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Abstract— In this paper, we present the AbsMatcher system for 
schema matching which uses a graph based approach.  
AbsMatcher creates a graph of related attributes within a 
schema, mines similarity between attributes in different schemas, 
and then combines all information using the ABSURDIST graph 
matching algorithm.  The focus of this paper is on methods for 
generating relationships which are semantic in nature, but only 
require a simple data model.  These relationships sources provide 
a baseline to be used when no others are available.  Simulations 
demonstrate how the use of automatically mined graphs of 
within-schema relationships, when combined with cross-schema 
pair-wise similarity, can result in matching accuracy not 
attainable by either source of information on its own. 

I. INTRODUCTION 
Data integration has application to a wide variety of fields 

from e-commerce to bioinformatics.  This paper explores how 
the results of web queries and other mined information can be 
used as a baseline in building relatedness graphs and using 
them for graph-based schema matching.  The AbsMatcher 
framework uses a two stage process, by first mining different 
forms of information and then applying the ABSURDIST 
algorithm which determines match correspondences between 
attributes in each system.  The contribution of AbsMatcher is 
in the modules used to mine different forms of relationships to 
create graphs and the integration of those graphs with the 
ABSURDIST algorithm.  These modules present new sources 
of information that allow a graph-based approach to be 
applicable beyond the limits of relational databases or XML 
as seen with previous graph based approaches. 

 Problems within schema matching are often described as 
addressing entity matching, attribute matching, or value 
matching.  This paper concentrates on the attribute matching 
problem where the goal is to find correspondences between 
attributes in a source and target schemas.  We concentrate on 
one-to-one matches as an initial effort, leaving complex n-to-
one [8] matches to future work.  

The primary challenge in graph-based matching systems is 
how to generate edges for a graph.  Previous systems [2, 10, 
15, 17] avoid this problem by only accepting data models that 
have an intuitive translation to graph form.  Two common 
examples of this are creating a tree-like graph from XML data 
and using the metadata of a relational database to create 
graphs.  When all the relationships generated for a graph a 
specific to a single data model matching is limited to only data 
sets that share the same data model.  Additionally, in these 
scenarios the generated relationships are often based on the 

design of a data set.  The usefulness of these relationships is 
then dependent on consistency among all database designers, 
which is unlikely.  An example of this is a relationship for 
attributes in XML that are nested together.  AbsMatcher 
instead attempts to build ubiquitous graphs by basing 
relationships on semantics of the concepts that attributes 
represent.  In order to make this broadly applicable 
AbsMatcher then assumes only a simple data model.  This 
also has the benefit of demonstrating a lower bound for when 
previous systems are not applicable.  Given this baseline, 
AbsMatcher was designed with the flexibility to include more 
advanced forms of information when present. 

The ABSURDST algorithm combines within-schema 
information, graphs, and cross-schema information, similarity 
matrices, using an iteratively converging global optimization 
algorithm.  ABSURDIST [9, 11] was originally developed to 
translate between conceptual systems in a psychologically 
plausible manner.  ABSURDIST represents each schema to be 
matched by a graph with attributes as nodes and relationships 
as edges between nodes.  We refer to these graphs as internal 
information, because a graph only contains information 
relating attributes within the same schema.  ABSURDIST 
incorporates similarities between attributes in the two schemas 
as a matrix of similarities, which we refer to as external 
information.    As an added layer of flexibility, ABSURDIST 
has a weighting ratio to determine the balance of influence on 
the outcome of internal and external information.   

We use the terms AbsMatcher and ABSURDIST 
throughout this work.  AbsMatcher is the overall system 
which formulates graphs after mining internal information and 
aggregates mined sources of external similarity.  
ABSURDIST is the algorithm which iteratively combines 
internal and external information to determine a set of 
correspondences. 

II. ABSURDIST BACKGROUND 
ABSURDIST was developed to solve the general problem 

of translating between two conceptual systems.  We adapt this 
approach to data integration by treating attributes as concepts 
to be matched.  A complete discussion of ABSURDIST and 
how information factors into the iterative process can be 
found in [11].  Information in ABSURDIST is classified as 
internal (within-schema) or external (cross-schema).  External 
information provides the ability to input cross-schema 
similarity into the ABSURDIST algorithm.  Different external 
sources are aggregated into an NxM matrix of values between 



0 and 1, where N and M are the sizes of the schemas to be 
matched.  The dividing line between internal and external is 
that internal information is relationships between attributes in 
the same schema, whereas external similarity is a comparison 
between attributes in two separate schemas.   

ABSURDIST iteratively updates correspondences using 
internal and external information until reaching a stable point, 
terminates, and selects the final matches.  ABSURDIST as an 
error minimization algorithm selects the set of matches that 
result in the least total link error.  This section discusses the 
conceptual motivations of ABSURDIST and leaves specific 
examples internal and external information for later sections. 

A. Internal Information as Graphs 
Information in ABSURDIST is classified as internal, when 

it is derived from a single data set, and will therefore is a one-
time cost no matter how many other schemas it is matched 
against.  For each schema, ABSURDIST takes internal 
information as input in the form of; information on 
relationship types, node types, node information, and a graph 
of relationships.  Internal information factors into the R and I 
terms of Equation 1.  The minimal requirement for node 
information is a unique identifier and a node type.  If only one 
type exists then the effects of node types become irrelevant.  
Relationships in ABSURDIST represent a conceptual 
association between attributes creating a generalized 
interpretation of structure.  The requirement for a relationship 
type is a label and an indication of being either directed or 
undirected.  Relationships are instantiated as edges, which 
collectively form a graph.  Edges are binary, have a 
relationship type, and are weighted zero to one.  If the same 
weight is used for every edge, it becomes irrelevant.  When a 
relationship type does not naturally have a weight, the same 
weight is used in order to meet ABSURDIST requirements.  
Specific types of internal information we automatically mine 
for in Section 3. 

B. Iterative Algorithm 
ABSURDIST is an iterative algorithm which updates a 

NxM matrix of correspondences where N and M refer to the 
number of attributes in the source schema, A, and target 
schema, B, respectively.  Each cell in the correspondence 
matrix, 𝐶𝐶𝑡𝑡�𝐴𝐴𝑞𝑞 ,𝐵𝐵𝑥𝑥�𝐶𝐶𝑡𝑡�𝐴𝐴𝑞𝑞 ,𝐵𝐵𝑥𝑥� represents how strong a match is 
at iteration step t for attribute q in schema A and attribute x in 
schema B.  The algorithm terminates when the matrix has 
converged or a maximum number of iterations is reached.  For 
each iteration, ABSURDIST updates each cell according to 
the following equation: 

𝑁𝑁�𝐴𝐴𝑞𝑞 ,𝐵𝐵𝑥𝑥� =  𝛼𝛼𝛼𝛼�𝐴𝐴𝑞𝑞 ,𝐵𝐵𝑥𝑥� +  𝛽𝛽𝛽𝛽�𝐴𝐴𝑞𝑞 ,𝐵𝐵𝑥𝑥� −  𝜒𝜒𝜒𝜒�𝐴𝐴𝑞𝑞 ,𝐵𝐵𝑥𝑥� 

Equation 1  Correspondence Update Equation 

Equation 1 shows how internal (R and I) and external (E) 
information combine to update the correspondence from 
attribute q in schema A to attribute x in schema B.  The E term 
represents similarity based on external information, the R term 
represents similarity based on internal information, and the I 
term uses internal information to inhibit incorrect 

correspondences.  α, β, and χ are weights that control the 
influence of forms of information, where α and β are set as a 
ratio to each other and χ is set independently of the others.  
For example, when α is one and β is zero only external 
information is used to find correspondences. 

III. RELATED WORK 
There has been extensive work on graph matching and 

schema matching.  A number of surveys have been done 
which cover the different aspects of the schema matching 
problem [1-3].  One of the established approaches to schema 
matching [4] is to use candidate matchers to generate 
candidate matches which are aggregated into a final set.  
Graph-based systems, including AbsMatcher, have multiple 
modules to generate edges in the graph, multiple modules to 
generate the equivalent of external information, and then use a 
graph matching algorithm to generate correspondences based 
on graphs.  It is possible that correspondences generated using 
a graph matching algorithm could be used as a candidate 
matcher in a system.  The Fuzzy Constraint Matching [5], 
Cupid [6], and Similarity Flooding [7] systems all use graph 
matching to accomplish schema matching.  COMA++ [8], is a 
generalized framework for schema matching which was used 
in the Similarity Flooding system to combine the results from 
graph matching with non-graph-oriented candidate matchers.  
The difference between AbsMatcher and these previous 
systems is the generality of AbsMatcher and generating 
graphs based on semantics instead of data model metadata.   

Previous graph-based schema matchers construct graphs 
based on the metadata for the data model.  These systems have 
modules specifically built for translating different data models 
-- such as relational databases, XML, ontologies, or 
conceptual hierarchies -- into a graph form.  This approach 
makes the graphs generated dependent on the thoroughness of 
the data set creator, and completely different graphs will be 
generated even when the same data set is stored in different 
data models.  The advantage of these systems is that they 
leverage the effort of data set creators.  For example 
considerable effort is generally put into the design phase of a 
relational database.  Examples of using metadata would be 
creating a relationship between parent and child XML 
attributes or the fact that an attribute is a primary key in a 
relational database.  The disadvantage of basing graphs on 
metadata is that derived relationships often have more to do 
with how data is stored and less about semantic relationships.  
The goal of the information sources we present in this paper is 
that they can be used regardless the data model and still 
generate semantic relationships. 

The Semantic Matching [9] system provides the closest 
comparison to AbsMatcher.  It creates a graph based on 
metadata and a limited number of semantic relationships.  
Semantic Matching uses electronic thesauri in order to create 
overlap, mismatch, and general/specific relationships.  The 
one issue with electronic thesauri is that they only work with 
words in their index and are unable to handle abbreviations or 
phrases which are often used to name attributes.  AbsMatcher 
shares the same motivation as Semantic Matching, but uses 



the web to create semantic relatedness relationships and mines 
the data sets for statistical relatedness relationships.   
Additionally, ABSURDIST was designed with a general idea 
of relationships, which makes adding new forms of internal 
relationships a simple process. 

IV. MINING ABSURDIST GRAPHS 
The focus of this paper is on sources of internal information 

which are new to graph-based schema matching.  Some of 
these sources use only the metadata while others mine the data 
itself.  An important feature of these information sources is 
that they only rely on ubiquitous elements of data models, e.g. 
named attributes, and yet are still able to create a graph of 
semantic relationships.  These relationships provide a baseline 
for a graph-based approach to schema matching in the absence 
of rich metadata and/or user created structure that previous 
systems require.  As we describe forms of internal information 
we will also describe the requirements for their use. 

Mining an ABSURDIST graph is a two-stage process.  The 
first is mining edges of the desired relationship type and the 
second is filtering out noisy edges.  For brevity’s sake we omit 
a discussion of the filtering process.  We have two categories 
of relationships; ones which use the entropy of the data and 
the semantic relatedness of attribute names using web query 
counts.  For data sets in XML format we tested a form of 
internal information which created relationships between 
sibling attributes, but omit it for brevity because it did not 
have a significant impact on performance. 

C. Entropy Relationships 
Entropy-based relationships use an information theoretic 

approach to look at the information content of attributes based 
on their data.  The goal is to look for patterns which defy 
statistical trends and therefore are more likely to represent 
user intended relationships.  We use the Information 
Dependency (InD) measure [10], which is based on Shannon’s 
Entropy, to look at the information content of attributes.  We 
used three different entropy relationship types.  Entropy 
relationships require at least a sample of the data. 

1)  Attribute Entropy Relationships 
Attribute entropy relationships measure the degree to which 

attributes resemble keys, which have a different value in each 
record in the data set for the attribute, or constants, which 
have the same value in each record in the data set for the 
attribute.  An attribute being close to a key or constant is a 
unique statistical property which is a result of how data is 
created.  Because of this attributes in other data sets are likely 
to share the same statistical property.  Some data, e.g. ISBN, 
inherently possesses key prosperities, so when keys or 
constants occur they are strong indicators of a likely match.  
In Table 1, PersonName is an example of a key and Gender is 
an example of an attribute that is almost a constant. 

2)  Data Set Key Relationships 
Data set keys are sets of attributes that together have a 

unique set of values for the data set and therefore form a key.  
Data set key relationships are created between pairs of 

attributes that together are close to forming, or do form, a data 
set key, but neither attribute is a key on its own.  An example 
from Table 1 is that by combining Address and Gender a 
unique set of values exists for every row.  The above example 
would result in an edge PairKey(Address, Gender) to be 
created in the graph.  A data set key relationship creates 
undirected edges between attributes and uses the entropy 
value as the weight. 

TABLE I A SAMPLE DATA SET OF PEOPLE 

PersonName Address Gender 
Santa Claus 100 North Pole Male 
Mrs. Claus 100 North Pole Female 
Jeremy Engle 215 Lindley Hall Male 
Rob Goldstone 120 Psychology Male 

3)  Dependency Relationships 
The last entropy relationship type uses Approximate 

Functional Dependencies (AFDs).  AFDs are probabilistic 
rules, 𝑋𝑋 → 𝑌𝑌, which measure the ability of values for a left 
hand side (LHS) attribute set to determine values of the right 
hand side (RHS) attribute set. The closer an AFD’s measured 
value is to 1 the better the LHS is at predicting the RHS.  We 
use AFDs which have a single attribute LHS and a single 
attribute RHS in creating dependency relationships.  The 
mining of AFDs has been studied in [11, 12], though by only 
using single attributes on each side the search space is reduced 
from 2N+M to NxM.  Though Functional Dependencies (FDs), 
which AFDs extend, have been used in schema matching, this 
is to our knowledge the first use of AFDs. 

D. Semantic Relatedness Relationships 
The premise behind using semantic relatedness is to create 

a relationship between attributes that are thematically related.  
A trivial example of this would be attributes for the first and 
last name of a person.  If the respective attribute labels are 
“first” and “last” then a graph edge is created between these 
attributes based on the thematic association of these labels. 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊(𝑃𝑃,𝑄𝑄)

= �
0, 𝐻𝐻(𝑃𝑃 ∩ 𝑄𝑄) < 𝑊𝑊

𝐻𝐻(𝑃𝑃 ∩ 𝑄𝑄)
𝐻𝐻(𝑃𝑃) +  𝐻𝐻(𝑄𝑄) −  𝐻𝐻(𝑃𝑃 ∩ 𝑄𝑄) , 𝐻𝐻(𝑃𝑃 ∩ 𝑄𝑄) ≥ 𝑊𝑊

� 

Equation 2: WebJaccard using Yahoo! Query Hits 

One of the common tools for mining semantic relatedness 
is using WordNet [13].  Semantic relationships are found for 
two words according to their common membership in sets of 
synonyms, or synsets.  Though WordNet has a large 
dictionary, the tools that rely on it fail when one of the two 
words is not in the dictionary.  There are two common 
scenarios which increase the likelihood of WordNet failing.  
The first is that data sets commonly have domain specific 
terms that are less likely to be in a general dictionary like 
WordNet.  The second problem is that data sets commonly 
have attribute names that are multiple words and/or use 
abbreviations.  The tools making use of WordNet are not 
capable of handling either of these cases.  In order to 



overcome these issues, we use tools that query the World 
Wide Web instead of WordNet. 

We use the WWW as a source of information and adapt 
existing information retrieval measures to use the number of 
results from queries to compute similarity.  Our semantic 
relatedness relationships are based on work by Bollegala et al. 
which queried Google and used the number of query results in 
computing existing similarity measures [14], however they 
only tested its use on single words.  AbsMatcher uses query 
counts (H) with the WebJaccard measure as expressed in 
Equation 2.  Before querying attribute names, we clean 
attribute names by tokenizing them on occurrences of 
underscores and capital letters.  Though this is not foolproof it 
does provide a best effort for creating multi-term queries.  
When available we also include the data set name as a query 
term to provide sense disambiguation.  We then use Yahoo! as 
a source for querying. 

V. MINING THE EXTERNAL SIMILARITY MATRIX 
We use existing sources of external information, and 

therefore only discuss them briefly.  External information 
directly compares attributes in the source and target schemas 
to look for similar attributes.  While mining external similarity 
both attribute names and values from the data are used.  We 
tested basic sources of external information to investigate the 
effects of combining internal and external information.  Two 
sources of external similarity were prototyped and tested. 

The first source of external similarity is string edit distance 
[15], which is a lexical comparison of attribute names.  String 
edit distance represents a method for finding matches that are 
“low hanging fruit.”  We use the jSimlib 1

The second source of external similarity is cosine similarity, 
which is commonly used to compare the similarity of two free 
text documents.  The similarity of the two documents is 
computed as the cosine value between the term frequency 
vectors for each document.  For attribute-to-attribute schema 
matching, when the attributes contain text we treat them as 
documents and create term frequency vectors.  The Lucene

 library that 
normalizes string edit distance by the sum of the length of the 
two strings. 

2

VI. DATA SETS 

 
framework was used to calculate the cosine similarity. 

We tested three groups of data sets that vary in domain and 
size which come from the Illinois Semantic Integration 
Archive (ISIA) [16].  The Courses data sets have listings of 
classes from four different universities, data sets sizes range 
from twelve to sixteen attributes.  The second group of data 
sets is the Real Estate I (REI) data sets, which includes the 
homeseekers, nky, windermere, and yahoo data sets.  Three of 
the data sets have sizes in the mid-thirties and the final one is 
in the sixties.  The third group of data sets is the Real Estate 
Core (REC) data sets.  REC data sets are the same as the REI 
data sets, but only include attributes that have a match in one 
                                                 
1 https://jsimlib.dev.java.net/ 
2 http://lucene.apache.org/java/docs/index.html 

of the other data sets.  This removal of attributes reduced the 
size of the data sets to the low twenties, except one having 
twenty-eight attributes.  The REC group is used to test the 
effects on matching performance when attributes with no 
matches are removed. 

VII. EXPERIMENTATION 
The goals in evaluating AbsMatcher are to look at the 

performance of internal information by itself and whether 
there is still a benefit when combined with external 
information.  Semantic and Entropy internal relationships are 
meant to provide a baseline ability for schema matching so 
performance is judged first by whether consistent evidence of 
an ability to find matches, and second by looking for evidence 
that combining internal and external information is better than 
only external information.  Finding evidence of these two 
points would indicate matches being found which internal 
information can uniquely contribute to finding.  Performance 
is measured using recall.  Many schema matching systems 
provide statistical matches, as opposed to absolute matching, 
so we present recall for correct matches made and for the 
correct match being one of the top 3 best matches.  This more 
liberal scoring criterion provides information on whether 
AbsMatcher has partial information that could be leveraged by 
future improvements to the algorithm or information sources.  
Precision is not included because currently AbsMatcher 
returns a match for each attribute in the smaller of the two 
schemas.  This means that the number of matches returned for 
a pair of schemas will remain constant no matter what other 
parameters change.  This point is discussed further in future 
work. 

One of the challenges that AbsMatcher faces is tuning 
various parameters.  The problem of how to find the best 
weightings among various matchers is a problem common in 
schema matching systems.  There has been work to automate 
this tuning process [17].  As AbsMatcher is an initial effort we 
perform manual tuning. 

VIII. SOURCES OF INTERNAL INFORMATION 
For testing purposes, the sources of internal relationships 

described in Section 3 are used in three combinations.  The 
Entropy combination includes attribute entropy, data set key, 
and dependency relationships.  The Semantic combination 
consists of semantic relatedness relationships based on Yahoo! 
results.  Finally, the All combination includes both Entropy 
and Semantic relationships. 

E. Results 
We first look at the extent to which schemas can be 

matched using only the mined graphs for the two data sets.  
When using only this limited source of information a high 
level of performance cannot be expected.  However, this 
limitation is useful in making an initial judgment of whether 
mined graphs contain useful information.  For each group of 
data sets we select the best performing parameters and present 
in.  Fig. 1 results for all three combinations of internal 
relationships and all three groups of data sets. 



 

 
Fig. 1  Data sets by types of internal relationships 

The first result to examine is AbsMatcher’s ability to find 
correct matches.  Though the results in Fig. 1 are relatively 
low in the context of overall performance of schema matching 
systems, the more appropriate context is as a source of 
matches which would be used in a broader system.  In this 
context Semantic and Entropy relationships do show 
consistent ability to find at least some matches.  The 
performance of the top 3 correspondences improves over just 
correct matches indicating that AbsMatcher can provide 
supporting evidence which would affirm or discredit 
correspondences from other candidate matchers.  As seen in 
Fig. 1 the top 3 correspondences can provide useful results on 
a third to half of all matches.  The top 3 matches can be useful 
when considering that the weights of correspondences in the 
top 3 can often be very close. 

The second result to examine is what sources or 
combinations of sources of internal relationships are the most 
effective.  Neither the Entropy or Semantic combinations were 
consistently the best between the different data set groups.  
Though neither was consistently the best, the positive result is 
that when combined in All, performance improved or matched 
the performance of the best performing source of internal 
relationships.  The fact that adding sources of internal 
relationships does not degrade performance strengthens the 
potential that when other existing forms of internal 
relationships are added, performance could be improved. 

IX. EXTERNAL AND INTERNAL COMBINED 
For some matches the information which best indicates the 

correct match is derived by comparing an attribute from each 
data set.  In ABSURDIST this means the use of external 
information that is combined with internal information using 
Equation 1.  In Equation 1 there are two weighting 
coefficients, α and β, which determine the balance between 
external and internal information.  The α:β ratio represents the 
comparative weights of external:internal information.  We 
tested AbsMatcher with different ratios, where each 
represented a different balance between external and internal 
information.  Fig. 2 presents results for a representative three 
of those ratios.  The 0:1 data point represents using only 
internal information, which corresponds with the results in Fig. 
1.  The 1:0 data point represents only using external 

information.  The 3:1 data point tested the effort to combine 
the use of internal and external information.  The goal in this 
evaluation is to determine whether combining internal and 
external information has a benefit over just using external 
similarity. 

 
Fig. 2  Data sets by Ext:Int Ratio 

F. Results 
Fig. 2 provides evidence that combining internal and 

external information can for some data sets provide better 
results than either one in isolation.  Though the improvement 
for Courses and REC data sets is small the fact that it occurs 
for both supports the claim that internal structure can improve 
matching performance.  It must be remembered that the results 
for Courses and REC represent the average performance 
across twelve different pairs of data sets matched.  The ability 
of internal structure to find correct matches and the additional 
beneficial effect that it can have when combined with external 
similarity indicates that internal structure is to some extent 
finding both unique and useful information for schema 
matching. 

The REI data sets do not benefit from internal information.  
This could in part be due to the fact that REI alignments leave 
more attributes unmatched.  The REC data sets are versions of 
the REI data sets where attributes with no matches removed.  
They average 15.5 correct matches between a pair of data sets, 
meaning that on average half of the attributes in a data set for 
REI are not being matched, yet information is still mined for 
them.  Courses and REC have a different scale yet both show 
similar trends in the ability to find correct matches.  The only 
difference between REC and REI data sets is the existence of 
unmatched attributes, so the difference in performance can be 
unambiguously attributed to this.  This indicates that 
information which indicates invalid matches could be an 
important feature to add to AbsMatcher. 

X. CONCLUSION 
The goal in developing AbsMatcher was to create a schema 

matching system that used a graph based approach, but was 
not reliant on a specific data model as a source of information.  
To this end, we limited AbsMatcher to pervasive information 
for creating graphs in order to create a baseline.  The Entropy 
and Semantic forms of relationships also are based on finding 
relationships between semantic concepts and not how data is 



being stored.  We then tested these graphs using the 
ABSURDIST graph matching system.  ABSURDIST is 
ideally suited because of its ability to accept graphs with a 
wide variety of forms (weighted, unweighted, directed, 
undirected, labelled, and unlabeled) and ABSURDIST was 
designed specifically with the idea of combining internal and 
external information together.    

The goals in testing AbsMatcher were to look at whether 
Entropy and Semantic internal structure are useful for schema 
matching on their own and whether they have benefits when 
combined with external similarity.  Experiments demonstrated 
that to varying extents the tested forms of internal structure 
are able to accomplish both of the goals.  The results 
presented in this paper where aggregated over multiple 
individual experiments.  The additive benefit of our sources of 
internal structure is important because it argues that internal 
structure holds unique information for finding 
correspondences. 

These results were based on aggregating results from a 
number of matching pairs.  It is important to note that there 
were outliers on both the positive and negative side.  This is a 
common problem in schema matching, where sources of 
information perform well in certain scenarios and poorly in 
others.  It is this point which motivated the approach of 
aggregating many disparate measures of similarity.  This leads 
to the idea that by adding new information sources into 
AbsMatcher we can improve even beyond the baselines 
presented in this work. 

XI. FUTURE WORK 
AbsMatcher has provided an initial effort with a baseline of 

results.  Going forward there are advances that could be made 
for all three aspects of AbsMatcher; internal information, 
external information, and the ABSURDIST algorithm.  One of 
the techniques which could be added for both internal and 
external information is negative information.  We saw when 
comparing REC and REI that there are situations when not 
making a match can be just as important as making a match.   

There are a number of potential ways that internal structure 
could be improved.  The first and most interesting would be 
using the techniques in [6, 7] that look at relational metadata 
or tree representations and combine them with Entropy and 
Semantic relationships.  This would also provide the potential 
to expand AbsMatcher to include entity-to-entity matching 
along with the current attribute-to-attribute matching. 

As with other systems similar to AbsMatcher, the ability to 
automatically tune the various parameters will remain a 
direction of future work. 
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