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Abstract— Web applications increasingly integrate third-party 
services. The integration introduces new security challenges 
due to the complexity for an application to coordinate its 
internal states with those of the component services and the 
web client across the Internet. In this paper, we study the 
security implications of this problem to merchant websites that 
accept payments through third-party cashiers (e.g., PayPal, 
Amazon Payments and Google Checkout), which we refer to as 
Cashier-as-a-Service or CaaS. We found that leading merchant 
applications (e.g., NopCommerce and Interspire), popular 
online stores (e.g., Buy.com and JR.com) and a prestigious 
CaaS provider (Amazon Payments) all contain serious logic 
flaws that can be exploited to cause inconsistencies between the 
states of the CaaS and the merchant. As a result, a malicious 
shopper can purchase an item at an arbitrarily low price, shop 
for free after paying for one item, or even avoid payment. We 
reported our findings to the affected parties. They have all 
been fixed by vendors. We further studied the complexity in 
finding this type of logic flaws in typical CaaS-based checkout 
systems, and gained a preliminary understanding of the effort 
that needs to be made to improve the security assurance of 
such systems during their development and testing processes. 

Keywords- e-Commerce security; web API; Cashier-as-a-
Service; logic bug; program verification 

I. INTRODUCTION 

Progress in web technologies has led to rapid growth of 
hybrid web applications that combine the Application 
Programming Interfaces (APIs) of multiple web services 
(e.g., search APIs, map APIs, payment APIs, etc.) into 
integrated services like personal financial data aggregations 
and online shopping websites. The pervasiveness of these 
applications, however, brings in new security concerns. The 
web programming paradigm is already under threat from 
malicious web clients that exploit logic flaws caused by 
improper distribution of the application functionality 
between the client and the server (e.g., relying on client 
logic to validate user privileges). The program logic of a 
hybrid web application is further complicated by the need to 
securely coordinate different web services that it integrates: 
failing to do so leaves the door wide open for attackers to 
violate security invariants by inducing inconsistencies 
among these services. 

As an example, consider an online merchant integrated 
with the Amazon Payments service. The shopper’s browser 
communicates with the merchant server to place an order, 
and with an Amazon server to make a payment. If the 
interactions between the two servers are not well thought 
out, the shopper may be able to shop for free.  For instance, 
we discovered a real flaw where the merchant is convinced 

that the order has been paid for in full through Amazon 
while the payment has actually been made to the shopper’s 
own Amazon seller account.  

Intuitively, logic bugs related to multiple web services 
can be much more difficult to avoid than those in traditional 
single-service web applications – it is analogous to real-life 
experiences that when multiple parties discuss a subject by 
making individual one-on-one phone calls, it is generally 
difficult for each party to comprehend the whole picture. An 
honest party may say something out of context, or fail to 
understand another honest party’s assumptions and 
reasoning, so a cheater is more likely to succeed in this 
situation than in a two-party conversation between the 
cheater and the only honest party. We will show many 
concrete findings to support this intuition. 

Cashier-as-a-Service based checkout. As a first step 
towards understanding the security implications of multi-
party web applications, we studied a category of online 
merchant applications that adopt third-party cashier services 
such as PayPal, Amazon Payments and Google Checkout. 
These cashier services, which we call Cashier-as-a-Service 
or simply CaaS, play a crucial role in today’s e-commerce, 
since they act as a trusted third party that enables mutually 
distrustful parties to do business with each other. A CaaS 
can collect the payment of a purchase from the shopper and 
inform the merchant of the completion of the payment 
without revealing the shopper’s sensitive data like a credit 
card number. A study showed that 59% of U.S. online 
shoppers would be more likely to buy in web stores that 
accept CaaS payment methods [8]. 

During a checkout process, communications happen 
between the CaaS and the merchant, as well as between 
these two services and the web client controlled by the 
shopper. This trilateral interaction is meant to coordinate the 
internal states of the merchant and the CaaS, since either 
party has only a partial view of the entire transaction. 
Unfortunately, the trilateral interaction can be significantly 
more complicated than typical bilateral interactions between 
a browser and a server, as in traditional web applications, 
which have already been found to be fraught with subtle 
logic bugs [9][12][16][36]. Therefore, we believe that in the 
presence of a malicious shopper who intends to exploit 
knowledge gaps between the merchant and the CaaS, it is 
difficult to ensure security of a CaaS-based checkout system.   

Our work. The aforementioned concern turns out to be well-
grounded in the real world. We conducted a systematic 
study of representative merchant software/websites that use 
the cashier services of PayPal, Amazon Payments and 



2 
 

Google Checkout. Our study revealed numerous security-
related logic flaws in a variety of merchant systems, ranging 
from a high-quality open source software (NopCommerce 
[29]), to a leading commodity application (Interspire [20]), 
to high-profile merchant websites powered by closed-source 
proprietary software such as Buy.com and JR.com. Our 
attacker model is fairly simple – the attacker is a malicious 
shopper whose only capability is to call the web APIs 
exposed by the merchant and the CaaS websites in an 
arbitrary order with arbitrary argument values. We will 
show that everyone who has a computer and a small amount 
of cash (e.g., $25) is a qualified attacker. By exploiting the 
logic flaws, a malicious shopper is able to purchase at an 
arbitrarily-set price, shop for free after paying for one item, 
or even avoid payment.  

To examine whether these logic flaws pose an 
imminent threat to e-commerce, we performed a responsibly 
designed exploit analysis on real web stores, including 
leading e-commerce websites such as Buy.com, and 
successfully checked out various items through exploiting 
these flaws. Figure 1 shows some of the items that were 
delivered to us, which included both physical and 
digital/downloadable commodities. This study was closely 
advised by a lawyer of our institution and conducted in a 
responsible manner, as elaborated in Section IV. 

     
       (A) DVD                 (B) agility cream         (C) digital journals 

   
   (D) alcohol tester            (E) charger                      (F) DVD 

Figure 1: some received items and their shipping packages 

While most of the logic flaws are due to lapses in the 
merchant software, we were surprised to find that well-
known CaaS providers also need to shoulder responsibility: 
in particular, a serious error that we discovered in a set of 
Amazon Payments’ SDKs has caused Amazon to 
significantly alter the way for verifying its payment 
notifications. We have reported our findings to all the 
affected parties, who acknowledged the significance of the 
findings and expressed gratitude for our help. We post part 
of our communications with them in [37]. 

To understand how complicated it is to ensure the 
absence of logic flaws in real-world CaaS-based checkout 
processes, we performed a formal verification study on a 
subset of Interspire’s source code. We checked an invariant 
that is a conjunction of a series of bindings between order 

information and payment information. The outcomes turned 
out to be mixed: on one hand, formal methods did 
demonstrate their potential to address such a threat – they 
not only revealed all the flaws that we manually identified 
from the source code, but also new attacks that we did not 
expect. On the other hand, the complexity in the current 
checkout logic made even the state-of-the-art verifier hard 
to rule out the existence of potential logic flaws that can be 
exploited by more complicated attacks (with API-call 
sequences longer than what the current tool can explore).  
This suggests that little “margin of safety” can be offered by 
existing techniques for the exploits we discovered. 

We view this work as a preliminary study that only 
touched relatively simple trilateral interactions, while other 
real-world applications may involve more parties (e.g., in 
marketplace and auction scenarios), and therefore can be 
more error-prone. This calls for further security studies 
about such complicated multi-party web applications.  

Contributions. Our contributions are summarized as follows: 
 In-depth security analysis of real-world CaaS-based 

checkout systems. We performed the first systematic 
analysis of the security-related logic flaws in hybrid web 
applications.  Our work discovers numerous security flaws 
in many representative checkout systems and demonstrates 
practical attacks that can happen to them. This suggests that 
there is inherent complexity in securely integrating multiple 
web services in a web application.  
  A preliminary analysis of the complexity of finding 

logic flaws in these systems. We extracted the logic model 
from Interspire and analyzed it with a state-of-the-art 
verification-condition checker. From the study, we gained a 
preliminary but quantitative understanding of the inherent 
logic complexity of CaaS-based checkout systems. 

II. BACKGROUND  

A. Introduction to checkout workflows 
Figure 2 shows some typical steps in a CaaS-based 

checkout. It starts when the button on page A of the 
merchant website (e.g., Buy.com) is clicked. In the figure, 
the button is “Check out with PayPal”, so the click directs 
the shopper’s browser to page B on PayPal (i.e., the CaaS), 
where he can click the “Pay Now” button to pay. Then, the 
shopper’s browser is redirected back to the merchant’s 
website to finish the order, which usually does not require 
the shopper’s actions. Finally, the shopper gets the 
confirmation page C. The checkout process is arranged in 
this way to ensure that all three parties – the shopper, the 
CaaS, and the merchant, stay consistent despite their 
different locations across the Internet.   

 
Figure 2: some steps in a checkout workflow 

 xxxxxxxxx     $89.95 

Thanks for your order!
View  your order 

  Pay Now 

  $89.95
Description    Amount 

   Items    Qty    Total

Remove

(A) click to place an order (B) click  to pay in the CaaS   (C) confirmation 
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What happens behind the scene here are HTTP 
interactions between the three parties, who communicate by 
calling web APIs exposed by the merchant and the CaaS. 
Such APIs are essentially dynamic web pages (denoted by 
diamond-shaped symbols in Figure 3), and are invoked 
through HTTP requests: the client sends an HTTP request 
through a URL with a list of arguments and receives an 
HTTP response (often a web page) dynamically constructed 
by the server as the outcome of the call. Throughout this 
paper, we refer to such a request/response pair as an HTTP 
round-trip or RT. In Figure 3,  an  RT is illustrated as a U-
shaped curve, with its request arm labeled by the suffix “.a” 
and its response by “.b”. The order in which different 
requests/responses happen is specified by both the numeric 
order of their corresponding RT labels and the dictionary 
order of their suffixes: for example, RT1.b comes before 
RT2.a but after RT1.a.a and RT1.a.b, and these last two 
messages are preceded by RT1.a, i.e., RT1.a → RT1.a.a → 
RT1.a.b→ RT1.b. Note that RT1.a.a is sent by the merchant 
during the handling of RT1.a, so RT1.a.a is not just 
chronologically after RT1.a, but causally depends on it. 
There is similar causality between RT2.a.a and RT2.a. 

 
Figure 3: Web APIs and HTTP round-trips (RTs) 

In the figure, RT1 and RT3 enable the shopper to 
invoke the APIs on the merchant and receive the responses. 
For example, RT1.a can be set off by a button click on page 
A in  Figure 2, and RT3.b can carry the confirmation 
response (page C). RT2.a can be an API call to make a 
payment on the CaaS. It is sent when the “Pay Now” button 
on page B of Figure 2 is clicked.  Moreover, RT1.a.a and 
RT2.a.a are sent by the merchant and the CaaS respectively 
to coordinate the state of the transaction with the other party. 
RT4 and RT5 will be explained later. These RTs serve as 
the building blocks for the workflows of various checkout 
solutions offered by different CaaS service providers 
(Amazon, PayPal, and Google). Some of the solutions, such 
as PayPal Standard and Amazon Simple Pay, are entirely 
based upon HTML, while the others, like PayPal Express 
and Checkout By Amazon, implement SOAP and NVP APIs.   

We are not concerned with a network man-in-the-
middle adversary intercepting RTs, because the checkout 
modules of all merchants and CaaS websites communicate 
exclusively over HTTPS to guarantee end-to-end security. 

B. Challenges in securing checkout processes 

To understand the nature of security threats that CaaS-
based checkout systems are facing, the first step is to 

identify the security goal of these systems and the technical 
challenges in achieving it, which are described below. 

Security invariant. The main security goal of a 
checkout system is to maintain the following payment-
completion invariant: Merchant M changes the status of an 
item I to “paid” with regard to a purchase being made by 
Shopper S if and only if (1) M owns I; (2) a payment is 
guaranteed to be transferred from an account of S to that of 
M in the CaaS; (3) the payment is for the purchase of I, and 
it is valid for only one piece of I; (4) the amount of this 
payment is equal to the price of I. This invariant, though 
intuitive, implies a set of intertwined binding relations that 
should be respected in every step of the transaction. These 
bindings unequivocally link the merchant to a piece of the 
item being sold, the price of the item to the payment the 
merchant receives, and the payment for this specific 
purchase to the shopper. 

Complexity in preserving the invariant.  To achieve 
this security goal, a checkout system is expected to preserve 
the aforementioned invariant throughout a transaction.  This 
turns out to be nontrivial, particularly in the presence of two 
web services.  Specifically, the challenges in keeping both 
servers in consistent states include, but are not limited to, 
the following: 

 Confusion in coordination. Given their incomplete 
views of a transaction, the merchant and the CaaS need to 
work together to preserve the invariant.  This, however, is 
often hindered by the partial knowledge each party has 
about the other: the code of their systems is often off-limits 
to each other; the CaaS typically provides nothing but vague 
descriptions of its operations. As a result, misunderstanding 
often arises on the security assurance either party offers. For 
example, a merchant may assume that every notification of 
a payment completion from the CaaS must be about one of 
his transactions, but the CaaS may not have this guarantee 
and may expect a merchant to verify it by itself, as we show 
in Section III.A.2. 

 Diversity in the adversary’s roles. The merchant 
and the CaaS expose their APIs to the public, which enables 
the adversary to play more diverse roles than just the 
shopper, and thus to gain a deeper involvement in the 
checkout process than he could in a more traditional client-
server interaction. The shopper can directly invoke a 
merchant’s APIs such as RT4 in Figure 3, which mimics the 
behavior of the CaaS; the shopper can also mimic a 
merchant to register with the CaaS a callback API, which 
will later be called, as illustrated by RT5. 

 Parallel and concurrent services. Both the 
merchant website and the CaaS need to serve many 
customers, and a shopper can concurrently invoke multiple 
purchase transactions. This further complicates the trilateral 
interactions, opening avenues for cross-transaction attacks.  

 Authentication and data integrity. Compared with 
the two-party web applications, authentication in a CaaS-
based checkout system involves three parties and is thus 

CaaS

Target store (merchant)

RT1.b 

RT2.a 

RT2.b 

RT2.a.a  RT2.a.b RT4.b 

RT4.a 

RT1.a.b

RT5.a 

RT5.b 

RT1.a 

RT3.a 

RT3.b 

Shopper/ 
Attacker

RT1.a.a
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more difficult in avoiding authentication and data integrity 
breaches. For example, we found that the integrity of each 
message field is not a big issue, but how to protect the 
bindings of the fields in different messages deserves careful 
thought processes and is the real pitfall. 

In the next section, we show how real-world systems 
fail to answer to these challenges, indicating the urgent need 
to study the systematic solution to this problem. 

III. SECURITY ANALYSIS OF REAL-WORLD MERCHANT 

APPLICATIONS AND CAAS SERVICES 

In this section, we report our analysis of two popular 
merchant applications: NopCommerce [29] and Interspire 
[20], and their interactions with leading CaaS providers: 
PayPal, Amazon Payments and Google Checkout. Based on 
the insights from the study, we further probed for logic 
flaws in stores that run closed-source proprietary software. 

Methodology. Our analysis follows an API-oriented 
methodology that dissects a checkout workflow by closely 
examining how individual parties can affect the arguments 
of the web API calls exchanged between them, and how 
these arguments affect the internal states of these parties. 
Some arguments of a web API carry the data flows between 
two parties, e.g. gross, merchantID, while others touch 
on their control flows, e.g., returnURL, cancelURL, 
and callback URLs that play a similar role to that of a return 
address or a function pointer in C/C++ programs.  These 
arguments may not originate from the party that initiates the 
call. For example, the CaaS may use some data supplied by 
the shopper to communicate with the merchant through 
calling its APIs. 

In our research, we studied whether the merchant/CaaS 
interactions in a checkout system present the malicious 
shopper opportunities to exert improper influence on the 
API arguments exchanged between these two services.  To 
this end, we use a simple approach to keep track of the data 
that the adversary generates or can tamper with.  

Table I lists the rules for labeling and tracing such data.  
Particularly, Rule (iii) makes the adversary the owner of any 
unsigned value that he sends, even though the value actually 
originates from other parties. All figures that we show in 
this section follow these labeling rules, which help describe 
the checkout workflows clearly.   

TABLE I.  LABELING RULES FOR API ARGUMENTS 

(i) A newly generated value is labeled by its message origin – T 
for the target merchant under attack, C for the CaaS that the 
merchant uses, and A for the attacker/shopper; 

(ii) A signed argument arg is labeled as argS*, where S is the 
signing party (T, C or A). Signed arguments are passed on 
across different parties without changing their origins; 

(iii) Any unsigned value sent by the attacker is relabeled as A, 
regardless of the origin of the value.   
To make succinct figures in the paper, we represent 

every URL in the following format: 

 [https://]host/apiName?arg1[=value]&…&argN[=value] 

We often omit the “https://” prefix because all messages 
are HTTPS traffic. The string after “?” is the argument list. 
Usually we omit the concrete values of the arguments, but 
when a particular concrete value needs to be explicit, we 
provide the name/value pair as argN=value.  

Limitation: CaaS as blackbox. Currently we do not 
have the source code for the CaaS side, but only the source 
code on the merchant side, including the merchant software 
and the CaaS’ SDKs (Software Development Kits) 
compiled with the merchant software. For a CaaS service, 
we could only observe its concrete inbound and outbound 
messages, without knowing its internal logic, which might 
have subtle flaws as well. Therefore, what we have found 
only constitute a subset of the problem space.     

A. Open-source software – NopCommerce  

NopCommerce is the most popular .NET-based open 
source merchant software [29]. It was recently nominated as 
one of the best open-source e-commerce applications [34]. 

1) Integration of PayPal Standard – paying an arbitrary 
amount in PayPal to check out from the victim 

PayPal Standard is the simplest method that a merchant 
website can integrate as its payment service. It is supported 
by NopCommerce. Figure 4 shows the workflow.      

 
Figure 4: NopCommerce’s integration of PayPal Standard 

(Note: RT3.a.a/RT3.a.b happen after RT3.a and before RT3.b) 

First, the shopper clicks on the checkout button to send 
RT1.a to invoke the merchant’s API placeOrder, which 
inserts the order information into a database, including the 
gross amount and the order ID. Since the order is unpaid, its 
status is set to PENDING. Then the merchant’s response 
RT1.b passes the order information (e.g., orderID and 
gross) back to the shopper and redirects his browser to the 
CaaS (i.e., CaaS.com/stdPay), where the shopper pays 
according to the order information that his browser passes to 
the CaaS. The CaaS records the payment details and returns 

RT1.a: TStore.com/placeOrder 

RT3.a.a: CaaS.com/PDTDetails?tx
A
&identity

T

RT3.a.b:   orderID
A
&gross

A
& …

RT2.a: CaaS.com/stdPay?orderID
A
& gross

A
& … 

RT3.b:  purchase done 

RT1.b: redir to CaaS.com/stdPay?orderID
T
& gross

T
& …

RT3.a: TStore.com/finishOrder?tx
A
& … 

RT2.b: redir to TStore.com/finishOrder?tx
C
& …  CaaS.com (C)

i.e., PayPal

TStore.com
 (T) 

Shopper/
Attacker

 (A) 

TStore.com/placeOrder:  orderID=InsertPendingOrder () 

TStore.com/finishOrder:     
     tnDetails=wCall_PDTDetails(tx,identity); /*resulting in  
                                                                            RT3.a.a and RT3.a.b*/
     orderID=GetOrderIDField(tnDetails); 
     order=LoadOrderByID(orderID); 
     if (order≠null) and (order.status==PENDING)   
                        order.status = PAID;      
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tx as the transaction ID for the payment in RT2.b.1  After 
the payment is done, the shopper’s browser calls the 
merchant API finishOrder to finalize the invoice 
(RT3.a). Here we present the pseudo code of the function 
to highlight the part of its functionality of interest to us. 
More specifically, it makes a call to CaaS.com/PDTDetails 
(i.e., RT3.a.a), using tx and an authentication field 
identity, to get the payment details through RT3.a.b. 
Based on OrderID in the payment details, it looks up the 
order from its database. Once the order is located and its 
status is found to be PENDING, the status is set to PAID 
and a confirmation is sent to the shopper in RT3.b. In this 
entire workflow, no message field is signed (i.e., no “*” in 
any label in the figure). Security is expected through 
RT3.a.a and RT3.a.b, which are between the two servers. 

Flaw and exploit. From Figure 4, a logic flaw is easy to see: 
the gross of the payment to CaaS is labeled as A using our 
analysis method, but the logic of finishOrder does not 
check the gross, which can be freely modified by the 
attacker. Therefore, setting the payment gross to an arbitrary 
value in RT2.a would not cause any trouble for the order to 
get through all the checkout steps.  

 
Figure 5: Jeff's paid invoice and Mark's PayPal record 

To evaluate the practical feasibility of this attack, we 
installed NopCommerce on a server in our lab to set up a 
store for Jeff, and then registered a shopper Mark with 
PayPal. Figure 5 shows Jeff’s finalized invoice and Mark’s 
PayPal record. The price of the merchandise is $17.76. 
Exploiting the above flaw, Mark was able to pay $1.76 to 
complete the checkout. Interestingly, Jeff’s invoice actually 
showed a payment of $17.76. There was no indication that 
the real payment was $1.76. In Section IV.A, we report our 
test of this exploit on a real store. 
2) Integration of Amazon Simple Pay – paying to the 

attacker himself to check out from the victim 
NopCommerce also supports Amazon Simple Pay, in 

which all messages after RT1.a are signed (*-labeled in 
Figure 6), so the shopper cannot tamper with the messages 
as in the prior example. Figure 6  shows the steps of this 

                                                            
1 For the simplicity of presentation, we omit a few round-trips between 
RT2.a and RT2.b, which correspond to a few user clicks. 

checkout method. RT1.b is used to redirect the shopper’s 
browser to the payment API of the CaaS, passing orderID, 
gross and returnURL as the arguments. This message is 
signed by the merchant (labeled T*), so the shopper cannot 
tamper with the arguments when sending RT2.a. After the 
CaaS (i.e., Amazon) verifies the merchant’s signature, the 
shopper makes the payment, which the CaaS records to its 
database (again, we omit a few RTs in the figure). The 
payee is the merchant who signs RT2.a, which, in Figure 6, 
is TStore.com. Then, by RT2.b, the CaaS redirects the 
shopper back to the merchant using returnURL that the 
merchant supplies in RT1.b. In NopCommerce, the URL is 
set to TStore.com/finishOrder for invoking the merchant 
API finishOrder. The entire message of RT2.b is 
signed by the CaaS, which is verified by the merchant. This 
checkout procedure seems secure: in Figure 6, no data can 
be contaminated by the attacker, i.e., nothing is A-labeled. 

 
Figure 6: NopCommerce's integration of Amazon Simple Pay 

Flaw and exploit.  Interestingly, this integration turns out to 
be vulnerable when the malicious shopper also plays the 
role of a different merchant. Specifically, anyone can open a 
seller account on Amazon, so can the attacker (in Section 
IV.B, we show that all the attacker needs is $25 cash for 
buying a MasterCard gift card from a supermarket; other 
personal information like name, email and phone number 
can all be faked). Suppose that the seller account is 
registered under the name “Mark”. What the attacker wants 
to do is to pay Mark (actually, himself) but check out an 
order from a store belonging to Jeff (https://jeff.com).  

The attack proceeds as follows.  Acting as “Mark”, the 
attacker drops RT1.b, but makes the message RT2.a by 
signing it using Mark’s signature (labeled as A*): 

 (CaaS.com/pay?orderID&gross&returnURL=https://jeff.com/finishOrder…)
A* 

The trick here is that the message signed by A actually 
carries a returnURL to Jeff (jeff.com/finishOrder). As a 

RT1.a: TStore.com/placeOrder 

RT2.a: (CaaS.com/pay?orderID&gross&returnURL …)
T*

RT3.b:  Purchase done 

RT1.b: redir to 
(CaaS.com/pay?orderID&gross&returnURL …)

T*

RT2.b: redir to (returnURL
T
?payeeEmail

 C
& 

status
C
=PAID&orderID

T
&gross

T
 …)

C* 

RT3.a: (returnURL
T
?payeeEmail

 C
& 

status
C
=PAID&orderID

T
&gross

T
…)

C* 

TStore.com/placeOrder:  orderID=InsertPendingOrder () 

TStore.com/finishOrder  (handler of RT3.a):     
      if (verifySignature(RT3.a) ≠ CaaS) exit; 
      if (GetMsgField(“status”) ≠ PAID) exit;   /*payment status*/ 
      order= GetOrderByID(orderID); 
      if (order==NULL or order.status ≠ PENDING) exit; 
      order.status=PAID;   

CaaS.com (C)
i.e., Amazon

TStore.com
 (T) 

Paid invoice of Jeff’s store  Mark’s PayPal record

$17.76 

$17.76 

$17.76 

PayPal 
Standard 

$1.76

$1.76 

Pay to Jeff

Complete
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result, even though Mark (the attacker A) is the party that 
receives the payment, the CaaS will redirect the shopper’s 
browser (RT3.a) to Jeff with a redirection to call 
finishOrder:    redir to  
(jeff.com/finishOrder?payeeEmail&status=PAID &ordered&gross…)

C*
 

Although the message is indeed sent to Jeff, it is actually 
about the payment that the attacker made to Mark. The logic 
in finishOrder, as sketched in Figure 6, does not verify 
that the payment was made to Jeff, and therefore is 
convinced that the order has been paid.  

Fundamentally, the problem comes from the confusion 
between the merchant and the CaaS about what has been 
done by the other party. An analogy can be drawn here to a 
real-life scenario in which Jeff first lets the shopper forward 
a signed letter to the CaaS: “Dear CaaS, this shopper should 
pay $10 for order#123. When he pays, write a signed letter 
to Jeff. Thanks, [Jeff’s signature]” Later, Jeff indeed 
receives a response signed by the CaaS “Dear Jeff, the $10 
payment for order#123 has been received. I am talking 
about Mark’s order#123 (nothing to do with you). [CaaS’ 
signature].” There are two important aspects to the 
misunderstanding that causes this security flaw. First, the 
CaaS thinks that it is fine to notify Jeff of Mark’s 
transaction. Second, given the context of the conversation, 
Jeff believes that the response from CaaS is related to his 
original letter. Therefore, Jeff only checks that certain parts 
of the response (e.g., orderID, gross) match one of his 
pending orders. Because of this misunderstanding, even 
though all the messages between the two services are 
properly signed and verified, the binding between the order 
and the merchant is still broken. 

Given the format of RT3.a, the only chance for Jeff to 
detect the attack is to check payeeEmail. Every 
merchant is required to provide an email address when 
opening an Amazon seller account. The address is included 
in RT2.b as part of the payment detail. Unfortunately, 
neither the CaaS nor the merchant application intend to use 
this email address for a security purpose: the CaaS never 
spells out the need to check this information, and the 
merchant software like NopCommerce and Interspire does 
not even ask for the email address at installation time.  

B. Commercial Software – Interspire  
Interspire shopping cart is one of the leading e-

commerce applications, being used by more than 15,000 
businesses across 65 countries [20]. Its hosting service, 
BigCommerce [6], was rated #1 e-commerce software for 
2010 and 2011 by TopTenReviews.com [35]. The license fee 
of Interspire shopping cart software is $199. The source 
code package is available to its licensees. 

1) Integration of PayPal Express – paying for a cheap 
order to check out an expensive one 
Interspire incorporates over 50 payment methods of all 

major CaaS providers. Its integrations of these payment 
methods are typically more complex than those in 
NopCommerce.  A prominent example is the way it uses 

PayPal Express 2 , as illustrated in Figure 7. During a 
checkout, the merchant makes two calls to the CaaS. The 
first one is to inform the CaaS of an upcoming payment 
(RT1.a.a) with proper authentication data (identity). 
The CaaS then acknowledges the message with a token 
string for identifying this payment transaction, which the 
merchant passes to the shopper (RT1.b). The shopper then 
presents token to the CaaS, sets and confirms certain 
information about the payment (again, we represent these 
steps as a single step RT2.a). After that, the CaaS redirects 
the shopper’s browser to the merchant API finishOrder 
with token and payerID as arguments (RT2.b, 
RT3.a). The code of finishOrder directly contacts the 
CaaS to complete the payment (RT3.a.a), and then lets 
the browser call the merchant API updateOrderStatus, 
which updates the status of the order (RT3.b, RT4). Note 
that some messages in this checkout process are not signed, 
which is not a security weakness, as the merchant directly 
verifies the data integrity with the CaaS (RT3.a.a).   

 
Figure 7: Interspire's integration of PayPal Express 

Table II  presents the pseudo code of finishOrder 
and updateOrderStatus. In finishOrder, the real 
payment is done by calling wCall_DoExpPay, which 
contacts the CaaS through RT3.a.a and RT3.a.b: if 
identity and other payment information is valid, the CaaS 
records the payment and returns result = SUCCESS.  
This result is saved in the session variable 
SESSION[“result”], a  persistent variable that keeps 
the state of a shopper on the merchant website throughout 
his login session.  At this point, the payment is complete, 
and the merchant is supposed to update the status of the 
order through API updateOrderStatus. Because the 
browser needs to be in sync with the merchant state, the 
merchant cannot directly call this merchant-side API, but 
needs to redirect the shopper’s browser, passing orderID 
as an argument to the API updateOrderStatus. To 
prevent the shopper’s tampering, orderID is first signed 

                                                            
2 For the simplicity of description, we here focus on the most interesting 
part of the checkout procedure, ignoring some less important details. 

RT1.a: TStore.com/placeOrder 

RT3.b: redir to TStore.com/updateOrderStatus?orderID
T*

RT1.b: redir to CaaS.com/pay?token
C 

RT3.a: TStore.com/finishOrder?token
A
&payerID

A

RT2.a: CaaS.com/pay?token
A 

RT2.b: redir to 
TStore.com/finishOrder?token

C
&payerID

C 

RT4.a: TStore.com/updateOrderStatus?orderID
T*

RT4.b:  Purchase done 

RT1.a.a: CaaS.com/SetExpCheckout?identity
T
&…               RT1.a.b: token

C

RT3.a.a: CaaS.com/DoExpPay?identity
 T
&token

C
&gross

 T
 RT3.a.b: result

C

TStore.com
 (T) 

CaaS.com
 (C) 
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by the merchant in finishOrder, and the signature is 
later verified within updateOrderStatus. The 
merchant then retrieves the order from the merchant 
database using orderID, and sets the status of the order to 
“PAID” if the session variable (SESSION[“result”]) 
of the shopper is SUCCESS. 

TABLE II.  finishOrder() AND updateOrderStatus() 

finishOrder() { 
result=wCall_DoExpPay(identity,token,gross); 
    //This results in RT3.a.a and RT3.a.b 
 SESSION[“result”]=result; 
 signedOID=sign(orderID); 
 redirect(“/updateOrderStatus?”+ signedOID); 

//This results in RT3.b and RT4.a 
} 
updateOrderStatus() { 
  Verify the signature of orderIDT* in RT4.a 
  If verification fails, then exit; 
  order=LoadOrderByID(orderID); 
  if (SESSION[“result”]==SUCCESS)  
      orderStatus=PAID; 
  SESSION[“result”]=null;     } 

Flaw and exploit. A problem here is that as long as a 
properly signed order ID can somehow get into a session in 
the SUCCESS state, updateOrderStatus will mark the 
order corresponding to the order ID as PAID, no matter 
whether it has indeed been paid for. Therefore, once the 
shopper manages to acquire a signed orderID of an 
unpaid and more expensive order (denoted by orderID2), 
he can replace orderIDT* in RT4.a with orderID2T* 
so as to use his current session state (which is PAID) to 
cheat updateOrderStatus into changing the status of 
the more expensive order into PAID.  This enables the 
shopper to pay for a cheap item but check out an expensive 
one.   Here we show how this can be achieved.  

We used two separate browsers, e.g., Internet Explore 
and Firefox, to launch two separate login sessions. In the 
first session, we selected a cheap item and followed all the 
steps until RT3.b was complete, but we held RT4.a. At 
this moment, SESSION[“result”] of this session had 
been set to SUCCESS, since the payment was made. Then, 
in the second session, we selected an expensive item, placed 
the order (orderID2), but skipped RT2.a. This caused 
the payment process (RT3.a.a) to fail, which was 
reflected by the state of the second session. However, 
finishOrder still redirected the shopper’s browser 
(RT3.b) to invoke updateOrderStatus. This revealed 
orderID2T* to us, so we could copy-and-paste this signed 
orderID2T* into RT4.a of the first session, and sent it to 
finish the checkout of the expensive item. 

2) Integration of PayPal Standard – stealing a payment 
notification and replaying it many times 
Unlike NopCommerce’s integration of PayPal Standard 

in Section  III.A.1, in which the merchant calls the CaaS to 
get payment details, Interspire adopts Instant Payment 
Notification (IPN), an HTTP message that the CaaS uses to 

notify the merchant of payment status. In Figure 8, this 
message is shown as RT2.a.a, which is sent immediately 
after the shopper makes the payment through RT2.a. To 
use this notification method, the merchant (jeff.com) needs 
to specify an IPN handler URL. Interspire embeds the URL 
of the handler in RT1.b, the message that redirects the 
shopper’s browser to the CaaS through RT2.a: for example, 
Jeff’s store may set the handler at 
https://jeff.com/handleIPN. When the CaaS invokes this 
handler through RT2.a.a, it signs the argument list. The 
handler verifies the signature, the order data and the 
payment data in the IPN before updating the order status.  
The pseudo code of handleIPN is shown in Table III. 
RT3 is not very important in our discussion here. 

 
Figure 8: Interspire’s integration of PayPal Standard 

Flaw and exploit. LoadOrderByID is one of Interspire’s 
heavily used utility functions. It is called in many situations, 
e.g., when handling a CaaS’ request or handling a browser’s 
request, therefore it is designed to be generic: when 
handling a CaaS request, e.g., in handleIPN, the function 
is called with an explicit orderID, as in line 1 of the code. 
However, a typical request from the browser, such as 
RT3.a above, does not contain the orderID field in the 
request URL. In this situation, loadOrderByID(empty) 
would be called, and the orderID is retrieved from a 
cookie named ORDER_ID.   

TABLE III.  PSEUDO CODE OF handleIPN() 

handleIPN() {  
1: order=LoadOrderByID(orderID); 
2: if (order==null || order.status≠PENDING) exit;
3: if (merchantID ≠ Jeff’s ID) exit; 
4: if (gross≠order.gross || status≠PAID) exit; 
5: order.status=PAID; } 

 

loadOrderByID(orderId) { 
  if (orderId is empty) 
            orderId=COOKIE[‘ORDER_ID’]; 
  find order in database with orderId; 
}

 

However, this generic design turns out to be 
problematic in PayPal Standard’s IPN mechanism. The 
attacker can first change the message RT2.a by setting its 
orderID to be empty and setting IPNHandler to be 

RT1.a: jeff.com/placeOrder 

RT2.a.a: IPNHandler
A
?(orderID

A
& 

gross
A
&merchantID

A
&status

C
)
C*
 

RT2.a.b:   result
T
 

RT2.a: CaaS.com/stdPay?orderID
A
& 

gross
A
&merchantID

A
&IPNHandler

A 

RT3.b:  display order status (not important)

RT1.b: redir to CaaS.com/stdPay?orderID
T
&

gross
T
&merchantID

T
&IPNHandler

T
… 

RT3.a: jeff.com/finishOrder (not important)

RT2.b: redir to jeff.com/finishOrder 

Example: IPNHandler= https://jeff.com/handleIPN

jeff.com/
handleIPN

jeff.com (T)(A)

(C)
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https://mark.com/handleIPN. This change causes PayPal’s 
IPN message to be delivered to him via RT2.a.a, as 
illustrated in Figure 9.  

 
Figure 9: Multiple checkouts with one payment 

This move gives him an IPN message signed by the 
CaaS, which consists of the argument list 
(orderID=empty&gross&merchantID&status)C*. 
Here we denote this string by argumentsC*. By replaying 
this message, the attacker is able to check out an arbitrary 
number of orders with the same prices: each time, all he 
needs to do is to place a new order by RT1.a (Figure 9), 
set the browser cookie ORDER_ID to be the ID of the order, 
then call Jeff’s IPN handler with argumentsC* in 
RT2’.a, and then call Jeff’s finishOrder by RT3.a. 

In this exploit (Figure 9), the attacker plays all three 
roles: the shopper (RT1.a and RT2.a), the merchant 
(RT2.a.a for acquiring argumentsC*) and the CaaS 
(RT2’.a for replaying the signed IPN message).  Of 
particular interest here is RT2’.a in which the attacker also 
changes his browser cookie, therefore it is a hybrid of a 
CaaS behavior and a browser behavior. This demonstrates 
how deeply the attacker can be involved in a CaaS-based 
checkout process and how complicated an exploit can be.    

3) Integration of Google Checkout – adding items into the 
cart after the checkout button is clicked 
Interspire’s integration of Google Checkout contains 

about 4000 lines of code, the most complicated one among 
the four CaaS-integrations of the application we studied. Its 
simplified program logic is shown in Figure 10.  Interspire 
utilizes several APIs to add/remove items in the shopping 
cart, which are aggregately denoted by updateCart 
(invoked by RT1.a in the figure) here for the simplicity of 
presentation.  The checkout process (RT2.a to RT3.b in 
Figure 10) is triggered when the shopper clicks on the 
“Google Checkout” button. RT3.a.a is an IPN call made 
by the CaaS. 

Flaw and exploit. A prominent feature of this checkout 
workflow is that no order is generated before the payment is 
made: the shopper is supposed to pay for the content of his 
shopping cart first; only when the merchant is informed by 
the CaaS via IPN (RT3.a.a) will the merchant’s handler 
handleIPN create an order of the transaction according to 
what is inside the cart and set its status to “PAID”, as 

illustrated in the figure. The problem here is that this 
procedure is not atomic: after receiving RT2.b, the shopper 
does not send RT3.a immediately. Instead, he can still call 
updateCart to change or add new items into his cart. 
Then, when RT3.a is sent, the current cart in the shopper’s 
session is more expensive than the cart field in RT3.a. 
On the other hand, handleIPN loads the cart directly from 
the shopper’s session, rather than from the CaaS, to build 
the order.  This causes an inconsistency between what the 
CaaS sees in the cart at the pay time and what the merchant 
has at the checkout-completion time, so the shopper can pay 
for a cheap item, but check out many expensive items. 

 
Figure 10: Interspire's integration of Google Checkout 

4) Integration of Amazon Simple Pay – avoiding payment  
The workflow of Interspire’s integration of Amazon 

Simple Pay is similar to what is described in Figure 6, 
except for one key difference: the integrity of order details, 
i.e., orderID&gross, is protected by keyed hash values 
generated by the merchant (RT1.b). Here we label the data 
under this protection by T*’. Thus, RT1.b becomes redir 
to  (CaaS.com/pay?(orderID&gross)

T*’
&returnURL& 

payeeEmail…)
T*. For RT3.a in Figure 6, Interspire verifies 

the integrity of (orderID&gross)T*’so no one can 
tamper with the binding between orderID, gross and the 
merchant. This seems sufficient to defeat the attack 
described in Section A.2), as a payment to Mark cannot 
produce a message RT3.a acceptable to Jeff’s store. 

Flaw and exploit. However, a closer look at Interspire’s 
version of updateOrderStatus reveals that though the 
integrity of checkout data is protected, this API fails to 
verify Amazon’s signature on RT3.a (C* in Figure 6). This 
opens up an easy attack path: the shopper can simply create 
and send RT3.a with his own signature A*: 
(jeff.com/pay?payeeEmail&status=PAID&(ordereID&gross)

T*’
…)

A* 

This message will convince Jeff of the completeness and 
integrity of the payment process, though the payment 
actually has not happened at all. 

RT2.a: TStore.com/checkout 

RT3.a: (CaaS.com/pay?sessionID&cart…)
T*

RT3.a.b:  OK

RT2.b: redir to (CaaS.com/pay?sessionID&cart…)
T*

RT3.b: status=PAID 

RT3.a.a: (TStore.com/handleIPN
T
?

identity
 C
& status

C
&sessionID

T
&…)

TStore.com/handleIPN:     
1:      if (GetMsgField(“status”) ≠ PAID) exit;   /*payment status*/
2:      cart = LoadShoppingCart(GetMessageField(“sessionID”)); 
3:      order = CreateOrder(cart); 
4:      order.status=PAID;   

RT1.a: TStore.com/updateCart 

RT1.b

TStore.com (T)(A)

(C)

RT2.a.a: mark.com/handleIPN?(arguments)
 C*

RT2.a.b 
RT2.a: CaaS.com/stdPay?orderID=empty&gross& 
merchantID&IPNHandler=https://mark.com/handleIPN

RT1.b 

RT2.b 

mark.com/ 
handleIPN 

jeff.com/
handleIPNRT2’.a: jeff.com/handleIPN?(arguments)

 C*
 

RT2’.b 

RT1.a 

loop 
RT3.a 

RT3.b 
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C. Amazon Payments SDK flaw – interdependency of 
certificate authenticity and message authenticity 

All the security flaws presented in the prior sections are 
directly related to merchant applications.  The problem with 
CaaS providers is less clear, though they do need to better 
explain their operations and security assurance to avoid 
confusion on the merchant side. This, however, by no means 
suggests that the code of the CaaS is immune to this set of 
logic flaws: we did not perform an in-depth analysis on it 
just because the majority of it is not accessible to the public.  
From the small amount of the code the CaaS releases, we 
already discovered a serious flaw, as elaborated below.   

Flaw and exploit. For all the messages bearing Amazon’s 
signatures, the Software Development Kit (SDK) of 
Amazon Payments offers a signature verification API 
validateSignatureV2. This function, together with 
the rest of the SDK, is designed to be incorporated into 
merchant software. To verify signatures, the API needs to 
contact an Amazon certificate server to download Amazon’s 
public key certificate. In our research, we found that a flaw 
in the function enables the attacker to provide his own 
certificate to the merchant and thus to circumvent the 
verification. This vulnerability widely exists in various 
Amazon Payments SDKs, including Amazon Flexible 
Payment Service, Amazon Simple Pay Standard, Amazon 
Simple Pay Subscriptions, Amazon Simple Pay Marketplace 
and Signature Version 1 to 2 Migration. Most of them 
support five languages – C#, Java, PHP, Perl, and Ruby. It 
has been confirmed that they are all vulnerable.  

Specifically, all URLs signed by Amazon Payments, 
such as an IPN message and the URL in a redirection 
response, have the following format: 
(https://merchant/someAPI?arg1&arg2&...&argN&certificateURL=

https://fps.amazonaws.com/certs/090909/PKICert.pem)
C*
 

The certificateURL field, which we omitted in the 
previous sections for simplicity of presentation, points to 
Amazon’s certificate server for a certificate issued by 
VeriSign to Amazon. The entire URL is signed by Amazon 
(denoted as C*), including certificateURL. Thus, 
suppose the signature C* can be verified using the 
certificate referenced by certificateURL, it is 
reasonable in practice to say that if the message is signed by 
Amazon, then the certificate is an Amazon certificate, and 
vice versa. It seems to us that such an interdependency of 
certificate authenticity and message authenticity might have 
caused developers of validateSignatureV2 to only 
verify the signature using the certificate referenced by 
certificateURL, without verifying the certificate itself.  

To exploit this vulnerability, the attacker must act as a 
fake CaaS and use a server to store his own certificate. In 
our exploit, we used OpenSSL to generate a X.509 
certificate, hosted it at https://cert.foo.com, which is a 
server under our control. Thus we can sign any URL as 
follows:  

(https://merchant/someAPI?arg1&arg2&...&argN& 

certificateURL =https://cert.foo.com/PKICert.pem)
A*
 

This signed URL, either used as a redirection URL or as an 
IPN, survives all checks in validateSignatureV2, and 
therefore allows the shopper to completely bypass Amazon 
Payments, to directly check out items from the merchant 
without pay. We have confirmed the feasibility of the attack 
on NopCommerce. In the next section, we report our 
communication with the development team of Amazon 
Payments on this flaw and their fix. 

D. Popular stores running closed-source software  

The source-code-based analysis on NopCommerce and 
Interspire, two of the most popular merchant applications, 
demonstrate that logic flaws in CaaS-based checkouts are 
indeed credible threats. Less clear here, however, is whether 
the unavaibility of merchant’s source code can effectively 
conceal this type of logic flaws. To this end, we conducted 
black-box exploit analyses on two big stores, Buy.com and 
JR.com, based on general knowledge obtained earlier but 
without merchants’ source code:  

 Buy.com flaw – shopping for free after paying for 
one item. Buy.com is a leading online retailer with over 12 
million customers in seven countries. It sells millions of 
products in various categories, including computers, cellular 
phones, software, books, movies, music, sporting goods, etc.  
It integrates PayPal Express as one of its checkout methods. 
Before the exploit analysis, we made a test purchase to 
capture the messages sent and received by the browser, and 
found that they are similar to those produced by Interspire’s 
integration (Figure 7), though we could not observe the 
communication between PayPal and Buy.com, and the 
program logic on the merchant side.  

Using our experience with Interspire’s integration of 
PayPal Express (Section III.B.1), we evaluated the security 
protection of Buy.com through attempts such as changing 
the gross amount of an order, examining the way that 
signatures are used, etc. Despite initial failures, we 
discovered an effective exploit on Buy.com. As described in 
Section III.B.1, PayPal Express uses a token to uniquely 
identify a payment. We found that once the payment of one 
order is done, the shopper can substitute the token of this 
order for that of a different order (RT3.a in Figure 7).  This 
allows the shopper to skip the payment step (RT2.a), but 
still convince Buy.com of the success of the payment for the 
second order.  

Without access to the messages between Buy.com and 
PayPal (RT3.a.a and RT3.a.b in Figure 7) and the 
merchant-side code, we cannot conclusively determine what 
goes wrong with this checkout integration.  Nevertheless, 
our study does confirm the pervasiveness of the logic flaws 
within checkout systems, which affect the coordination 
between integrated services, and the possibility of 
identifying and exploiting them even in the absence of the 
code of those systems. 
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 JR.com flaw – attacker website selling items from 
JR.com at arbitrary prices. JR.com is the online store of 
J&R, a well-known electronics retailer located in downtown 
New York City.  The website accepts payments from 
Amazon’s buyer accounts. Through studying the HTTP 
traffic of the browser and developer documentations 
provided by Amazon, we found that the payment method is 
Checkout-By-Amazon [31], which we did not investigate in 
our previous analyses of NopCommerce and Interspire.  

A convenient way to integrate Checkout-By-Amazon is 
using the Seller Central form below, a toolkit provided by 
Amazon that automatically generates the HTML code for an 
Amazon-Checkout button for the item to sell.  

 
To generate the HTML code, the seller first fills in 

information such as the item’s name, price, and the seller 
SKU, etc. When the form is submitted, these fields, as well 
as a hidden field containing the seller’s merchantID, are 
used by Amazon to produce the checkout button, whose 
HTML code is signed by Amazon and can be cut-and-pasted 
onto the merchant web page selling the item. 

Our analysis shows that again, the merchant and the 
CaaS fail to coordinate their security checks, which subjects 
this integration to the shopper’s exploit.  On one hand, 
Amazon does not fully prevent one merchant from creating 
a payment button for another merchant’s item: the only 
information to tell the merchants apart is merchantID, which 
is public information and specified in a hidden field in the 
browser.  On the other hand, like Interspire’s integration of 
Google Checkout, JR.com does not create an order to bind 
an item to the price the shopper is willing to pay until the 
last step of the transaction, when the payment is complete, 
nor does it double-check the price at the payment-
completion time. This allows the following attack: 

Consider the attacker Mark who wants to buy an item I 
from JR.com at a price X.  From the browser traffic 
corresponding to the Amazon-Checkout button for the item 
on JR.com, Mark can acquire the value of each field, 
including the hidden field merchantID. Then, he enters 
these values into the Seller Central form but changes the 
price to X’.  To make the button point to JR.com, Mark also 
modifies the content of the hidden field, replacing his ID 
with that of JR.com.  After that, he submits the form to 
acquire a signed checkout button from Amazon, which 
binds the price X’ to JR.com’s item I. Once Mark clicks on 
it, Amazon asks him to pay X’ to JR.com, then uses a 
redirection to notify JR.com of the completion of the 
payment, which is accepted by the store.  

IV. EXPLOIT ANALYSES ON LIVE STORES 

In this section, we report our experiments on real-world 
web stores using CaaS services. The purpose of this study is 
twofold. First, we want to understand whether the 

vulnerabilities we discovered in merchant software can 
indeed be used against real online businesses, thereby 
posing a credible and imminent security threat; second, we 
hope to understand a number of aspects related to the 
exploits in real-world settings, such as how detectable the 
exploits are by regular auditing processes of the stores, how 
anonymous the attacks can be, and how various parties 
would respond to our bug reporting. To this end, we 
executed a series of exploit analyses within the ethical and 
legal boundary, as elaborated below.   
Responsible experiment design.  We carefully designed our 
evaluation strategy in order to carry out our experiments in a 
responsible manner. The entire study was conducted under 
the guidance of a lawyer at Indiana University. We strictly 
followed the principles below when performing exploits on 
real-world online stores:  (1) we performed no intrusion of 
either merchant websites or CaaS services; (2) we ensured 
that no financial damage was inflicted upon the merchants 
involved, by canceling orders when possible, returning 
items, paying for unpaid balances, or placing orders in a 
special way (e.g., making two separate orders, one with a 
lower price and the other with a higher price); (3) we 
communicated our findings to the affected organizations and 
did what we could to help them improve their systems.  Our 
responsible research effort was appreciated by these 
organizations. 

A. Experiments on live online stores 

Here we report our experiments conducted in various 
settings, ranging from open-source software on our server to 
closed-source systems on commercial websites, which 
demonstrates the credibility and pervasiveness of the threat.  

Merchants on our server. We downloaded the latest version 
of NopCommerce (1.6), purchased the up-to-date licensed 
version (5.5.4) of Interspire, and installed these programs on 
our web servers.  We also registered seller and shopper 
accounts with PayPal, Amazon Payments and Google 
Checkout. On the shopper side, we had Firefox and two 
HTTP debugging tools: Live HTTP Headers [21] and 
Fiddler [17]. Live HTTP Headers is a Firefox add-on 
capable of capturing and replaying HTTP/HTTPS traffic. 
Fiddler is a debugging proxy for intercepting and 
manipulating web traffic. Using these tools, we successfully 
executed all exploits described in Section III.   

Our merchants on a commercial website. It came with little 
surprise that all exploits we discovered worked on the 
applications hosted on our server.  However, when the same 
applications run on commercial websites, they could be 
configured differently and protected by additional security 
mechanisms. To evaluate the security threat in this more 
realistic scenario, we signed up a 15-day trial merchant 
account on BigCommerce [6], which is Interspire’s hosting 
platform. Any user can register an account on BigCommerce 
to run his/her store powered by Interspire. Our evaluation 
showed that the same exploits also succeed against our store 
hosted on this platform.  

Item Name Seller SKU  Price (in US$)  Item Description Item Weight*  * 
Note: Fields with an  are required.  Describe your item  * 
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Real merchants using Interspire and NopCommerce. All 
the security flaws reported in our analysis are related to the 
checkout and payment steps, which are only part of the 
entire purchase process. It is less clear whether end-to-end 
exploits in the real life would be caught by other fraud 
detection or account auditing procedures. In order to 
understand such end-to-end scenarios, we conducted exploit 
analyses on the following real online stores:.  

 GoodEmotionsDVD.com is a NopCommerce-powered 
store that sells over 2,000,000 DVDs/CDs of movies, 
music, and games. It supports PayPal Standard. 
Exploiting the flaw in Section III.A.1, we were able to 
purchase a DVD at a lower price (Figure 1 (A)).  We later 
paid the balance owed and notified the store and the 
developers about the exploit, and received their 
acknowledgement. 

 PrideNutrition.com is an Interspire-powered store that 
sells nutrition supplement products. Its customers include 
athletic bodybuilders, licensed sports nutritionists, and 
certified personal trainers. The website provides PayPal 
Express based checkout. We bought a bottle of Agility 
Cream for $5 less than the actual price, and received the 
shipment (Figure 1 (B)). We shared our discovery with 
the store, which expressed gratitude to our help [37]. 

 LinuxJournalStore.com is the online store of Linux 
Journal. It sells various Linux-related products, including 
T-Shirts, DVDs/CDs, magazines, and others.  The store 
uses Interspire and enables PayPal Express, so it is 
vulnerable as we discovered. This time, we targeted 
digital products, which, different from physical 
commodity, do not need shipping. Today online 
commodities are often digital, e.g., electronic documents, 
memberships, phone-card minutes and game points. They 
are made available immediately after successful 
purchases. LinuxJournalStore sells digital Linux Journals 
in addition to paper ones. It accepts PayPal Express 
payments. We were able to pay for only one issue ($5.99) 
but check out two different issues ($11.98 together), and 
successfully download them (Figure 1(C)). In reference 
[37], we present our communication with the store.  

 LuxePurses.com. Throughout our entire study, we placed 
at least 8 orders on real-world stores, including the orders 
described above and a few orders to be described later. 
Our purchase on LuxePurses was the only experience in 
which the store noticed the problematic payment. Our 
email communication is shown chronologically below: 

Email 1 from the store:  Mark, Thanks for your order. It will 
ship out later today and we'll send tracking info.  

Email 2 from the store after several hours: Hi Mark, Your 
payment via Paypal didn't complete for the full amount. The 
amount due, for this sale, was $27.15. You paid $17.41 
through Paypal, which is $9.74 short. We will be invoicing 
you, for the $9.74 balance still owing through Paypal. Once 
it is paid in full, we will ship your item. 

Email 3 from us: I've paid the owed $9.74. Thanks. 

Email 4 from the store: Thanks so much! Our tech support 
team is confused as well! Seems to not have happened with 
anyone but us! We'll ship your item out tomorrow. 

Our order number was only “#175”, which might suggest 
the low volume of the store’s sales. Such a small order 
number and the above emails seem to indicate that they 
might have spotted the payment problem manually and 
accidentally, rather than due to a regular procedure.  

Stores running closed-source proprietary software.  

 Buy.com. We performed the exploit on Buy.com twice, 
and received an alcohol tester and a charger for free 
(Figure 1  (D)(E)). We contacted their customer service on 
our purchases. Although we were explicit about our 
exploit experiments, they could not understand the 
problems with our orders from their accounting data. 
Email 4 clearly indicates that their accounting system 
indeed believes that our order of alcohol tester, which is 
priced at $5.99, was paid, even though we did not pay at 
all.  We returned the two items purchased after the refund 
period (45 days) expired to avoid being refunded, and 
continued to communicate our findings to the store.  

Email 1 from us: We explained that one of our orders, which 
costs $5.99, was unpaid, expressed the willingness of paying in 
full and provided them our credit card information. 

Email 2 from Buy.com: They misunderstood the situation, and 
sent us a generic reply explaining the possible reasons for delayed 
charging of credit cards, even though we paid through PayPal. 

Email 3 from us: I am working on e-commerce security research. 
I bumped into an unexpected security issue about Buy.com's 
PayPal payments. I appreciate if you can forward this email to 
your engineering team. The finding is regarding the order 
54348723. I placed the order in an unconventional manner (by 
reusing a previous PayPal token), which allowed me to check out 
the product without paying. I have received the product in the 
mail. Of course I will pay for it. Here is my credit card 
information [……]. Please charge my card for $5.99. 

Email 4 from Buy.com: Thank you for contacting us at Buy.com. 
Based on our records you were billed on 6/10/2010 for $5.99.

 JR.com. We successfully placed several orders for 
different items with lower prices. They all reached the 
stage of pending fulfillment/shipping, before we canceled 
them (which was possible at this stage thanks to JR.com’s 
cancellation policy). We also placed an order for a DVD 
by setting a higher price and letting the shipping happen. 
The item was successfully delivered (Figure 1 (F)).  

B. Attacker anonymity 

Our research also shows that those attacks can happen 
without disclosing the attacker’s identity. Here, we assume 
that the malicious shopper communicates through 
anonymity channels such as Tor or Anonymizer, which 
make his IP address untraceable.   

Merchant/shopper anonymity. From three supermarkets in 
two U.S. states, we bought three $25 MasterCard gift cards 
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by cash without showing any identity. We then visited the 
gift card website to register each card under “Mark Smith” 
at a random city. We confirmed that these cards were 
eligible for registering seller/buyer accounts on PayPal, 
Amazon, and Google, paying for orders, and receiving 
payments. To register these accounts, we also used fake 
identities to open a few Gmail accounts.   

Anonymity in shipping.  Purchase of digital items (e.g, 
memberships, software licenses, etc.) does not involve 
shipping, as the items become downloadable immediately 
after the payment is done. When it comes to physical items, 
the attacker needs to provide a valid postal address.   
However, the true identity of the recipient is usually not 
required: as an example, a USB driver we ordered was 
shipped to “Mark Smith” at our postal address through 
USPS. We guess that it may not be difficult for criminals to 
find addresses unlinked to them. When this happens, they 
can use fake identities to receive shipments. 

C. Bug reporting and status of fixes 

Besides communicating with the stores regarding the 
problematic purchases, we also shared technical details with 
affected stores, software vendors and CaaS service 
providers, and offered assistance to improving their 
checkout systems. We are pleased to learn that all issues 
have been fixed by vendors.  

Amazon Payments. We reported the SDK vulnerability to 
the Amazon technical team, which immediately started an 
investigation. On 9/22/2010, 15 days after our reporting, 
new SDKs were released with an Amazon Security advisory 
acknowledging us [1]. In addition, Amazon announced that 
starting from 11/1/2010, 40 days after the advisory, Amazon 
servers would stop serving the requests made by vulnerable 
SDKs. All merchants must use the new version to verify 
signatures on Amazon’s outbound messages, such as IPNs 
and redirections. Amazon also fixed the issue described in 
Section III.A.2 about Amazon Simple Pay.   

LinuxJournalStore and Interspire. We disclosed to 
LinuxJournalStore the findings on its system. The store 
immediately contacted its software vendor ― Interspire.  
Interspire developers were not able to figure out our attack 
based on their log data, so they approached us for details of 
the exploits. They recently notified us that these bugs were 
treated as top priorities, and have all been fixed in the latest 
version, and on BigCommerce.com. 

NopCommerce. We reported the NopCommerce bugs to its 
developers. They have fixed the one related to PayPal 
Standard. The other bug (i.e. about Amazon Simple Pay), 
was fixed by Amazon, as we explained above.  

Buy.com and JR.com. We notified Buy.com and JR.com, 
and recently learnt that they have fixed both issues. 

V. COMPLEXITY ANALYSIS OF CHECKOUT LOGIC  

We have analyzed individual vulnerabilities and their 
real-world consequences. It is also important to study these 

instances as a class in order to understand the complexity of 
the overall problem in this space and obtain some 
quantitative measurements of the logic complexity.  

A. The problem 
We are interested in answering the following question:  

how complex is it for the developer of merchant software to 
detect program logic flaws that can be exploited by the 
malicious shopper to violate the payment completion 
invariant? We are particularly interested in exploits that 
induce inconsistencies between the transaction states 
perceived by the merchant and the CaaS. It is important to 
note that our focus is on program logic flaws, which are 
more design fallacies than coding flaws. This aspect 
distinguishes these flaws from vulnerabilities specific to 
programming languages (e.g., buffer overrun and cross-site 
scripting), operating systems and cryptographic primitives. 

We consider an adversary whose only channels to 
interact with the merchant and the CaaS are the exposed 
web APIs. The adversary can invoke these APIs in an 
arbitrary order, set argument values for his calls at will, sign 
messages with his own signature, and memorize messages 
received from other parties to replay later, as long as the 
following rules are respected: 

(1) The attacker is a registered customer of the merchant, and 
owns a payer account and a payee account on the CaaS; 
(2) An API argument signed or under other integrity 
protection cannot be modified by other parties; 
(3) The syntax of each API function must be followed. 

The attacker being a web API caller implies that it does 
not have to behave like a normal browser, but can act as a 
merchant, a CaaS or any other entity that communicates 
through HTTPS. To understand the complexity of finding 
vulnerabilities exploitable by such an adversary, we 
conducted a formal reasoning study about Interspire’s 
checkout logic, as reported in the rest of this section.   

B. Modeling a subset of Interspire’s logic  

To investigate Interspire’s logic for handling the four 
payment methods described in Section III.B, we first 
extracted a model from Interspire’s source code 
corresponding to these handlers, then checked them against 
the payment-completion invariant using Poirot [30], an 
automatic verification tool that performs verification-
condition (VC) generation and theorem proving.  

Because the logic flaws that we focus on are language 
independent, our modeling language does not have to be a 
web programming language, such as HTML, JavaScript, 
ASP.NET or PHP, as long as it accurately preserves the  
program logic. Currently, our model is a program expressed 
in C language, which models the interactions between the 
merchant, the CaaS, and the malicious shopper: the three 
real-world parties are three modules in our program. The 
source code and full details for reproducing our results are 
given in [38]. Its components are illustrated in Figure 11.  
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Figure 11: Concrete and symbolic models 

Merchant and CaaS. The portion for modeling the 
merchant and the CaaS contains 506 lines of code. Table IV 
shows how certain key concepts of the actual application are 
modeled in our program. 

TABLE IV.  REAL-WORLD CONCEPTS MAPPED TO OUR MODEL 

In actual systems  In our model 
Merchant and CaaS servers Merchant and CaaS modules 
Web APIs Functions annotated as wAPIs 
URLs Function or function pointers 
HTTP round-trips (RTs) Function calls 
Signed message fields Variables of type SignedObject 

The merchant module in our program was directly 
transformed from the source code of Interspire, with the 
program elements in the original code replaced with the C 
code according to Table IV. In the absence of the source 
code on the CaaS side, we built its module based upon the 
specifications of its APIs, with a focus on the security-
related call arguments and other parameters as described in 
Section III.B. We also emulated the signing operation on 
API arguments using a special type SignedObject, 
which describes a signed data item with a pair of fields, Obj 
and signer. To indicate the item is signed, its content was 
copied into Obj, and the signing party was recorded in 
signer. This “signing” of course has no cryptographic 
strength, but since we only want to examine the program 
logic, this is sufficient for our definition of the payment-
completion invariant, which is: 

 If the attacker is not allowed to create any 
SignedObject bearing the signer field TargetStore or 
CaaS, and can only call the functions annotated as wAPIs, is it 
always true that whenever an order is marked PAID, there is 
always a corresponding correct payment completed in CaaS? 
(We will explain what constitutes “a corresponding correct 
payment”  later.)  

The attacker. In the C program, we implemented two 
attacker modules, one concrete and one symbolic. The 
concrete module was compiled together with the code for 
the merchant and the CaaS to generate a normal executable. 
It executed normal checkouts as well as all the attacks 
described in Section III.B. This was used to perform a sanity 
check on our model, including the functionalities of the 
merchant and the CaaS, and all the exploits we discovered. 

The symbolic module was to analyze the complexity of 
finding logic flaws. It is sketched in Table V.  

TABLE V.  A SKETCH OF THE SYMBOLIC ATTACKER CODE 

#include “MerchantAndCaaS.h” 
typedef struct  
       { SignedObject * msg;  int msgType; } Knowledge;

Knowledge[100]  Knowledgebase;  
void main() {       while (1)  call_a_wAPI(nonDet()); 
} 
void call_a_wAPI (int  wAPI_ID) { 
   switch (wAPI_ID) {        //we have modeled 10 wAPIs 
case 1:      /*call placeOrder(), see RT1.a of Figure 8 */ 
      paymentType=nonDet(); 
      Merchant_placeOrder(paymentType); 

           break; 
case 2:   /*call paypal’s stdPay() , see RT2.a of Figure 8 */ 
    orderID= nonDet();   gross= nonDet ();   recipient= nonDet (); 
    if   (nonDet ())  IPNHandler= TargetStore_PPLStdIPNHandler; 
                      else  IPNHandler= Attacker_PPLStdIPNHandler; 

         PPLStd_MakePayment(orderID,gross,recipient,IPNHandler); 
         break; … 
case 10: … 
} 

} 
wAPI void Attacker_PPLStdIPNHandler(SignedObject * obj) {  
     //handling RT2.a.a of Figure 9 
     addToKnowledgebase(obj, PPLStdIPN); 
}  … 

The idea is to let the attacker, i.e., the malicious 
shopper, repeatedly invoke the wAPI functions (emulated 
web APIs) on the merchant and the CaaS modules, using 
symbolic arguments, which was assigned the non-
deterministic value “nonDet()”. The symbolic attacker was 
compiled by Poirot to analyze for violations of the payment-
completion invariant. As illustrated in Table V, the whole 
attacker module is organized as an infinite loop: each 
iteration uses call_a_wAPI(nonDet()) to non-
deterministically select a web API to call. Inside the 
implementation of call_a_wAPI, we also assign 
symbolic values to arguments of each wAPI. For example, 
consider the code under case 2 in Table V, which is used to 
call the API https://paypal/stdPay (See RT2.a in Figure 8). 
Some arguments of the call, including orderID, gross 
and recipient, are directly assigned symbolic values, 
while the value of IPNHandler, which can be either 
PayPal’s handler or the attacker’s, are chosen according to a 
symbolic value. Once all the arguments are set, the attacker 
calls MakePayment of PayPal Standard. 

When the attacker module gets return values of wAPI 
calls (or its own wAPIs are called), it simply ignores the 
return values (or the argument values of incoming calls) if 
the values do not carry any signed data; otherwise (e.g., in 
the attacker function Attacker_PPLStdIPNHandler), 
it only needs is to record the signed data for later use. Note 
that in the current pseudo code, we define the return type 
void, which omits possibilities of exploiting bugs by 
sending error responses (e.g., RT2.a.b is not OK). In a 
more faithful model that aims at covering the error handling 
logic, the function should return a nondeterministic value.    

C. Automatic verification 

Poirot first compiles the symbolic model (consisting of 
the symbolic attacker along with the concrete merchant and 
CaaS) into an intermediate language, generates a 
verification condition (VC) based on the payment-

merchant 
(concrete) 

CaaS servicing the 
four payment 
methods (concrete) 

Attacker
 (symbolic)

Attacker 
 (concrete) 

Concrete model: an executable. 
Symbolic model: a VC generated by the Poirot compiler.
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completion invariant, then verifies the VC by a theorem 
prover. As mentioned earlier, the invariant requires that 
whenever an order is changed to the PAID state, there 
should be a “corresponding correct payment” record in the 
CaaS. This is interpreted in our current implementation as 
the situation when the gross of the payment matches the 
order’s gross, its payee is the merchant, and its record is not 
matched by that of any previous order. Note that this 
invariant is only a necessary-yet-insufficient condition for a 
secure checkout:  particularly, the invariant does not bind a 
product (an item) to the merchant who owns it, and as a 
result, exploits like the one that happens to JR.com could 
not be discovered. Nevertheless, our study reveals a lower-
bound of the complexity for verifying the model.    

By setting how many times Poirot should unroll the 
loop in function main(), we can control the depth of 
Poirot’s search effort. We call this setting the bound. Bound 
x means that Poirot only considers all the execution paths 
that contain x or less web API calls. 

Finding attacks. We ran Poirot on our model to 
automatically analyze all four payment methods that we 
studied manually. By setting the bound to 6, Poirot captured 
all the logic flaws discussed in Section III.B. The analyses 
took 355, 328, 381 and 330 seconds for PayPal Standard, 
PayPal Express, Amazon Simple Pay and Google Checkout.   

It is particularly interesting that our analysis also 
discovered new and more efficient attack avenues. For 
example, we thought that the attack on Interspire’s PayPal 
Express (Section III.B.1) must be launched through two 
sessions (e.g., through IE and Firefox as described in the 
section); the attack instance reported by Poirot, however, 
only needed one session. More specifically, the attacker first 
did exactly the same steps for the expensive item as in the 
two-session attack, and held RT3.b. Then in the same 
session, he could do all the steps for the cheap item, and 
held RT4.a. As the last step, he copied-and-pasted the 
signed orderID2T* from RT3.b into  RT4.a, and sent it to 
finish the checkout. We performed this new attack on the 
real Interspire executable, which was found to work exactly 
as indicated by the tool. It demonstrates that the formal 
reasoning approach seems promising in getting insights 
about the program logic that we focus on.   

Empirical analysis of the complexity. We hypothetically 
fixed the logic flaws in the model, so that we can measure 
the complexity of each bounded verification, i.e., to verify 
no attack possibility within each bound. Table VI gives two 
complexity metrics: the number of conflicts the theorem 
prover encountered and the total time for verification, in the 
shaded rows and the clear rows, respectively. When a 
theorem is being proved, there are many Boolean decisions 
to explore. For each decision point, the theorem prover takes 
one branch and goes deeper into the search. A conflict 
happens when the theorem prover needs to backtrack and 
take the second branch of the decision point. Conflicts are 
the most important reason for the state explosion in the 
search; therefore, the number of conflicts is a good indicator 

of the complexity of verification3. The time measures were 
based on our PC specification: Intel Core 2 Duo CPU 3.00 
GHz, 4GB memory, 80GB hard disk.    

Table VI shows that both metrics increase significantly 
with the bound. For bound 7, most verifications encountered 
out-of-memory errors (OOM). The last row is for the 
verification of the APIs for all four payment methods. This 
best reflects the complexity in the actual implementation of 
Interspire, which currently has no mechanism to prevent the 
attacker from calling all APIs that belong to all payment 
methods. In this scenario, the verification for bound 6 
already ended with an OOM. 

TABLE VI.  NUMBER OF CONFLICTS AND TIME FOR EACH BOUND  
 1 2 3 4 5 6 7 

PayPal Standard 
Total time in seconds 

167 574 1.3K 4.4K 42K 574K OOM
15.2 48 103 253 385 3645 OOM 

PayPal Express 
Total time in seconds 

33 247 595 1.3K 4.1K 29K 229K
16.1 42 85 145 225 379 1492 

Google Checkout 
Total time in seconds 

120 479 1K 3.2K 26K 324K OOM
14.9 44 92 156 302 2295 OOM 

Amazon Simple Pay
Total time in seconds 

123 523 1.3K 6K 74K 1636K OOM
14.5 49 113 193 476 15113 OOM 

All APIs
Total time in seconds 

567 1.7K 4.5K 74K 2313K OOM OOM
21.5 156 258 926 17384 OOM OOM 

D. Implications of the complexity analysis results 
Our measurement data seem to indicate a few 

interesting points for developers:  
1) Automatic verification is necessary. On one hand, tools 

exist today to find flaws in extracted logic models, as we 
empirically demonstrated. On the other hand, manual 
verification of its security is really hard. Hundreds of 
thousands of backtracks in the reasoning process are 
involved, well beyond what human brains can handle. 

2) Application developers should help lower the complexity 
so that higher confidence can be achieved by bounded 
verifications. Currently, bound 6 is often the limit of our 
machine’s computational power for individual payment 
methods, and bound 5 is the limit for all payment methods 
together. However, many of our known attacks already 
take 5 or 6 steps to accomplish, so the “margin of safety” 
is too small. We believe that some efforts can be taken by 
developers to lower the logic complexity, and thus to 
increase the margin of safety. For example, the payment 
methods should be strictly separated at runtime so that 
static verification only deals with each payment method 
individually. Also, annotating the code with pre- and 
post-conditions would make verifications much easier.  

VI. PAYMENT PROTOCOLS VS. PAYMENT APIS 
Secure payment protocols have been studied for a long 

time. Early efforts can be traced back to the dawn of the 
Internet age. Examples of these protocols include iKP of 
IBM and STT of Microsoft/Visa [18], as well as a number of 

                                                            
3 Poirot’s runtime is proportional to the number of conflicts and the work 
done per conflict in theory reasoning. The explosive growth in the number 
of conflicts leads us to believe that the cost of theory reasoning is dwarfed 
by the cost of the backtracking search. 
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digital cash protocols.  Among them, the most well known 
is perhaps Secure Electronic Transaction (SET) [39] 
proposed by Visa and MasterCard, in collaboration with 
GTE, IBM, Microsoft, Netscape, RSA and VeriSign. The 
security properties of this protocol were partially checked 
through formal verification by many researchers, including 
Bolignano [10], Lu et al [23], Meadows et al [25] and others.  
Formal analyses [19] were also performed on other payment 
protocols, such as NetBill [13] and DigiCash [11]. 

However, to the best of our knowledge, none of these 
protocols was deployed on the Internet and used by real-
world e-commerce systems. The technologies that are 
actually adopted by today’s e-commerce are web services 
like PayPal, Amazon Payments and Google Checkout, 
which are never referred to as “payment protocols”.  Indeed 
they are not protocols – they are APIs with proprietary 
implementations and public interfaces, accompanied by the 
developer’s guides and sample code. Compared with 
protocols, which clearly specify the actions different parties 
are supposed to take, the ways these APIs are used are less 
rigorously defined, thus offering flexibility to their callers. 
Presumably, the flexibility contributed to the programmer 
friendliness and thus the popularity of these payment APIs. 
However, it leaves the security of today’s checkout systems 
contingent upon the merchant-side program logic, which is 
less disciplined. How to securely call APIs has always been 
a challenge in programming, not specific to web APIs. For 
example, strcpy and setuid in C are notoriously difficult to 
call securely. In this sense, it is not a surprise that CaaS 
APIs leave plenty of rooms for logic bugs in web stores.  

Perhaps our work suggests that it is worthwhile to 
revisit the possibility of payment protocols, assuming that 
lessons have been learned from the unsuccessful adoptions 
of the techniques. Of course, the effectiveness of a protocol 
adoption should be put in perspective. After all, security of a 
theoretically-proven protocol often depends on many factors 
in real systems. First, its incorrect implementation could 
bring in security bugs.  Also the assumptions underlying its 
design can be totally different from actual operational 
settings. As an example, the designer of a protocol could 
ignore the facts that anybody (essentially with no real 
identity) is eligible to be a seller, or a real-world system 
actually needs to operate in concurrent HTTP sessions 
(Section III.B.1). Finally, security of the whole system is 
also contingent on how the payment module interacts with 
other modules, e.g., bugs could exist if the state of a 
shopping cart can be changed during the payment 
processing (Section III.B.3), or the order ID is retrieved 
from a client cookie (Section III.B.2). 

We believe an important contribution of our work is 
that it provokes a soul searching in both academia and the e-
commerce industry on the prior effort on building a secure 
and usable payment system, which should preserve APIs’ 
flexibility, and achieve formally verified security guarantee.  

VII. RELATED WORK 

Technologies on security protocol verification. For 
decades, techniques for verifying protocols’ security 
properties have been the focus of many studies. Classic 
approaches can be grouped into two categories, according to 
Millen [26]. The first category is based on an algebraic 
model defined by Dolev and Yao [14]. Prominent examples 
of these techniques include Interrogator [26] and NRL 
Protocol Analyzer [24][15], in which protocol flaws are 
identified through searching a protocol’s state space for the 
paths that lead to insecure states. They were successfully 
applied to detect previously unknown bugs in security 
protocols. The second category is based on an axiomatic 
system about protocol participants’ beliefs, as formalized by 
Burrows, Abadi and Needham (a.k.a. BAN logic) [7]. The 
BAN logic is believed to be more limited than the Dolev-
Yao model, but it is decidable. The approach was applied on 
a number of protocols, such as Kerberos, Needham-
Schroeder public-key protocol, CCITT X.509, etc. It is 
worth noting that despite its proof, the Needham-Schroeder 
public-key protocol was later found vulnerable by Lowe 
under the man-in-the-middle assumption [22]. The field of 
protocol verification has been advanced significantly over 
years. Abadi’s recent tutorial [2] covers many techniques. 
Some may not fit very well into Millen’s classification, such 
as the approaches based on type systems [4].   

Research has also been conducted on analyzing other 
security protocols, e.g., fairness and verifiability [33] of a 
contract signing protocol [3]. TulaFale is a specification 
language to describe SOAP-based protocols and thus to 
enable formal checking of security properties for web 
services [5]. 

Security issues in e-commerce. Security weaknesses and 
flaws in e-commerce technologies were discussed in various 
sources. Price manipulation bugs existed in some early 
shopping cart implementations, as reported in [32] and [27], 
which used the cart total stored in a browser cookie to 
generate the order. We found that today’s leading shopping 
carts, e.g., every cart that we studied, could not be similarly 
attacked. Another shopping cart bug was reported in [9]. It 
allowed items to have negative quantities.  

Also worth mentioning is a new payment protocol 3D-
Secure, which is promoted by Visa and also adopted by 
MasterCard. It is marketed under the names Verified By 
Visa and MasterCard SecureCode. A main goal is to protect 
a credit card with a password to foil card-not-present attacks 
(e.g., using a stolen card number). Murdoch and Anderson 
discussed a set of weaknesses in 3D Secure [28], e.g., GUI 
design, registration procedure, privacy protections.    

Technologies addressing web application logic bugs. 
Researchers have shown increased attention to logic bugs in 
web applications. The proposed technologies fall in two 
categories: (1) those helping avoid logic bugs in new 
applications (a.k.a., the secure-by-construction approach); (2) 
those finding logic bugs in legacy applications.  
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Examples of the technologies in category 1 include 
Swift [12] and Ripley [36]. They are both built upon 
distributing compilers, such as Google Web Toolkit and 
Microsoft Volta, which automatically partition a single web 
program between the server and the client. Swift views the 
security task as a “logic placement” problem. To tackle it, 
Swift allows the developers to annotate the source code for 
security requirements so that it can perform information 
flow analysis to decide what logic can be securely placed on 
the client side. Ripley views the task as a logic replication 
problem: it runs a server-side replica of the client-side logic 
so that tampering with the client would result in 
inconsistencies between the client and the replica. 
Technologies in category 2 for legacy applications include 
NoTamper [9] and Waler [16]. NoTamper detects parameter 
validation bugs by finding conditions checked only by the 
client logic but not the server logic. Waler is a technology to 
generate likely-invariants based on runtime traces, and 
checks the likely-invariants against the source code.  

The aforementioned technologies addresses logic bugs 
in web applications architected as client-server or client-
frontend-backend. Our work explicitly focuses on websites 
integrating third party web APIs. The logic bugs appear to 
be more elusive in this new context.  

VIII. CONCLUSIONS AND FUTURE WORK 

We presented our analysis for Caas-based web stores, 
as an example of security challenges in third-party service 
integration. We found serious logic flaws in leading 
merchant applications, popular online stores and a CaaS 
provider (i.e., Amazon Payments), which can be exploited 
to cause inconsistencies between the states of the CaaS and 
the merchant. As a result, a malicious shopper can purchase 
an item at a lower price, shop for free after paying for one 
item and even avoid payment. We reported our findings to 
the affected parties and received their acknowledgements. 
Our further analysis revealed the logic complexity in CaaS-
based checkout mechanisms, and the effort required to 
verify their security property when developing and testing 
these systems. 

We believe that our study takes the first step in the new 
security problem space that hybrid web applications bring to 
us. Even for the security analyses of merchant applications, 
we have just scratched the surface, leaving many intriguing 
functionalities (e.g., cancel, return, subscription, auction, 
and marketplace) unstudied. An interesting question might 
be, for example, whether we can check out a $1 order and a 
$10 order, and cancel the $1 order to get $10 refunded.  We 
are also considering the security challenges that come with 
web service integrations in other scenarios, e.g., social 
networks and web authentication services. Fundamentally, 
we believe that the emergence of this new web 
programming paradigm demands new research efforts on 
ensuring the security quality of the systems it produces. 
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