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Abstract

Graphics Processing Units (GPUs) o�er potential for very high performance; they are also rapidly
evolving. Obsidian is an embedded language (in Haskell) for implementing high performance kernels to
be run on GPUs. We would like to have our cake and eat it too; we want to raise the level of abstraction
beyond CUDA code and still give the programmer control over the details relevant kernel performance.

To that end Obsidian includes guaranteed elimination of intermediate arrays and predictable
space/time costs, while also providing array functions that are polymorphic across di�erent levels of the
GPUs' hierarchical structure, providing a limited form of nested data parallelism.

We walk through case-studies that demonstrate how to use Obsidian for rapid design exploration or
auto-tuning, resulting in better performance than hand-tuned kernels in an existing GPU language.

1 Introduction

Graphics Processing Units (GPUs) o�er the potential for high-performance implementations of data parallel
computations. Yet achieving top performance is recognized as a di�cult task, requiring expert programmers
with the ability and time to manually optimize use of on-chip storage, make granularity decisions, and match
memory access patterns to the [non-traditional] constraints placed by GPU memory architectures (i.e. not
just temporal memory patterns, but the coordination of accesses across groups of threads). Accordingly,
programs are written in a low-level vendor-supplied programming environments, such as NVIDIA CUDA,
where all these details are under programmer control.

One answer to the high cost of GPU programming is to attempt to automate the process, in particular
by starting with a very high-level language and using an optimizing compiler to make the aforementioned
decisions, synthesizing code in a language like CUDA. Indeed, many recent research projects have done just
this, including: Copperhead [4], Accelerate [6, 16], Harlan [12], and Delite [5]. These languages are �rst and
foremost array languages, intentionally restricted versions of older languages such as APL [13], and Matlab.
Typical operations include mapping, �ltering, scanning, and reducing array data. By restricting program
structure, this language family gains one major bene�t over more general purpose array languages: they can
very e�ectively fuse series of array operations, eliminating temporary arrays.

Pitfalls of abstraction The problem with aggressive abstraction approaches to GPU programming, is
that they remove the control necessary for the design exploration process that remains a critical of the
current process for porting algorithms to the GPU. Much like a computer architect, a programmer working
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to GPU-accelerate an application kernel must go far beyond their initial version (typically ported from CPU
code), and must iterate through several di�erent designs, experimenting with tradeo�s. Often the �nal result
is more than an order of magnitude faster than the starting point.By contrast, a language like Accelerate
abstracts GPU programming to the point that there is a single way to express each communication pattern,
for example pre�x sum becomes �scanl (+) 0 arr�, with no tuning parameters. In fact, all of the following
optimization tools are lost:

• Controlling how many kernels are launched

• Controlling which arrays are mapped to on-chip (local) memory.

• Controlling synchronizations points (e.g. __syncthreads)

Further, because systems like Accelerate depend on compiler optimization for performance, there is not a
�xed cost model for the time and space cost of operations, which may or may not be fused, deforesting
intermediate arrays. One day, hopefully this automation will work well enough to obsolete the human from
the performance tuning process, but it hasn't yet.

A language for rapid design exploration In this paper we argue that it is possible to make a more
surgical strike in choosing what to abstract in GPU programming. We propose a small language, Obsidian,
that leaves the above controls in the programmers hands while providing three key bene�ts over CUDA
programming:

1. Abstracting over constant limits (virtualization of warps and blocks)

2. Systematic generation of code variants, traditionally addressed in domain-speci�c languages (DSLs)
by metaprogramming, which enables both design exploration and easier auto-tuning.

3. Compositional array operations that also o�er hierarchy polymorphism: the same programming primi-
tives at thread, warp, block, and grid level.

The most unique bene�t of Obsidian is in the last point. First, Obsidian uses a combination of push- and
pull-arrays, in the meta-language (Section 4). It uses a fusion by default approach, even at the expense of
work duplication, together with an explicit function for making arrays manifest in memory. This makes the
cost model fully transparent. Second, Obsidian exposes the hierarchical nature of GPU hardware (directly
in the type system), while core data operations work at any level. As such it allows a limited form of nested
data parallelism (NDP [3]), with nestings only as deep as the machine hierarchy itself1. Obsidian is the �rst
language to our knowledge to use either of these techniques.

In this paper, we present the design and implementation of Obsidian and demonstrate that where high-
level DSLs have highly tuned �xed operations (such as a pre�x sum), we can generate those same results
and also explore the nearby design landscape. Moreover, where high-level DSLs fail to produce good
performance, Obsidian provides the tools to drill down and �x the problem. Yet in spite of that low-
level control, embedding, metaprogramming, and novel array representations enable better code reuse than
CUDA, comparable to higher level DSLs.

2 Background: The GPU and CUDA

Obsidian targets NVIDIA GPUs supporting CUDA [18], a C-dialect for data-parallel programming. These
GPUs are built on a scalable architecture: each GPU consists of a number of multiprocessors; each multi-
processor has a number of processing elements (cores) and an on-chip local memory that is shared between
threads running on the cores. A GPU can come with as few as one of these multiprocessors. The GPUs

1Again, without employing any automatic optimizations, of which NDP �attening transformations would be one example.
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used in our measurements are an NVIDIA Tesla c2070 and a GTX 680. The GTX680 GPU has eight mul-
tiprocessors, with a total of 1536 processing cores. On these cores, groups of 32 threads called warps are
scheduled. There are a number of warp scheduling units per multiprocessor. Within a warp, threads execute
in lockstep (SIMD); diverging branches, that is those that take di�erent paths on di�erent threads within a
warp, are serialised, leading to performance penalties.

The scalable architecture design also in�uences the programming model. CUDA programs must be able
to run on all GPUs from the smallest to the largest. Hence a CUDA program must work for any number of
multiprocessors. The CUDA programming model exposes abstractions that �t the underlying architecture;
there are threads (executing on the cores), blocks of threads (groups of threads run by a multiprocessor) and
�nally the collection of all blocks, which is called the grid.

The threads within a block can use the shared memory of the multiprocessor to communicate with each
other. A synchronisation primitive, __syncthreads(), gives all the threads within a block a coherent view
of the shared memory. There is no similar synchronisation primitive between threads of di�erent blocks.

The prototypical CUDA kernel starts out by loading data from global memory. The indices into global
memory for an individual thread are expressed in terms of the unique identi�er for that block and thread.
Some access patterns allow memory reads to be coalesced, while others do not, giving very poor performance.
The patterns that lead to good performance vary somewhat between di�erent GPU generations, but regular,
consecutive accesses by consecutive threads within a warp are best.

A CUDA program is expressed at two levels. Kernels are data-parallel programs that run on the GPU.
They are launched by the controlling program, which runs on the CPU of the host machine. Obsidian is
primarily a language for engineering e�cient kernels, but, like other GPU DSLs, it also provides library
functions for transparently generating, compiling, and invoking CUDA kernels from the high-level language
in which Obsidian is implemented (Haskell). Unlike most GPU DSLs, Obsidian can also be used to generate
standalone kernels, which can be called from regular CUDA or C++ programs�a common need when
GPU-accelerating existing applications.

3 Obsidian Programming Model

Obsidian is an Embedded Domain Speci�c Language (EDSL), implemented in Haskell. When running an
Obsidian program�which is really just a Haskell program using the Obsidian libraries�a data structure is
generated encoding an abstract syntax tree (AST) in a small embedded language. Embedded languages that
generate ASTs are traditionally called deeply embedded languages2. The creation of an AST o�ers �exibility
in interpretation of the DSL. In Obsidian's case the AST is used for CUDA code generation. For an excellent
introduction to compiling embedded languages, see reference [9]. As a result of the embedding, the following
function, when invoked, does not immediately increment any array elements. Rather, computation is both
deferred and extracted into an AST:

incLocal arr = fmap (+1) arr

EDSLs in Haskell, like those in Scala [5] and C++ [17], tend to use an overloading approach, resolved
at compile time, to extend operations like (+) to work over AST types in addition to actual numbers.
Dynamic languages instead tend to use introspection [4, 11] to disgorge the code contents of a function
object and acquire an AST for domain-speci�c compilation. While these AST-extraction methods are largely
interchangeable, there are other issues of representation that have a big e�ect on what is possible in the DSL
compiler, namely: array representation.

In Obsidian, there are two di�erent [immutable] array representations, Pull and Push arrays, neither of
which commits to an in-memory, manifest data representation. Pull arrays are implemented as a function
from index to element, with an associated length. A consumer of a pull array needs to iterate over those
indices of the array it is interested in and apply the pull array function at each of them. A push array, on
the other hand, encodes its own iteration schema. Any consumer is forced to use the push array's built-in

2An alternative to a deep embedding is a shallow embedding, one that does not generate ASTs but rather implement the
DSL directly in terms of their semantics.
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iteration pattern3. Indexing is a cheap operation on pull arrays, but on push arrays it requires traversal of
the entire array in worst case. Both representations can safely avoid bounds checks for typical combinations
of array producers and consumers.

The incLocal function above operates on pull arrays, so both its input and output type are (Pull size num),
e.g. (Pull Word32 EWord32). The di�erence between a Word32 and a EWord32 is related to the embedded nature
of Obsidian. An EWord32 (short for Exp Word32) is a data structure (an AST) while an Word32 is a value. The
Word32 type (rather than EWord32) is used for lengths of arrays in local memory; thus ensuring that these array
sizes are known when Obsidian CUDA code generation occurs. For simplicity of presentation we will err
on the side of monomorphism, avoiding generic types where they are not directly required to illustrate the
point. For example:

incLocal :: Pull Word32 EWord32 → Pull Word32 EWord32

Adding parallelism �Local�, in the name of the function above, is a hint that we're not yet entirely done.
While incLocal completely describes the computational aspects of this example, it does not describe how that
computation is laid out on the GPU. Obsidian, like CUDA, di�erentiates between Thread, Block and Grid
computations. While CUDA provides no abstraction for warps, Obsidian does. The programmer speci�es
how the computation is laid out over the available parallel resources. For example, a sequential computation
to be carried out by each thread. Many instances of a sequential computation can then be run in parallel
across the threads of a Warp, Block or Grid.

For example, to turn the parallelism-agnostic incLocal function into a function that executes GPU-wide,
we use push to apply an iteration schema:

incPar :: Pull Word32 EWord32 → Push Grid Word32 EWord32

incPar arr = push (incLocal arr)

This function is still cheap in the sense that it does not make the array manifest in memory. The behavior
of the push array is also type-directed; if we had changed Grid to Thread, we would get a sequential rather
than parallel loop. Likewise, if we see a (Push Block size num) array, we know it is an array computed in
parallel across the threads within one block on the GPU.

In CUDA, blocks are limited to a maximum of 1024 thread. This limitation does not hold in Obsidian,
because threads within a block are virtualized. Virtualization of threads is explained further in Section 4.
Hiding these hardware limits makes it easier to quickly switch between di�erent mappings of loop nests
onto the hardware hierarchy�one of the main bene�ts of Obsidian for enabling design exploration. Second,
because parallel loops are implicit in CUDA kernels (unlike, e.g., OpenMP or Cilk), switching between
parallel and sequential loops in CUDA requires changing much more code than a one-word tweak to the
array type. Third, Obsidian arrays o�er a modularity advantage: the logic of the program can be de�ned at
a point far removed from where loop structure decisions are made.

Limited nested parallelism To explore interesting loop structures, we need nested array operations. In
Obsidian, we can split arrays into chunks of size n with splitUp, and then concatenate them again with
pConcat, obeying this law:

pConcat (splitUp n arr) == push arr

The splitUp function takes a chunk size (a Word32), a known-at-compile-time value4. However, the length
of an array can be either static or dynamic (Word32 or EWord32). Many Obsidian functions are limited to static
sizes; code generation depends on this. The dynamic lengths are an added convenience�after specifying a
local [�xed-size] computation, it can be launched over a varying number of GPU blocks. For a description
of all core Obsidian array functions, see Figure 14, and for the full type signatures of splitUp and other
operations, see Figure 11 in the Appendix.

3Non-parallel push arrays are similar to the generators found in many languages, but Obsidian's staged execution removes
the necesity for any coroutine-like control �ow with �yield�.

4Obsidian compile time is Haskell runtime; so, as is typical for metaprogramming systems, it is still possible to build arbitrary
computations that construct these �static� Obsidian values.
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-- Enter into hierarchy

tConcat :: Pull l (Push Thread Word32 a) → Push t l a

-- Step upwards in hierarchy

pConcat :: Pull l (Push Word32 t a) → Push (Step t) l a

-- Remain on a level of the hierarchy

sConcat :: Pull l (Push t Word32 a) → Push t l a

Figure 1: GPU hierarchy programming API, contains functions to spread computation across parallel resources in a
level of the GPU hierarchy. These could be combined into a single polymorphic concat operation, but doing so would
lose the bene�ts of type inference (requiring tedious explicit type annotations on every concat).

The next program describes how to spread local work out over several of the GPU blocks. The input to
this function is an array of arrays, with each inner array as the input to an instance of incLocal.

increment :: Pull _ (Pull _ _) → Push Grid _ _

increment arr = pConcat (fmap body arr)

where body a = push (incLocal a)

The increment program uses pConcat to execute several instances of incLocal in parallel across the block level
of the GPU hierarchy, thus forming a grid. The type of pConcat forces the computation to step up one level
in the hardware hierarchy. It's signature is

Pull l (Push s t a) → Push (Step t) l a

where (Step t) is a type-level function that transforms, e.g. Warp into Block. Because (Step t) = Grid in the
increment function above, the type checker inferred that t = Block.

But why does pConcat return a push array? Because it is more e�cient for pConcat to build its own iteration
schema (for example, pushing chunk 1, chunk 2, etc in sequence), rather than form a a chain of conditionals
(based on index i are we in chunk n?).

Loop structure experimentation The application of pConcat in increment creates a nested parallel loop
structure equivalent to: parfor (...) { parfor (...) body(..); } But this is only one of the possible decompo-
sitions of this computation over the parallel resources of the GPU. Another way would be to create a loop
nesting with a sequential innermost loop, wrapped in two parallel for loops. This decomposition is shown
below.

increment2 :: Pull _ (Pull _ (Pull _ _)) → Push Grid _ _

increment2 arr = pConcat (fmap body arr)

where body a = tConcat (fmap push (fmap incLocal a))

which corresponds to a loop-nest parfor/parfor/for. Another reason loop-structure changes are di�cult in
CUDA is that there is only one level of implicit parallel loops (the kernel). Simulating nested parallel loops
requires tedious index computations, which, here, Obsidian handles automatically.

In Figures 12 and 13, the generated code for increment and increment2 are shown. The block level and grid
level parallel for loops are implicit in the CUDA programming model. For loops in the generated code are
sequential loops that originate either from sequential loops directly from our Obsidian program (increment2),
or from programs that �spill� over the threads-per-block and blocks-per-grid limits (Section 4).

Programs and Parallelism Finally, in addition to push/pull array values and expressions, Obsidian
contains one more AST data type called Program, capturing program e�ects such as a push array feeding its
outputs into a [manifest] array in local storage. In Section 4, we will see how push arrays internally encode
their iteration schemas by generating snippets of Program AST. As is standard for monadic values in Haskell,
a (Program t a) value represents a computation, which, when run, results in a value of type a.
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Programs are parameterized on a level of the GPU hierarchy, (Program level). The type system ensures
that only programs that meet the GPU constraints can be generated: For example, threads participating
in a barrier synchronization must always be in the same block. Or: no (Program Thread) can be created that
uses a parallel for loop. For an Obsidian program to exhibit parallelism it needs to either result in a push
array, or (Program level (Pull size num)).

Transparent Cost Model One of the goals of Obsidian is to provide a transparent cost-model. Thus the
user should clearly know how much memory and computation each operation requires, and also how large
of an expression their Obsidian kernel generates. As one example of a program that can get us into trouble,
consider the following function for summing an array of numbers:

sumUp :: Pull Word32 EWord32 → EWord32

sumUp arr

| len arr == 1 = arr ! 0

| otherwise =

let (a1,a2) = halve arr

arr2 = zipWith (+) a1 a2

in sumUp arr2

Here, zipWith (a two-argument map) operates on pull arrays and returns another. Following Obsidian's
de-facto fusion policy, it does not use any memory for arrays. However, because the divide-and-conquer
recursion above happens at compile time, sumUp generates a large O(N)-sized expression to sum all the
elements of the array5! For example:

output[0] = input[0] + input[4] +
input[2] + input[6] +
input[1] + input[5] +
input[3] + input[7];

For small arrays, this might be code might be ideal. But sumUp would need to be used with care; it precludes
parallelism, and it shouldn't be used on larger arrays.

3.1 Using Force: Parallelism and Shared Memory

Of course, arrays can't always stay non-manifest. The Obsidian library comes with a family of �force�-
functions (force, forcePull), which serve three roles:

1. Make array manifest in memory: For sharing of computed results between threads.

2. Expose parallelism: Forcing a pull array (forcePull arr) sets up an iteration schema over its range and
computes the pull array function at each index. The result of forcing a pull array is a (Program level (Pull size num))

array. forcing a push array instantiates the iteration schema encoded in the push arrays and writes all el-
ements to memory using that strategy. Forcing a (Push level size num) array results in a (Program level (Pull size num))

array.

3. Conversion: from push array to pull array, enabling cheap indexing.

A single call to forcePull transforms the sumUp program into a binary tree shaped parallel reduction:

sumUp' :: Pull Word32 EWord32 → Program Block EWord32

sumUp' arr

| len arr == 1 = return (arr ! 0)

| otherwise =

do let (a1,a2) = halve arr

arr2 ← forcePull (zipWith (+) a1 a2)

sumUp' arr2

5This problem, over elaboration, is a potential user error in all embedded DSLs. For example, in Intel ArBB (embedded
in C++), if one forgets to use for_ instead of for they evaluate a loop at compile time that was meant for runtime (fulling
unrolling it).
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This version has also been changed to Haskell's do notation for monadic computations. The statement
arr2 ←forcePull . . . creates a manifest intermediate array that all threads within that block can access. The
code generated from sumUp' has the following form:

parfor (i in 0 . . . 3)
imm0[i] = input[i] + input[i+4];

parfor (i in 0 . . . 1)
imm1[i] = imm0[i] + imm[i+2];

parfor (i in 0 . . . 0)
output[i] = imm1[i] + imm1[i+1];

3.2 Programming Blocks and Warps

The increment example in section 3 already showed how to apply a hierarchy-agnostic function on pull arrays
at di�erent levels of the GPU's hierarchy. To have a complete cost-model, it is also important for the user
to understand the meaning of memory operations at the Warp and Block levels, and the rules for automatic
synchronization insertion. Here we will illustrate those rules with a simple example:

agnostic arr =

do imm1 ← forcePull (fmap (+1) arr)

imm2 ← forcePull (fmap (∗2) imm1)

imm3 ← forcePull (fmap (+3) imm2)

return (push imm3)

Because the agnostic function uses force, some constraints apply. For example, this push array cannot be
instantiated at the grid level, as we did with the previous incLocal example. Rather, we must instantiate
agnostic at the Block level or below, where synchronized communication via shared memory is possible.

As with increment, if we want to distribute the agnostic function over individual blocks, we can take a
larger array, chunk it with splitUp 256 arr, and then fmap the agnostic function over each chunk, and �nally
�atten the result back out with pConcat, which generates code following this pattern:

parfor (i in 0..255) {

imm1[i] = input[blockID ∗ 256 + i] + 1;

__syncthreads();

imm2[i] = imm1[i] ∗ 2;

__syncthreads();

imm3[i] = imm2[i] + 3;

__syncthreads();

}

Note that each stage is followed by a barrier synchronization operation6. It is also possible to place the
agnostic computation on the warp level. This can be done by splitting the input pull array into a three level
nested pull array: e.g. fmap (splitUp 32) (splitUp 256 arr). Each warp of a blocks operate on the innermost
chunks, and the resulting code follows this pattern:

parfor (i in 0..255) {

warpID = i / 32;

warpIx = i % 32;

imm1[warpID ∗ 32 + warpIx] =

input[blockID ∗ 256 + warpID ∗ 32 + warpIx] + 1;

imm2[warpID ∗ 32 + warpIx] =

imm1[warpID ∗ 32 + warpIx] ∗ 2;

imm3[warpID ∗ 32 + warpIx] =

imm2[warpID ∗ 32 + warpIx] + 3;

}

All the synchronization operations disappeared, because a warp-level program is naturally lockstep (SIMD/SIMT).

6Indeed, in this simple example the synchronizations are unnecessary, and the user should not have used forcePull!
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Constructor Arguments Notes Description

Assign name, val_exp, ix_exp name[ix] = val -

ForAll range, body body is represented by a function

The body is a Thread-level program
that is executed range number of
times on a level (Thread, Warp,
Block, Grid)

DistrPar range, body body is represented by a function
The body is a level t program that
is spread out in parallel over level
(Step t) in the hierarchy

SeqFor range, body body is represented by a function
A sequential loop, the program re-
mains on the same level of the hier-
archy as the body

Allocate name, size, type -
Allocate space for array name in
shared memory

Declare name, type - declare a variable name

Sync -
Barrier synchronization across all
threads of a block

Seq* program, program - sequences of statements

Figure 2: A list of some constructors from the program AST data type, (data Program t a).
*In the implementation sequences of statements are not really provided by a Seq constructor, but rather via making
the Program data type a monad. Sequencing is then provided via the monad bind operations. This allows sequences
of statements in the AST to be generated using Haskell do notation. For example do {Allocate �arr1� 512 Int;

ForAll 512 body; Sync}

4 Obsidian Implementation

The Obsidian compiler deals with two types of ASTs: scalar expressions (e.g. EWord32), and Programs

(statements). Scalar expressions include standard �rst-order language constructs (arithmetic, condition-
als, etc). Obsidian source expressions such as (5+1), elaborate into standard Haskell algebraic datatypes7,
e.g. (BinOp Add (Literal 5) (Literal 1)). There are also two GPU speci�c variables in the Exp grammar,
ThreadIdx and BlockIdx referring to the [eventual] CUDA thread identity�for internal use by the Obsidian
compiler only. The second AST, Program, is Obsidian's imperative core language, with data constructors
listed in Figure 2.

Pull arrays Pull arrays are indeed implemented as functions from index to [expression] value. This is a
common representation for immutable arrays and allows easy implementation of many interesting operations,
such as map, zipWith and permutations.

data Pull s a = MkPull s (EWord32 → a)

The embedded language Pan [8] used a similar representation for images and was the main inspiration
for Obsidian's pull arrays. Contemporary languages Feldspar [1] and Repa [14] also use the same array
representation.

Push arrays Push arrays are implemented on top of the Program data type. Where pull arrays are a
function that returns an element for each index, a Push array is a code generator: a function that returns a
Program action.

data Push t s a =

MkPush s ((a → EWord32 → Program Thread ())

→ Program t ())

Each push array is waiting to be passed a receiver function, which takes a value (a) and index (EWord32), and
generates single-threaded code to store or use that value. Given a receiver, a push array is then responsible

7GADTs actually, in the current implementation: https://github.com/svenssonjoel/Obsidian
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for generating a program that traverses the push array's iteration space, invoking the receiver as many times
as necessary.

Warp/Block Virtualization The length of an array, the s parameter, can be either static (a Haskell
known-at-compile-time value) or dynamic (a runtime value). Static lengths are used for local (or block)
computations, with those lengths determining shared memory consumption and parallel and sequential loop
sizes. When, an array size is larger than the hardware limit on a warp or block size, compiler-enabled
virtualization of blocks and warps occurs. Implementing this only requires inserting an additional sequential
loop at the relevant level, to make multiple passes.

4.1 Push and pull array interplay

Forcing arrays to memory (Section 3.1) is a function overloaded on hierarchy level. It's type is:

force :: Push t Word32 a → Program t (Pull Word32 a)

with very di�erent implementations at each level (i.e. di�erent t's). For example, below is pseudo code of
force at the block level:

force (MkPush size p) = do

name ← gensymname
Allocate name size type
p (Assign name)

Sync

return (MkPull size (λix →Index name ix))

Converting in the other direction, pull array to a push array, is cheap and is done using a function called
push that also behaves di�erently (sequentially or in parallel) at di�erent levels of the GPU hierarchy. This
is implemented as a type class:

class Pushable t where

push :: ASize s ⇒ Pull s e → Push t s e

ASize, an additional type class, has instances for both the static and dynamic lengths, both of which are
internally converted (via sizeConv) into Exp, after noting the known sizes.

There are four instances of the Pushable class, for each level of the hierarchy:

instance Pushable Thread where

push (MkPull n ixf) =

MkPush n

(λwf → SeqFor (sizeConv n) (λi → wf (ixf i) i))

instance Pushable Warp where

push (MkPull n ixf) =

MkPush n

(λwf → ForAll (sizeConv n) (λi → wf (ixf i) i))

-- Block: same structure as Warp

-- Grid: same structure as Warp

Now, the push function captures just one possible way to convert a pull array into push array�with one
write per thread. Conversion of pull arrays into push arrays can be done in many ways. For example, more
than one element per thread one could be written by each thread, and then choices of stride length come
into play. For example, one specialized �push�-function available in the Obsidian library is load:

load :: Word32 → Pull Word32 a → Push Block Word32 a

load n arr =

MkPush m (λwf →
forAll (fromIntegral n') (λtid →
seqFor (fromIntegral n) (λix →

wf (arr ! (tid + (ix∗fromIntegral n')))

(tid + (ix∗fromIntegral n')))))

where
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m = len arr

n' = m `div` n

The load function combines sequential and parallel loops in pushing the pull array. The reason it is called
load is its intended use as a initial load coalescer (to coalesce the �rst load a kernel performs from global
memory).

Finally, just like push arrays, pull arrays can be forced (made manifest in memory). A Pull array is
forced by converting them to push forcePull arr = force (push arr)

4.2 Compilation to CUDA

During Haskell evaluation, operations like fmap and zipWith disappear, leaving the an explicit AST with Exp,
Program, and the MkPush/MkPull constructors. After this point, the Obsidian compiler begins, and proceeds
through the following phases:

1A Rei�cation: Haskell functions representing Obsidian programs are turned into ASTs, including gener-
ating names for arrays.

1B Stripping: The Program level datatype is converted from a higher-order representation to a list of state-
ments (IM datatype) that make the hierarchy level of parallel loops concrete.

2A Liveness Analysis: The IM is analyzed to discovering the live ranges of arrays in shared memory. This
stage annotates the IM with liveness information, that keeps track of where an array is created and at
what point it can be freed.

2B Memory Mapping: The annotated AST goes through a simple abstract interpretation, simulating it
in order to create a memory map. Then, all arrays are renamed with direct accesses to its allotted
memory o�set.

3 CUDA Code Generation: At this stage, explicit for loops in the IM are compiled into CUDA. This is
where virtualization of threads, warps and blocks take place.

Rei�cation and Stripping At this stage Obsidian functions (Haskell functions using the Obsidian library)
are turned into ASTs. A complete Obsidian program has a type such as:

prg1 :: Pull EWord32 EWord32 → Push Grid EWord32 EWord32

(Though variable numbers of input and result arrays are permitted as well.) Reifying this program is as
simple as applying it to a named array in global memory:
(MkPull n (λix →Index "input" ix)).

The function then yields its push array result. That push array, in turn, is a Program parameterized
on a write-function. Providing the push array with a receiver-function. Providing a receiver, such as
(λ a ix →Assign "output" a ix), which writes to a named (global) array, completes rei�cation.

Liveness Analysis and Memory Mapping The force functions, that introduce manifest arrays in
shared memory, generates unique names for each intermediate array. CUDA does not provide any memory
management facilities for shared memory so in Obsidian we analyse kernel memory usage and create a
memory map at compile time.

There are 48Kb of shared memory available on each GPU multiprocessor, so it is a limited resource.
Making good use (and reuse) of it is important. Obsidian Program AST already contains Allocate nodes, that
shows where an arrays comes into existence, and we compute the full live range each array with a standard
analysis:

• Step through list of statements in reverse. When encountering an array name for the �rst time it is
added to a set of live arrays. The list of statements is annotated with this liveness information.
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• When an Allocate statement is found, the array being allocated is removed from the set of live arrays.

Following this analysis phase a memory map is constructed using a greedy strategy. This is done by
simulating the AST execution together against an abstraction of the shared memory. The simulated shared
memory is implemented as a list of free ranges and a list of allocated ranges. �malloc� requests are serviced
with the �rst available memory segment of su�cient size. The maximum size ever used is tracked, and in the
end this is the total amount of shared memory needed for this kernel. After creating the memory map, the
list of statements is traversed again and all array names are replaced with their location in shared memory.

Finally, this can potentially lead to memory fragmentation, and an the greedy solution is certainly not
optimial. However, (1) in practice we see local arrays either of the same size or shrinking sizes (divide and
conquer), and (2) unlike traditional register allocation, this process primarily a�ects whether a kernel will
compile, not its performance: we do not spill to main memory. The upside of automatic shared memory
managemnent is that it makes it much easier to reuse and remap shared memory within a large kernel, than
it would be in CUDA. In CUDA you would need to allocate a local array and then manually cast portions
of it for reuse�tedious and error prone.

CUDA Code Generation During this phase CUDA code is generated from the list of statements. This
phase takes as a parameter the number of real CUDA threads that the code should be generated for. Hence it
is here resource virtualization must be addressed. The compilation is done using the Language.C.Quote library
that allows us to mix in C syntax in our Haskell code. Most cases of this compilation are very simple, as
many statements correspond directly to their CUDA counterparts. For example, an assignment statement
is compiled as follows:

compileStm _ (Assign name ix e) =

[[cstm| $(compileExp name)[$(compileExp ix)] =

$(compileExp e); |]]

The interesting cases are those that deal with parallelism: e.g. the ForAll and DistrPar statements. For
example, compiling a parallel-for over threads in a block would have the following structure:

compileStm realThreads (ForAll Block n body) = goQ ++goR
where

-- how to split the iteration space

-- across the realThreads.

-- q passes across all real threads

-- followed by a stage of using r real threads

q = n `quot` realThreads

r = n `rem` realThreads

goQ = for (int i = 0; i <q; ++i) {

-- repurpose tid

tid = i∗nt + threadIdx.x;

body
}

goR = -- run the last r threads

if (threadIdx.x <r) {

. . .
}

Compilation of DistrPar performs a similar technique for the virtualization of the available number of warps
and blocks.

5 Case studies

The question we want to ask about Obsidian, is not directly �how fast is it�? Because the program synthesis
abstractions we have described do not add overhead, achievable performance remains the same as CUDA
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generally. Rather, we explore how Obsidian helps navigate the design space around a solution (manually, or
through an auto-tuner).

The following case studies start with a simple kernel, embarassingly parallel with no inter-thread com-
munication. Even with such a kernel, there is non-trivial tuning to maximize throughput. The remaining
case studies consider key building blocks, reduce and scan, that have data-�ow graphs involving much more
communication. We compare these against the corresponding kernels within the Accelerate implementation,
a much higher level DSL but one with hand-tuned (but not auto-tuned) CUDA skeletons for patterns like
scan and fold8.

5.1 Mandelbrot Fractals

The Mandelbrot fractal is generated by iterating a function:

zn+1 = z2n + c

where z and c are complex numbers. The method to generate the fractal presented here is based on a
sequential C program from reference [21].

In order to get the Mandelbrot image, one lets z0 be zero and maps the x and y coordinates of the image
being generated to the real and imaginary component of the c variable.

xmax = 1.2 :: EFloat; xmin = -2.0 :: EFloat

ymax = 1.2 :: EFloat; ymin = -1.2 :: EFloat

To obtain the well known and classical image of the set, we let the real part of c range over −2.0 to 1.2
as the x coordinate range from 0 to 512 and similarly for the y coordinate and the imaginary component.

-- For generating a 512x512 image

deltaP = (xmax - xmin) / 512.0

deltaQ = (ymax - ymin) / 512.0

The image is generated by iterating the function presented above. We map the height of the image onto
blocks of executing threads. Each row of the image is computed by one block of threads. This means that
for a 512×512 pixel image, 512 blocks are needed.

The function to be iterated is de�ned below and called f. This function will be iterated until a condition
holds (de�ned in the function cond). We count the number of iterations and if they reach 512 we break out
of the iteration.

f b t (x,y,iter) =

(xsq - ysq + (xmin + t ∗ deltaP),

2∗x∗y + (ymax - b ∗ deltaQ),

iter+1)
where

xsq = x∗x
ysq = y∗y

cond (x,y,iter) = ((xsq + ysq) <∗ 4) &&∗ iter <∗ 512

where

xsq = x∗x
ysq = y∗y

The number of iterations that are executed is used to decide which colour to assign to the corresponding
pixel. In the function below, seqUntil iterates f until the condition cond holds. Then the number of
iterations is extracted and used to compute a colour value (out of 16 possible values).

8In fact, Accelerate and similar languages can only generate applications that are chains of these skeletons. So in some sense
measuring these skeletons captures everything interesting about that language from a performance perspective.
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size 32 64 128 256 512 1024

256 0.25 0.17 0.12 0.21 0.33 0.60

512 0.71 0.43 0.34 0.41 0.69 1.16

1024 2.41 1.39 1.05 1.22 1.53 2.58

2048 8.86 4.98 3.67 3.88 4.69 5.95

4096 34.21 18.82 13.69 14.07 15.36 18.65

size 32 64 128 256 512 1024

256 0.44 0.38 0.41 0.36 0.41 0.98

512 1.44 1.16 1.17 1.16 1.14 2.00

1024 5.12 3.96 3.95 3.98 4.17 4.75

2048 18.80 14.53 14.38 14.48 14.84 17.50

4096 72.12 55.36 54.94 55.16 55.67 61.89

Figure 3: Running times for the Mandelbrot program. The left table shows times measured on an NVIDIA GTX680
GPU. The rigth table shows times measured on an NVIDIA TESLA c2070. The columns varies the number of threads
per block, while the rows varies image size. Each benchmarks was executed 1000 times and the total time is reported
in seconds. The transfer of data to or from the GPU is not included in the timing measurements.
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Figure 4: Left: evenOdds - zipWith reduction, leads to uncoalesced memory accesses. Right: halve - zipWith

reduction, leads to coalesced memory accesses. This coalescing is most important during the very �rst phase, when
data is read from global memory.

iters :: EWord32 → EWord32 → SPush Thread EWord8

iters bid tid =

fmap extract (seqUntil (f bid' tid') cond (0,0,1))

where

extract (_,_,c) = (w32ToW8 (c `mod` 16)) ∗ 16

tid' = w32ToF tid

bid' = w32ToF bid

The �nal step is to run the iterations for each pixel location, by implementing a genRect functions that spreads
a sequential Push Thread computation across the grid.

genRect :: EWord32

→ Word32

→ (EWord32 → EWord32 → SPush Thread b)

→ DPush Grid b

genRect bs ts p =

pConcat (mkPull bs (λbid →
(tConcat (mkPull ts (p bid)))))

Generating the Mandelbrot image is done by generating rectangle, applying the iters function at all points.

mandel = genRect 512 512 iters

5.2 Reduction

In this section, we implement a series of reduction kernels. The Obsidian reductions take an associative
operator as a parameter. In these benchmarks, the reduction will be addition only and the elements will be
32 bit unsigned integers. Some of the reduction kernels will also require that the operation is commutative.

To illustrate the kind of low level control that an Obsidian programmer has over expressing details of
a kernel, we show a series of reduction kernels, each with di�erent optimisations applied. Many of the
optimisations applied to the kernels can be found in a presentation from NVIDIA [10].
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6 22 38 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

24 28 32 46

Figure 5: Left: BAD Adding sequential reductions like this, reintroduces memory coalescing issues. Consecutive
threads nolonger access consecutive memory locations. Right: GOOD Using sequential reduction but maintaining
coalescing

This section focuses on local reduction kernels (on-chip storage only). The construction of large reduction
algorithms from these kernels will be illustrated in section 6.

5.2.1 Reduction 1

Our �rst attempt at reduction combines adjacent elements repeatedly. This approach is illustrated on the
left of Figure 4. In Obsidian, this entails splitting the array into its even and its odd elements and using
zipWith to combine these. This procedure is then repeated until there is only one element left. This kernel
will work for arrays whose length is a power of two.

red1 :: MemoryOps a

⇒ (a → a → a)

→ Pull Word32 a

→ Program Block a

red1 f arr

| len arr == 1 = return (arr ! 0)

| otherwise =

do let (a1,a2) = evenOdds arr

imm ← forcePull (zipWith f a1 a2)

red1 f imm

The above code describes what one block of threads does. To spread this computation out over many
blocks and thus perform many simultaneous reductions, pConcat is used, as before:

mapRed1 :: MemoryOps a

⇒ (a → a → a)

→ Pull EWord32 (SPull a)

→ Push Grid EWord32 a

mapRed1 f arr = pConcat (fmap body arr)

where

body arr = singletonPush (red1 f arr)

This kernel does not perform well (Figure 6), which may be attributed to its memory access pattern. Re-
member that one gets better performance on memory access when consecutive threads access consecutive
elements, which happens if each thread accesses elements that are some stride apart.

5.2.2 Reduction 2

red2 lets each thread access elements that are further apart. It does this by halving the input array and then
using zipWith on the halves (see Figure 4). This choice can only be made if the operator is commutative.
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red2 :: MemoryOps a

⇒ (a → a → a)

→ Pull Word32 a

→ Program Block a

red2 f arr

| len arr == 1 = return (arr ! 0)

| otherwise =

do let (a1,a2) = halve arr

arr2 ← forcePull (zipWith f a1 a2)

red2 f arr2

5.2.3 Reduction 3

The two previous implementations of reduce write the �nal value into shared memory (as there is a force

in the very last stage). This means that the last element is stored into shared memory and then directly
copied into global memory. This can be avoided by cutting the recursion o� at length 2 instead of 1, and
performing the last operation without issuing a force.

red3 :: MemoryOps a

⇒ Word32

→ (a → a → a)

→ Pull Word32 a

→ Program Block a

red3 cutoff f arr

| len arr == cutoff =

return (foldPull1 f arr)

| otherwise =

do let (a1,a2) = halve arr

arr2 ← forcePull (zipWith f a1 a2)

red3 cutoff f arr2

This kernel takes a cutoff as a parameter and when the array reaches that length, sequential fold over
pull array is used to sum up the remaining elements. setting the cutoff to two does not change the overall
depth of the algorithm, but since there is no force in the last stage the result will not be stored in shared
memory.

5.2.4 Reduction 4

Now we have a set of three basic ways to implement reduction and can start experimenting with adding
sequential, per thread, computation. red4 uses seqReduce, which is provided by the Obsidian library and
implements a sequential reduction that turns into a for loop in the generated CUDA code. The input array
is split into chunks of 8 that are reduced sequentially. The partial results are reduced using the previously
implemented (red3).

red4 :: MemoryOps a

⇒ (a → a → a)

→ Pull Word32 a

→ Program Block a

red4 f arr =

do arr2 ← force (tConcat (fmap (seqReduce f)

(splitUp 8 arr)))

red3 2 f arr2

As can be seen by the running times in Figure 6, this optimisation did not come out well. The problem
is that it reintroduces memory coalescing issues (see Figure 5).
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5.2.5 Reduction 5

With red5, the coalescing problem is dealt with by de�ning a new function to split up the array into sub
arrays. The idea is that the elements in the inner arrays should be drawn from the original array in a strided
fashion.

coalesce :: ASize l

⇒ Word32

→ Pull l a

→ Pull l (Pull Word32 a)

coalesce n arr =

mkPull s (λi →
mkPull n (λj → arr ! (i + (sizeConv s) ∗ j)))

where s = len arr `div` fromIntegral n

With coalesce in place of splitUp, red5 can be de�ned as:

red5 :: MemoryOps a

⇒ (a → a → a)

→ Pull Word32 a

→ Program Block a

red5 f arr =

do arr2 ← force (tConcat (fmap (seqReduce f)

(coalesce 8 arr)))

red3 2 f arr2

5.2.6 Reductions 6 and 7

Lastly, we try to push the tradeo� between number of threads and sequential work per thread further. red6
and red7 represent changing red5 to reduce 16 and 32 elements in the sequential phase. The performance
of the fastest of these kernels is very satisfactory, at a level where the kernel is memory bound, that is,
constrained by memory bandwidth.

We augment red5 with a parameter saying how much sequential work should be performed.

red5' :: MemoryOps a

⇒ Word32

→ (a → a → a)

→ Pull Word32 a

→ Program Block a

red5' n f arr =

do arr2 ← force (tConcat (fmap (seqReduce f)

(coalesce n arr)))

red3 2 f arr2

red6 f arr = red5' 16 f arr

red7 f arr = red5' 32 f arr

Lines of Code Figure 7 lists the number of lines of code for each of the reduction kernels. The reduction
benchmarks was based, in spirit, on the reduction optimization tutorial from by NVIDIA [10], and as a
comparison the CUDA kernels shown in that tutorial we estimate to range between 10 and 19 lines of code;
not counting lines containing just a �}� character or type signatures. Likewise for our Obsidian code the type
signature has been left out of the count and we have not counted the lines in the very restrictive vertical
space o�ered in the papers format, but rather how the code would look using more standard line length.
Notable in the lines of code count is that as we apply more optimisations reuse of prior e�ort leads to less
and less added new work, this is one strength of meta programming.

There are important di�erences between the sequence of reduction optimizations performed in this section
and those described in reference [10]. First, they do not employ unrolling of the kernel until the very last
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Reduce r1
Reduce r2
Reduce r3
Reduce r4
Reduce r5
Reduce r6

Kernel 256 512 1024 2048 4096 8192 16384

Reduce r1 64 64 128 128 256 512 512

Reduce r2 64 64 128 256 256 512 512

Reduce r3 64 64 128 128 256 512 512

Reduce r4 32 64 128 256 512 64 128

Reduce r5 32 64 64 256 256 256 256

Reduce r6 32 32 64 128 256 512 512

Figure 6: Top: The best time for each kernel variant at each input size. Bottom: the thread setting that achieved
that best time. These settings are di�cult to predict in advance. Kernels that use virtualized threads are highlighted,
note that there are many of these amongst the best selection.

step. The Obsidian approach, using Haskell recursion to implement the reduction kernels lead to unrolled
code by default. Second, in the NVIDIA tutorial they apply an optimization that computes on elements
before ever storing anything in shared memory. This is something that we also get for free in Obsidian and
would actually need to add code to get the kind of reduction that stores the elements in shared memory
before operating on them in the �rst stage. The code that needs to be added is a use of forcePull on the
input array as step one in the reduction kernel.

5.3 Scan

Scan computes all the pre�x sums of a sequence of values using a binary associative operator (and is familiar
to Haskell programmers as the scanl1 function).

Given an array of values a0, a1, . . . , an and associative operator ⊕, the scan operation computes a new
array:

s0 = a0
s1 = a0 ⊕ a1

. . .
sn = a0 ⊕ a1 ⊕ . . .⊕ an

Figure 8 shows a standard divide and conquer decomposition of scan. Data �ows from top to bottom
and boxes with two inputs are operators. At each level, exactly half of the boxes are operators and in an
imperative language the algorithm would naturally be implemented in-place. Since we cannot easily express
in-place algorithms currently in Obsidian, this means that we need to copy unchanged values into a new
array during each phase. During a phase of compilation, Obsidian analyses memory usage and lays out
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Kernel Lines Cumulative Total

red1 5 5 7

red2 5 5 7

red3 5 5 7

red4 3 8 10

red5 3 8 10

red6 1 9 11

red7 1 9 11

Figure 7: The �gure shows number of lines of code for the di�erent reduction kernels. The Lines column contains
number of lines in the body of that particular reduction function, reuse of prior e�ort not included. The Cumulative
column includes reuse of previously implemented kernels in the count. The Total column also includes extra lines for
distributing the reductions over blocks (using pConcat, fmap and push). This distribution code is identical for all of the
reduction kernels.
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0 1 3 6 4 9 15 22

0 1 3 6 10 15 21 28

Figure 8: Sklansky parallel pre�x network

intermediate arrays in memory. In the case of Sklansky scan kernels this leads to a ping-ponging behaviour
between two arrays in shared memory.

Also, the threads now do two di�erent things (copy, or perform operation). One can have as many threads
as elements, but then each must have a conditional to decide whether to be a copy or operation thread. Or
we can launch half as many threads and have each of them perform both a copy and an operation. We will
show code for both of these options; the �rst is easier to implement.

The Obsidian code below implements the scan network from Figure 8, using as many threads as there
are elements. Note that thread virtualization applies here, so arrays larger than the actual number of GPU
threads can be processed. The limiting factor is the amount of shared memory.

sklansky :: (Choice a, MemoryOps a)

⇒ Int

→ (a → a → a)

→ Pull Word32 a

→ Program Block (Push Block Word32 a)

sklansky 0 op arr = return (push arr)

sklansky n op arr =

do

let arr1 = binSplit (n-1) (fan op) arr

arr2 ← forcePull arr1

sklansky (n-1) op arr2

This is a kernel generator; the (Haskell) Int parameter can be used to generate kernels of various sizes
by setting it to the log base two of the desired array size.

The binSplit combinator used in sklansky is part of the Obsidian library and used to implement divide
and conquer algorithms. It divides an array recursively in half a number of times (�rst parameter) and
applies a computation to each part (second parameter). The operation applied in this case is fan:
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fan :: Choice a

⇒ (a → a → a)

→ SPull a

→ SPull a

fan op arr = conc a1 (fmap (op c) a2)

where

(a1,a2) = halve arr

c = a1 ! fromIntegral (len a1 - 1)

It is the array concatenation (conc) used in this function that introduces conditionals into the generated
code.

5.3.1 Two elements per thread

Both to avoid conditionals and to allow for larger scans per block, we move to two elements per thread. Each
phase of the algorithm is a parallel for loop that is executed by half as many threads as there are elements
to scan. The body of the loop performs one operation and one copy, using bit-twiddling to compute indices.
Note the use of two write functions in sequence. Similar patterns were used in our implementations of sorting
networks [7], for similar reasons.

phase :: Int

→ (a → a → a)

→ Pull Word32 a

→ Push Block Word32 a

phase i f arr =

mkPush l (λwf → forAll sl2 (λtid →
do

let ix1 = insertZero i tid

ix2 = flipBit i ix1

ix3 = zeroBits i ix2 - 1

wf (arr ! ix1) ix1

wf (f (arr ! ix3) (arr ! ix2) ) ix2))

where

l = len arr

l2 = l `div` 2

sl2 = fromIntegral l2

For an input of length 2n, n phases are composed as follows:

sklansky2 :: MemoryOps a

⇒ Int

→ (a → a → a)

→ Pull Word32 a

→ Program Block (Push Block Word32 a)

sklansky2 l f = compose [phase i f | i ← [0..(l-1)]]

compose sequences a list of programs, forcing intermediate arrays between each step.

compose :: MemoryOps a

⇒ [Pull Word32 a → Push Block Word32 a]

→ Pull Word32 a

→ Program Block (Push Block Word32 a)

compose [f] arr = return (f arr)

compose (f:fs) arr =

do

let arr1 = f arr

arr2 ← force arr1

compose fs arr2

Comparing the two kernels sklansky and sklansky2 in the NVIDIA pro�ler indicates that sklansky2,
while being faster than sklansky in many cases, has a worse memory loading behaviour. This indicates that
tweaking the way data is loaded into shared memory may be bene�cial in that kernel.
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Figure 9: As with Figure 6, the left shows only the best times for any threadsetting at each size.

sklansky3 :: MemoryOps a

⇒ Int

→ (a → a → a)

→ Pull Word32 a

→ Program Block (Push Block Word32 a)

sklansky3 l f arr =

do

im ← force (load 2 arr)

compose [phase i f | i ← [0..(l-1)]] im

Here we use load 2 to realise loading of 2 elements per thread but in a strided way that is more likely
to lead to a good memory access pattern. This function is an example of one of the custom ways to create
a push array from a pull array mentioned in section 4.1. The results of these optimisations are shown in
Figure 9. To make an even faster local and global scan, we would need to add more sequential work, as we
did in the reductions.

6 Combining kernels to solve large problems

With Obsidian, we can experiment with details during the implementation of a single kernel. In section
5, we saw that the description of a local kernel involves its behavior when spread out over many blocks.
However, solving large problems must sometimes make use of many di�erent kernels or the same kernel used
repeatedly. Here the procedure of making use of combinations of kernels is explained using large reduction
as an example.

6.1 Large reductions

We implement reduction of large arrays by running local kernels on blocks of the input array. If the local
kernel reduces n elements to 1 then this �rst step reduces numBlocks ∗ n elements into numBlocks partial
results. The procedure is then repeated on the numBlocks elements until there is one value.
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Variant Parameter Seconds Parameter* Seconds*

ACC Loop 2.767

ACC AWhile 2.48

Red1 256 threads 0.751 32 2.113

Red2 256 threads 0.802 32 2.413

Red3 256 threads 0.799 32 2.410

Red4 512 threads 1.073 1024 2.083

Red5 256 threads 0.706 1024 1.881

Red7 128 threads 0.722 1024 1.968

Figure 10: Running times of 224 element reduction using Obsidian or Accelerate. The results were obtained on a
NVIDIA TESLA c2070. Each reduction procedure was executed 1000 times, and the total execution time is reported
in the table. Two di�erent methods for executing the Accelerate (ACC) reduction repeatedly was tested. There variants
are refered to as �Loop� and �AWhile�. A large number of experiments was performed on the our benchmark reductions
(Red1 to Red7) and the best threads per block setting is listed in the table.* The two colums on the right show the
number of threads - kernel combination that perform the worst.

launchReduce = withCUDA (

do let n = blocks ∗ elts

blocks = 4096

elts = 4096

kern ← capture 32 (mapRed5 (+) ◦ splitUp elts)

(inputs :: V.Vector Word32) ←
lift (mkRandomVec (fromIntegral n))

useVector inputs (λi →
allocaVector (fromIntegral blocks) (λ o →
allocaVector 1 (λ o2 → do

do o ≤= (blocks,kern) <> i

o2 ≤= (1,kern) <> o

copyOut o2))))

The code above is one example of our API for writing CPU-side host-programs, though it is also possible
to call Obsidian-generated kernels from CUDA code as well. Figure 10 shows the running time for the above
program executing a 224 element reduction compared against Accelerate.

7 Related work

There are many languages and libraries for GPU programming. Starting at the low-level end of the spectrum
we have CUDA [18]. CUDA is NVIDIA's name for the programming model and extended C language for
their GPUs. It is the capabilities of CUDA that we seek to match with Obsidian, while giving the programmer
the bene�ts of having Haskell as a meta programming language.

While remaining in the imperative world, but going all the way to the other end of the high-level -
low-level spectrum, we have the NVIDIA Thrust Library [19]. Thrust o�ers a programming model where
details of GPU architecture are completely abstracted away. Here, the programmer expresses algorithms
using building blocks like: Sort, Scan and Reduce.

Data.Array.Accelerate is a language embedded in Haskell for GPU programming [6]. The abstraction level
is comparable to that of Thrust. In other words, Accelerate hides most GPU details from the programmer.
Accelerate provides a set of operations (that are parallel and suitable for GPU execution, much like in Thrust)
implemented as skeletons. Recent work has permitted the optimisation of Accelerate programs using fusion
techniques to decrease the number of kernel invocations needed (see reference [16]). It seems to us that when
using Accelerate the programmer has no control over how to decompose his computation onto the GPU or
how to make use of shared memory resources. For many users, remaining entirely within Haskell will be a
big attraction of Accelerate.
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Nikola [15] is another language embedded in Haskell that occupies the same place as Accelerate and
Thrust on the abstraction level spectrum. The systems above are all for �at data-parallelism, Bergstrom
and Reppy are attempting nested data-parallelism by implementing a compiler for the NESL language for
GPUs [2].

The Copperhead [4] system compiles a subset of Python to run on GPUs. Much like other languages
mentioned here, Copperhead identi�es usages of certain parallel primitives that can be executed in parallel
on the GPU (such as reduce, scan and map). But Copperhead also allows the expression of nested data-
parallelism and is in that way di�erent from both Accelerate and Obsidian.

In reference [20], Oancea et al. use manual transformations to study a set of compiler optimisations
for generating e�cient GPU code from high-level and functional programs based on map, reduce and scan.
They tackle performance problems related to GPU programming, such as bad memory access patterns and
diverging branches. Obsidian enables easy exploration of decisions related to these issues.

8 Conclusion

Obsidian lends itself well to the kind of experimentation with low level GPU details that allow for the
implementation of e�cient kernels. This is illustrated in section 5.2. The case study also show hows we can
compose kernels and thus reuse prior e�ort.

The use of GPU-hierarchy generic functions makes the kernel code concise. The push, pConcat, tConcat and
sConcat functions provide an easy way to control placement of computation onto levels of the hierarchy. The
typing-design is used to model the GPU hierarchy also rules out many programs that we cannot e�ciently
compile to the GPU.

While other approaches to GPU programming in higher level languages deliberately abstract away from
the details of the GPU, we persist in our aim of exposing architectural details of the machine and giving the
programmer �ne control. This is partly because trying to provide simple but e�ective programming idioms is
an interesting challenge. More importantly, we are fascinated by the problem of how to assist programmers
in making the subtle algorithmic decisions needed to program parallel machines with programmer-controlled
memory hierarchies, and exotic constraints on memory access patterns. This problem is by no means con�ned
to GPUs, and it is both di�cult and pressing.
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-- Array creation

mkPull :: l → (EWord32 → a) → Pull l a

mkPush :: l

→ ((a → EWord32 → Program Thread ())

→ Push t l a

-- Map on pull and push arrays

fmap :: (a → b) → Pull l a → Pull l b

fmap :: (a → b) → Push t l a → Push t l b

-- Elementwise operations

zipWith :: (a → b → c)

→ Pull l a

→ Pull l b

→ Pull l c

-- Splitting

splitUp :: ASize l

⇒ Word32

→ Pull l a

→ Pull l (Pull Word32 a)

coalesce :: ASize l

⇒ Word32

→ Pull l a

→ Pull l (Pull Word32 a)

-- Array indexing

(!) :: Pull l a → EWord32 → a

-- Array convesion

push :: Pull l a → Push t l a

-- Make array manifest in memory

force :: Push t Word32 a

→ Program t (Pull Word32 a)

forcePull :: Pull Word32 a

→ Program t (Pull Word32 a)

Figure 11: Array programming API: Full type signatures for Obsidian functions.
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__global__ void increment(uint32_t∗ input0,

uint32_t n0,

uint32_t∗ output1)

{

uint32_t bid = blockIdx.x;

uint32_t tid = threadIdx.x;

for (int b = 0; b < n0 / 256U / gridDim.x; ++b) {

bid = blockIdx.x ∗ (n0 / 256U / gridDim.x) + b;

output1[bid ∗ 256U + tid] =

input0[bid ∗ 256U + tid] + 1U;

bid = blockIdx.x;

__syncthreads();

}

bid = gridDim.x ∗ (n0 / 256U / gridDim.x) + blockIdx.x;

if (blockIdx.x < n0 / 256U % gridDim.x) {

output1[bid ∗ 256U + tid] =

input0[bid ∗ 256U + tid] + 1U;

}

bid = blockIdx.x;

__syncthreads();

}

Figure 12: CUDA code generated from the increment program.

__global__ void increment2(uint32_t∗ input0,

uint32_t n0,

uint32_t∗ output1)

{

uint32_t bid = blockIdx.x;

uint32_t tid = threadIdx.x;

for (int b = 0; b < n0 / 256U / gridDim.x; ++b) {

bid = blockIdx.x ∗ (n0 / 256U / gridDim.x) + b;

for (int i0 = 0; i0 < 32U; ++i0) {

output1[bid ∗ 256U +
(tid ∗ 32U + i0)] =

input0[bid ∗ 256U + (tid ∗ 32U + i0)] +
1U;

}

bid = blockIdx.x;

__syncthreads();

}

bid = gridDim.x ∗ (n0 / 256U / gridDim.x) + blockIdx.x;

if (blockIdx.x < n0 / 256U % gridDim.x) {

for (int i0 = 0; i0 < 32U; ++i0) {

output1[bid ∗ 256U +
(tid ∗ 32U + i0)] =

input0[bid ∗ 256U + (tid ∗ 32U + i0)] +
1U;

}

}

bid = blockIdx.x;

__syncthreads();

}

Figure 13: CUDA code generated from the increment2 program.
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function input output description

pConcat nested (Pull of Push) �at Push array
Compute the inner Push arrays in
parallel over a level of the hierarchy.

tConcat nested (Pull of Push) �at Push array

Spread computation of the inner
sequential Push arrays over the
threads at a given level in the hi-
erarchy.

sConcat nested (Pull of Push) �at Push array

Remain at a level in the hierar-
chy, inner push arrays are computed
in sequence (Potentially with inter-
nal parallelism at level Warp and
above.

push Pull Push Push to Pull array conversion.
force Push Pull Makes array manifest in memory.

forcePull Pull Pull Makes array manifest in memory.

fmap function(a → b), Pull/Push same array type as input elementwise computation.
splitAt n, Pull pair (Pull, Pull) Split a Pull array at a given index.
splitUp n, Pull nested (Pull of Pull) Split an array into chunks of size n.

coalesce n, pull nested (Pull of Pull)

Split an array into chunks of size
n. elements in the inner array are
pulled from the input array using a
stride.

evenOdds Pull pair (Pull,Pull) Split input into its even and odd indices.

replicate n, a Pull
Create a Pull array with n elements
all identical to a.

singleton a Pull Create a one element Pull array.
singletonPush Program t a Push Create a one element Push array.

last Pull a Pull the last element from input array.
�rst Pull a Pull the �rst element from input array.

conc Pull, Pull Pull
Concatenate two pull arrays. func-
tion inserts a conditional into the
pull array.

concP Push, Push Push
Concatenate two Push arrays. Of-
ten more e�cient than concatenat-
ing Pull arrays.

zip Pull, Pull Pull of pairs Pair up elements from two Pull arrays.
unzip Pull of pairs Pair (Pull, Pull) Split an array of pairs into two arrays.
upair Pull of pairs �at Pull array Flatten an array of pairs.

binSplit n, function(Pull → Pull), Pull Pull

Splits input array in the middle
recursively n times, then applies
function to each part and concate-
nates the result. Purpose is divide
and conquer kernels.

seqReduce op, Pull Push
Reduction implemented as a se-
quential loop in a Push array.

seqIterate n, function, init Push
Sequentially iterate a function in a
Push array.

seqUntil function, cond, init Push
Sequentially iterate until cond is
true.

seqScan op, Pull Push Sequential scan.

Figure 14: Array programming API. Core functions (top), and a sampling of derived library functions in Obsidian
(middle), and built-in sequential primitives (bottom).
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