPA.

We outline the contributions of this paper as follows:
•A privacy protection framework. We propose a distributed frame-

work for privacy-preserving genomic computing. Our framework
distributes a computation task between the DP and the DC, and let
the DP handle a small portion of the task related to its sensitive data.
This avoids expensive SMC when the DC does not have sensitive
inputs, and significantly reduces the overheads for running such a
protocol when it does. Our framework can also enable control of
the information revealed by the outcomes of a computation through
query auditing and inference control.

•Computation partitioning for privacy protection. We propose
novel techniques that use public data to specialize a genomic com-
puting program into a much more efficient query program for pro-
cessing sensitive data on the DP. Our approach takes advantage of
the features of genomic data to reduce the complexity of running
a query, and in the meantime, maintains a low cost for specializa-
tion of the program over a large amount of public data. We theo-
retically analyze the effectiveness of these techniques over a cate-
gory of DPAs that are extensively used in bioinformatics. We also
demonstrate how our approach facilitates SMC on large problems,
when the DC’s inputs also need to be protected.

•Automatic source-to-source transformation tool. We design a
new tool that automatically analyzes a legacy genomic program
and instrument it with the code to perform specialization. This tool
could help avoid expensive manual adaptation of existing bioinfor-
matics applications for privacy protection.

•Implementation and evaluations. We evaluated our techniques
using a category of algorithms fundamental to genomic computa-
tions, including famous algorithms such as Smith-Waterman [69],
Needleman-Wunsch [60], Divide-and-Conquer [58], and BLAST [7].
This research shows that our techniques can easily handle a large
amount of genomic data, and incur extremely low overheads to the
DP without excessive consumption of the DC’s resources. We im-
plemented a prototype of our tool and successfully applied it to
transform three biocomputing libraries. We also studied use of
SMC protocols over query programs, and observed a significant
improvement in performance compared with a direct application of
these protocols to unspecialized algorithms.

The focus of this research is on new technologies for partition-
ing a given genome-computing task and distributing it in accor-
dance with the sensitivity levels of the genome data it uses. This
allows us to avoid directly exposing sensitive genetic information
to the DC during a computation, without overloading the DP in the
meantime. Information leaks from the outcome of the computa-
tion can be a concern and is controlled under our framework using
existing techniques for query auditing and inference control [42,
59, 54, 55, 32, 25]. However, research on these techniques is not
the focus of this work. Moreover, we are fully aware that identi-
fying sensitive SNPs is still an ongoing research [34]. However,
prior research does indicate that such SNPs take only a very small
portion of human genome [28], and many important genome stud-
ies [7, 8, 40, 62, 10, 68, 47, 66, 72, 33, 18] work on contiguous
genome sequences that involve only small amount of SNPs. These
are two assumptions fundamental to our research. The classifica-
tion of sensitive/nonsensitive nucleotides only serves as an input to
our approach.

The rest of the paper is organized as follows. Section 2 presents
our framework. Section 3 describes our query generation tech-
niques. Section 4 describes our transformation tool. Section 5 re-
ports on an evaluation of our approach. Section 6 discusses the

limitations of our current design. Section 7 presents the related
prior research, and Section 8 concludes the paper.

2. THE FRAMEWORK
In this section, we describe our framework for privacy-preserving

genomic computation, which is illustrated in Figure 1.

Figure 1: Framework.

Formal description. In our framework, a data provider maintains
a genome database {rj} with 1 ≤ j ≤ m, where rj is a genome
record. Each record corresponds to a different person, and is in the
form of a sequence of nucleotides rj [1 · · · l], where rj [i] represents
i-th nucleotide. The sequence contains a small set of sensitive nu-
cleotides (SNPs), whose indices are included in a set I . For every
record rj , the DP replaces its rj [i] with a symbol if i ∈ I and
publishes its sanitized version βj . The data consumer intends to
compute a function f(α, rj), where α is a genome sequence the
DC controls. The problem is that the DC does not know rj . In-
stead, it is given a sanitized record βj . To compute f , the DC
converts f(α, βj) into a query q, a function that takes Rj as the
input, where Rj is the sequence of the nucleotides on rj with their
indices in I . The query is computed by the DP.

A computation under this framework is deemed successful when
the following requirements are met:
•Soundness. The outcome of the computation should be correct.

Formally, f(α, rj) = q(Rj).
•Privacy preserving. The DC knows nothing about the sensitive

nucleotides Rj except the information revealed by the outcome of
the computation. Since the computation on Rj is performed on the
DP, the DC does not have a direct access to these nucleotides. Infor-
mation leaks from the outcome should also be controlled: in Sec-
tion 3.4, we describe a simple technique that evaluates information
leaks through constraint solving; in general, we can treat individ-
ual nucleotides as attributes, with SNPs being marked as sensitive,
and apply existing query auditing [42, 59, 54, 55, 32] and inference
control techniques [25] to check the query.
•Efficiency. The computational and spatial overheads for an-

swering query q should be much lower than those for computing
f . This is important because the DP is supposed to serve a large
number of DCs and therefore should not spend too many resources
on a single party. Incentive mechanisms such as pricing can be ap-
plied here to motivate the DC to come up with efficient queries. On
the other hand, the overheads on the DC side should also be moder-
ate, and the interactions between the two parties should not involve
too much communication cost, which can be evaluated using a limit
for bandwidth consumption.

3. COMPUTATION PARTITIONING FOR PRI-
VACY PROTECTION

In this section, we present the techniques that partition a genomic
computation task according to the sensitivity levels of genome data.
Our approach is based upon program specialization (aka., partial
evaluation), a technique that uses partial inputs of a program to
produce a new program that only accepts the rest of the inputs [37].
In our research, we developed the specialization techniques for
genome computing, which reduces an algorithm to a query pro-
gram using a sanitized DNA record. As a first step, our current
focus is on a set of dynamic programming algorithms [69, 60, 58,
7] that are fundamental to genome computing, though our approach
can also be more general, applicable to other algorithms.

3.1 Overview
The general idea of our techniques can be illustrated through a

simple example in Figure 2. The example computes the edit dis-
tance between genome sequences α and β, i.e., the minimal num-
ber of the edit operations, including delete, insert and replace, to
convert one sequence to the other. This is done through dynamic
programming over a two-dimension matrix D(0 · · ·n, 0 · · ·m), where
n and m are also the lengths of α and β respectively. Specifically,
the algorithm first initializes the matrix by setting D(i, 0) to i for
0 ≤ i ≤ n, and D(0, j) to j for 0 ≤ j ≤ m. Then, it recursively
fill the matrix as follows:

D(i, j) = min(D(i − 1, j) + 1, D(i, j − 1) + 1,

D(i − 1, j − 1) + s(i, j)) (1)

where s(i, j) is a score function that has a value 1 if α[i] and β[j]
is different and a value 0 otherwise. The minimal edit cost between
these sequences is recorded in D(n, m) and the edit process that in-
curs that cost is described by a path from the entry (0, 0) to (n, m).
We note throughout this paper we focused on an improved version
of the DP algorithm for sequence alignment which was first intro-
duced by Gotoh [31]. Gotoh’s algorithm reduced the complexity
of the DP from O(mn2), as of Needleman-Wunsch and Smith-
Waterman algorithms, to O(mn), and thus are commonly used in
the current sequence alignment programs including BLAST.

Figure 2 presents an example with α=ATC and β=ACC. The
edit distance here is D(3, 3) = 1, and the optimal edit path is
(0, 0) → (1, 1) → (2, 2) → (3, 3), as each cell on the chain pro-
vides the smallest edit cost to the next one according to Equation 1.
This algorithm is implemented by a program P1 that iteratively
computes the values of the cells in the matrix, as illustrated in the
figure.

Suppose that β[2] is a sensitive nucleotide that is replaced by a
symbol. This prevents P1 from accomplishing the computation,
because it cannot get the values for the third and forth columns in
the matrix. To solve this problem, we transfer the program to an-
other program, P2, to perform a mixed execution. Specifically, the
statements at Line 3, 4, 5 and 6 of P1 are all modified to work on
both concrete and symbol inputs: all the operations go as normal if
the input to a statement contains only concrete values; otherwise,
symbolic execution [44] is performed to generate an expression as
its output. Such an expression is further reduced through, for ex-
ample, combining all the constants. The score function S1 of P1
is also converted into S2: if a branch condition contains symbols
(Line 15 in S2), S2 exports the branch condition in S1 and both of
its branches to a residual program, and returns a symbol si,j , where
i and j are the indices of nucleotide inputs. The same transforma-
tion happens to the min operation at Line 6 of P1. Its counterpart
statement simplifies the expressions the operation involves through
unfolding symbols into expressions, combining constants and com-
paring two expressions using common symbols and value ranges.
In the end, the reduced expressions in D(3, 3) is exported to the

Figure 2: A simple example.

residue program, which serves as the query for the DP.
Matrix 2 shows the process of computing over β in the presence

of an unknown nucleotide. Consider D(3, 3) as an example. Com-
puting its value using Equation 1 results in an expression that seeks
the minimal one among four expressions: e1 = s2,2, e2 = s2,2+2,
e3 = s3,2 + 2 and e4 = s2,2 + 2. This expression is further re-
duced as follows. We first find that e1 is smaller than e2 and e4,
as all of them describe a sum between s2,2 and a constant, and e1

has the smallest constant. Then, e1 is compared with e3 using the
value range of symbols s2,2 and s3,2, which is either 0 or 1, though
their exact values are unknown. As a result, the query program we
generate only contains a very simple expression, e1, along with the
part of the score function for computing s2,2. It is evident that the
cost for answering such a query on the DP side is far lower than
running P1. A more interesting observation is that the DC can
figure out the optimal edit path even without consulting the DP at
all: as we can observe from Matrix 2, the value of D(3, 3) can be
traced back to D(2, 2), and again to D(1, 1) and D(0, 0) accord-
ing to Equation 1 ; this can be done without knowing the content of
β[2].

The above specialization techniques are elaborated in Section 3.2.
Their effectiveness can actually be theoretically evaluated on a cat-
egory of dynamic programming algorithms, which we present in
Section 3.3. The transformation from P1 to P2 can be achieved au-
tomatically using program analysis techniques, such as taint anal-
ysis [35]. The tool designed for this purpose is discussed in Sec-
tion 4.

3.2 Specialization Techniques
To specialize a program, we need to locate its statements that

work on sensitive nucleotides and transform them into the form
that specialization operations can be performed. Those ”tainted”
statements are identified by a taint analysis, which we describe in
Section 4. Here we first present our specialization techniques.

Specialization operations. Our approach converts every tainted
statement into a program snippet that checks the input it receives:
if the input does not contain symbols, the original statement is ex-
ecuted; otherwise, a symbolic expression is built through symbolic
execution [44] and further simplified by a reduction function before

being exported as an output. Denote the specialization operations
on a program P by specialize(P). Such operations happen to fol-
lowing program elements:
• Assignment. An assignment a = exp is changed to a = reduce(exp)
if the expression exp involves symbols, where reduce() is a reduc-
tion function.
• Branching. A branching statement is in the form “if exp then
P, else P ′”, where exp is the branch condition, and P and
P ′ are the statements to be executed on the two branches. Such
a statement is transformed to a set of statements that first checks
reduce(exp): if the outcome is either true or false, the program
proceeds as normal; otherwise, the following statement is exported
to a residue program: “if reduce(exp) then specialize(P),
else specialize(P ′)”. Also exported are the state of the pro-
gram prior to the branching, including the values of the variables to
be used in P and P ′.

To evaluate specialize() on both P and P ′ online, we need to
set a checkpoint prior to the branching statement and roll back after
exploring one branch. This can incur significant performance over-
head. An alternative is to symbolically execute both branches of-
fline to acquire their symbolic expressions, and replace the symbols
in the expressions with concrete values online. Further complicat-
ing the specialization efforts is the fact that a branch can include
other tainted branching statements, which makes the cost of evalu-
ation high. A simple solution can be exporting all statements of a
branch if it contains tainted branching.
• Loop. A loop is residualized if its exit condition is symbolic and
cannot be evaluated after proper reduction. When this happens, we
can choose to specialize the body of the loop if it does not involve
tainted branching.
• Function. When part of input parameters to a function’s are sym-
bols, the function needs to be specialized using the techniques de-
scribed above. When this happens, a symbolic expression can be
returned. If a function is repeatedly called with different parame-
ters, we can choose to residualize it without specialization.
• Tainted address. Programs may read or write a memory loca-
tion whose address depends on the values of sensitive nucleotides.
For example, the index of an array can be determined by unknown

symbols, and a pointer in a C program can be tainted by sensitive in-
puts. When a tainted address is encountered, we can simply export
all the statements that directly or transitively rely on the address to
the residue program.

Another treatment of a tainted address is to explore all possible
values it can take. A nucleotide can only assume four values: A, T,
C and G. Therefore, reading from an address involving one symbol
can get four possible outcomes, which can be represented by a new
symbol. Writing to the address is more complicated, as we need
to create four threads, each handling one possible version of data.
This can be problematic when multiple symbols are present, which
causes the number of the threads to increase exponentially.

Reduction. Key to specialization is reduction [37] that serves to
simplify symbolic expressions. A typical reduction technique is
constant folding that combines all the constants in an expression
together. This is achieved by taking advantage of the properties of
a computation, such as commutativity, associativity and distributiv-
ity. For example, 10+a+6 can be reduced to a+16, as addition is
commutative and associative. In some cases, an expression can be
simplified by unfolding a symbol into the expression it represents.
As an example, consider an expression a + b + 10 with b = a + 6.
Unfolding b reduces it to 2a + 16.

A Boolean expression can be evaluated even when it contains
symbols. For example, we know that a branch condition a + 10 ≥
a+6 is true even when the value of a is unknown, as the symbols on
both sides of the inequality cancel each other and only the concrete
value 4 ≥ 0 is left. This approach can be applied to the compar-
ison between two linear expressions that contain the same set of
symbols and each of them has the same coefficient. More gener-
ally, combining multiple occurrences of the same symbols when
possible can help simplify an expression.

In our research, we design another reduction technique that eval-
uates a Boolean expression using the value ranges of the symbols
it contains. Specifically, our approach identifies the maximal and
minimal values a symbol can take and then propagate this range to a
symbolic expression. Whenever a comparison between two expres-
sions happens and the ranges of these expressions do not overlap,
its Boolean outcome can be determined. For example, consider ex-
pressions exp= a + 9 and exp’= b + 6. Given the ranges of
a and b are from 0 to 1, we know that exp is between 9 and 10,
while exp’ falls in the range from 6 to 7. As a result, the Boolean
expression exp≥exp’ is true. This technique is particularly ef-
fective on dynamic programming based genome computing, which
we discuss in Section 3.3.

Symbol unfolding. As described above, unfolding a symbol can
help simplify that expression. This, however, does not work al-
ways. Consider the following example: d = min(b + c1, b +
c2, b + c3) with b = min(a1, a2, a3). If b is unfolded in the ex-
pression of d, we need to compare 9 values to get d. In contrast, if
we first get b and then compute d, only 6 comparisons are needed.
In our research, we propose a new reduction rule that unfolds a
symbol only when an expression does not contain new symbols. In
the above example, we can unfold b if ci=1,2,3 is a constant: sup-
pose c1 = 5, c2 = 6 and c3 = 8, such an unfolding gives us
d = min(a1 +5, a2 +5, a3 +5), which needs only 3 comparisons
to compute. Application of this rule to a dynamic programming
algorithm can reduce it to a much simpler residue program that is
also dynamic programming, as elaborated in Section 3.3.

3.3 Analysis
We theoretically analyzed the effectiveness of our specialization

techniques on a set of dynamic programming algorithms (DPA)
deemed fundamental to genome computing.

Dynamic programming in genome computing. Dynamic pro-
gramming [15] is an optimization technique widely used in bioin-
formatics, particularly for solving fundamental genome comput-
ing problems such as sequence alignment, structural alignment and
RNA secondary structure prediction. These problems typically in-
volve two genome sequences, α[1 · · ·n] and β[1 · · ·m], and are
modeled over an n+1 by m+1 matrix D. The objective is to find
an optimal path from the entry (0, 0) to (n, m) that maximizes or
minimizes the scores accumulated from those incurred by individ-
ual moves from (i, j) to (i + 1, j) or (i, j + 1) or (i + 1, j + 1).
It is worth to mention that such a modeling can also be generalized
to a multidimensional graph for the problem such as multiple se-
quence alignment [27], where the goal is to find an optimal path in
the graph. The DPAs for solving these problems are usually in the
following form:

D(i, j) = min(D(i − 1, j) + s1(i, j),

D(i, j − 1) + s2(i, j),

D(i − 1, j − 1) + s3(i, j), C) (2)

where D(i, j) is the score for the optimal path from (0, 0) to (i, j),
s1(i, j), s2(i, j) and s3(i, j) are the functions that compute a score
given α[i] and β[j], and C is a constant. This form of optimiza-
tion describes many important bioinformatics algorithms, includ-
ing the famous Needleman-Wunsch [60] and the most widely-used
BLAST 2 [71].

Let ρ be the ratio of sensitive nucleotides on β, and β[xt=1···ρm]
be these nucleotides. The effectiveness of our specialization tech-
niques on a DPA is described by Theorem 1.

Figure 3: Proof illustration.

THEOREM 1. The query q(β[x1], · · · , β[xρm]) generated by
specializing a DPA described in Equation 2 is still a DPA. The com-
putational, spatial and communication complexities for answering
the query are at most O(ρmn2).

Figure 3 illustrates the general idea of the proof, whose full con-
tent is presented in the Appendix, due to the space limit. Infor-
mally, every unknown nucleotide β[xt] corresponds to one column
xt in the (n + 1) × (m + 1) matrix D. Consider two neighbor-
ing columns xt−1 and xt. A path from (0, 0) to (i, xt), a cell in
xt, must go through one of the cells (0, xt−1), · · · , (i, xt−1) in
xt−1. We call a path from (0, 0) a connection path for (l, xt−1)
(0 ≤ l ≤ i) and (i, xt) if the path passes both cells and does not
pass any other cells in column xt−1 or xt between these two cells.
The optimal connection path (the one with the minimal score) is
composed of the optimal path from (0, 0) to (l, xt−1), and the path
segment between (l, xt−1) and (i, xt) with the lowest score. Its
score can be represented as a linear expression with the symbol

D(l, xt−1) and the symbol related to xt, and simplified using the
fact that all nucleotides between the two columns are known. Par-
ticularly, an expression that compares the scores of two different
connection paths can often be reduced: for example, we know that
a path with a score D(l, xt−1)+C1+s1(i, xt) is better than the one
with D(l, xt−1)+C2 + s1(i, xt) if the constant C1 is smaller than
C2. The optimal path to (i, xt) is either one of the i + 1 optimal
connection paths from (0, xt−1), · · · , (i, xt−1) or the path passing
(i − 1, xt). Seeking the optimal path from (0, 0) to (n, m), we
need to first find values for column xρm, which depends on column
xρm−1 and so on. This forms a DPA (See Equation 3 in the Ap-
pendix). Computing D(i, xt) requires comparing the scores of i+2
paths (i + 1 optimal connection paths and an additional path from
(i − 1, xt)). Therefore, the complexity for computing unknown
column xt is O(n2). Since there are totally ρm unknown columns,
the complexity for answering the query becomes O(ρmn2).

Discussion. The complexities of an unspecialized DPA is O(mn)
for both computation and space. More often than not, the optimal
path with at least m elements needs to be delivered from the DP
to the DC if the whole computation task is delegated to the DP. On
the other hand, most genome computing tasks involve a short α,
on the order of 102, and a long β, from 106 (a chromosome) to
109 (the whole genome sequence of a human). Therefore, given
ρ < 10−4, the query program generated by our approach can be
hundreds of times more efficient than the original program in terms
of computation and space. Our approach incurs extra communica-
tion overheads: the complexity of the communication from the DC
to the DP can be O(ρmn2). This weakness, however, is compen-
sated by the efficiency of the communication from the DP to the
DC, which is only O(ρm). This is because to empower the DC to
figure out the whole optimal path, the DP only needs to disclose
the intersections between the optimal path and unknown columns
x1, · · · , xρm, and for every intersection (i, xt), the one of the i+2
paths (actually, expressions in Equation 3) that contributes to the
value of the cell.

Actually, the theoretic result turns out to be too pessimistic, be-
cause our analysis does not consider the reduction achievable using
the value ranges of expressions: due to the scarcity of unknown nu-
cleotides, the differences between the constants in the expressions
for two optimal connection paths can easily overwhelm the devia-
tions caused by an unknown symbol; as a result, optimal connection
paths from different cells in xt−1 can often be compared and many
of them can be removed from the reduced expression of D(i, xt)
(see Equation 3). In our experiment, we observed that a query was
at least thousand times more efficient than the original program, in
terms of computation, space and communication (Section 5).

DPA extensions. DPAs used in genome computing can be ex-
tended to improve their performance. Two prominent examples are
Divide-and-Conquer, which is optimized for space efficiency, and
BLAST, which is designed for high performance. The Divide-and-
Conquer algorithm (DCA) [58] first runs a DPA to compute the
first half of matrix D column by column until j, the column in the
middle of the matrix, and then compute the second half backwards
from column n to j. As a result, the intersection between the opti-
mal path and column j can be identified. Denote the intersection by
(i, j). The same process happens to the matrix between (0, 0) and
(i, j) and the matrix between (i, j) and (n, m) to find other mem-
bers on the optimal path, which further divide these matrices into
smaller ones. In this way, the algorithm can find out every member
on the path. Since computing a column only needs the information
in the prior column, DCA reduces the spatial complexity of a DPA
from O(mn) to O(m + n), at the cost of doubled computation

overheads.
The DCA needs to run a DPA over the whole matrix once, which

makes the complexities of the query generated from specialization
stay at O(ρmn2). Apparently, this suggests that the query program
loses the edge in space efficiency in comparison with the original
algorithm. Again, such a theoretic result is deceiving: the query
built upon real data is actually much more efficient, as observed in
our research.

BLAST is a widely-used algorithm for fast searching. It first
searches for high scoring subsequence matchings between the se-
quences α and β by seeking words, a subsequence typically con-
taining 11 nucleotides, with scores above a threshold. Then, the
algorithm extends these words using a DPA to find a locally opti-
mal alignment. Our specialization techniques generate queries for
extending words, which is much more efficient than running the
whole algorithm on the DP. A problem is that the score of a word
is usually calculated using exact match. When a word matches a
sequence involving sensitive nucleotides, these nucleotides will be
exposed, which could cause a computation to fail. Fortunately, the
number of sensitive nucleotides in a given β is usually very small,
and as a result, the chance that a word in a short α matches a se-
quence involving such nucleotides is very low.

3.4 Query Auditing
Our framework adopted a simple security policy to control infor-

mation leaks from the outcomes of a computation. The policy spec-
ifies a threshold for a query, the maximal number of SNPs whose
values can be revealed. For each query, the DP first runs a query
auditor to evaluate the amount of information that could be leaked
out by the answer: if it goes above the threshold, the DP refuses
to respond; otherwise, the query is allowed to be answered. The
query auditor can be as simple as a constraint solver: given a query
and its answer as a constraint, it attempts to determine whether the
constraint can only be satisfied when some SNPs take unique val-
ues; when this happens, these SNPs are deemed disclosed if the
answer is given to the DC. For example, consider a query q for an
edit distance, whose answer is 5; if the auditor finds that to satisfy
the constraint “q = 5”, a SNP must be ‘A’, it concludes that the
SNP will be disclosed by the answer. In Section 5, we demonstrate
that this simple technique actually worked on real data.

Actually, the action of denying a query itself can leak out in-
formation: at the very least, an attacker knows that the answer to
her query can be used to determine t SNPs, with t no smaller than
the threshold. However, by setting the threshold well below the
number of SNPs involved, we can make it difficult for the attacker
to find out exactly which t SNPs can be determined. In general,
however, we do not want to claim that the approach is a perfect
solution. Instead, it is just a component of our framework and can
be replaced with other existing technologies for query auditing [59,
42] and inference control [42, 59, 54, 55, 32, 25]. Study of these
technologies’ efficacy under our framework is left as our future re-
search.

3.5 Secure Multi-party Computation
The DC’s sequence α may contain sensitive nucleotides that can-

not be revealed to the DP. When this happens, a query needs to be
answered without leaking out sensitive inputs from both α and β,
which can be achieved using secure multi-party computation [73,
30]. Direct application of SMC on α and β, however, can intro-
duce huge performance overheads, making the approach hard to
scale [36]. Our solution is to use the nonsensitive data on both α
and β to specialize a computation, reducing its complexity. Specif-
ically, let the set of sensitive nucleotides on α be {α[yτ]}, and the
set for β be {β[xt]}. These nucleotides are all marked as symbols

on the sequences. Performing a mixed execution on them, the DC
can acquire a query program q with {α[yτ]} and {β[xt]} as inputs.
Such a query is typically much more efficient than the original pro-
gram, as demonstrated in our experimental studies (Section 5). To
seek the answer for q, the DC converts it into a circuit Q and further
encrypts it to create a “garbled circuit” Q′. Over Q′, the DC and the
DP can run an SMC to compute the answer to the query. Compared
with the prior work [36], our approach is much more efficient, as
Q′ can be very small, and therefore can handle a computation task
with a much larger scale (on the order of tens of thousands of nu-
cleotides).

A problem here is that SMC does not offer protection to the in-
formation revealed by the outcome of a computation. A solution
can be to let the DP evaluate the unencrypted circuit Q without ac-
cess to {α[yτ]} before SMC happens. This is feasible because α
is usually very short, involving only a few hundreds of nucleotides,
and as a result, typically no more than 5 of them are SNP [45].
Therefore, the DP can check all 45 possible combinations of these
nucleotides to ensure that none of them will cause Q to violate cer-
tain privacy policies (such as k-anonymity). In the case that the
size of {α[yτ]} is large, a possible solution is to randomly sample
some of combinations for policy verification. The effectiveness of
such an approach is left to our future research.

4. AUTOMATIC PROGRAM TRANSFORMA-
TION

This section describes an automatic tool for transforming legacy
biocomputing code into a new program to perform mixed execu-
tions on sanitized genome sequences. Our current design is for
converting Java programs, but the idea behind it can be applied to
transform the programs in other languages. We also implemented
a prototype of the tool using Java.

To transform a Java program, our tool takes the following steps.
It first runs a transformation tool such as Java2XML [4] to convert
the source code into an abstract syntax tree (AST) that describes
the structure of the program [13]. The AST representation clearly
indicates different elements of the program, including variables and
statements, and their relations, in particular execution flows, over
which a taint analysis is performed to find out all the elements
tainted by sensitive nucleotides. These elements are further in-
strumented with specialization code to support mixed executions.
Finally, the transformed AST is converted into a new Java program
through XSLT stylesheet [13].

4.1 Taint Analysis
The objective of taint analysis is to identify all statements and

variables affected by sensitive nucleotides. The statements in a pro-
gram that import these data are manually annotated as taint sources.
Starting from them, our approach statically analyzes the propaga-
tion of tainted data on the AST in accordance with a set of propaga-
tion rules. Such a rule is in the form of (s,i,o,e), in which s is
a statement, i and o represent the input and the output of the state-
ment respectively, and e is a Boolean value that indicates whether
execution of the statement will cause taint to be propagated from i
to o. For instance, the rule (=, value, variable, true)
specifies that an assignment statement (“=”) will propagate taint
from its input (value) to its output (variable).

Let V be the set of tainted variables and S be the set of tainted
statements. These sets include only the taint sources at the begin-
ning of an analysis. During the analysis, our analyzer checks every
element on the AST according to the execution flow of the program,
identify tainted variables and the statements that operate on these
variables using propagation rules, and put them to V and S respec-

tively. Some statements need special treatment. Specifically, our
analyzer forks threads to explore different branches of a branching
statement to the point where they converge. For a loop statement,
we need to consider the propagation of taint across different iter-
ations. Consider the example in Figure 2 from Line 15 to 18 of
P1, in which min(a, b, c) is computed by first comparing a and b
to find the smaller one and then comparing it with c. These opera-
tions are embedded in the loop from Line 2 and 7. An interesting
observation is that if c is tainted, the first iteration of the loop only
taints the statement at Line 17 and array D. However, the next iter-
ation sees the statement at Line 16 also become tainted because this
time, D is tainted. Our solution to the problem is to statically an-
alyze the loop iteration by iteration, until no new tainted variables
or statements are discovered.

Another important issue we had to deal with is propagation of
taint through control flow. This happens when a branch condition
becomes tainted. As a result, sensitive inputs could affect the use of
the statements and variables within the scope [6] of the branching,
that is, part of the program between the condition and the program
location where all branches converge. For example, the score func-
tion S1 in Figure 2 contains a branch that a comparison between
two nucleotides, one of which could be sensitive, determines the
score it returns. In this case, our analyzer taints all the variables
within the scope of such a branching if they are also used posterior
to the statement. For the example in Figure 2, the output of S1 is
tainted.

4.2 Code Instrumentation

Figure 4: Integer variable transformation.

Tainted program elements need to be transformed to enable a
mixed execution. This was achieved in our research through replac-
ing a tainted variable with a class that accepts both a concrete value
and a symbolic expression, and transforming tainted statements
into the forms that can work on these variables. Figure 4 presents
an example, in which an integer variable I is converted into a new
type IntSymbol, a class accepting both concrete and symbolic
values. To perform an operation on such a variable, proper instru-
mentation needs to be done to operators, such as assignment and
addition. In Figure 4, an assignment of a value to I is modified
to be performed by assign(),the method of IntSymbol: the
method does the normal assignment when its input is concrete, and
maintains and reduces an expression when the input is symbolic.

A tainted statement is replaced with a code snippet according
to its type, as described in Section 3.2. A problem is that a pro-
gram could call a function from other libraries whose source code
may not be available. This is tackled by our instrumentation tool
through redirecting such a call to a wrapper of the function being
called. The wrapper checks the parameters of the call: if any of
them is symbolic, it returns a new symbol to enable the follow-up
operations and residualizes the call; otherwise, it passes the param-

Table 1: Transformed programs.
Program Name Source # of Class Files Included Algorithms

NeoBio library 22 Needleman-Wunsch,Smith-Waterman,Crochemore-Landau-Ziv-Ukelson

Argo genome browser library 48 Global Alignment, Local Alignment

JAligner library 16 Smith-Waterman algorithm with Gotoh’s improvement

Edit Distance synthesized 1 Edit Distance

Blast synthesized 2 Blast

Divide-and-Conquer synthesized 2 Divide-and-Conquer

Multiple Alignment synthesized 1 Multiple Alignment

Table 2: Performance.

Algorithm Problem Size SNP
Native DC DP

Bandwidth
Time(s) Mem(MB) Time Mem Time Mem (KB)

Edit Distance 400×400 2 0.523 3.665 28.526 46.915 0.000033 1.536 1.841

NeoBio Needleman 400×400 2 0.665 2.052 42.465 56.897 0.000078 2.740 2.760

Argo Global Alignment 400×400 2 0.801 3.432 46.151 44.736 0.000054 2.740 2.535

NeoBio Waterman 200×100000 55 95.664 87.830 1009.029 626.167 0.000014 2.740 1.968

Blast 200×100000 55 2.416 18.624 64.286 49.893 0.000019 2.740 2.017

Argo Local Alignment 200×100000 55 109.132 133.521 1512.368 661.880 0.000017 2.740 1.996

JAligner Waterman 200×100000 55 27.056 124.215 1637.066 604.712 0.000016 2.740 1.968

Divide-and-Conquer 200×1000000 1056 646.909 34.738 6857.100 168.808 0 0 0

Multiple Alignment 100×100×100 1 6.545 6.606 394.865 113.188 0.000021 2.052 2.038

eters to the callee.

5. EVALUATION
This section reports an empirical study of the techniques we pro-

pose. The genome sequences used in our study came from the hu-
man genome dataset in UCSC Genome Browser [41], the latest
Build 36.1 assembled on March 2006. We extracted segments from
the dataset and truncated them into sequences of different sizes
for our experiments. These sequences were sanitized by replac-
ing their SNP nucleotides, as indicated by International HapMap
Project [28], with symbols.

5.1 Program Transformation
We ran our program-transformation prototype on 7 Java-based

DPA implementations, including 3 bioinformatics libraries and 4
synthesized programs, as illustrated in Table 1. We used synthe-
sized programs because we could not obtain the source code of
the Java implementations for some DPAs. Our prototype trans-
formed all synthesized programs and most part of the libraries. The
new programs and the queries they generated were evaluated using
genome data, and their outcomes were found to be identical with
those produced by running the original programs on unprotected
sequences. This indicates that the transformation was sound. Fol-
lowing we describe our experiences with the Java libraries.

NeoBio [23] is a Java library including three pair-wise alignment
algorithms, Needleman-Wunsch [60], Smith-Waterman [69], and
Crochemore-Landau-Ziv-Ukelson [22]. Our tool failed to trans-
form the last one because it intensively uses tainted addresses: it
performs computation upon a double-linked list constructed based
on the values of individual nucleotides. As a result, our analyzer
found that nearly all the statements of the algorithm had to be resid-
ualized. This problem comes from the limit support our current de-
sign offers for symbolic addresses, which will be addressed in our
follow-up research.

Argo genome browser [1] includes 48 class files to support both
global and local alignment algorithms. Most of the classes, how-
ever, are different designs of score functions, which can be residual-
ized without incurring noticeable performance overheads to a query

program. The library was successfully converted by our prototype
and evaluated in our experiments. The same success also happened
to JAligner [3], a Java implementation of the Smith-Waterman al-
gorithm with Gotoh’s improvement. An interesting property of this
algorithm is that it maintains a (n+1)×(m+1) matrix to record the
neighbor of each cell that contributes to its value. This simplifies
the “backtracking” process for identifying the optimal path. During
the program’s runtime, our specialization code assigned symbols to
cells after unknown nucleotides were encountered. The concrete
values of these cells were calculated from the DP’s answer to the
query exported by the program, which included the intersections
between the optimal path and unknown columns, and the symbolic
expressions contributing to the values of these intersections.

5.2 Performance
We ran the transformed programs on real genome sequences to

study their performance. Our experiments were conducted on two
laptops, each with a 1.8G Intel Core 2 Duo CPU and 2 GB memory.
One of these laptops was used as the DP, and the other as DC.
They communicated with each other through a local network. In
the experiments, we measured the computation time and memory
use for both mixed executions on sanitized data that happened on
the DC side, and executions of the queries generated thereby on the
DP side. Such information was compared with the computational
and spatial overheads for directly running the original programs on
unprotected data, which served as baselines. We also recorded the
communicational overheads incurred by the interactions between
the DP and the DC.

Table 2 illustrates the experimental results, in which the problem
sizes are described as (n, m), where n and m represent the sizes of
α (the DC’s sequence) and β (the DP’s sequence) respectively. Our
experiments include an edit distance (row 1), 2 global alignments
(row 2 and 3), 4 local alignments (row 4 to 7), longest common
sequence (LCS) identification (row 8) and 1 multiple alignment.
The multiple alignment algorithm computes over three sequences.
The last one belongs to the DP and contains one SNP. The problem
sizes we chose ranged from hundreds of nucleotides to a million
of nucleotides. The number of sensitive nucleotides on β varied

according to the problem sizes, from a single one to 1056. In the
table, the baseline results are labeled as “Native”.

The table shows that the mixed execution did take noticeable
toll on the DC’s performance. Compared with the baseline, trans-
formed programs were typically one order of magnitude slower and
consumed more memory. Such a raise of overheads culminated in
the experiment involving the Needleman-Wunsch algorithm from
the NeoBio library, which brought in a slow down factor of 64 and
used 28 times more memory. However, the DC’s cost seems to be
more than compensated by the huge performance gain on the DP
side: the query programs generated by the DC were so efficient that
they were at least 10000 times faster than the baseline and typically
consumed much less memory. Actually, computing the answer for
a query never took more than 100 microseconds. Particularly, the
transformed Divide-and-Conquer algorithm (row 8) even enabled
the DC to accomplish the computation without querying the DP at
all. This is because in that experiment, the constant in Equation 2
was found to be below the value ranges of all symbolic expressions,
and as a result, a concrete outcome ensued. Note this would not
be possible without specialization. Moreover, the communication
overheads were also found to be very low. This is in a stark con-
trast with the conservative estimate made in our theoretic analysis
(Section 3.3), which predicts much higher overheads.

5.3 Information Leaks
We also evaluated the information leaks that can be caused by

releasing the outcomes of query programs, using a query auditor
built upon a constraint solver [26]. The outcomes are shown in Ta-
ble 3. This study was conducted under three scenarios: an answer
includes only a value (e.g., an edit distance), a path for optimal
alignment or both. From the table, we can see that the amount of
information disclosed by answers is pretty low: ranging from 0% to
1.8%. We observed that most SNPs involved in a computation can
be reversed without affecting the outcome of the query program,
thus not leaked. The performance of constraint solving was also
reasonable: from 0.001 to 0.3 seconds.

5.4 Secure Multi-party Computation
We studied how our specialization techniques could facilitate se-

cure multi-party computation when the DC’s sequence α also con-
tains sensitive nucleotides. Each of these nucleotides corresponds
to one row in the matrix D, which introduces new symbols dur-
ing computations. In our experiment, we ran the transformed edit-
distance program on the sanitized sequences α and β, whose SNP
nucleotides were replaced by symbols. This produced a query pro-
gram, which was converted into a “garbled circuit” using a tool
we developed. After that, the DP and the DC ran an SMC proto-
col [36] to evaluate the circuit. In the experiment, we measured the
accumulated computation time and memory use on the DC side,
including those for program specialization and running the SMC
protocol, as well as the overheads on the DP side for performing
its part of the protocol. These results were compared with the over-
heads of running an optimized SMC protocol [36] directly on α and
β. The optimized SMC protocol we used is an implementation of
Protocol 3 proposed in the prior work [36]. The protocol is recom-
mended for computing large-size problems, as it strike a balance
between computation time and memory use [36]. We also recorded
the bandwidth consumptions for both our approach and the prior
approach. The results are presented in Table 4.

As illustrated by Table 4, the optimized SMC protocol took more
than an hour and 2.56GB bandwidth to deal with a 200 × 1000
problem. This is actually not necessary, as real genome sequences
of such sizes typically contain very few sensitive nucleotides. In
contrast, our approach first specialized the computation to a much

smaller problem and then performed SMC on it. Though the SMC
protocol we used was not optimal, we achieved a significantly bet-
ter performance: a little more than 106 seconds in computation
time and merely 5.2 KB in bandwidth usage. When the problem
size grew to 300 × 10000, direct application of SMC to the whole
sequences could not finish the computation in 3 hours, while our
approach accomplished the task within 411 seconds with 13.9KB
bandwidth consumption. This result makes us believe that our ap-
proach offers a more practical path for privacy-preserving genome
computing.

6. DISCUSSION
Our framework is open to various privacy policies [48, 46] for

regulating information leaks from the outcomes of a computation.
Enforcement of these policies can benefit from the query we gen-
erate, which is much more efficient than an unspecialized program.
A question that has not been addressed by this research, however, is
how effective those policies are in protecting genome privacy. Also
important to our framework is other techniques for controlling in-
formation leaks, such as differential privacy [34]. More generally,
we expect existing database security techniques to be successfully
applied to our approach, as the interactions between the DP and the
DC does not have any significant difference from those between
clients and a database. However, it is still important to understand
how effectively and efficiently these techniques can work under our
framework, which is left as our future research.

Our specialization techniques are proven to be effective on a cat-
egory of DPAs used in biocomputing. Though DPAs are among
the most important building blocks for computational genomics,
there are many other algorithms that need to be further studied. For
decades, program specialization has been proven to be valuable to
the research on a wide variety of areas, including compiler gen-
eration [38], computer graphics [53], circuit simulations [12], and
others. We expect the same success in applying the techniques to
genomic computations. On the other hand, it is also important to
understand the limitations of specialization techniques. For exam-
ple, some data structures such as suffix trees [52] can be hard to
specialize because to correctly build these structures, the DC may
have to know the exact values of every genome strings, including
those carrying sensitive information.

Our program-transformation tool is designed for Java, because
of the simplicity of Java programs. Actually, C is more pervasive in
genomic computation, due to its high performance. Given its com-
plicated structure, in particular, extensive use of pointers, C pro-
grams can be more difficult to transform. Prior research [9] studies
specialization of part of C, which we can take advantage of. Such
work, however, is more about partial evaluation at compiling time
than offline transformation for run-time specialization of existing
code, which is our focus.

7. RELATED WORK
So far, human genome data have been protected by de-identification,

i.e., removal of explicit identifiers such as name, address or social
security number [49]. However, such a protection is weak, vulner-
able to various re-identification attacks [50]. Improved techniques
such as generalization lattices [51] are shown to be effective. How-
ever, they rely on sanitizing and generalizing genome data, which
reduces the information in the data, and as a result, affects their
utility for bioinformatics research.

Privacy preserving computations over genome data have been
studied recently. Most prior approaches are based on cryptographic
protocols [11, 36, 16]. A prominent example is the recent work that
optimizes SMC techniques for computing DPA-based bioinformat-

Table 3: Information Leakage.

Algorithm Problem Size SNP
Value Path Value and Path

Leakage(%) Time(s) Leakage(%) Time(s) Leakage(%) Time(s)

Edit Distance 400×400 2 0 0.053 0 0.063 0 0.070

NeoBio Needleman 400×400 2 0 0.274 0 0.209 0 0.304

Argo Global Alignment 400×400 2 0 0.249 0 0.196 0 0.291

NeoBio Waterman 200×100000 55 1.8 0.010 1.8 0.010 1.8 0.005

Blast 200×100000 55 1.8 0.007 1.8 0.003 1.8 0.011

Argo Local Alignment 200×100000 55 1.8 0.003 1.8 0.005 1.8 0.001

JAligner Waterman 200×100000 55 1.8 0.008 1.8 0.008 1.8 0.004

Divide-and-Conquer 200×1000000 1056 0 0 0 0 0 0

Table 4: Facilitation of secure multi-party computation.
SNP Optimized SMC [36] Our Approach

Problem Size
DP DC Time Mem Bandwidth

DP DC
Bandwidth

Time Mem Time Mem

200 × 1000 3 1 1h5min 5.95MB 2.56GB 392.5ms 5.12MB 106.2s 62.3MB 5.2KB

300 × 10000 4 2 >3h n/a n/a 537ms 5.12MB 410.5s 223.2MB 13.9KB

ics algorithms [36], such as edit distance and the Smith-Waterman
algorithm. This approach significantly improves the efficiency of
SMC and is demonstrated to be very effective on small-scale com-
puting tasks, such as global alignment involving hundreds of nu-
cleotides. However, it is still shy of the capability to deal with a
large-scale computation, as demonstrated in Section 5. Another ap-
proach is distributed Smith-Waterman algorithm [70] that decom-
poses a computation problem into small sub-problems and allocates
them to multiple problem solvers. This technique, however, leaks
more information than what is revealed by the outcome of a compu-
tation, and offers little privacy guarantee. In contrast, our approach
takes advantage of the fact that a genome sequence is actually a
mixture of public and sensitive data, and only a very small portion
of it needs protection. As a result, we can simplify a computation
to the extent that millions of nucleotides can be easily handled and
information leaks can be conveniently assessed.

Information flow security was proposed decades ago [24, 14]
and its application to programming languages like Java has also
been studied for many years. A prominent example is Jif [56, 57],
a security-typed programming language that supports information-
flow (IF) control within Java. Jif is designed for enforcing differ-
ent IF policies in a program, which is more than we need. There-
fore, we did not build our prototype over it, and instead, imple-
mented our own lightweight tool for taint analysis. Based on Jif,
Jif/split [56, 57] and Swift [19] use IF analysis to separates an ap-
plication according to security policies. This is insufficient for our
purpose, because for the biocomputing algorithms like DPA, the
part of the computation on the sensitive data can be intertwined
with that on the public data. For example, a static IF analysis on
a DPA could taint all the statements once the program receives a
single sensitive nucleotide. As a result, the whole program has to
be placed on the DP side, which is exactly what we intend to avoid.

Program specialization and partial evaluation have been studied
for decades [37, 20, 21, 67, 64, 29], and are extensively used in
compiler generation, real-time systems and many other areas [38,
61, 20, 21, 39, 43, 53, 12]. Up to our knowledge, our approach is
the first attempt to apply program specialization to privacy-preserving
genomic computations. For this purpose, we propose new special-
ization techniques tuned to the property of genome data, including
the rules for reducing Boolean expressions with value ranges and
determining when to unfold a symbol. We prove the effectiveness

of these techniques on a category of DPAs that are fundamental to
genome computing. Moreover, different from existing partial eval-
uators [37] that work at the compiling stage, our approach special-
izes an algorithm during its runtime, which is necessary for pro-
cessing a large amount of public data. This aligns our approach
with the techniques for dynamic code generation [63]. However,
unlike these techniques, we do not rely on a language to define the
way to generate new programs, and instead, use program analysis
to retrofit legacy programs with the code for specialization opera-
tions.

8. CONCLUSION
This paper presents an innovation that makes an important step

toward practical privacy-preserving genomic computations. Our
approach is based upon the fact that only a very small portion of
human genome contains sensitive information. Therefore, a data
provider can announce sanitized genome sequences to enable com-
putations on pubic data, and answers the queries about sensitive
data when its privacy policy permits. These queries are generated
in our research through program specialization. We theoretically
analyzed the effectiveness of our approach on a set of DPAs fun-
damental to computational genomics, and experimentally demon-
strated its capability to handle the computation tasks with practical
scales. We developed a program transformation tool to automati-
cally convert existing bioinformatics programs to the forms capable
of performing privacy-preserving operations. We also studied how
our techniques can facilitate SMC on genome computing problems.

9. REFERENCES
[1] Argo genome browser.

http://www.genome.wi.mit.edu/annotation/argo/.
[2] A deep catalog of human genetic variation.

http://www.1000genomes.org.
[3] Jaligner: java implementation of the smith-waterman algorithm for biological

sequence alignement. http://jaligner.sourceforge.net/.
[4] Java2xml : A java to xml converter.

https://java2xml.dev.java.net/.
[5] Genetic variation program. http://www.genome.gov/10001551, 2008.
[6] F. E. Allen. Control flow analysis. In Proceedings of a symposium on Compiler

optimization, pages 1–19, 1970.
[7] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local

alignment search tool. J Mol Biol, 215(3):403–410, 1990.
[8] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and

D. J. Lipman. Gapped blast and psi-blast: a new generation of protein database
search programs. Nucleic Acids Res, 25(17):3389–3402, Sep 1997.

[9] L. O. Andersen. Program analysis and specialization for the c programming
language. Phd thesis, Department of Computer Science, University of
Copenhagen, May 1994.

[10] S. Artzi, A. Kiezun, and N. Shomron. miRNAminer: a tool for homologous
microRNA gene search. BMC Bioinformatics, 9:39, 2008.

[11] M. J. Atallah, F. Kerschbaum, and W. Du. Secure and private sequence
comparisons. In WPES ’03: Proceedings of the 2003 ACM workshop on
Privacy in the electronic society, pages 39–44, New York, NY, USA, 2003.
ACM.

[12] W.-Y. Au, D. Weise, and S. Seligman. Generating compiled simulations using
partial evaluation. In DAC ’93: Proceedings of the 28th Design Automation
Conference, pages 205–210, New York, NY, USA, 1991. IEEE.

[13] G. J. Badros. Javaml: a markup language for java source code. In Proceedings
of the 9th international World Wide Web conference on Computer networks :
the international journal of computer and telecommunications netowrking,
pages 159–177, Amsterdam, The Netherlands, The Netherlands, 2000.
North-Holland Publishing Co.

[14] D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical
foundations. Technical Report ESD-TR-73-278, Hanscom AFB, Bed-ford,
Mass., November 1973.

[15] R. Bellman. Dynamic programming. Science, 153(3731):34 – 37, 1966.
[16] F. Bruekers, S. Katzenbeisser, K. Kursawe, and P. Tuyls. Privacy-preserving

matching of dna profiles. Technical Report Report 2008/203, ACR Cryptology
ePrint Archive, 2008.

[17] D. Brumley and D. Song. Privtrans: Automatically partitioning programs for
privilege separation. In Proceedings of the 13th USENIX Security Symposium,
August 2004.

[18] N. E. Castellana, S. H. Payne, Z. Shen, M. Stanke, V. Bafna, and S. P. Briggs.
Discovery and revision of Arabidopsis genes by proteogenomics. Proc. Natl.
Acad. Sci. U.S.A., 105:21034–21038, Dec 2008.

[19] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng, and X. Zheng.
Secure web application via automatic partitioning. In SOSP ’07: Proceedings of
twenty-first ACM SIGOPS symposium on Operating systems principles, pages
31–44, New York, NY, USA, 2007. ACM.

[20] C. Consel and O. Danvy. Tutorial notes on partial evaluation. In POPL ’93:
Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 493–501, New York, NY, USA, 1993. ACM.

[21] C. Consel and S. C. Khoo. Semantics-directed generation of a prolog compiler.
Sci. Comput. Program., 21(3):263–291, 1993.

[22] M. Crochemore, G. M. Landau, and M. Ziv-Ukelson. A sub-quadratic sequence
alignment algorithm for unrestricted cost matrices. In 13th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 02), 2002.

[23] S. A. de Carvalho Junior. Neobio - bioinformatics algorithms in java.
http://neobio.sourceforge.net/.

[24] D. E. Denning. A lattice model of secure information flow. Commun. ACM,
19(5):236–243, 1976.

[25] J. Domingo-Ferrer, editor. Inference control in statistical databases: From
theory to practice. Springer, 2002.

[26] B. Dutertre and L. Moura. The YICES SMT Solver.
http://yices.csl.sri.com/, as of 2008.

[27] R. C. Edgar and S. Batzoglou. Multiple sequence alignment. Current Opinion
in Structural Biology, 16(3):368–373, 2006.

[28] R. Gibbs. The international hapmap project. Nature (London), 426:789, 2003.
[29] R. Glück and J. Jorgensen. Efficient multi-level generating extensions for

program specialization. In PLILPS ’95: Proceedings of the 7th International
Symposium on Programming Languages: Implementations, Logics and
Programs, pages 259–278, London, UK, 1995. Springer-Verlag.

[30] O. Goldreich, S.Micali, and A.Wigderson. How to play any mental game. In
STOC, 1987.

[31] O. Gotoh. An improved algorithm for matching biological sequences. J Mol
Biol, 162(3):705–708, December 1982.

[32] V. Goyal, S. K. Gupta, and A. Gupta. A unified audit expression model for
auditing sql queries. In Proceeedings of the 22nd annual IFIP WG 11.3 working
conference on Data and Applications Security, pages 33–47, Berlin,
Heidelberg, 2008. Springer-Verlag.

[33] N. Gupta, S. Tanner, N. Jaitly, J. N. Adkins, M. Lipton, R. Edwards,
M. Romine, A. Osterman, V. Bafna, R. D. Smith, and P. A. Pevzner. Whole
proteome analysis of post-translational modifications: applications of
mass-spectrometry for proteogenomic annotation. Genome Res., 17:1362–1377,
Sep 2007.

[34] J. N. Hirschhorn and M. J. Daly. Genome-wide association studies for common
diseases and complex traits. Nature Reviews Genetics, 6(2):95–108, February
2005.

[35] D. S. James Newsome. Dynamic taint analysis for automatic detection,
analysis, and signature generation of exploits on commodity software. In
Proceedings of the 12th Annual Network and Distributed System Security
Symposium (NDSS 05), as of Feburary 2005.

[36] S. Jha, L. Kruger, and V. Shmatikov. Towards practical privacy for genomic
computation. In 2008 IEEE Symposium on Security and Privacy, 2008.

[37] N. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program
Generation, C.A.R. Hoare Series. Prentice-Hall, 1993.

[38] N. D. Jones, P. Sestoft, and H. Sondergaard. An experiment in partial
evaluation: the generation of a compiler generator. In Proc. of the first
international conference on Rewriting techniques and applications, pages
124–140, New York, NY, USA, 1985. Springer-Verlag New York, Inc.

[39] J. Jorgensen. Generating a compiler for a lazy language by partial evaluation. In
POPL ’92: Proceedings of the 19th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 258–268, New York, NY, USA,
1992. ACM.

[40] O. Keller, F. Odronitz, M. Stanke, M. Kollmar, and S. Waack. Scipio: using
protein sequences to determine the precise exon/intron structures of genes and
their orthologs in closely related species. BMC Bioinformatics, 9:278, 2008.

[41] W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M.
Zahler, and D. Haussler. The human genome browser at ucsc. GENOME
RESEARCH, 25(6):996–1006, 2002.

[42] K. Kenthapadi, N. Mishra, and K. Nissim. Simulatable auditing. In PODS ’05:
Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, pages 118–127, New York, NY, USA, 2005.
ACM.

[43] S. C. Khoo and R. S. Sundaresh. Compiling inheritance using partial evaluation.
In PEPM ’91: Proceedings of the 1991 ACM SIGPLAN symposium on Partial
evaluation and semantics-based program manipulation, pages 211–222, New
York, NY, USA, 1991. ACM.

[44] J. C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385–394, 1976.

[45] L. Kruglyak and D. Nickerson. Variation is the spice of life. Nat. Genet.,
27:234–236, Mar 2001.

[46] N. Li and T. Li. t-closeness: Privacy beyond k-anonymity and âĎŞ-diversity. In
In Proceedings of IEEE International Conference on Data Engineering, 2007.

[47] B. Ma, J. Tromp, and M. Li. Patternhunter: faster and more sensitive homology
search. Bioinformatics, 18(3):440–445, Mar 2002.

[48] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam.
L-diversity: Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data,
1(1):3, 2007.

[49] B. Malin. An evaluation of the current state of genomic data privacy protection
technology and a roadmap for the future. J. Am. Med. Inform. Assoc., 12:28–34,
2005.

[50] B. Malin. Re-identification of familial database records. In AMIA Annu Symp
Proc. 2006, 2006.

[51] B. Malin. Protecting dna sequence anonymity with generalization lattices.
Technical Report CMU-ISRI-04-134, Carnegie Mellon University, As of
October 2007.

[52] E. M. McCreight. A space-economical suffix tree construction algorithm. J.
ACM, 23(2):262–272, 1976.

[53] T. Mogensen. The appliation of partial evaluation to ray-tracing. Master thesis,
DIKU, University of Copenhagen, 1986.

[54] R. Motwani, S. Nabar, and D. Thomas. Auditing a batch of sql queries. Data
Engineering Workshop, 2007. IEEE 23th International Conference on, pages
186–191, April 2007.

[55] R. Motwani, S. Nabar, and D. Thomas. Auditing sql queries. Data Engineering,
2008. ICDE 2008. IEEE 24th International Conference on, pages 287–296,
April 2008.

[56] A. C. Myers. Jflow: Practical mostly-static information flow control. In In Proc.
26th ACM Symp. on Principles of Programming Languages (POPL, pages
228–241, 1999.

[57] A. C. Myers and B. Liskov. Protecting privacy using the decentralized label
model. ACM Trans. Softw. Eng. Methodol., 9(4):410–442, 2000.

[58] E. W. Myers and W. Miller. Optimal alignments in linear space. CABIOS,
4:11–17, 1988.

[59] S. U. Nabar, B. Marthi, K. Kenthapadi, N. Mishra, and R. Motwani. Towards
robustness in query auditing. In VLDB ’06: Proceedings of the 32nd
international conference on Very large data bases, pages 151–162. VLDB
Endowment, 2006.

[60] W. C. Needleman SB. A general method applicable to the search for similarities
in the amino acid sequence of two proteins. J Mol Biol, 48(3):443–453, 1970.

[61] V. Nirkhe and W. Pugh. Partial evaluation of high-level imperative
programming languages with applications in hard real-time systems. In POPL
’92: Proceedings of the 19th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 269–280, New York, NY, USA, 1992. ACM.

[62] G. Pavesi, F. Zambelli, C. Caggese, and G. Pesole. Exalign: a new method for
comparative analysis of exon-intron gene structures. Nucleic Acids Res.,
36:e47, May 2008.

[63] M. Poletto, W. C. Hsieh, D. R. Engler, and M. F. Kaashoek. C and tcc: a
language and compiler for dynamic code generation. ACM Trans. Program.
Lang. Syst., 21(2):324–369, 1999.

[64] T. W. Reps and T. Turnidge. Program specialization via program slicing. In
Selected Papers from the Internaltional Seminar on Partial Evaluation, pages
409–429, London, UK, 1996. Springer-Verlag.

[65] D. Rohde, S. Olson, and J. Chang. Modelling the recent common ancestry of all
living humans. Nature, 431:562–566, Sep 2004.

[66] R. G. Sadygov, D. Cociorva, and J. R. Yates. Large-scale database searching
using tandem mass spectra: looking up the answer in the back of the book. Nat.
Methods, 1:195–202, Dec 2004.

[67] U. P. Schultz, J. L. Lawall, C. Consel, and G. Muller. Towards automatic
specialization of java programs. In ECOOP ’99: Proceedings of the 13th
European Conference on Object-Oriented Programming, pages 367–390,
London, UK, 1999. Springer-Verlag.

[68] S. Schwartz, W. J. Kent, A. Smit, Z. Zhang, R. Baertsch, R. C. Hardison,
D. Haussler, and W. Miller. Human-mouse alignments with blastz. Genome
Res, 13(1):103–107, Jan 2003.

[69] W. M. Smith TF. Identification of common molecular subsequences. J Mol Biol,
147:195, 1981.

[70] E. Szajda, M. Pohl, J. Owen, and B. Lawson. Toward a practical data privacy
scheme for a distributed implementation of the smith-waterman genome
sequence comparison algrotihm. In Proceedings of the 12th Annual Network
and Distributed System Security Symposium (NDSS 06), 2006.

[71] T. A. Tatusova and T. L. Madden. Blast 2 sequences - a new tool for comparing
protein and nucleotide sequences. FEMS Microbiology Letters, 174:247–250,
1999.

[72] D. Tsur, S. Tanner, E. Zandi, V. Bafna, and P. A. Pevzner. Identification of
post-translational modifications by blind search of mass spectra. Nat.
Biotechnol., 23:1562–1567, Dec 2005.

[73] A. Yao. How to generate and exchange secrets. In FOCS, 1986.

APPENDIX

Population Size Estimation for Human Genome
Mutations
What we really need to protect are those genomic sites of which the release
may determine the identity of a human individual. The sites that are dis-
tinct within the human populations are referred to as the single nucleotide
polymorphisms (SNPs). It has been estimated by human geneticists that
there are about 11 million (0.33%) common SNP sites with a minor al-
lele frequency (MAF) of 1% or higher across the entire human population.
This number can be further reduced if we are interested in the protection
of a large number of genetic records. Following a simple genetics model,
there are approximately t (= 240) mutations created per each generation
in human history [45]. We then can estimate that in a sub-population of
size p (sharing the most recent common ancestor (MRCA) of k genera-
tions), the total number of polymorphic sites N , which needs to be pro-

tected, is N = t × k0 × ln(p)
ln(P)

, where P is the current human popula-

tion (≈ 6 × 109), and the number of k0 is the generations between the
MRCA and the current human population (≈ 2 × 103 [65]). For instance,
if p = 106, then N ≈ 2.95 × 105, which is roughly 0.01% of the en-
tire human genome. Therefore, it is very likely that in the future, the party
holding a large number of human genomic records can group these records
into sufficiently large anonymity sets, each involving millions of individuals
with extremely low genetic diversity (e.g. < 0.01%).

Proof for Theorem 1
Consider an (n+1)×(m+1) matrix D in Figure 3. In the presence of ρm
sensitive nucleotides on β, the scores for the cells in columns x1, · · · , xρm

cannot be computed because they correspond to unknown nucleotides. Let
us first consider (i, x1), a cell in the first unknown column x1. Specializa-
tion of a DPA yields the following symbolic expression:

D(i, x1) = min(D(i − 1, x1) + s1(i, x1),

Ci + s2(i, x1), C′
i + s3(i, x1), C)

where D(i − 1, x1) is a symbol, because it cannot be computed without
knowing β[x1], and both Ci and C′

i are constants that are computed from
public nucleotide sequence α and β[1, · · · , x1 − 1] using Equation 2.

An optimal path from (0, 0) to (i, xt) (1 < t ≤ ρm) must go through at
least one of the following cells in the column prior to xt: (0, xt−1), · · · , (i, xt−1),
as illustrated in Figure 3. Consider a path that passes (l, xt−1) (0 ≤ l ≤ i)
and does not pass any other cells in column xt−1 and xt afterwards be-
fore it reaches (i, xt). We call the path a connection path. Among all
such paths, the one with the minimal accumulated score is called an opti-
mal connection path. This path is a combination of the optimal path from
(0, 0) to (l, xt−1), and the path segment between (l, xt−1) and (i, xt)

with the lowest score. Since all the nucleotides between xt−1 and xt are
known, the score for any path segment between these two columns includes
only constants and the symbol introduced by β[xt]. As a result of a mixed
execution, D(i, xt) will contain the following symbolic expression for the
accumulated score of the optimal connection path related to (l, xt−1) and
(i, xt):

min(D(l, xt−1) + C(t−1)(l,i) + s2(i, xt),

D(l, xt−1) + C′
(t−1)(l,i) + s3(i, xt),

C̃(t−1)(l,i) + s2(i, xt),

C̄(t−1)(l,i) + s3(i, xt), C)

where C(t−1)(l,i), C′
(t−1)(l,i)

, C̃(t−1)(l,i) and C̄(t−1)(l,i) are all con-
stants. This expression has been reduced through constant folding and com-
parisons between linear expressions. For example, C̃t−1(l, i)+s2(i, xt) <

Ĉ + s2(i, xt) if C̃t−1(l, i) < Ĉ, where Ĉ is a constant. Given 0 ≤ l ≤ i,
there are i+1 optimal connection paths between column xt−1 and (i, xt),
which go through (0, xt−1), · · · , (i, xt−1). The optimal path from (0, 0)
to (i, xt) is either one of these paths or the one that passes (i − 1, xt).
Therefore, we get the following expression for D(i, xt):

D(i, xt) = min(D(i − 1, xt) + s1(i, xt),

D(0, xt−1) + C(t−1)(0,i) + s2(i, xt),

D(0, xt−1) + C′
(t−1)(0,i) + s3(i, xt),

· · · · · ·
D(i, xt−1) + C(t−1)(i,i) + s2(i, xt),

D(i, xt−1) + C′
(t−1)(i,i) + s3(i, xt)

C̃t−1 + s2(i, xt),

C̄t−1 + s3(i, xt), C) (3)

If (n, m) is not in the last unknown column xt, we have

D(n, m) = min(D(0, xρm) + Cρm(0,n),

· · · · · · , D(n, xρm) + Cρm(n,n), Cm)

where Cm is a constant. To compute D(n, m), we need to find out
D(0, xρm), · · · , D(n, xρm) using Equation 3, which further requires com-
puting the values for column xρm−1, and so on, until column x1. The
symbolic expressions for these columns form a dynamic programming al-
gorithm as described by Equation 3.

From Equation 3, we know that computing D(i, xt) depends on com-
parisons of 2i + 5 expressions. Therefore, the complexity for computing
column xt is O(n2). Given total ρm such columns, the complexity of the
algorithm is O(ρmn2). Since all these expressions need to be delivered to
the DP, the complexities of the space for keeping them and the communica-
tion for transferring them are also O(ρmn2). �

