
1

How to Shop for Free Online
Security Analysis of Cashier-as-a-Service Based Web Stores

Rui Wang1, Shuo Chen2, XiaoFeng Wang1, Shaz Qadeer2
1 Indiana University Bloomington

Bloomington, IN, USA
[wang63, xw7]@indiana.edu

2 Microsoft Research
Redmond, WA, USA

[shuochen, qadeer]@microsoft.com

Abstract— Web applications increasingly integrate third-party
services. The integration introduces new security challenges
due to the complexity for an application to coordinate its
internal states with those of the component services and the
web client across the Internet. In this paper, we study the
security implications of this problem to merchant websites that
accept payments through third-party cashiers (e.g., PayPal,
Amazon Payments and Google Checkout), which we refer to as
Cashier-as-a-Service or CaaS. We found that leading merchant
applications (e.g., NopCommerce and Interspire), popular
online stores (e.g., Buy.com and JR.com) and a prestigious
CaaS provider (Amazon Payments) all contain serious logic
flaws that can be exploited to cause inconsistencies between the
states of the CaaS and the merchant. As a result, a malicious
shopper can purchase an item at an arbitrarily low price, shop
for free after paying for one item, or even avoid payment. We
reported our findings to the affected parties. They have all
been fixed by vendors. We further studied the complexity in
finding this type of logic flaws in typical CaaS-based checkout
systems, and gained a preliminary understanding of the effort
that needs to be made to improve the security assurance of
such systems during their development and testing processes.

Keywords- e-Commerce security; web API; Cashier-as-a-
Service; logic bug; program verification

I. INTRODUCTION

Progress in web technologies has led to rapid growth of
hybrid web applications that combine the Application
Programming Interfaces (APIs) of multiple web services
(e.g., search APIs, map APIs, payment APIs, etc.) into
integrated services like personal financial data aggregations
and online shopping websites. The pervasiveness of these
applications, however, brings in new security concerns. The
web programming paradigm is already under threat from
malicious web clients that exploit logic flaws caused by
improper distribution of the application functionality
between the client and the server (e.g., relying on client
logic to validate user privileges). The program logic of a
hybrid web application is further complicated by the need to
securely coordinate different web services that it integrates:
failing to do so leaves the door wide open for attackers to
violate security invariants by inducing inconsistencies
among these services.

As an example, consider an online merchant integrated
with the Amazon Payments service. The shopper’s browser
communicates with the merchant server to place an order,
and with an Amazon server to make a payment. If the
interactions between the two servers are not well thought
out, the shopper may be able to shop for free. For instance,
we discovered a real flaw where the merchant is convinced

that the order has been paid for in full through Amazon
while the payment has actually been made to the shopper’s
own Amazon seller account.

Intuitively, logic bugs related to multiple web services
can be much more difficult to avoid than those in traditional
single-service web applications – it is analogous to real-life
experiences that when multiple parties discuss a subject by
making individual one-on-one phone calls, it is generally
difficult for each party to comprehend the whole picture. An
honest party may say something out of context, or fail to
understand another honest party’s assumptions and
reasoning, so a cheater is more likely to succeed in this
situation than in a two-party conversation between the
cheater and the only honest party. We will show many
concrete findings to support this intuition.

Cashier-as-a-Service based checkout. As a first step
towards understanding the security implications of multi-
party web applications, we studied a category of online
merchant applications that adopt third-party cashier services
such as PayPal, Amazon Payments and Google Checkout.
These cashier services, which we call Cashier-as-a-Service
or simply CaaS, play a crucial role in today’s e-commerce,
since they act as a trusted third party that enables mutually
distrustful parties to do business with each other. A CaaS
can collect the payment of a purchase from the shopper and
inform the merchant of the completion of the payment
without revealing the shopper’s sensitive data like a credit
card number. A study showed that 59% of U.S. online
shoppers would be more likely to buy in web stores that
accept CaaS payment methods [8].

During a checkout process, communications happen
between the CaaS and the merchant, as well as between
these two services and the web client controlled by the
shopper. This trilateral interaction is meant to coordinate the
internal states of the merchant and the CaaS, since either
party has only a partial view of the entire transaction.
Unfortunately, the trilateral interaction can be significantly
more complicated than typical bilateral interactions between
a browser and a server, as in traditional web applications,
which have already been found to be fraught with subtle
logic bugs [9][12][16][36]. Therefore, we believe that in the
presence of a malicious shopper who intends to exploit
knowledge gaps between the merchant and the CaaS, it is
difficult to ensure security of a CaaS-based checkout system.

Our work. The aforementioned concern turns out to be well-
grounded in the real world. We conducted a systematic
study of representative merchant software/websites that use
the cashier services of PayPal, Amazon Payments and

2

Google Checkout. Our study revealed numerous security-
related logic flaws in a variety of merchant systems, ranging
from a high-quality open source software (NopCommerce
[29]), to a leading commodity application (Interspire [20]),
to high-profile merchant websites powered by closed-source
proprietary software such as Buy.com and JR.com. Our
attacker model is fairly simple – the attacker is a malicious
shopper whose only capability is to call the web APIs
exposed by the merchant and the CaaS websites in an
arbitrary order with arbitrary argument values. We will
show that everyone who has a computer and a small amount
of cash (e.g., $25) is a qualified attacker. By exploiting the
logic flaws, a malicious shopper is able to purchase at an
arbitrarily-set price, shop for free after paying for one item,
or even avoid payment.

To examine whether these logic flaws pose an
imminent threat to e-commerce, we performed a responsibly
designed exploit analysis on real web stores, including
leading e-commerce websites such as Buy.com, and
successfully checked out various items through exploiting
these flaws. Figure 1 shows some of the items that were
delivered to us, which included both physical and
digital/downloadable commodities. This study was closely
advised by a lawyer of our institution and conducted in a
responsible manner, as elaborated in Section IV.

 (A) DVD (B) agility cream (C) digital journals

 (D) alcohol tester (E) charger (F) DVD

Figure 1: some received items and their shipping packages

While most of the logic flaws are due to lapses in the
merchant software, we were surprised to find that well-
known CaaS providers also need to shoulder responsibility:
in particular, a serious error that we discovered in a set of
Amazon Payments’ SDKs has caused Amazon to
significantly alter the way for verifying its payment
notifications. We have reported our findings to all the
affected parties, who acknowledged the significance of the
findings and expressed gratitude for our help. We post part
of our communications with them in [37].

To understand how complicated it is to ensure the
absence of logic flaws in real-world CaaS-based checkout
processes, we performed a formal verification study on a
subset of Interspire’s source code. We checked an invariant
that is a conjunction of a series of bindings between order

information and payment information. The outcomes turned
out to be mixed: on one hand, formal methods did
demonstrate their potential to address such a threat – they
not only revealed all the flaws that we manually identified
from the source code, but also new attacks that we did not
expect. On the other hand, the complexity in the current
checkout logic made even the state-of-the-art verifier hard
to rule out the existence of potential logic flaws that can be
exploited by more complicated attacks (with API-call
sequences longer than what the current tool can explore).
This suggests that little “margin of safety” can be offered by
existing techniques for the exploits we discovered.

We view this work as a preliminary study that only
touched relatively simple trilateral interactions, while other
real-world applications may involve more parties (e.g., in
marketplace and auction scenarios), and therefore can be
more error-prone. This calls for further security studies
about such complicated multi-party web applications.

Contributions. Our contributions are summarized as follows:
 In-depth security analysis of real-world CaaS-based

checkout systems. We performed the first systematic
analysis of the security-related logic flaws in hybrid web
applications. Our work discovers numerous security flaws
in many representative checkout systems and demonstrates
practical attacks that can happen to them. This suggests that
there is inherent complexity in securely integrating multiple
web services in a web application.
 A preliminary analysis of the complexity of finding

logic flaws in these systems. We extracted the logic model
from Interspire and analyzed it with a state-of-the-art
verification-condition checker. From the study, we gained a
preliminary but quantitative understanding of the inherent
logic complexity of CaaS-based checkout systems.

II. BACKGROUND

A. Introduction to checkout workflows
Figure 2 shows some typical steps in a CaaS-based

checkout. It starts when the button on page A of the
merchant website (e.g., Buy.com) is clicked. In the figure,
the button is “Check out with PayPal”, so the click directs
the shopper’s browser to page B on PayPal (i.e., the CaaS),
where he can click the “Pay Now” button to pay. Then, the
shopper’s browser is redirected back to the merchant’s
website to finish the order, which usually does not require
the shopper’s actions. Finally, the shopper gets the
confirmation page C. The checkout process is arranged in
this way to ensure that all three parties – the shopper, the
CaaS, and the merchant, stay consistent despite their
different locations across the Internet.

Figure 2: some steps in a checkout workflow

 xxxxxxxxx $89.95

Thanks for your order!
View your order

 Pay Now

 $89.95
Description Amount

 Items Qty Total

Remove

(A) click to place an order (B) click to pay in the CaaS (C) confirmation

3

What happens behind the scene here are HTTP
interactions between the three parties, who communicate by
calling web APIs exposed by the merchant and the CaaS.
Such APIs are essentially dynamic web pages (denoted by
diamond-shaped symbols in Figure 3), and are invoked
through HTTP requests: the client sends an HTTP request
through a URL with a list of arguments and receives an
HTTP response (often a web page) dynamically constructed
by the server as the outcome of the call. Throughout this
paper, we refer to such a request/response pair as an HTTP
round-trip or RT. In Figure 3, an RT is illustrated as a U-
shaped curve, with its request arm labeled by the suffix “.a”
and its response by “.b”. The order in which different
requests/responses happen is specified by both the numeric
order of their corresponding RT labels and the dictionary
order of their suffixes: for example, RT1.b comes before
RT2.a but after RT1.a.a and RT1.a.b, and these last two
messages are preceded by RT1.a, i.e., RT1.a → RT1.a.a →
RT1.a.b→ RT1.b. Note that RT1.a.a is sent by the merchant
during the handling of RT1.a, so RT1.a.a is not just
chronologically after RT1.a, but causally depends on it.
There is similar causality between RT2.a.a and RT2.a.

Figure 3: Web APIs and HTTP round-trips (RTs)

In the figure, RT1 and RT3 enable the shopper to
invoke the APIs on the merchant and receive the responses.
For example, RT1.a can be set off by a button click on page
A in Figure 2, and RT3.b can carry the confirmation
response (page C). RT2.a can be an API call to make a
payment on the CaaS. It is sent when the “Pay Now” button
on page B of Figure 2 is clicked. Moreover, RT1.a.a and
RT2.a.a are sent by the merchant and the CaaS respectively
to coordinate the state of the transaction with the other party.
RT4 and RT5 will be explained later. These RTs serve as
the building blocks for the workflows of various checkout
solutions offered by different CaaS service providers
(Amazon, PayPal, and Google). Some of the solutions, such
as PayPal Standard and Amazon Simple Pay, are entirely
based upon HTML, while the others, like PayPal Express
and Checkout By Amazon, implement SOAP and NVP APIs.

We are not concerned with a network man-in-the-
middle adversary intercepting RTs, because the checkout
modules of all merchants and CaaS websites communicate
exclusively over HTTPS to guarantee end-to-end security.

B. Challenges in securing checkout processes

To understand the nature of security threats that CaaS-
based checkout systems are facing, the first step is to

identify the security goal of these systems and the technical
challenges in achieving it, which are described below.

Security invariant. The main security goal of a
checkout system is to maintain the following payment-
completion invariant: Merchant M changes the status of an
item I to “paid” with regard to a purchase being made by
Shopper S if and only if (1) M owns I; (2) a payment is
guaranteed to be transferred from an account of S to that of
M in the CaaS; (3) the payment is for the purchase of I, and
it is valid for only one piece of I; (4) the amount of this
payment is equal to the price of I. This invariant, though
intuitive, implies a set of intertwined binding relations that
should be respected in every step of the transaction. These
bindings unequivocally link the merchant to a piece of the
item being sold, the price of the item to the payment the
merchant receives, and the payment for this specific
purchase to the shopper.

Complexity in preserving the invariant. To achieve
this security goal, a checkout system is expected to preserve
the aforementioned invariant throughout a transaction. This
turns out to be nontrivial, particularly in the presence of two
web services. Specifically, the challenges in keeping both
servers in consistent states include, but are not limited to,
the following:

 Confusion in coordination. Given their incomplete
views of a transaction, the merchant and the CaaS need to
work together to preserve the invariant. This, however, is
often hindered by the partial knowledge each party has
about the other: the code of their systems is often off-limits
to each other; the CaaS typically provides nothing but vague
descriptions of its operations. As a result, misunderstanding
often arises on the security assurance either party offers. For
example, a merchant may assume that every notification of
a payment completion from the CaaS must be about one of
his transactions, but the CaaS may not have this guarantee
and may expect a merchant to verify it by itself, as we show
in Section III.A.2.

 Diversity in the adversary’s roles. The merchant
and the CaaS expose their APIs to the public, which enables
the adversary to play more diverse roles than just the
shopper, and thus to gain a deeper involvement in the
checkout process than he could in a more traditional client-
server interaction. The shopper can directly invoke a
merchant’s APIs such as RT4 in Figure 3, which mimics the
behavior of the CaaS; the shopper can also mimic a
merchant to register with the CaaS a callback API, which
will later be called, as illustrated by RT5.

 Parallel and concurrent services. Both the
merchant website and the CaaS need to serve many
customers, and a shopper can concurrently invoke multiple
purchase transactions. This further complicates the trilateral
interactions, opening avenues for cross-transaction attacks.

 Authentication and data integrity. Compared with
the two-party web applications, authentication in a CaaS-
based checkout system involves three parties and is thus

CaaS

Target store (merchant)

RT1.b

RT2.a

RT2.b

RT2.a.a RT2.a.b RT4.b

RT4.a

RT1.a.b

RT5.a

RT5.b

RT1.a

RT3.a

RT3.b

Shopper/
Attacker

RT1.a.a

4

more difficult in avoiding authentication and data integrity
breaches. For example, we found that the integrity of each
message field is not a big issue, but how to protect the
bindings of the fields in different messages deserves careful
thought processes and is the real pitfall.

In the next section, we show how real-world systems
fail to answer to these challenges, indicating the urgent need
to study the systematic solution to this problem.

III. SECURITY ANALYSIS OF REAL-WORLD MERCHANT

APPLICATIONS AND CAAS SERVICES

In this section, we report our analysis of two popular
merchant applications: NopCommerce [29] and Interspire
[20], and their interactions with leading CaaS providers:
PayPal, Amazon Payments and Google Checkout. Based on
the insights from the study, we further probed for logic
flaws in stores that run closed-source proprietary software.

Methodology. Our analysis follows an API-oriented
methodology that dissects a checkout workflow by closely
examining how individual parties can affect the arguments
of the web API calls exchanged between them, and how
these arguments affect the internal states of these parties.
Some arguments of a web API carry the data flows between
two parties, e.g. gross, merchantID, while others touch
on their control flows, e.g., returnURL, cancelURL,
and callback URLs that play a similar role to that of a return
address or a function pointer in C/C++ programs. These
arguments may not originate from the party that initiates the
call. For example, the CaaS may use some data supplied by
the shopper to communicate with the merchant through
calling its APIs.

In our research, we studied whether the merchant/CaaS
interactions in a checkout system present the malicious
shopper opportunities to exert improper influence on the
API arguments exchanged between these two services. To
this end, we use a simple approach to keep track of the data
that the adversary generates or can tamper with.

Table I lists the rules for labeling and tracing such data.
Particularly, Rule (iii) makes the adversary the owner of any
unsigned value that he sends, even though the value actually
originates from other parties. All figures that we show in
this section follow these labeling rules, which help describe
the checkout workflows clearly.

TABLE I. LABELING RULES FOR API ARGUMENTS

(i) A newly generated value is labeled by its message origin – T
for the target merchant under attack, C for the CaaS that the
merchant uses, and A for the attacker/shopper;

(ii) A signed argument arg is labeled as argS*, where S is the
signing party (T, C or A). Signed arguments are passed on
across different parties without changing their origins;

(iii) Any unsigned value sent by the attacker is relabeled as A,
regardless of the origin of the value.
To make succinct figures in the paper, we represent

every URL in the following format:

 [https://]host/apiName?arg1[=value]&…&argN[=value]

We often omit the “https://” prefix because all messages
are HTTPS traffic. The string after “?” is the argument list.
Usually we omit the concrete values of the arguments, but
when a particular concrete value needs to be explicit, we
provide the name/value pair as argN=value.

Limitation: CaaS as blackbox. Currently we do not
have the source code for the CaaS side, but only the source
code on the merchant side, including the merchant software
and the CaaS’ SDKs (Software Development Kits)
compiled with the merchant software. For a CaaS service,
we could only observe its concrete inbound and outbound
messages, without knowing its internal logic, which might
have subtle flaws as well. Therefore, what we have found
only constitute a subset of the problem space.

A. Open-source software – NopCommerce

NopCommerce is the most popular .NET-based open
source merchant software [29]. It was recently nominated as
one of the best open-source e-commerce applications [34].

1) Integration of PayPal Standard – paying an arbitrary
amount in PayPal to check out from the victim

PayPal Standard is the simplest method that a merchant
website can integrate as its payment service. It is supported
by NopCommerce. Figure 4 shows the workflow.

Figure 4: NopCommerce’s integration of PayPal Standard

(Note: RT3.a.a/RT3.a.b happen after RT3.a and before RT3.b)

First, the shopper clicks on the checkout button to send
RT1.a to invoke the merchant’s API placeOrder, which
inserts the order information into a database, including the
gross amount and the order ID. Since the order is unpaid, its
status is set to PENDING. Then the merchant’s response
RT1.b passes the order information (e.g., orderID and
gross) back to the shopper and redirects his browser to the
CaaS (i.e., CaaS.com/stdPay), where the shopper pays
according to the order information that his browser passes to
the CaaS. The CaaS records the payment details and returns

RT1.a: TStore.com/placeOrder

RT3.a.a: CaaS.com/PDTDetails?tx
A
&identity

T

RT3.a.b: orderID
A
&gross

A
& …

RT2.a: CaaS.com/stdPay?orderID
A
& gross

A
& …

RT3.b: purchase done

RT1.b: redir to CaaS.com/stdPay?orderID
T
& gross

T
& …

RT3.a: TStore.com/finishOrder?tx
A
& …

RT2.b: redir to TStore.com/finishOrder?tx
C
& … CaaS.com (C)

i.e., PayPal

TStore.com
 (T)

Shopper/
Attacker

 (A)

TStore.com/placeOrder: orderID=InsertPendingOrder ()

TStore.com/finishOrder:
 tnDetails=wCall_PDTDetails(tx,identity); /*resulting in
 RT3.a.a and RT3.a.b*/
 orderID=GetOrderIDField(tnDetails);
 order=LoadOrderByID(orderID);
 if (order≠null) and (order.status==PENDING)
 order.status = PAID;

5

tx as the transaction ID for the payment in RT2.b.1 After
the payment is done, the shopper’s browser calls the
merchant API finishOrder to finalize the invoice
(RT3.a). Here we present the pseudo code of the function
to highlight the part of its functionality of interest to us.
More specifically, it makes a call to CaaS.com/PDTDetails
(i.e., RT3.a.a), using tx and an authentication field
identity, to get the payment details through RT3.a.b.
Based on OrderID in the payment details, it looks up the
order from its database. Once the order is located and its
status is found to be PENDING, the status is set to PAID
and a confirmation is sent to the shopper in RT3.b. In this
entire workflow, no message field is signed (i.e., no “*” in
any label in the figure). Security is expected through
RT3.a.a and RT3.a.b, which are between the two servers.

Flaw and exploit. From Figure 4, a logic flaw is easy to see:
the gross of the payment to CaaS is labeled as A using our
analysis method, but the logic of finishOrder does not
check the gross, which can be freely modified by the
attacker. Therefore, setting the payment gross to an arbitrary
value in RT2.a would not cause any trouble for the order to
get through all the checkout steps.

Figure 5: Jeff's paid invoice and Mark's PayPal record

To evaluate the practical feasibility of this attack, we
installed NopCommerce on a server in our lab to set up a
store for Jeff, and then registered a shopper Mark with
PayPal. Figure 5 shows Jeff’s finalized invoice and Mark’s
PayPal record. The price of the merchandise is $17.76.
Exploiting the above flaw, Mark was able to pay $1.76 to
complete the checkout. Interestingly, Jeff’s invoice actually
showed a payment of $17.76. There was no indication that
the real payment was $1.76. In Section IV.A, we report our
test of this exploit on a real store.
2) Integration of Amazon Simple Pay – paying to the

attacker himself to check out from the victim
NopCommerce also supports Amazon Simple Pay, in

which all messages after RT1.a are signed (*-labeled in
Figure 6), so the shopper cannot tamper with the messages
as in the prior example. Figure 6 shows the steps of this

1 For the simplicity of presentation, we omit a few round-trips between
RT2.a and RT2.b, which correspond to a few user clicks.

checkout method. RT1.b is used to redirect the shopper’s
browser to the payment API of the CaaS, passing orderID,
gross and returnURL as the arguments. This message is
signed by the merchant (labeled T*), so the shopper cannot
tamper with the arguments when sending RT2.a. After the
CaaS (i.e., Amazon) verifies the merchant’s signature, the
shopper makes the payment, which the CaaS records to its
database (again, we omit a few RTs in the figure). The
payee is the merchant who signs RT2.a, which, in Figure 6,
is TStore.com. Then, by RT2.b, the CaaS redirects the
shopper back to the merchant using returnURL that the
merchant supplies in RT1.b. In NopCommerce, the URL is
set to TStore.com/finishOrder for invoking the merchant
API finishOrder. The entire message of RT2.b is
signed by the CaaS, which is verified by the merchant. This
checkout procedure seems secure: in Figure 6, no data can
be contaminated by the attacker, i.e., nothing is A-labeled.

Figure 6: NopCommerce's integration of Amazon Simple Pay

Flaw and exploit. Interestingly, this integration turns out to
be vulnerable when the malicious shopper also plays the
role of a different merchant. Specifically, anyone can open a
seller account on Amazon, so can the attacker (in Section
IV.B, we show that all the attacker needs is $25 cash for
buying a MasterCard gift card from a supermarket; other
personal information like name, email and phone number
can all be faked). Suppose that the seller account is
registered under the name “Mark”. What the attacker wants
to do is to pay Mark (actually, himself) but check out an
order from a store belonging to Jeff (https://jeff.com).

The attack proceeds as follows. Acting as “Mark”, the
attacker drops RT1.b, but makes the message RT2.a by
signing it using Mark’s signature (labeled as A*):

 (CaaS.com/pay?orderID&gross&returnURL=https://jeff.com/finishOrder…)
A*

The trick here is that the message signed by A actually
carries a returnURL to Jeff (jeff.com/finishOrder). As a

RT1.a: TStore.com/placeOrder

RT2.a: (CaaS.com/pay?orderID&gross&returnURL …)
T*

RT3.b: Purchase done

RT1.b: redir to
(CaaS.com/pay?orderID&gross&returnURL …)

T*

RT2.b: redir to (returnURL
T
?payeeEmail

 C
&

status
C
=PAID&orderID

T
&gross

T
 …)

C*

RT3.a: (returnURL
T
?payeeEmail

 C
&

status
C
=PAID&orderID

T
&gross

T
…)

C*

TStore.com/placeOrder: orderID=InsertPendingOrder ()

TStore.com/finishOrder (handler of RT3.a):
 if (verifySignature(RT3.a) ≠ CaaS) exit;
 if (GetMsgField(“status”) ≠ PAID) exit; /*payment status*/
 order= GetOrderByID(orderID);
 if (order==NULL or order.status ≠ PENDING) exit;
 order.status=PAID;

CaaS.com (C)
i.e., Amazon

TStore.com
 (T)

Paid invoice of Jeff’s store Mark’s PayPal record

$17.76

$17.76

$17.76

PayPal
Standard

$1.76

$1.76

Pay to Jeff

Complete

6

result, even though Mark (the attacker A) is the party that
receives the payment, the CaaS will redirect the shopper’s
browser (RT3.a) to Jeff with a redirection to call
finishOrder: redir to
(jeff.com/finishOrder?payeeEmail&status=PAID &ordered&gross…)

C*

Although the message is indeed sent to Jeff, it is actually
about the payment that the attacker made to Mark. The logic
in finishOrder, as sketched in Figure 6, does not verify
that the payment was made to Jeff, and therefore is
convinced that the order has been paid.

Fundamentally, the problem comes from the confusion
between the merchant and the CaaS about what has been
done by the other party. An analogy can be drawn here to a
real-life scenario in which Jeff first lets the shopper forward
a signed letter to the CaaS: “Dear CaaS, this shopper should
pay $10 for order#123. When he pays, write a signed letter
to Jeff. Thanks, [Jeff’s signature]” Later, Jeff indeed
receives a response signed by the CaaS “Dear Jeff, the $10
payment for order#123 has been received. I am talking
about Mark’s order#123 (nothing to do with you). [CaaS’
signature].” There are two important aspects to the
misunderstanding that causes this security flaw. First, the
CaaS thinks that it is fine to notify Jeff of Mark’s
transaction. Second, given the context of the conversation,
Jeff believes that the response from CaaS is related to his
original letter. Therefore, Jeff only checks that certain parts
of the response (e.g., orderID, gross) match one of his
pending orders. Because of this misunderstanding, even
though all the messages between the two services are
properly signed and verified, the binding between the order
and the merchant is still broken.

Given the format of RT3.a, the only chance for Jeff to
detect the attack is to check payeeEmail. Every
merchant is required to provide an email address when
opening an Amazon seller account. The address is included
in RT2.b as part of the payment detail. Unfortunately,
neither the CaaS nor the merchant application intend to use
this email address for a security purpose: the CaaS never
spells out the need to check this information, and the
merchant software like NopCommerce and Interspire does
not even ask for the email address at installation time.

B. Commercial Software – Interspire
Interspire shopping cart is one of the leading e-

commerce applications, being used by more than 15,000
businesses across 65 countries [20]. Its hosting service,
BigCommerce [6], was rated #1 e-commerce software for
2010 and 2011 by TopTenReviews.com [35]. The license fee
of Interspire shopping cart software is $199. The source
code package is available to its licensees.

1) Integration of PayPal Express – paying for a cheap
order to check out an expensive one
Interspire incorporates over 50 payment methods of all

major CaaS providers. Its integrations of these payment
methods are typically more complex than those in
NopCommerce. A prominent example is the way it uses

PayPal Express 2 , as illustrated in Figure 7. During a
checkout, the merchant makes two calls to the CaaS. The
first one is to inform the CaaS of an upcoming payment
(RT1.a.a) with proper authentication data (identity).
The CaaS then acknowledges the message with a token
string for identifying this payment transaction, which the
merchant passes to the shopper (RT1.b). The shopper then
presents token to the CaaS, sets and confirms certain
information about the payment (again, we represent these
steps as a single step RT2.a). After that, the CaaS redirects
the shopper’s browser to the merchant API finishOrder
with token and payerID as arguments (RT2.b,
RT3.a). The code of finishOrder directly contacts the
CaaS to complete the payment (RT3.a.a), and then lets
the browser call the merchant API updateOrderStatus,
which updates the status of the order (RT3.b, RT4). Note
that some messages in this checkout process are not signed,
which is not a security weakness, as the merchant directly
verifies the data integrity with the CaaS (RT3.a.a).

Figure 7: Interspire's integration of PayPal Express

Table II presents the pseudo code of finishOrder
and updateOrderStatus. In finishOrder, the real
payment is done by calling wCall_DoExpPay, which
contacts the CaaS through RT3.a.a and RT3.a.b: if
identity and other payment information is valid, the CaaS
records the payment and returns result = SUCCESS.
This result is saved in the session variable
SESSION[“result”], a persistent variable that keeps
the state of a shopper on the merchant website throughout
his login session. At this point, the payment is complete,
and the merchant is supposed to update the status of the
order through API updateOrderStatus. Because the
browser needs to be in sync with the merchant state, the
merchant cannot directly call this merchant-side API, but
needs to redirect the shopper’s browser, passing orderID
as an argument to the API updateOrderStatus. To
prevent the shopper’s tampering, orderID is first signed

2 For the simplicity of description, we here focus on the most interesting
part of the checkout procedure, ignoring some less important details.

RT1.a: TStore.com/placeOrder

RT3.b: redir to TStore.com/updateOrderStatus?orderID
T*

RT1.b: redir to CaaS.com/pay?token
C

RT3.a: TStore.com/finishOrder?token
A
&payerID

A

RT2.a: CaaS.com/pay?token
A

RT2.b: redir to
TStore.com/finishOrder?token

C
&payerID

C

RT4.a: TStore.com/updateOrderStatus?orderID
T*

RT4.b: Purchase done

RT1.a.a: CaaS.com/SetExpCheckout?identity
T
&… RT1.a.b: token

C

RT3.a.a: CaaS.com/DoExpPay?identity
 T
&token

C
&gross

 T
 RT3.a.b: result

C

TStore.com
 (T)

CaaS.com
 (C)

7

by the merchant in finishOrder, and the signature is
later verified within updateOrderStatus. The
merchant then retrieves the order from the merchant
database using orderID, and sets the status of the order to
“PAID” if the session variable (SESSION[“result”])
of the shopper is SUCCESS.

TABLE II. finishOrder() AND updateOrderStatus()

finishOrder() {
result=wCall_DoExpPay(identity,token,gross);
 //This results in RT3.a.a and RT3.a.b
 SESSION[“result”]=result;
 signedOID=sign(orderID);
 redirect(“/updateOrderStatus?”+ signedOID);

//This results in RT3.b and RT4.a
}
updateOrderStatus() {
 Verify the signature of orderIDT* in RT4.a
 If verification fails, then exit;
 order=LoadOrderByID(orderID);
 if (SESSION[“result”]==SUCCESS)
 orderStatus=PAID;
 SESSION[“result”]=null; }

Flaw and exploit. A problem here is that as long as a
properly signed order ID can somehow get into a session in
the SUCCESS state, updateOrderStatus will mark the
order corresponding to the order ID as PAID, no matter
whether it has indeed been paid for. Therefore, once the
shopper manages to acquire a signed orderID of an
unpaid and more expensive order (denoted by orderID2),
he can replace orderIDT* in RT4.a with orderID2T*
so as to use his current session state (which is PAID) to
cheat updateOrderStatus into changing the status of
the more expensive order into PAID. This enables the
shopper to pay for a cheap item but check out an expensive
one. Here we show how this can be achieved.

We used two separate browsers, e.g., Internet Explore
and Firefox, to launch two separate login sessions. In the
first session, we selected a cheap item and followed all the
steps until RT3.b was complete, but we held RT4.a. At
this moment, SESSION[“result”] of this session had
been set to SUCCESS, since the payment was made. Then,
in the second session, we selected an expensive item, placed
the order (orderID2), but skipped RT2.a. This caused
the payment process (RT3.a.a) to fail, which was
reflected by the state of the second session. However,
finishOrder still redirected the shopper’s browser
(RT3.b) to invoke updateOrderStatus. This revealed
orderID2T* to us, so we could copy-and-paste this signed
orderID2T* into RT4.a of the first session, and sent it to
finish the checkout of the expensive item.

2) Integration of PayPal Standard – stealing a payment
notification and replaying it many times
Unlike NopCommerce’s integration of PayPal Standard

in Section III.A.1, in which the merchant calls the CaaS to
get payment details, Interspire adopts Instant Payment
Notification (IPN), an HTTP message that the CaaS uses to

notify the merchant of payment status. In Figure 8, this
message is shown as RT2.a.a, which is sent immediately
after the shopper makes the payment through RT2.a. To
use this notification method, the merchant (jeff.com) needs
to specify an IPN handler URL. Interspire embeds the URL
of the handler in RT1.b, the message that redirects the
shopper’s browser to the CaaS through RT2.a: for example,
Jeff’s store may set the handler at
https://jeff.com/handleIPN. When the CaaS invokes this
handler through RT2.a.a, it signs the argument list. The
handler verifies the signature, the order data and the
payment data in the IPN before updating the order status.
The pseudo code of handleIPN is shown in Table III.
RT3 is not very important in our discussion here.

Figure 8: Interspire’s integration of PayPal Standard

Flaw and exploit. LoadOrderByID is one of Interspire’s
heavily used utility functions. It is called in many situations,
e.g., when handling a CaaS’ request or handling a browser’s
request, therefore it is designed to be generic: when
handling a CaaS request, e.g., in handleIPN, the function
is called with an explicit orderID, as in line 1 of the code.
However, a typical request from the browser, such as
RT3.a above, does not contain the orderID field in the
request URL. In this situation, loadOrderByID(empty)
would be called, and the orderID is retrieved from a
cookie named ORDER_ID.

TABLE III. PSEUDO CODE OF handleIPN()

handleIPN() {
1: order=LoadOrderByID(orderID);
2: if (order==null || order.status≠PENDING) exit;
3: if (merchantID ≠ Jeff’s ID) exit;
4: if (gross≠order.gross || status≠PAID) exit;
5: order.status=PAID; }

loadOrderByID(orderId) {
 if (orderId is empty)
 orderId=COOKIE[‘ORDER_ID’];
 find order in database with orderId;
}

However, this generic design turns out to be
problematic in PayPal Standard’s IPN mechanism. The
attacker can first change the message RT2.a by setting its
orderID to be empty and setting IPNHandler to be

RT1.a: jeff.com/placeOrder

RT2.a.a: IPNHandler
A
?(orderID

A
&

gross
A
&merchantID

A
&status

C
)
C*

RT2.a.b: result
T

RT2.a: CaaS.com/stdPay?orderID
A
&

gross
A
&merchantID

A
&IPNHandler

A

RT3.b: display order status (not important)

RT1.b: redir to CaaS.com/stdPay?orderID
T
&

gross
T
&merchantID

T
&IPNHandler

T
…

RT3.a: jeff.com/finishOrder (not important)

RT2.b: redir to jeff.com/finishOrder

Example: IPNHandler= https://jeff.com/handleIPN

jeff.com/
handleIPN

jeff.com (T)(A)

(C)

8

https://mark.com/handleIPN. This change causes PayPal’s
IPN message to be delivered to him via RT2.a.a, as
illustrated in Figure 9.

Figure 9: Multiple checkouts with one payment

This move gives him an IPN message signed by the
CaaS, which consists of the argument list
(orderID=empty&gross&merchantID&status)C*.
Here we denote this string by argumentsC*. By replaying
this message, the attacker is able to check out an arbitrary
number of orders with the same prices: each time, all he
needs to do is to place a new order by RT1.a (Figure 9),
set the browser cookie ORDER_ID to be the ID of the order,
then call Jeff’s IPN handler with argumentsC* in
RT2’.a, and then call Jeff’s finishOrder by RT3.a.

In this exploit (Figure 9), the attacker plays all three
roles: the shopper (RT1.a and RT2.a), the merchant
(RT2.a.a for acquiring argumentsC*) and the CaaS
(RT2’.a for replaying the signed IPN message). Of
particular interest here is RT2’.a in which the attacker also
changes his browser cookie, therefore it is a hybrid of a
CaaS behavior and a browser behavior. This demonstrates
how deeply the attacker can be involved in a CaaS-based
checkout process and how complicated an exploit can be.

3) Integration of Google Checkout – adding items into the
cart after the checkout button is clicked
Interspire’s integration of Google Checkout contains

about 4000 lines of code, the most complicated one among
the four CaaS-integrations of the application we studied. Its
simplified program logic is shown in Figure 10. Interspire
utilizes several APIs to add/remove items in the shopping
cart, which are aggregately denoted by updateCart
(invoked by RT1.a in the figure) here for the simplicity of
presentation. The checkout process (RT2.a to RT3.b in
Figure 10) is triggered when the shopper clicks on the
“Google Checkout” button. RT3.a.a is an IPN call made
by the CaaS.

Flaw and exploit. A prominent feature of this checkout
workflow is that no order is generated before the payment is
made: the shopper is supposed to pay for the content of his
shopping cart first; only when the merchant is informed by
the CaaS via IPN (RT3.a.a) will the merchant’s handler
handleIPN create an order of the transaction according to
what is inside the cart and set its status to “PAID”, as

illustrated in the figure. The problem here is that this
procedure is not atomic: after receiving RT2.b, the shopper
does not send RT3.a immediately. Instead, he can still call
updateCart to change or add new items into his cart.
Then, when RT3.a is sent, the current cart in the shopper’s
session is more expensive than the cart field in RT3.a.
On the other hand, handleIPN loads the cart directly from
the shopper’s session, rather than from the CaaS, to build
the order. This causes an inconsistency between what the
CaaS sees in the cart at the pay time and what the merchant
has at the checkout-completion time, so the shopper can pay
for a cheap item, but check out many expensive items.

Figure 10: Interspire's integration of Google Checkout

4) Integration of Amazon Simple Pay – avoiding payment
The workflow of Interspire’s integration of Amazon

Simple Pay is similar to what is described in Figure 6,
except for one key difference: the integrity of order details,
i.e., orderID&gross, is protected by keyed hash values
generated by the merchant (RT1.b). Here we label the data
under this protection by T*’. Thus, RT1.b becomes redir
to (CaaS.com/pay?(orderID&gross)

T*’
&returnURL&

payeeEmail…)
T*. For RT3.a in Figure 6, Interspire verifies

the integrity of (orderID&gross)T*’so no one can
tamper with the binding between orderID, gross and the
merchant. This seems sufficient to defeat the attack
described in Section A.2), as a payment to Mark cannot
produce a message RT3.a acceptable to Jeff’s store.

Flaw and exploit. However, a closer look at Interspire’s
version of updateOrderStatus reveals that though the
integrity of checkout data is protected, this API fails to
verify Amazon’s signature on RT3.a (C* in Figure 6). This
opens up an easy attack path: the shopper can simply create
and send RT3.a with his own signature A*:
(jeff.com/pay?payeeEmail&status=PAID&(ordereID&gross)

T*’
…)

A*

This message will convince Jeff of the completeness and
integrity of the payment process, though the payment
actually has not happened at all.

RT2.a: TStore.com/checkout

RT3.a: (CaaS.com/pay?sessionID&cart…)
T*

RT3.a.b: OK

RT2.b: redir to (CaaS.com/pay?sessionID&cart…)
T*

RT3.b: status=PAID

RT3.a.a: (TStore.com/handleIPN
T
?

identity
 C
& status

C
&sessionID

T
&…)

TStore.com/handleIPN:
1: if (GetMsgField(“status”) ≠ PAID) exit; /*payment status*/
2: cart = LoadShoppingCart(GetMessageField(“sessionID”));
3: order = CreateOrder(cart);
4: order.status=PAID;

RT1.a: TStore.com/updateCart

RT1.b

TStore.com (T)(A)

(C)

RT2.a.a: mark.com/handleIPN?(arguments)
 C*

RT2.a.b
RT2.a: CaaS.com/stdPay?orderID=empty&gross&
merchantID&IPNHandler=https://mark.com/handleIPN

RT1.b

RT2.b

mark.com/
handleIPN

jeff.com/
handleIPNRT2’.a: jeff.com/handleIPN?(arguments)

 C*

RT2’.b

RT1.a

loop
RT3.a

RT3.b

9

C. Amazon Payments SDK flaw – interdependency of
certificate authenticity and message authenticity

All the security flaws presented in the prior sections are
directly related to merchant applications. The problem with
CaaS providers is less clear, though they do need to better
explain their operations and security assurance to avoid
confusion on the merchant side. This, however, by no means
suggests that the code of the CaaS is immune to this set of
logic flaws: we did not perform an in-depth analysis on it
just because the majority of it is not accessible to the public.
From the small amount of the code the CaaS releases, we
already discovered a serious flaw, as elaborated below.

Flaw and exploit. For all the messages bearing Amazon’s
signatures, the Software Development Kit (SDK) of
Amazon Payments offers a signature verification API
validateSignatureV2. This function, together with
the rest of the SDK, is designed to be incorporated into
merchant software. To verify signatures, the API needs to
contact an Amazon certificate server to download Amazon’s
public key certificate. In our research, we found that a flaw
in the function enables the attacker to provide his own
certificate to the merchant and thus to circumvent the
verification. This vulnerability widely exists in various
Amazon Payments SDKs, including Amazon Flexible
Payment Service, Amazon Simple Pay Standard, Amazon
Simple Pay Subscriptions, Amazon Simple Pay Marketplace
and Signature Version 1 to 2 Migration. Most of them
support five languages – C#, Java, PHP, Perl, and Ruby. It
has been confirmed that they are all vulnerable.

Specifically, all URLs signed by Amazon Payments,
such as an IPN message and the URL in a redirection
response, have the following format:
(https://merchant/someAPI?arg1&arg2&...&argN&certificateURL=

https://fps.amazonaws.com/certs/090909/PKICert.pem)
C*

The certificateURL field, which we omitted in the
previous sections for simplicity of presentation, points to
Amazon’s certificate server for a certificate issued by
VeriSign to Amazon. The entire URL is signed by Amazon
(denoted as C*), including certificateURL. Thus,
suppose the signature C* can be verified using the
certificate referenced by certificateURL, it is
reasonable in practice to say that if the message is signed by
Amazon, then the certificate is an Amazon certificate, and
vice versa. It seems to us that such an interdependency of
certificate authenticity and message authenticity might have
caused developers of validateSignatureV2 to only
verify the signature using the certificate referenced by
certificateURL, without verifying the certificate itself.

To exploit this vulnerability, the attacker must act as a
fake CaaS and use a server to store his own certificate. In
our exploit, we used OpenSSL to generate a X.509
certificate, hosted it at https://cert.foo.com, which is a
server under our control. Thus we can sign any URL as
follows:

(https://merchant/someAPI?arg1&arg2&...&argN&

certificateURL =https://cert.foo.com/PKICert.pem)
A*

This signed URL, either used as a redirection URL or as an
IPN, survives all checks in validateSignatureV2, and
therefore allows the shopper to completely bypass Amazon
Payments, to directly check out items from the merchant
without pay. We have confirmed the feasibility of the attack
on NopCommerce. In the next section, we report our
communication with the development team of Amazon
Payments on this flaw and their fix.

D. Popular stores running closed-source software

The source-code-based analysis on NopCommerce and
Interspire, two of the most popular merchant applications,
demonstrate that logic flaws in CaaS-based checkouts are
indeed credible threats. Less clear here, however, is whether
the unavaibility of merchant’s source code can effectively
conceal this type of logic flaws. To this end, we conducted
black-box exploit analyses on two big stores, Buy.com and
JR.com, based on general knowledge obtained earlier but
without merchants’ source code:

 Buy.com flaw – shopping for free after paying for
one item. Buy.com is a leading online retailer with over 12
million customers in seven countries. It sells millions of
products in various categories, including computers, cellular
phones, software, books, movies, music, sporting goods, etc.
It integrates PayPal Express as one of its checkout methods.
Before the exploit analysis, we made a test purchase to
capture the messages sent and received by the browser, and
found that they are similar to those produced by Interspire’s
integration (Figure 7), though we could not observe the
communication between PayPal and Buy.com, and the
program logic on the merchant side.

Using our experience with Interspire’s integration of
PayPal Express (Section III.B.1), we evaluated the security
protection of Buy.com through attempts such as changing
the gross amount of an order, examining the way that
signatures are used, etc. Despite initial failures, we
discovered an effective exploit on Buy.com. As described in
Section III.B.1, PayPal Express uses a token to uniquely
identify a payment. We found that once the payment of one
order is done, the shopper can substitute the token of this
order for that of a different order (RT3.a in Figure 7). This
allows the shopper to skip the payment step (RT2.a), but
still convince Buy.com of the success of the payment for the
second order.

Without access to the messages between Buy.com and
PayPal (RT3.a.a and RT3.a.b in Figure 7) and the
merchant-side code, we cannot conclusively determine what
goes wrong with this checkout integration. Nevertheless,
our study does confirm the pervasiveness of the logic flaws
within checkout systems, which affect the coordination
between integrated services, and the possibility of
identifying and exploiting them even in the absence of the
code of those systems.

10

 JR.com flaw – attacker website selling items from
JR.com at arbitrary prices. JR.com is the online store of
J&R, a well-known electronics retailer located in downtown
New York City. The website accepts payments from
Amazon’s buyer accounts. Through studying the HTTP
traffic of the browser and developer documentations
provided by Amazon, we found that the payment method is
Checkout-By-Amazon [31], which we did not investigate in
our previous analyses of NopCommerce and Interspire.

A convenient way to integrate Checkout-By-Amazon is
using the Seller Central form below, a toolkit provided by
Amazon that automatically generates the HTML code for an
Amazon-Checkout button for the item to sell.

To generate the HTML code, the seller first fills in

information such as the item’s name, price, and the seller
SKU, etc. When the form is submitted, these fields, as well
as a hidden field containing the seller’s merchantID, are
used by Amazon to produce the checkout button, whose
HTML code is signed by Amazon and can be cut-and-pasted
onto the merchant web page selling the item.

Our analysis shows that again, the merchant and the
CaaS fail to coordinate their security checks, which subjects
this integration to the shopper’s exploit. On one hand,
Amazon does not fully prevent one merchant from creating
a payment button for another merchant’s item: the only
information to tell the merchants apart is merchantID, which
is public information and specified in a hidden field in the
browser. On the other hand, like Interspire’s integration of
Google Checkout, JR.com does not create an order to bind
an item to the price the shopper is willing to pay until the
last step of the transaction, when the payment is complete,
nor does it double-check the price at the payment-
completion time. This allows the following attack:

Consider the attacker Mark who wants to buy an item I
from JR.com at a price X. From the browser traffic
corresponding to the Amazon-Checkout button for the item
on JR.com, Mark can acquire the value of each field,
including the hidden field merchantID. Then, he enters
these values into the Seller Central form but changes the
price to X’. To make the button point to JR.com, Mark also
modifies the content of the hidden field, replacing his ID
with that of JR.com. After that, he submits the form to
acquire a signed checkout button from Amazon, which
binds the price X’ to JR.com’s item I. Once Mark clicks on
it, Amazon asks him to pay X’ to JR.com, then uses a
redirection to notify JR.com of the completion of the
payment, which is accepted by the store.

IV. EXPLOIT ANALYSES ON LIVE STORES

In this section, we report our experiments on real-world
web stores using CaaS services. The purpose of this study is
twofold. First, we want to understand whether the

vulnerabilities we discovered in merchant software can
indeed be used against real online businesses, thereby
posing a credible and imminent security threat; second, we
hope to understand a number of aspects related to the
exploits in real-world settings, such as how detectable the
exploits are by regular auditing processes of the stores, how
anonymous the attacks can be, and how various parties
would respond to our bug reporting. To this end, we
executed a series of exploit analyses within the ethical and
legal boundary, as elaborated below.
Responsible experiment design. We carefully designed our
evaluation strategy in order to carry out our experiments in a
responsible manner. The entire study was conducted under
the guidance of a lawyer at Indiana University. We strictly
followed the principles below when performing exploits on
real-world online stores: (1) we performed no intrusion of
either merchant websites or CaaS services; (2) we ensured
that no financial damage was inflicted upon the merchants
involved, by canceling orders when possible, returning
items, paying for unpaid balances, or placing orders in a
special way (e.g., making two separate orders, one with a
lower price and the other with a higher price); (3) we
communicated our findings to the affected organizations and
did what we could to help them improve their systems. Our
responsible research effort was appreciated by these
organizations.

A. Experiments on live online stores

Here we report our experiments conducted in various
settings, ranging from open-source software on our server to
closed-source systems on commercial websites, which
demonstrates the credibility and pervasiveness of the threat.

Merchants on our server. We downloaded the latest version
of NopCommerce (1.6), purchased the up-to-date licensed
version (5.5.4) of Interspire, and installed these programs on
our web servers. We also registered seller and shopper
accounts with PayPal, Amazon Payments and Google
Checkout. On the shopper side, we had Firefox and two
HTTP debugging tools: Live HTTP Headers [21] and
Fiddler [17]. Live HTTP Headers is a Firefox add-on
capable of capturing and replaying HTTP/HTTPS traffic.
Fiddler is a debugging proxy for intercepting and
manipulating web traffic. Using these tools, we successfully
executed all exploits described in Section III.

Our merchants on a commercial website. It came with little
surprise that all exploits we discovered worked on the
applications hosted on our server. However, when the same
applications run on commercial websites, they could be
configured differently and protected by additional security
mechanisms. To evaluate the security threat in this more
realistic scenario, we signed up a 15-day trial merchant
account on BigCommerce [6], which is Interspire’s hosting
platform. Any user can register an account on BigCommerce
to run his/her store powered by Interspire. Our evaluation
showed that the same exploits also succeed against our store
hosted on this platform.

Item Name Seller SKU Price (in US$) Item Description Item Weight* *
Note: Fields with an are required. Describe your item *

11

Real merchants using Interspire and NopCommerce. All
the security flaws reported in our analysis are related to the
checkout and payment steps, which are only part of the
entire purchase process. It is less clear whether end-to-end
exploits in the real life would be caught by other fraud
detection or account auditing procedures. In order to
understand such end-to-end scenarios, we conducted exploit
analyses on the following real online stores:.

 GoodEmotionsDVD.com is a NopCommerce-powered
store that sells over 2,000,000 DVDs/CDs of movies,
music, and games. It supports PayPal Standard.
Exploiting the flaw in Section III.A.1, we were able to
purchase a DVD at a lower price (Figure 1 (A)). We later
paid the balance owed and notified the store and the
developers about the exploit, and received their
acknowledgement.

 PrideNutrition.com is an Interspire-powered store that
sells nutrition supplement products. Its customers include
athletic bodybuilders, licensed sports nutritionists, and
certified personal trainers. The website provides PayPal
Express based checkout. We bought a bottle of Agility
Cream for $5 less than the actual price, and received the
shipment (Figure 1 (B)). We shared our discovery with
the store, which expressed gratitude to our help [37].

 LinuxJournalStore.com is the online store of Linux
Journal. It sells various Linux-related products, including
T-Shirts, DVDs/CDs, magazines, and others. The store
uses Interspire and enables PayPal Express, so it is
vulnerable as we discovered. This time, we targeted
digital products, which, different from physical
commodity, do not need shipping. Today online
commodities are often digital, e.g., electronic documents,
memberships, phone-card minutes and game points. They
are made available immediately after successful
purchases. LinuxJournalStore sells digital Linux Journals
in addition to paper ones. It accepts PayPal Express
payments. We were able to pay for only one issue ($5.99)
but check out two different issues ($11.98 together), and
successfully download them (Figure 1(C)). In reference
[37], we present our communication with the store.

 LuxePurses.com. Throughout our entire study, we placed
at least 8 orders on real-world stores, including the orders
described above and a few orders to be described later.
Our purchase on LuxePurses was the only experience in
which the store noticed the problematic payment. Our
email communication is shown chronologically below:

Email 1 from the store: Mark, Thanks for your order. It will
ship out later today and we'll send tracking info.

Email 2 from the store after several hours: Hi Mark, Your
payment via Paypal didn't complete for the full amount. The
amount due, for this sale, was $27.15. You paid $17.41
through Paypal, which is $9.74 short. We will be invoicing
you, for the $9.74 balance still owing through Paypal. Once
it is paid in full, we will ship your item.

Email 3 from us: I've paid the owed $9.74. Thanks.

Email 4 from the store: Thanks so much! Our tech support
team is confused as well! Seems to not have happened with
anyone but us! We'll ship your item out tomorrow.

Our order number was only “#175”, which might suggest
the low volume of the store’s sales. Such a small order
number and the above emails seem to indicate that they
might have spotted the payment problem manually and
accidentally, rather than due to a regular procedure.

Stores running closed-source proprietary software.

 Buy.com. We performed the exploit on Buy.com twice,
and received an alcohol tester and a charger for free
(Figure 1 (D)(E)). We contacted their customer service on
our purchases. Although we were explicit about our
exploit experiments, they could not understand the
problems with our orders from their accounting data.
Email 4 clearly indicates that their accounting system
indeed believes that our order of alcohol tester, which is
priced at $5.99, was paid, even though we did not pay at
all. We returned the two items purchased after the refund
period (45 days) expired to avoid being refunded, and
continued to communicate our findings to the store.

Email 1 from us: We explained that one of our orders, which
costs $5.99, was unpaid, expressed the willingness of paying in
full and provided them our credit card information.

Email 2 from Buy.com: They misunderstood the situation, and
sent us a generic reply explaining the possible reasons for delayed
charging of credit cards, even though we paid through PayPal.

Email 3 from us: I am working on e-commerce security research.
I bumped into an unexpected security issue about Buy.com's
PayPal payments. I appreciate if you can forward this email to
your engineering team. The finding is regarding the order
54348723. I placed the order in an unconventional manner (by
reusing a previous PayPal token), which allowed me to check out
the product without paying. I have received the product in the
mail. Of course I will pay for it. Here is my credit card
information [……]. Please charge my card for $5.99.

Email 4 from Buy.com: Thank you for contacting us at Buy.com.
Based on our records you were billed on 6/10/2010 for $5.99.

 JR.com. We successfully placed several orders for
different items with lower prices. They all reached the
stage of pending fulfillment/shipping, before we canceled
them (which was possible at this stage thanks to JR.com’s
cancellation policy). We also placed an order for a DVD
by setting a higher price and letting the shipping happen.
The item was successfully delivered (Figure 1 (F)).

B. Attacker anonymity

Our research also shows that those attacks can happen
without disclosing the attacker’s identity. Here, we assume
that the malicious shopper communicates through
anonymity channels such as Tor or Anonymizer, which
make his IP address untraceable.

Merchant/shopper anonymity. From three supermarkets in
two U.S. states, we bought three $25 MasterCard gift cards

12

by cash without showing any identity. We then visited the
gift card website to register each card under “Mark Smith”
at a random city. We confirmed that these cards were
eligible for registering seller/buyer accounts on PayPal,
Amazon, and Google, paying for orders, and receiving
payments. To register these accounts, we also used fake
identities to open a few Gmail accounts.

Anonymity in shipping. Purchase of digital items (e.g,
memberships, software licenses, etc.) does not involve
shipping, as the items become downloadable immediately
after the payment is done. When it comes to physical items,
the attacker needs to provide a valid postal address.
However, the true identity of the recipient is usually not
required: as an example, a USB driver we ordered was
shipped to “Mark Smith” at our postal address through
USPS. We guess that it may not be difficult for criminals to
find addresses unlinked to them. When this happens, they
can use fake identities to receive shipments.

C. Bug reporting and status of fixes

Besides communicating with the stores regarding the
problematic purchases, we also shared technical details with
affected stores, software vendors and CaaS service
providers, and offered assistance to improving their
checkout systems. We are pleased to learn that all issues
have been fixed by vendors.

Amazon Payments. We reported the SDK vulnerability to
the Amazon technical team, which immediately started an
investigation. On 9/22/2010, 15 days after our reporting,
new SDKs were released with an Amazon Security advisory
acknowledging us [1]. In addition, Amazon announced that
starting from 11/1/2010, 40 days after the advisory, Amazon
servers would stop serving the requests made by vulnerable
SDKs. All merchants must use the new version to verify
signatures on Amazon’s outbound messages, such as IPNs
and redirections. Amazon also fixed the issue described in
Section III.A.2 about Amazon Simple Pay.

LinuxJournalStore and Interspire. We disclosed to
LinuxJournalStore the findings on its system. The store
immediately contacted its software vendor ― Interspire.
Interspire developers were not able to figure out our attack
based on their log data, so they approached us for details of
the exploits. They recently notified us that these bugs were
treated as top priorities, and have all been fixed in the latest
version, and on BigCommerce.com.

NopCommerce. We reported the NopCommerce bugs to its
developers. They have fixed the one related to PayPal
Standard. The other bug (i.e. about Amazon Simple Pay),
was fixed by Amazon, as we explained above.

Buy.com and JR.com. We notified Buy.com and JR.com,
and recently learnt that they have fixed both issues.

V. COMPLEXITY ANALYSIS OF CHECKOUT LOGIC

We have analyzed individual vulnerabilities and their
real-world consequences. It is also important to study these

instances as a class in order to understand the complexity of
the overall problem in this space and obtain some
quantitative measurements of the logic complexity.

A. The problem
We are interested in answering the following question:

how complex is it for the developer of merchant software to
detect program logic flaws that can be exploited by the
malicious shopper to violate the payment completion
invariant? We are particularly interested in exploits that
induce inconsistencies between the transaction states
perceived by the merchant and the CaaS. It is important to
note that our focus is on program logic flaws, which are
more design fallacies than coding flaws. This aspect
distinguishes these flaws from vulnerabilities specific to
programming languages (e.g., buffer overrun and cross-site
scripting), operating systems and cryptographic primitives.

We consider an adversary whose only channels to
interact with the merchant and the CaaS are the exposed
web APIs. The adversary can invoke these APIs in an
arbitrary order, set argument values for his calls at will, sign
messages with his own signature, and memorize messages
received from other parties to replay later, as long as the
following rules are respected:

(1) The attacker is a registered customer of the merchant, and
owns a payer account and a payee account on the CaaS;
(2) An API argument signed or under other integrity
protection cannot be modified by other parties;
(3) The syntax of each API function must be followed.

The attacker being a web API caller implies that it does
not have to behave like a normal browser, but can act as a
merchant, a CaaS or any other entity that communicates
through HTTPS. To understand the complexity of finding
vulnerabilities exploitable by such an adversary, we
conducted a formal reasoning study about Interspire’s
checkout logic, as reported in the rest of this section.

B. Modeling a subset of Interspire’s logic

To investigate Interspire’s logic for handling the four
payment methods described in Section III.B, we first
extracted a model from Interspire’s source code
corresponding to these handlers, then checked them against
the payment-completion invariant using Poirot [30], an
automatic verification tool that performs verification-
condition (VC) generation and theorem proving.

Because the logic flaws that we focus on are language
independent, our modeling language does not have to be a
web programming language, such as HTML, JavaScript,
ASP.NET or PHP, as long as it accurately preserves the
program logic. Currently, our model is a program expressed
in C language, which models the interactions between the
merchant, the CaaS, and the malicious shopper: the three
real-world parties are three modules in our program. The
source code and full details for reproducing our results are
given in [38]. Its components are illustrated in Figure 11.

13

Figure 11: Concrete and symbolic models

Merchant and CaaS. The portion for modeling the
merchant and the CaaS contains 506 lines of code. Table IV
shows how certain key concepts of the actual application are
modeled in our program.

TABLE IV. REAL-WORLD CONCEPTS MAPPED TO OUR MODEL

In actual systems In our model
Merchant and CaaS servers Merchant and CaaS modules
Web APIs Functions annotated as wAPIs
URLs Function or function pointers
HTTP round-trips (RTs) Function calls
Signed message fields Variables of type SignedObject

The merchant module in our program was directly
transformed from the source code of Interspire, with the
program elements in the original code replaced with the C
code according to Table IV. In the absence of the source
code on the CaaS side, we built its module based upon the
specifications of its APIs, with a focus on the security-
related call arguments and other parameters as described in
Section III.B. We also emulated the signing operation on
API arguments using a special type SignedObject,
which describes a signed data item with a pair of fields, Obj
and signer. To indicate the item is signed, its content was
copied into Obj, and the signing party was recorded in
signer. This “signing” of course has no cryptographic
strength, but since we only want to examine the program
logic, this is sufficient for our definition of the payment-
completion invariant, which is:

 If the attacker is not allowed to create any
SignedObject bearing the signer field TargetStore or
CaaS, and can only call the functions annotated as wAPIs, is it
always true that whenever an order is marked PAID, there is
always a corresponding correct payment completed in CaaS?
(We will explain what constitutes “a corresponding correct
payment” later.)

The attacker. In the C program, we implemented two
attacker modules, one concrete and one symbolic. The
concrete module was compiled together with the code for
the merchant and the CaaS to generate a normal executable.
It executed normal checkouts as well as all the attacks
described in Section III.B. This was used to perform a sanity
check on our model, including the functionalities of the
merchant and the CaaS, and all the exploits we discovered.

The symbolic module was to analyze the complexity of
finding logic flaws. It is sketched in Table V.

TABLE V. A SKETCH OF THE SYMBOLIC ATTACKER CODE

#include “MerchantAndCaaS.h”
typedef struct
 { SignedObject * msg; int msgType; } Knowledge;

Knowledge[100] Knowledgebase;
void main() { while (1) call_a_wAPI(nonDet());
}
void call_a_wAPI (int wAPI_ID) {
 switch (wAPI_ID) { //we have modeled 10 wAPIs
case 1: /*call placeOrder(), see RT1.a of Figure 8 */
 paymentType=nonDet();
 Merchant_placeOrder(paymentType);

 break;
case 2: /*call paypal’s stdPay() , see RT2.a of Figure 8 */
 orderID= nonDet(); gross= nonDet (); recipient= nonDet ();
 if (nonDet ()) IPNHandler= TargetStore_PPLStdIPNHandler;
 else IPNHandler= Attacker_PPLStdIPNHandler;

 PPLStd_MakePayment(orderID,gross,recipient,IPNHandler);
 break; …
case 10: …
}

}
wAPI void Attacker_PPLStdIPNHandler(SignedObject * obj) {
 //handling RT2.a.a of Figure 9
 addToKnowledgebase(obj, PPLStdIPN);
} …

The idea is to let the attacker, i.e., the malicious
shopper, repeatedly invoke the wAPI functions (emulated
web APIs) on the merchant and the CaaS modules, using
symbolic arguments, which was assigned the non-
deterministic value “nonDet()”. The symbolic attacker was
compiled by Poirot to analyze for violations of the payment-
completion invariant. As illustrated in Table V, the whole
attacker module is organized as an infinite loop: each
iteration uses call_a_wAPI(nonDet()) to non-
deterministically select a web API to call. Inside the
implementation of call_a_wAPI, we also assign
symbolic values to arguments of each wAPI. For example,
consider the code under case 2 in Table V, which is used to
call the API https://paypal/stdPay (See RT2.a in Figure 8).
Some arguments of the call, including orderID, gross
and recipient, are directly assigned symbolic values,
while the value of IPNHandler, which can be either
PayPal’s handler or the attacker’s, are chosen according to a
symbolic value. Once all the arguments are set, the attacker
calls MakePayment of PayPal Standard.

When the attacker module gets return values of wAPI
calls (or its own wAPIs are called), it simply ignores the
return values (or the argument values of incoming calls) if
the values do not carry any signed data; otherwise (e.g., in
the attacker function Attacker_PPLStdIPNHandler),
it only needs is to record the signed data for later use. Note
that in the current pseudo code, we define the return type
void, which omits possibilities of exploiting bugs by
sending error responses (e.g., RT2.a.b is not OK). In a
more faithful model that aims at covering the error handling
logic, the function should return a nondeterministic value.

C. Automatic verification

Poirot first compiles the symbolic model (consisting of
the symbolic attacker along with the concrete merchant and
CaaS) into an intermediate language, generates a
verification condition (VC) based on the payment-

merchant
(concrete)

CaaS servicing the
four payment
methods (concrete)

Attacker
 (symbolic)

Attacker
 (concrete)

Concrete model: an executable.
Symbolic model: a VC generated by the Poirot compiler.

14

completion invariant, then verifies the VC by a theorem
prover. As mentioned earlier, the invariant requires that
whenever an order is changed to the PAID state, there
should be a “corresponding correct payment” record in the
CaaS. This is interpreted in our current implementation as
the situation when the gross of the payment matches the
order’s gross, its payee is the merchant, and its record is not
matched by that of any previous order. Note that this
invariant is only a necessary-yet-insufficient condition for a
secure checkout: particularly, the invariant does not bind a
product (an item) to the merchant who owns it, and as a
result, exploits like the one that happens to JR.com could
not be discovered. Nevertheless, our study reveals a lower-
bound of the complexity for verifying the model.

By setting how many times Poirot should unroll the
loop in function main(), we can control the depth of
Poirot’s search effort. We call this setting the bound. Bound
x means that Poirot only considers all the execution paths
that contain x or less web API calls.

Finding attacks. We ran Poirot on our model to
automatically analyze all four payment methods that we
studied manually. By setting the bound to 6, Poirot captured
all the logic flaws discussed in Section III.B. The analyses
took 355, 328, 381 and 330 seconds for PayPal Standard,
PayPal Express, Amazon Simple Pay and Google Checkout.

It is particularly interesting that our analysis also
discovered new and more efficient attack avenues. For
example, we thought that the attack on Interspire’s PayPal
Express (Section III.B.1) must be launched through two
sessions (e.g., through IE and Firefox as described in the
section); the attack instance reported by Poirot, however,
only needed one session. More specifically, the attacker first
did exactly the same steps for the expensive item as in the
two-session attack, and held RT3.b. Then in the same
session, he could do all the steps for the cheap item, and
held RT4.a. As the last step, he copied-and-pasted the
signed orderID2T* from RT3.b into RT4.a, and sent it to
finish the checkout. We performed this new attack on the
real Interspire executable, which was found to work exactly
as indicated by the tool. It demonstrates that the formal
reasoning approach seems promising in getting insights
about the program logic that we focus on.

Empirical analysis of the complexity. We hypothetically
fixed the logic flaws in the model, so that we can measure
the complexity of each bounded verification, i.e., to verify
no attack possibility within each bound. Table VI gives two
complexity metrics: the number of conflicts the theorem
prover encountered and the total time for verification, in the
shaded rows and the clear rows, respectively. When a
theorem is being proved, there are many Boolean decisions
to explore. For each decision point, the theorem prover takes
one branch and goes deeper into the search. A conflict
happens when the theorem prover needs to backtrack and
take the second branch of the decision point. Conflicts are
the most important reason for the state explosion in the
search; therefore, the number of conflicts is a good indicator

of the complexity of verification3. The time measures were
based on our PC specification: Intel Core 2 Duo CPU 3.00
GHz, 4GB memory, 80GB hard disk.

Table VI shows that both metrics increase significantly
with the bound. For bound 7, most verifications encountered
out-of-memory errors (OOM). The last row is for the
verification of the APIs for all four payment methods. This
best reflects the complexity in the actual implementation of
Interspire, which currently has no mechanism to prevent the
attacker from calling all APIs that belong to all payment
methods. In this scenario, the verification for bound 6
already ended with an OOM.

TABLE VI. NUMBER OF CONFLICTS AND TIME FOR EACH BOUND
 1 2 3 4 5 6 7

PayPal Standard
Total time in seconds

167 574 1.3K 4.4K 42K 574K OOM
15.2 48 103 253 385 3645 OOM

PayPal Express
Total time in seconds

33 247 595 1.3K 4.1K 29K 229K
16.1 42 85 145 225 379 1492

Google Checkout
Total time in seconds

120 479 1K 3.2K 26K 324K OOM
14.9 44 92 156 302 2295 OOM

Amazon Simple Pay
Total time in seconds

123 523 1.3K 6K 74K 1636K OOM
14.5 49 113 193 476 15113 OOM

All APIs
Total time in seconds

567 1.7K 4.5K 74K 2313K OOM OOM
21.5 156 258 926 17384 OOM OOM

D. Implications of the complexity analysis results
Our measurement data seem to indicate a few

interesting points for developers:
1) Automatic verification is necessary. On one hand, tools

exist today to find flaws in extracted logic models, as we
empirically demonstrated. On the other hand, manual
verification of its security is really hard. Hundreds of
thousands of backtracks in the reasoning process are
involved, well beyond what human brains can handle.

2) Application developers should help lower the complexity
so that higher confidence can be achieved by bounded
verifications. Currently, bound 6 is often the limit of our
machine’s computational power for individual payment
methods, and bound 5 is the limit for all payment methods
together. However, many of our known attacks already
take 5 or 6 steps to accomplish, so the “margin of safety”
is too small. We believe that some efforts can be taken by
developers to lower the logic complexity, and thus to
increase the margin of safety. For example, the payment
methods should be strictly separated at runtime so that
static verification only deals with each payment method
individually. Also, annotating the code with pre- and
post-conditions would make verifications much easier.

VI. PAYMENT PROTOCOLS VS. PAYMENT APIS
Secure payment protocols have been studied for a long

time. Early efforts can be traced back to the dawn of the
Internet age. Examples of these protocols include iKP of
IBM and STT of Microsoft/Visa [18], as well as a number of

3 Poirot’s runtime is proportional to the number of conflicts and the work
done per conflict in theory reasoning. The explosive growth in the number
of conflicts leads us to believe that the cost of theory reasoning is dwarfed
by the cost of the backtracking search.

15

digital cash protocols. Among them, the most well known
is perhaps Secure Electronic Transaction (SET) [39]
proposed by Visa and MasterCard, in collaboration with
GTE, IBM, Microsoft, Netscape, RSA and VeriSign. The
security properties of this protocol were partially checked
through formal verification by many researchers, including
Bolignano [10], Lu et al [23], Meadows et al [25] and others.
Formal analyses [19] were also performed on other payment
protocols, such as NetBill [13] and DigiCash [11].

However, to the best of our knowledge, none of these
protocols was deployed on the Internet and used by real-
world e-commerce systems. The technologies that are
actually adopted by today’s e-commerce are web services
like PayPal, Amazon Payments and Google Checkout,
which are never referred to as “payment protocols”. Indeed
they are not protocols – they are APIs with proprietary
implementations and public interfaces, accompanied by the
developer’s guides and sample code. Compared with
protocols, which clearly specify the actions different parties
are supposed to take, the ways these APIs are used are less
rigorously defined, thus offering flexibility to their callers.
Presumably, the flexibility contributed to the programmer
friendliness and thus the popularity of these payment APIs.
However, it leaves the security of today’s checkout systems
contingent upon the merchant-side program logic, which is
less disciplined. How to securely call APIs has always been
a challenge in programming, not specific to web APIs. For
example, strcpy and setuid in C are notoriously difficult to
call securely. In this sense, it is not a surprise that CaaS
APIs leave plenty of rooms for logic bugs in web stores.

Perhaps our work suggests that it is worthwhile to
revisit the possibility of payment protocols, assuming that
lessons have been learned from the unsuccessful adoptions
of the techniques. Of course, the effectiveness of a protocol
adoption should be put in perspective. After all, security of a
theoretically-proven protocol often depends on many factors
in real systems. First, its incorrect implementation could
bring in security bugs. Also the assumptions underlying its
design can be totally different from actual operational
settings. As an example, the designer of a protocol could
ignore the facts that anybody (essentially with no real
identity) is eligible to be a seller, or a real-world system
actually needs to operate in concurrent HTTP sessions
(Section III.B.1). Finally, security of the whole system is
also contingent on how the payment module interacts with
other modules, e.g., bugs could exist if the state of a
shopping cart can be changed during the payment
processing (Section III.B.3), or the order ID is retrieved
from a client cookie (Section III.B.2).

We believe an important contribution of our work is
that it provokes a soul searching in both academia and the e-
commerce industry on the prior effort on building a secure
and usable payment system, which should preserve APIs’
flexibility, and achieve formally verified security guarantee.

VII. RELATED WORK

Technologies on security protocol verification. For
decades, techniques for verifying protocols’ security
properties have been the focus of many studies. Classic
approaches can be grouped into two categories, according to
Millen [26]. The first category is based on an algebraic
model defined by Dolev and Yao [14]. Prominent examples
of these techniques include Interrogator [26] and NRL
Protocol Analyzer [24][15], in which protocol flaws are
identified through searching a protocol’s state space for the
paths that lead to insecure states. They were successfully
applied to detect previously unknown bugs in security
protocols. The second category is based on an axiomatic
system about protocol participants’ beliefs, as formalized by
Burrows, Abadi and Needham (a.k.a. BAN logic) [7]. The
BAN logic is believed to be more limited than the Dolev-
Yao model, but it is decidable. The approach was applied on
a number of protocols, such as Kerberos, Needham-
Schroeder public-key protocol, CCITT X.509, etc. It is
worth noting that despite its proof, the Needham-Schroeder
public-key protocol was later found vulnerable by Lowe
under the man-in-the-middle assumption [22]. The field of
protocol verification has been advanced significantly over
years. Abadi’s recent tutorial [2] covers many techniques.
Some may not fit very well into Millen’s classification, such
as the approaches based on type systems [4].

Research has also been conducted on analyzing other
security protocols, e.g., fairness and verifiability [33] of a
contract signing protocol [3]. TulaFale is a specification
language to describe SOAP-based protocols and thus to
enable formal checking of security properties for web
services [5].

Security issues in e-commerce. Security weaknesses and
flaws in e-commerce technologies were discussed in various
sources. Price manipulation bugs existed in some early
shopping cart implementations, as reported in [32] and [27],
which used the cart total stored in a browser cookie to
generate the order. We found that today’s leading shopping
carts, e.g., every cart that we studied, could not be similarly
attacked. Another shopping cart bug was reported in [9]. It
allowed items to have negative quantities.

Also worth mentioning is a new payment protocol 3D-
Secure, which is promoted by Visa and also adopted by
MasterCard. It is marketed under the names Verified By
Visa and MasterCard SecureCode. A main goal is to protect
a credit card with a password to foil card-not-present attacks
(e.g., using a stolen card number). Murdoch and Anderson
discussed a set of weaknesses in 3D Secure [28], e.g., GUI
design, registration procedure, privacy protections.

Technologies addressing web application logic bugs.
Researchers have shown increased attention to logic bugs in
web applications. The proposed technologies fall in two
categories: (1) those helping avoid logic bugs in new
applications (a.k.a., the secure-by-construction approach); (2)
those finding logic bugs in legacy applications.

16

Examples of the technologies in category 1 include
Swift [12] and Ripley [36]. They are both built upon
distributing compilers, such as Google Web Toolkit and
Microsoft Volta, which automatically partition a single web
program between the server and the client. Swift views the
security task as a “logic placement” problem. To tackle it,
Swift allows the developers to annotate the source code for
security requirements so that it can perform information
flow analysis to decide what logic can be securely placed on
the client side. Ripley views the task as a logic replication
problem: it runs a server-side replica of the client-side logic
so that tampering with the client would result in
inconsistencies between the client and the replica.
Technologies in category 2 for legacy applications include
NoTamper [9] and Waler [16]. NoTamper detects parameter
validation bugs by finding conditions checked only by the
client logic but not the server logic. Waler is a technology to
generate likely-invariants based on runtime traces, and
checks the likely-invariants against the source code.

The aforementioned technologies addresses logic bugs
in web applications architected as client-server or client-
frontend-backend. Our work explicitly focuses on websites
integrating third party web APIs. The logic bugs appear to
be more elusive in this new context.

VIII. CONCLUSIONS AND FUTURE WORK

We presented our analysis for Caas-based web stores,
as an example of security challenges in third-party service
integration. We found serious logic flaws in leading
merchant applications, popular online stores and a CaaS
provider (i.e., Amazon Payments), which can be exploited
to cause inconsistencies between the states of the CaaS and
the merchant. As a result, a malicious shopper can purchase
an item at a lower price, shop for free after paying for one
item and even avoid payment. We reported our findings to
the affected parties and received their acknowledgements.
Our further analysis revealed the logic complexity in CaaS-
based checkout mechanisms, and the effort required to
verify their security property when developing and testing
these systems.

We believe that our study takes the first step in the new
security problem space that hybrid web applications bring to
us. Even for the security analyses of merchant applications,
we have just scratched the surface, leaving many intriguing
functionalities (e.g., cancel, return, subscription, auction,
and marketplace) unstudied. An interesting question might
be, for example, whether we can check out a $1 order and a
$10 order, and cancel the $1 order to get $10 refunded. We
are also considering the security challenges that come with
web service integrations in other scenarios, e.g., social
networks and web authentication services. Fundamentally,
we believe that the emergence of this new web
programming paradigm demands new research efforts on
ensuring the security quality of the systems it produces.

ACKNOWLEDGMENT
We thank Martín Abadi, Brian Beckman, Josh Benaloh, Cormac
Herley, Dan Simon and Yi-Min Wang for valuable discussions,
Akash Lal for important advices on Poirot, Beth Cate for the legal
assistance and Robert Schnabel for the support that makes this
work possible. We also greatly appreciate Trent Jaeger for
shepherding. Authors with IU were supported in part by the NSF
Grant CNS-0716292 and CNS-1017782. Rui Wang was also
supported in part by a Microsoft Research internship.

REFERENCES

[1] Amazon Security Advisories. Amazon Payments Signature Version 2
Validation. https://payments.amazon.com/sdui/sdui/security

[2] Martín Abadi. Security Protocols: Principles and Calculi (Tutorial
Notes), Foundations of Security Analysis and Design IV, FOSAD
2006/2007 Tutorial Lectures, Springer-Verlag (2007), 1-23.

[3] N. Asokan, Victor Shoup, and Michael Waidner. Asynchronous
protocols for optimistic fair exchange. In Proceedings of IEEE
Symposium on Research in Security and Privacy, pages 86–99, 1998.

[4] Karthikeyan Bhargavan, Cédric Fournet, Andrew Gordon. Modular
verification of security protocol code by typing. ACM Symposium on
Principles of Programming Languages (POPL), 2010

[5] Karthikeyan Bhargavan, Cédric Fournet, Andrew Gordon, Riccardo
Pucella. TulaFale: A security tool for web services. In Symposium on
Formal Methods for Components and Objects (FMCO), 2003

[6] BigCommerce. http://www.bigcommerce.com/
[7] Michael Burrows, Martín Abadi, and Roger Needham. 1990. A logic

of authentication. ACM Trans. Computer Systems 8, 1, 18-36.
[8] Ecommerce Statistics Compendium 2010. http://econsultancy.com/

us/reports/e-commerce-statistics/downloads/2076-econsultancy-
ecommerce-statistics-uk-sample-pdf

[9] Prithvi Bisht, Timothy Hinrichs, Nazari Skrupsky, R. Bobrowicz, and
V. N. Venkatakrishnan, "NoTamper: Automatically Detecting
Parameter Tampering Vulnerabilities in Web Applications," ACM
Conf. on Computer and Communications Security, 2010

[10] Dominique Bolignano. “Towards the Formal Verification of
Electronic Commerce Protocols,” Proceedings of the IEEE Computer
Security Foundations Workshop, 1997.

[11] David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic
cash. In Proceedings on Advances in cryptology (CRYPTO '88).

[12] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram,
Lantian Zheng, and Xin Zhen, "Secure Web Applications via
Automatic Partitioning," ACM Symposium on Operating Systems
Principles (SOSP), October 2007.

[13] Benjamin Cox, J. D. Tygar, and Marvin Sirbu. 1995. NetBill security
and transaction protocol. In Proceedings of the 1st conference on
USENIX Workshop on Electronic Commerce (WOEC'95).

[14] Danny Dolev and Andrew C. Yao. 1981. On the Security of Public
Key Protocols. Technical Report. Stanford University, Stanford, USA.

[15] Santiago Escobar, Catherine Meadows, and Jose Meseguer. 2005. A
rewriting-based inference system for the NRL protocol analyzer:
grammar generation, the 2005 ACM workshop on Formal methods in
security engineering (FMSE '05). ACM, New York, NY, USA, 1-12.

[16] Viktoria Felmetsger, Ludovico Cavedon, Christopher Kruegel, and
Giovanni Vigna, "Toward Automated Detection of Logic
Vulnerabilities in Web Applications," USENIX Security Symposium,
August 2010.

[17] Fiddler Web Debugger. http://www.fiddler2.com/fiddler2
[18] Phillip M. Hallam-Baker. Electronic Payment Schemes.

http://www.w3.org/ECommerce/roadmap.html
[19] Nevin Heintze, J. D. Tygar, Jeannette Wing, and H. Chi Wong.

Model checking electronic commerce protocols. The 2nd USENIX
Workshop on Electronic Commerce , Berkeley, CA, USA. 1996.

[20] Interspire Shopping Cart. http://www.interspire.com/shoppingcart
[21] Live HTTP Headers. http://livehttpheaders.mozdev.org
[22] Gavin Lowe. An attack on the Needham-Schroeder public key

authentication protocol. Information Processing Letters 56(3), 1995
[23] Shiyong Lu and Scott A. Smolka. 1999. Model Checking the Secure

Electronic Transaction (SET) Protocol. The 7th International

17

Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS '99).

[24] Catherine Meadows. Applying Formal Methods to the Analysis of a
Key Management Protocol. Journal of Computer Security, 1992.

[25] Catherine Meadows and Paul F. Syverson. "A Formal Specification
of Requirements for Payment Transactions in the SET Protocol,"
Financial Cryptography 1998

[26] Jonathan K. Millen. The Interrogator Model. IEEE Symposium on
Security and Privacy 1995..

[27] K. K. Mookhey, "Common Security Vulnerabilities in e-commerce
Systems," http://www.symantec.com/connect/ articles/common-
security-vulnerabilities-e-commerce-systems

[28] Steven Murdoch and Ross Anderson, "Verified by Visa and
MasterCard SecureCode: or, How Not to Design Authentication,"
Financial Cryptography and Data Security, January 2010

[29] NopCommerce. http://www.nopcommerce.com/
[30] Poirot: The concurrency sleuth. http://research.microsoft

.com /en-us/projects/poirot/
[31] Resources – Amazon Payments. https://payments.amazon.com/sdui

/sdui/business/resources#cba
[32] SecurityFocus.com. "3D3.Com ShopFactory Shopping Cart Cookie

Price Manipulation Vulnerability," http://www.
Securityfocus.com/bid/6296/discuss

[33] Vitaly Shmatikov and John C. Mitchell, Analysis of a fair exchange
protocol, Symposium on Network and Distributed Systems Security
(NDSS '00), San Diego, CA, Internet Society, 2000.

[34] Softpedia, "Choose the Best Open Source CMS for 2010,"
http://news.softpedia.com/news/Choose-the-Best-Open-Source-CMS-
for-2010-158440.shtml

[35] TopTenReviews. eCommerce Software Review 2011.
http://ecommerce-software-review.toptenreviews.com

[36] K. Vikram, Abhishek Prateek, and Benjamin Livshits, "Ripley:
Automatically Securing Web 2.0 Applications Through Replicated
Execution," ACM Conference on Computer and Communications
Security (CCS), Nov. 2009.

[37] Supporting materials of this paper, e.g., receipts, payment records,
and emails about our purchases, are available at:
http://research.microsoft.com/~shuochen/caas/supp/

[38] Rui Wang, Shuo Chen, XiaoFeng Wang, Shaz Qadeer. “A Case Study
of CaaS Based Merchant Logic,” http://research.microsoft.com/en-
us/people/shuochen/caaslogiccasestudy.aspx

[39] Wikipedia, "Secure Electronic Transaction," http://en.
wikipedia.org/wiki/Secure_Electronic_Transaction

