
Inducing Relatedness Graphs for Data Integration
Jeremy Engle#1, Ying Feng#2, Rob Goldstone#3

#Indiana University
Bloomington, Indiana, USA
1jtengle@indiana.edu

2yingfeng@indiana.edu
3rgoldsto@indiana.edu

Abstract— In this paper, we present the AbsMatcher system for
schema matching which uses a graph based approach.
AbsMatcher creates a graph of related attributes within a
schema, mines similarity between attributes in different schemas,
and then combines all information using the ABSURDIST graph
matching algorithm. The focus of this paper is on methods for
generating relationships which are semantic in nature, but only
require a simple data model. These relationships sources provide
a baseline to be used when no others are available. Simulations
demonstrate how the use of automatically mined graphs of
within-schema relationships, when combined with cross-schema
pair-wise similarity, can result in matching accuracy not
attainable by either source of information on its own.

I. INTRODUCTION
Data integration has application to a wide variety of fields

from e-commerce to bioinformatics. This paper explores how
the results of web queries and other mined information can be
used as a baseline in building relatedness graphs and using
them for graph-based schema matching. The AbsMatcher
framework uses a two stage process, by first mining different
forms of information and then applying the ABSURDIST
algorithm which determines match correspondences between
attributes in each system. The contribution of AbsMatcher is
in the modules used to mine different forms of relationships to
create graphs and the integration of those graphs with the
ABSURDIST algorithm. These modules present new sources
of information that allow a graph-based approach to be
applicable beyond the limits of relational databases or XML
as seen with previous graph based approaches.

 Problems within schema matching are often described as
addressing entity matching, attribute matching, or value
matching. This paper concentrates on the attribute matching
problem where the goal is to find correspondences between
attributes in a source and target schemas. We concentrate on
one-to-one matches as an initial effort, leaving complex n-to-
one [8] matches to future work.

The primary challenge in graph-based matching systems is
how to generate edges for a graph. Previous systems [2, 10,
15, 17] avoid this problem by only accepting data models that
have an intuitive translation to graph form. Two common
examples of this are creating a tree-like graph from XML data
and using the metadata of a relational database to create
graphs. When all the relationships generated for a graph a
specific to a single data model matching is limited to only data
sets that share the same data model. Additionally, in these
scenarios the generated relationships are often based on the

design of a data set. The usefulness of these relationships is
then dependent on consistency among all database designers,
which is unlikely. An example of this is a relationship for
attributes in XML that are nested together. AbsMatcher
instead attempts to build ubiquitous graphs by basing
relationships on semantics of the concepts that attributes
represent. In order to make this broadly applicable
AbsMatcher then assumes only a simple data model. This
also has the benefit of demonstrating a lower bound for when
previous systems are not applicable. Given this baseline,
AbsMatcher was designed with the flexibility to include more
advanced forms of information when present.

The ABSURDST algorithm combines within-schema
information, graphs, and cross-schema information, similarity
matrices, using an iteratively converging global optimization
algorithm. ABSURDIST [9, 11] was originally developed to
translate between conceptual systems in a psychologically
plausible manner. ABSURDIST represents each schema to be
matched by a graph with attributes as nodes and relationships
as edges between nodes. We refer to these graphs as internal
information, because a graph only contains information
relating attributes within the same schema. ABSURDIST
incorporates similarities between attributes in the two schemas
as a matrix of similarities, which we refer to as external
information. As an added layer of flexibility, ABSURDIST
has a weighting ratio to determine the balance of influence on
the outcome of internal and external information.

We use the terms AbsMatcher and ABSURDIST
throughout this work. AbsMatcher is the overall system
which formulates graphs after mining internal information and
aggregates mined sources of external similarity.
ABSURDIST is the algorithm which iteratively combines
internal and external information to determine a set of
correspondences.

II. ABSURDIST BACKGROUND
ABSURDIST was developed to solve the general problem

of translating between two conceptual systems. We adapt this
approach to data integration by treating attributes as concepts
to be matched. A complete discussion of ABSURDIST and
how information factors into the iterative process can be
found in [11]. Information in ABSURDIST is classified as
internal (within-schema) or external (cross-schema). External
information provides the ability to input cross-schema
similarity into the ABSURDIST algorithm. Different external
sources are aggregated into an NxM matrix of values between

0 and 1, where N and M are the sizes of the schemas to be
matched. The dividing line between internal and external is
that internal information is relationships between attributes in
the same schema, whereas external similarity is a comparison
between attributes in two separate schemas.

ABSURDIST iteratively updates correspondences using
internal and external information until reaching a stable point,
terminates, and selects the final matches. ABSURDIST as an
error minimization algorithm selects the set of matches that
result in the least total link error. This section discusses the
conceptual motivations of ABSURDIST and leaves specific
examples internal and external information for later sections.

A. Internal Information as Graphs
Information in ABSURDIST is classified as internal, when

it is derived from a single data set, and will therefore is a one-
time cost no matter how many other schemas it is matched
against. For each schema, ABSURDIST takes internal
information as input in the form of; information on
relationship types, node types, node information, and a graph
of relationships. Internal information factors into the R and I
terms of Equation 1. The minimal requirement for node
information is a unique identifier and a node type. If only one
type exists then the effects of node types become irrelevant.
Relationships in ABSURDIST represent a conceptual
association between attributes creating a generalized
interpretation of structure. The requirement for a relationship
type is a label and an indication of being either directed or
undirected. Relationships are instantiated as edges, which
collectively form a graph. Edges are binary, have a
relationship type, and are weighted zero to one. If the same
weight is used for every edge, it becomes irrelevant. When a
relationship type does not naturally have a weight, the same
weight is used in order to meet ABSURDIST requirements.
Specific types of internal information we automatically mine
for in Section 3.

B. Iterative Algorithm
ABSURDIST is an iterative algorithm which updates a

NxM matrix of correspondences where N and M refer to the
number of attributes in the source schema, A, and target
schema, B, respectively. Each cell in the correspondence
matrix, 𝐶𝐶𝑡𝑡�𝐴𝐴𝑞𝑞 ,𝐵𝐵𝑥𝑥�𝐶𝐶𝑡𝑡�𝐴𝐴𝑞𝑞 ,𝐵𝐵𝑥𝑥� represents how strong a match is
at iteration step t for attribute q in schema A and attribute x in
schema B. The algorithm terminates when the matrix has
converged or a maximum number of iterations is reached. For
each iteration, ABSURDIST updates each cell according to
the following equation:

𝑁𝑁�𝐴𝐴𝑞𝑞 ,𝐵𝐵𝑥𝑥� = 𝛼𝛼𝛼𝛼�𝐴𝐴𝑞𝑞 ,𝐵𝐵𝑥𝑥� + 𝛽𝛽𝛽𝛽�𝐴𝐴𝑞𝑞 ,𝐵𝐵𝑥𝑥� − 𝜒𝜒𝜒𝜒�𝐴𝐴𝑞𝑞 ,𝐵𝐵𝑥𝑥�

Equation 1 Correspondence Update Equation

Equation 1 shows how internal (R and I) and external (E)
information combine to update the correspondence from
attribute q in schema A to attribute x in schema B. The E term
represents similarity based on external information, the R term
represents similarity based on internal information, and the I
term uses internal information to inhibit incorrect

correspondences. α, β, and χ are weights that control the
influence of forms of information, where α and β are set as a
ratio to each other and χ is set independently of the others.
For example, when α is one and β is zero only external
information is used to find correspondences.

III. RELATED WORK
There has been extensive work on graph matching and

schema matching. A number of surveys have been done
which cover the different aspects of the schema matching
problem [1-3]. One of the established approaches to schema
matching [4] is to use candidate matchers to generate
candidate matches which are aggregated into a final set.
Graph-based systems, including AbsMatcher, have multiple
modules to generate edges in the graph, multiple modules to
generate the equivalent of external information, and then use a
graph matching algorithm to generate correspondences based
on graphs. It is possible that correspondences generated using
a graph matching algorithm could be used as a candidate
matcher in a system. The Fuzzy Constraint Matching [5],
Cupid [6], and Similarity Flooding [7] systems all use graph
matching to accomplish schema matching. COMA++ [8], is a
generalized framework for schema matching which was used
in the Similarity Flooding system to combine the results from
graph matching with non-graph-oriented candidate matchers.
The difference between AbsMatcher and these previous
systems is the generality of AbsMatcher and generating
graphs based on semantics instead of data model metadata.

Previous graph-based schema matchers construct graphs
based on the metadata for the data model. These systems have
modules specifically built for translating different data models
-- such as relational databases, XML, ontologies, or
conceptual hierarchies -- into a graph form. This approach
makes the graphs generated dependent on the thoroughness of
the data set creator, and completely different graphs will be
generated even when the same data set is stored in different
data models. The advantage of these systems is that they
leverage the effort of data set creators. For example
considerable effort is generally put into the design phase of a
relational database. Examples of using metadata would be
creating a relationship between parent and child XML
attributes or the fact that an attribute is a primary key in a
relational database. The disadvantage of basing graphs on
metadata is that derived relationships often have more to do
with how data is stored and less about semantic relationships.
The goal of the information sources we present in this paper is
that they can be used regardless the data model and still
generate semantic relationships.

The Semantic Matching [9] system provides the closest
comparison to AbsMatcher. It creates a graph based on
metadata and a limited number of semantic relationships.
Semantic Matching uses electronic thesauri in order to create
overlap, mismatch, and general/specific relationships. The
one issue with electronic thesauri is that they only work with
words in their index and are unable to handle abbreviations or
phrases which are often used to name attributes. AbsMatcher
shares the same motivation as Semantic Matching, but uses

the web to create semantic relatedness relationships and mines
the data sets for statistical relatedness relationships.
Additionally, ABSURDIST was designed with a general idea
of relationships, which makes adding new forms of internal
relationships a simple process.

IV. MINING ABSURDIST GRAPHS
The focus of this paper is on sources of internal information

which are new to graph-based schema matching. Some of
these sources use only the metadata while others mine the data
itself. An important feature of these information sources is
that they only rely on ubiquitous elements of data models, e.g.
named attributes, and yet are still able to create a graph of
semantic relationships. These relationships provide a baseline
for a graph-based approach to schema matching in the absence
of rich metadata and/or user created structure that previous
systems require. As we describe forms of internal information
we will also describe the requirements for their use.

Mining an ABSURDIST graph is a two-stage process. The
first is mining edges of the desired relationship type and the
second is filtering out noisy edges. For brevity’s sake we omit
a discussion of the filtering process. We have two categories
of relationships; ones which use the entropy of the data and
the semantic relatedness of attribute names using web query
counts. For data sets in XML format we tested a form of
internal information which created relationships between
sibling attributes, but omit it for brevity because it did not
have a significant impact on performance.

C. Entropy Relationships
Entropy-based relationships use an information theoretic

approach to look at the information content of attributes based
on their data. The goal is to look for patterns which defy
statistical trends and therefore are more likely to represent
user intended relationships. We use the Information
Dependency (InD) measure [10], which is based on Shannon’s
Entropy, to look at the information content of attributes. We
used three different entropy relationship types. Entropy
relationships require at least a sample of the data.

1) Attribute Entropy Relationships
Attribute entropy relationships measure the degree to which

attributes resemble keys, which have a different value in each
record in the data set for the attribute, or constants, which
have the same value in each record in the data set for the
attribute. An attribute being close to a key or constant is a
unique statistical property which is a result of how data is
created. Because of this attributes in other data sets are likely
to share the same statistical property. Some data, e.g. ISBN,
inherently possesses key prosperities, so when keys or
constants occur they are strong indicators of a likely match.
In Table 1, PersonName is an example of a key and Gender is
an example of an attribute that is almost a constant.

2) Data Set Key Relationships
Data set keys are sets of attributes that together have a

unique set of values for the data set and therefore form a key.
Data set key relationships are created between pairs of

attributes that together are close to forming, or do form, a data
set key, but neither attribute is a key on its own. An example
from Table 1 is that by combining Address and Gender a
unique set of values exists for every row. The above example
would result in an edge PairKey(Address, Gender) to be
created in the graph. A data set key relationship creates
undirected edges between attributes and uses the entropy
value as the weight.

TABLE I A SAMPLE DATA SET OF PEOPLE

PersonName Address Gender
Santa Claus 100 North Pole Male
Mrs. Claus 100 North Pole Female
Jeremy Engle 215 Lindley Hall Male
Rob Goldstone 120 Psychology Male

3) Dependency Relationships
The last entropy relationship type uses Approximate

Functional Dependencies (AFDs). AFDs are probabilistic
rules, 𝑋𝑋 → 𝑌𝑌, which measure the ability of values for a left
hand side (LHS) attribute set to determine values of the right
hand side (RHS) attribute set. The closer an AFD’s measured
value is to 1 the better the LHS is at predicting the RHS. We
use AFDs which have a single attribute LHS and a single
attribute RHS in creating dependency relationships. The
mining of AFDs has been studied in [11, 12], though by only
using single attributes on each side the search space is reduced
from 2N+M to NxM. Though Functional Dependencies (FDs),
which AFDs extend, have been used in schema matching, this
is to our knowledge the first use of AFDs.

D. Semantic Relatedness Relationships
The premise behind using semantic relatedness is to create

a relationship between attributes that are thematically related.
A trivial example of this would be attributes for the first and
last name of a person. If the respective attribute labels are
“first” and “last” then a graph edge is created between these
attributes based on the thematic association of these labels.

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊(𝑃𝑃,𝑄𝑄)

= �
0, 𝐻𝐻(𝑃𝑃 ∩ 𝑄𝑄) < 𝑊𝑊

𝐻𝐻(𝑃𝑃 ∩ 𝑄𝑄)
𝐻𝐻(𝑃𝑃) + 𝐻𝐻(𝑄𝑄) − 𝐻𝐻(𝑃𝑃 ∩ 𝑄𝑄) , 𝐻𝐻(𝑃𝑃 ∩ 𝑄𝑄) ≥ 𝑊𝑊

�

Equation 2: WebJaccard using Yahoo! Query Hits

One of the common tools for mining semantic relatedness
is using WordNet [13]. Semantic relationships are found for
two words according to their common membership in sets of
synonyms, or synsets. Though WordNet has a large
dictionary, the tools that rely on it fail when one of the two
words is not in the dictionary. There are two common
scenarios which increase the likelihood of WordNet failing.
The first is that data sets commonly have domain specific
terms that are less likely to be in a general dictionary like
WordNet. The second problem is that data sets commonly
have attribute names that are multiple words and/or use
abbreviations. The tools making use of WordNet are not
capable of handling either of these cases. In order to

overcome these issues, we use tools that query the World
Wide Web instead of WordNet.

We use the WWW as a source of information and adapt
existing information retrieval measures to use the number of
results from queries to compute similarity. Our semantic
relatedness relationships are based on work by Bollegala et al.
which queried Google and used the number of query results in
computing existing similarity measures [14], however they
only tested its use on single words. AbsMatcher uses query
counts (H) with the WebJaccard measure as expressed in
Equation 2. Before querying attribute names, we clean
attribute names by tokenizing them on occurrences of
underscores and capital letters. Though this is not foolproof it
does provide a best effort for creating multi-term queries.
When available we also include the data set name as a query
term to provide sense disambiguation. We then use Yahoo! as
a source for querying.

V. MINING THE EXTERNAL SIMILARITY MATRIX
We use existing sources of external information, and

therefore only discuss them briefly. External information
directly compares attributes in the source and target schemas
to look for similar attributes. While mining external similarity
both attribute names and values from the data are used. We
tested basic sources of external information to investigate the
effects of combining internal and external information. Two
sources of external similarity were prototyped and tested.

The first source of external similarity is string edit distance
[15], which is a lexical comparison of attribute names. String
edit distance represents a method for finding matches that are
“low hanging fruit.” We use the jSimlib 1

The second source of external similarity is cosine similarity,
which is commonly used to compare the similarity of two free
text documents. The similarity of the two documents is
computed as the cosine value between the term frequency
vectors for each document. For attribute-to-attribute schema
matching, when the attributes contain text we treat them as
documents and create term frequency vectors. The Lucene

 library that
normalizes string edit distance by the sum of the length of the
two strings.

2

VI. DATA SETS

framework was used to calculate the cosine similarity.

We tested three groups of data sets that vary in domain and
size which come from the Illinois Semantic Integration
Archive (ISIA) [16]. The Courses data sets have listings of
classes from four different universities, data sets sizes range
from twelve to sixteen attributes. The second group of data
sets is the Real Estate I (REI) data sets, which includes the
homeseekers, nky, windermere, and yahoo data sets. Three of
the data sets have sizes in the mid-thirties and the final one is
in the sixties. The third group of data sets is the Real Estate
Core (REC) data sets. REC data sets are the same as the REI
data sets, but only include attributes that have a match in one

1 https://jsimlib.dev.java.net/
2 http://lucene.apache.org/java/docs/index.html

of the other data sets. This removal of attributes reduced the
size of the data sets to the low twenties, except one having
twenty-eight attributes. The REC group is used to test the
effects on matching performance when attributes with no
matches are removed.

VII. EXPERIMENTATION
The goals in evaluating AbsMatcher are to look at the

performance of internal information by itself and whether
there is still a benefit when combined with external
information. Semantic and Entropy internal relationships are
meant to provide a baseline ability for schema matching so
performance is judged first by whether consistent evidence of
an ability to find matches, and second by looking for evidence
that combining internal and external information is better than
only external information. Finding evidence of these two
points would indicate matches being found which internal
information can uniquely contribute to finding. Performance
is measured using recall. Many schema matching systems
provide statistical matches, as opposed to absolute matching,
so we present recall for correct matches made and for the
correct match being one of the top 3 best matches. This more
liberal scoring criterion provides information on whether
AbsMatcher has partial information that could be leveraged by
future improvements to the algorithm or information sources.
Precision is not included because currently AbsMatcher
returns a match for each attribute in the smaller of the two
schemas. This means that the number of matches returned for
a pair of schemas will remain constant no matter what other
parameters change. This point is discussed further in future
work.

One of the challenges that AbsMatcher faces is tuning
various parameters. The problem of how to find the best
weightings among various matchers is a problem common in
schema matching systems. There has been work to automate
this tuning process [17]. As AbsMatcher is an initial effort we
perform manual tuning.

VIII. SOURCES OF INTERNAL INFORMATION
For testing purposes, the sources of internal relationships

described in Section 3 are used in three combinations. The
Entropy combination includes attribute entropy, data set key,
and dependency relationships. The Semantic combination
consists of semantic relatedness relationships based on Yahoo!
results. Finally, the All combination includes both Entropy
and Semantic relationships.

E. Results
We first look at the extent to which schemas can be

matched using only the mined graphs for the two data sets.
When using only this limited source of information a high
level of performance cannot be expected. However, this
limitation is useful in making an initial judgment of whether
mined graphs contain useful information. For each group of
data sets we select the best performing parameters and present
in. Fig. 1 results for all three combinations of internal
relationships and all three groups of data sets.

Fig. 1 Data sets by types of internal relationships

The first result to examine is AbsMatcher’s ability to find
correct matches. Though the results in Fig. 1 are relatively
low in the context of overall performance of schema matching
systems, the more appropriate context is as a source of
matches which would be used in a broader system. In this
context Semantic and Entropy relationships do show
consistent ability to find at least some matches. The
performance of the top 3 correspondences improves over just
correct matches indicating that AbsMatcher can provide
supporting evidence which would affirm or discredit
correspondences from other candidate matchers. As seen in
Fig. 1 the top 3 correspondences can provide useful results on
a third to half of all matches. The top 3 matches can be useful
when considering that the weights of correspondences in the
top 3 can often be very close.

The second result to examine is what sources or
combinations of sources of internal relationships are the most
effective. Neither the Entropy or Semantic combinations were
consistently the best between the different data set groups.
Though neither was consistently the best, the positive result is
that when combined in All, performance improved or matched
the performance of the best performing source of internal
relationships. The fact that adding sources of internal
relationships does not degrade performance strengthens the
potential that when other existing forms of internal
relationships are added, performance could be improved.

IX. EXTERNAL AND INTERNAL COMBINED
For some matches the information which best indicates the

correct match is derived by comparing an attribute from each
data set. In ABSURDIST this means the use of external
information that is combined with internal information using
Equation 1. In Equation 1 there are two weighting
coefficients, α and β, which determine the balance between
external and internal information. The α:β ratio represents the
comparative weights of external:internal information. We
tested AbsMatcher with different ratios, where each
represented a different balance between external and internal
information. Fig. 2 presents results for a representative three
of those ratios. The 0:1 data point represents using only
internal information, which corresponds with the results in Fig.
1. The 1:0 data point represents only using external

information. The 3:1 data point tested the effort to combine
the use of internal and external information. The goal in this
evaluation is to determine whether combining internal and
external information has a benefit over just using external
similarity.

Fig. 2 Data sets by Ext:Int Ratio

F. Results
Fig. 2 provides evidence that combining internal and

external information can for some data sets provide better
results than either one in isolation. Though the improvement
for Courses and REC data sets is small the fact that it occurs
for both supports the claim that internal structure can improve
matching performance. It must be remembered that the results
for Courses and REC represent the average performance
across twelve different pairs of data sets matched. The ability
of internal structure to find correct matches and the additional
beneficial effect that it can have when combined with external
similarity indicates that internal structure is to some extent
finding both unique and useful information for schema
matching.

The REI data sets do not benefit from internal information.
This could in part be due to the fact that REI alignments leave
more attributes unmatched. The REC data sets are versions of
the REI data sets where attributes with no matches removed.
They average 15.5 correct matches between a pair of data sets,
meaning that on average half of the attributes in a data set for
REI are not being matched, yet information is still mined for
them. Courses and REC have a different scale yet both show
similar trends in the ability to find correct matches. The only
difference between REC and REI data sets is the existence of
unmatched attributes, so the difference in performance can be
unambiguously attributed to this. This indicates that
information which indicates invalid matches could be an
important feature to add to AbsMatcher.

X. CONCLUSION
The goal in developing AbsMatcher was to create a schema

matching system that used a graph based approach, but was
not reliant on a specific data model as a source of information.
To this end, we limited AbsMatcher to pervasive information
for creating graphs in order to create a baseline. The Entropy
and Semantic forms of relationships also are based on finding
relationships between semantic concepts and not how data is

being stored. We then tested these graphs using the
ABSURDIST graph matching system. ABSURDIST is
ideally suited because of its ability to accept graphs with a
wide variety of forms (weighted, unweighted, directed,
undirected, labelled, and unlabeled) and ABSURDIST was
designed specifically with the idea of combining internal and
external information together.

The goals in testing AbsMatcher were to look at whether
Entropy and Semantic internal structure are useful for schema
matching on their own and whether they have benefits when
combined with external similarity. Experiments demonstrated
that to varying extents the tested forms of internal structure
are able to accomplish both of the goals. The results
presented in this paper where aggregated over multiple
individual experiments. The additive benefit of our sources of
internal structure is important because it argues that internal
structure holds unique information for finding
correspondences.

These results were based on aggregating results from a
number of matching pairs. It is important to note that there
were outliers on both the positive and negative side. This is a
common problem in schema matching, where sources of
information perform well in certain scenarios and poorly in
others. It is this point which motivated the approach of
aggregating many disparate measures of similarity. This leads
to the idea that by adding new information sources into
AbsMatcher we can improve even beyond the baselines
presented in this work.

XI. FUTURE WORK
AbsMatcher has provided an initial effort with a baseline of

results. Going forward there are advances that could be made
for all three aspects of AbsMatcher; internal information,
external information, and the ABSURDIST algorithm. One of
the techniques which could be added for both internal and
external information is negative information. We saw when
comparing REC and REI that there are situations when not
making a match can be just as important as making a match.

There are a number of potential ways that internal structure
could be improved. The first and most interesting would be
using the techniques in [6, 7] that look at relational metadata
or tree representations and combine them with Entropy and
Semantic relationships. This would also provide the potential
to expand AbsMatcher to include entity-to-entity matching
along with the current attribute-to-attribute matching.

As with other systems similar to AbsMatcher, the ability to
automatically tune the various parameters will remain a
direction of future work.

REFERENCES
[1] A. Halevy, A. Rajaraman, and J. Ordille, "Data

integration: the teenage years," in VLDB, 2006, p. 06.
[2] P. Shvaiko and J. Euzenat, "A Survey of Schema-

Based Matching Approaches " Journal on Data
Semantics IV, vol. 3730, pp. 146-171, 2005.

[3] E. Rahm and P. A. Bernstein, "A survey of
approaches to automatic schema matching," The
VLDB Journal, vol. 10, pp. 334-350, 2001.

[4] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P.
Domingos, "iMAP: discovering complex semantic
matches between database schemas," in Proceedings
of the 2004 ACM SIGMOD international conference
on Management of data Paris, France: ACM, 2004.

[5] A. Algergawy, E. Schallehn, and G. Saake, "Fuzzy
Constraint-based Schema Matching Formulation," in
1st Workshop on Advances in Accessing Deep Web
(ADW 2008), 2008, pp. 141--152.

[6] J. Madhavan, P. A. Bernstein, and E. Rahm, "Generic
Schema Matching with Cupid," in VLDB, 2001.

[7] S. Melnik, H. Garcia-Molina, and E. Rahm,
"Similarity Flooding: A Versatile Graph Matching
Algorithm and its Application to Schema Matching,"
in ICDE, 2002.

[8] D. Aumueller, H.-H. Do, S. Massmann, and E. Rahm,
"Schema and ontology matching with COMA++," in
Proceedings of the ACM SIGMOD international
conference on Management of data Baltimore,
Maryland: ACM, 2005.

[9] F. Giunchiglia and P. Shvaiko, "Semantic Matching,"
Knowl. Eng. Rev., vol. 18, pp. 265-280, 2003.

[10] M. M. Dalkilic and E. L. Roberston, "Information
dependencies," in Proceedings of the 19th ACM
SIGMOD-SIGACT-SIGART symposium on
Principles of database systems Dallas, Texas, United
States: ACM, 2000.

[11] J. T. Engle and E. L. Robertson, "HLS: Tunable
Mining of Approximate Functional Dependencies,"
in British National Conference On Databases
(BNCOD) Cardiff, Wales, 2008, pp. 28-39.

[12] Y. Huhtala, J. Karkkainen, P. Porkka, and H.
Toivonen, "Tane: An Efficient Algorithm for
Discovering Functional and Approximate
Dependencies," The Computer Journal, vol. 42, pp.
100-111, February 1, 1999 1999.

[13] C. Fellbaum, Wordnet: An Electronic Lexical
Database: Bradford Books, 1998.

[14] D. Bollegala, Y. Matsuo, and M. Ishizuka,
"Measuring semantic similarity between words using
web search engines," in Proceedings of the 16th
international conference on World Wide Web Banff,
Alberta, Canada: ACM, 2007.

[15] G. Navarro, "A guided tour to approximate string
matching," ACM Comput. Surv., vol. 33, pp. 31-88,
2001.

[16] A. Doan, "Illinois Semantic Integration
Archive, http://pages.cs.wisc.edu/~anhai/wisc-si-
archive/."

[17] Y. Lee, M. Sayyadian, A. Doan, and A. S. Rosenthal,
"eTuner: tuning schema matching software using
synthetic scenarios," The VLDB Journal, vol. 16, pp.
97-122, 2007.

http://pages.cs.wisc.edu/~anhai/wisc-si-archive/�
http://pages.cs.wisc.edu/~anhai/wisc-si-archive/�

