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Abstract—Collection of provenance information is an important
aspect of any scientific workflow system. Workflow provenance
generally captures lot of information about individual modules in
the workflow including input parameters, input and output data
products, intermediate data products, module invocation times
etc. Therefore, a complete provenance graph contains enough in-
formation for someone to have a clear picture about the workflow
structure, individual modules and data flow within the workflow.
This can cause privacy issues in certain workflows which consume
sensitive information. To address these issues, workflow owners
may want to keep some provenance information confidential
and make sure those are not published with provenance data.
Davidson et al. [1] presents Γ-privacy which quantifies the module
privacy requirements of scientific workflow provenance data. It
ensures the privacy of all modules in the workflow by hiding
some information from the original provenance data. And also,
Γ-privacy tries to minimize the cost of hidden data to make sure
the maximum amount of provenance information is published.
However, Cheney and Perera [2] points out some limitations of Γ-
privacy including the difficulty of deciding an appropriate value
for Γ in a complex workflow. In this paper, we discuss those
limitations in more details and present a solution to address the
main limitations of Γ-privacy including the difficulty of selecting
a value for Γ using the ideas from differential privacy [3] and
ProPub [4].

Keywords—Workflow provenance, Module privacy, Differential
privacy, Noise.

I. INTRODUCTION

PROVENANCE capture in scientific workflows has been
an interesting topic during the last decade. Importance of

provenance information is well recognized when it comes to
derivation of ownership, assessment of quality and trustwor-
thiness, reproducibility, validation and failure tracing. Most
well known workflow engines like Kepler [5] and Taverna
[6] capture provenance information automatically. And also,
there are tools like Karma [7] and Komadu [8] using which,
any workflow system can easily capture and store provenance
information. Workflow provenance captures lot of information
about individual modules in the workflow including input
parameters, input and output data products, intermediate data
products, module invocation times etc. Workflow provenance
traces are normally represented by directed acyclic graphs in
which the nodes are the modules in the workflow and edges
are the invocations or data flows among modules. A complete
provenance graph contains enough information for someone to
have a clear picture about the workflow structure, individual
modules and data flow within the workflow.

But there are cases where the owner of the workflow
cannot publish the complete provenance graph. In some cases,
disclosing certain information in a provenance graph may
violate security or privacy. For a simple example, sometimes

information like email addresses of human agents in the
provenance graph need to be hidden. If some internal module
of the workflow takes the social security number from a
person’s record as a parameter and the set of parameters is
been captured as provenance information, those must be hidden
from the published provenance trace.

All above scenarios are related to data privacy. But that is
not the only reason for not publishing the full provenance trace.
In some workflow systems, there can be modules which are
proprietary. Even though the complete description about such
a module will not be available for an observer, sometimes it
is possible to infer its functionality by analysing details about
input and output data products and parameter values available
in the provenance graph. In some other systems, the workflow
structure and invocation sequences may be proprietary. Then
again it can be possible to infer those information using the
data flow details available in a provenance graph. Davidson et
al. [1] [9] presents Γ-privacy which tries to solve the problem
of preserving the privacy of workflow modules [10]. The Γ-
privacy model quantifies the module privacy and provides a
way of preserving it by hiding input and/or output data items
(attributes).

In Γ-privacy, a module is treated as a relation which takes a
set of input attributes and produces a set of output attributes.
A workflow is thought of as a relation which is the input-
output join of the individual module relations. Each row in this
relation represents a workflow execution. They call this relation
the provenance relation. A module with functionality m in a
workflow is said to be Γ-private if for every input x, the actual
value of the output m(x) is indistinguishable from Γ - 1 other
possible values with respect to the visible data values in the
provenance relation. By extending the this notion, a workflow
provenance relation is said to be Γ-private if all the individual
modules of the relation are Γ-private. The idea behind this
definition is that Γ-privacy ensures that an attacker cannot
guess the correct value of m(x) for any module in the workflow
for any execution with probability greater than 1

Γ by looking
at a Γ-private provenance relation. Given a complete workflow
provenance relation, the way to make it Γ-private is by hiding
input-output attributes of internal modules. Sometimes it is
possible to achieve the same level of privacy by hiding different
subsets of attributes in the provenance relation. However, the
amount of useful provenance information conveyed to the user
may be different for each subset. Therefore, they assign a cost
for each attribute in the relation and try to minimize the cost of
hidden attributes. This makes sure that the maximum possible
amount of useful information is exposed to the user while
achieving Γ-privacy.

Even though Γ-privacy is an interesting way of quantifying
the required level of privacy for workflow provenance, it has
few limitations as pointed out by Cheney and Perera [2]. The
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most visible limitation in a practical point of view is that it is
not clear how to choose a suitable value for Γ. Selecting a value
for Γ can depend on the application and it should be done by
analysing different aspects related to the exact use case in hand.
If a good value is not chosen for Γ, Γ-privacy may not make
much sense. The Γ-privacy model uses a single Γ value for all
the modules in a workflow. This is not realistic for a complex
workflow which contains different kinds of modules with
different privacy requirements. In addition to that, while hiding
attributes to preserve Γ-privacy, all attributes are assumed to
be equally contributing to the output of the module. In other
words, owner of the workflow cannot control the attributes
which are selected to be hidden by the system. And also,
the polynomial time approximation algorithm proposed in [1]
using cardinality constraints assumes that all attributes in a
module have the same domain size. That is a very restrictive
assumption for a real workflow. Cheney and Perera [2] points
out that it might be possible to address some of these by using
techniques from quantitative opacity [11], differential privacy
[3] and quantitative information flow security [12].

Even though it is hard to figure out a proper value for Γ
just by looking at a complex workflow provenance relation,
selecting the set of sensitive attributes that must be hidden
in the published provenance data is a far more practical way
of looking at the same problem. Therefore, we use the idea
of allowing the user to select the attributes to be hidden to
build our solution. For example, ProPub [4] is a system which
uses this idea to preserve security in provenance graphs. In Γ-
privacy model, the set of attributes to be hidden is selected by
the system for a Γ value provided by the user. In the modified
Γ-privacy model that we present, we allow the user to select the
attributes that must be hidden and use that input to derive the Γ
value for the rest of the workflow. When this model is applied
to a workflow which contains modules with different domain
sizes, there can be situations where a complete module must be
hidden to satisfy the selected Γ value. In such cases, we use the
technique of adding noise attributes for those modules without
completely hiding the modules in the published provenance
data. This idea of adding noise to improve security is used in
differential privacy [3].

The organization of this paper is as follows. In section II
we describe Γ-privacy using simple examples. In section III we
discuss the limitations of Γ-privacy in more details. Then in
section IV we evaluate quantitative opacity, differential privacy
and information flow security. As the main contribution of this
paper, in section V we present a solution to address the above
issues in Γ-privacy and discuss the applicability of our solution
for more realistic workflows. Finally in section VI we present
the conclusion and possible future directions.

II. Γ-PRIVACY

Γ-privacy [1] tries to quantify the level of security required
for scientific workflow provenance. A workflow is identified
as a set of modules. A module takes a set of attributes as the
input and generates another set of attributes as the output. The
Γ-privacy model is built by considering the privacy of a single
module (standalone module privacy) first. Based on that, the

Fig. 1. A simple workflow

TABLE I. R: WORKFLOW RELATION

a1 a2 a3 a4 a5 a6 a7

0 0 0 1 1 1 0

0 1 1 1 0 0 1

1 0 1 1 0 0 1

1 1 1 0 1 1 1

TABLE II. R1 : MODULE RELATION FOR m1

a1 a2 a3 a4 a5

0 0 0 1 1

0 1 1 1 0

1 0 1 1 0

1 1 1 0 1

privacy of a connected set of modules in a workflow (workflow
module privacy) is defined. Relational algebra is used to build
the Γ-privacy model.

A. Standalone Module Privacy
A module m in a workflow takes a set I of input attributes

and produces a set O of output attributes. Module m is
modelled as a relation R over a set of attributes A = I ∪ O
that satisfies the functional dependency I → O. The domain
of each attribute a ∈ A is denoted by ∆a. Then the domain
of module m is given by

∏
a∈I∆a and the range is given by∏

a∈O∆a. Therefore the relation R represents the function m
which is defined from that domain to range. A tuple in relation
R represents a single execution of m where for every tuple t
∈ R, ΠO(t) = m(ΠI(t)) (Π denotes the projection for a single
tuple). Figure 1 shows a simple workflow example taken from
[1], which has modules m1, m2 and m3 with boolean input and
output attributes. Table I shows the relation R which represents
the above workflow. Each tuple in R shows an execution of the
workflow. Table II shows the relation R1 which represents the
module m1 and shows the input and output attributes. Module
m1 computes a3 = a1 ∨ a2, a4 = ¬(a1 ∧ a2) and a5 = ¬(a1

⊕ a2) using inputs a1 and a2.
To ensure standalone module privacy, Davidson et al. comes

up with an approach in which some attributes of the prove-
nance relation are hidden. They call the final reduced relation
a Provenance View. The subset of attributes to be hidden is
carefully selected to minimize the cost of hidden information.
In formal terms, R is projected on a restricted subset V of



PHD QUALIFYING EXAM, 2014; SCHOOL OF INFORMATICS AND COMPUTING, INDIANA UNIVERSITY 3

TABLE III. RV : A PROJECTION OF R1

a1 a3 a5

0 0 1

0 1 0

1 1 0

1 1 1

attributes to compute the final provenance view RV = ΠV (R).
To make sure that RV is secure enough, the required level of
privacy is quantified by Γ-Privacy. The definition of possible
worlds which leads to the definition of Γ-Privacy is as follows.

“The set of possible worlds for R w.r.t. a restricted subset
of attributes V, denoted Worlds(R,V), consists of all relations
R′ over the same schema as R where ΠV (R′) = ΠV (R)”.

Table III shows a projection of R1 with respect to the set of
visible attributes V = {a1, a3, a5}. There are many relations
over the same schema as R1 which belongs to Worlds(R1, V).
Obviously, R1 is one of those and we can come up with lot
more by changing values of a2 and a4 in R1 as those attributes
are not in V. Based on the notion of possible worlds, Γ-Privacy
is defined for a given parameter Γ ≥ 1. A provenance view RV
is Γ-standalone-private if for every t ∈ R, the possible worlds
Worlds(R,V) contain at least Γ distinct output values that could
be the result of m(ΠI (t)). In other words Γ-standalone-privacy
means that for any input, the observer cannot guess m’s output
with probability greater than 1

Γ . For example, consider the Γ-
privacy of relation R1 with respect to the visible set V = {a1,
a3, a5}. It can be shown that R1 is Γ-private for Γ = 4. As an
example tuple, if we take x = (0,0), the set of distinct output
values is {(0,0,1), (0,1,1), (1,0,0), (1,1,0)}. Underlined is the
hidden attribute a4. This can be shown for all cases of x.

B. Workflow Module Privacy
A workflow which consists of n modules is modelled as a

relation R over the set of attributes A = ∪ni=1 (Ii ∪ Oi), where
each tuple in R represents an execution of the workflow and
for every t ∈ R, and every i ∈ [1,n], ΠOi(t) = mi(ΠI i(t)). A
sample workflow relation is given in Table I. Like in module
privacy, a workflow relation R is projected on a restricted
subset V of attributes to compute the final provenance view
RV = ΠV (R). A workflow can contain both private modules
and public modules. Therefore, the provenance view RV must
preserve the behaviour of public modules while preserving Γ-
privacy for private modules. Based on that, the possible worlds
for a workflow relation is defined as follows.

“The set of possible worlds for the workflow relation R
w.r.t. a restricted subset of attributes V, denoted Worlds(R,V),
consists of all relations R′ over the same schema as R where
ΠV (R′) = ΠV (R) and for every public module mi and every
tuple t′ ∈ R′, ΠOi(t′) = mi(ΠI i(t′))”.

This notion of possible worlds leads to the definition of Γ-
workflow-privacy for a given parameter Γ ≥ 1. A view RV is
Γ-workflow-private if for every tuple t ∈ R, and every private
module mi in the workflow, the possible worlds Worlds(R,V)
contain at least Γ distinct output values that could be the result
of mi(ΠI i(t)).

Γ-workflow-privacy for each module in a workflow can be
achieved by hiding different subsets of attributes in workflow
relation R. But the best approach is to maximize the amount of
provenance information revealed to the user. Therefore, a cost
is associated with each attribute in the relation and the safe
subset V of attributes is selected such that the total cost of
hidden attributes is minimized. The problem of computing the
minimum cost subset is called the Secure-View problem.

III. LIMITATIONS OF Γ-PRIVACY

Before moving onto limitations within Γ-privacy model,
here we discuss its limited applicability first. Davidson et
al. argue that the functionality of a proprietary module in a
workflow can be understood by observing the input and output
attributes available in the provenance trace of the module.
This argument is valid for a simple workflow module like the
Boolean functions used in Figure 1. In that case all inputs and
outputs for the module are captured as provenance. However,
in real scientific workflows, input and output data are more
complex. For example, most modules consume input data files
with a set of parameters and produce some output data files.
In such cases, provenance can only capture metadata about
input and output data, but not the actual data. Therefore, in
most real world workflows module privacy is not challenged
by exposing provenance information. That can only happen
in workflows where actual input and output data are simple
enough to be captured as provenance. And also, Γ-privacy
model works only for modules in which all input and output
attributes have finite domains. This is also a very restrictive
assumption for majority of the workflows. Therefore, we think
that the applicability of Γ-privacy is limited when it comes to
real workflows. But we do not try to address this limitation
in this paper and concentrate only on limitations within the
model.

As pointed out by Cheney and Perera [2], it is not clear how
to choose a good value for Γ. User has to decide the value of Γ
depending on the level of security required by the application.
According to the definition of Γ-privacy, it makes sure that
the correct output cannot be guessed by an attacker with a
probability more than 1

Γ . However, this probability varies from
module to module. For example, for boolean modules shown
in Figure 1, it might be sufficient to set Γ = 2 because hiding
only one attribute will be enough to prevent the observer from
guessing the output. But for a module which has five input
attributes and five output attributes with varying domain sizes,
it is not easy to decide a Γ value. And also, in Γ-workflow-
privacy, same Γ value is used for all the modules in the
workflow. For a complex workflow with modules with varying
domain sizes, this can create lot of issues. If the Γ value is too
low, complex modules in the workflow will not be sufficiently
secured. If the Γ values is too high, simple modules have to
be completely hidden to preserve Γ-privacy. Therefore, setting
a Γ value for a complex workflow is even harder.

It is a very common use case to have a set of specific
attributes that must be hidden in the published provenance data.
In Γ-privacy, owner of the provenance relation cannot control
the attributes selected to be hidden after setting some value
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Fig. 2. A Heart Disease Predictor Module

for Γ. Except for considering cost of hiding, all attributes are
treated equally by the Γ-privacy model. Cost of each attribute
is measured from the end users perspective to minimize the
value of hidden data. That cannot be used by the provenance
owner to guarantee that a particular attribute is in the pub-
lished provenance relation. For example, consider the Heart
Disease Predictor module shown in Figure 2 which takes a
set of attributes from a person’s health record and produces a
decision. Height of a person is a minor factor when deciding
whether that person has got a heart disease. But attributes
like blood pressure and cholesterol Level are major factors
which contribute most to the output. Γ-privacy model does
not take such differences into account in hiding attributes. It
may achieve same Γ by hiding either height or blood pressure
as it assumes both attributes contribute equally to the output.
In this case, if the owner wants to hide blood pressure values
in the published provenance data, there is no way of specifying
that.

The Γ-privacy model assumes a fixed domain size for the
module relation R when analysing the complexity of the algo-
rithm which decides whether a given set of visible attributes is
safe for a particular module. Cheney and Perera [2] highlights
this as another limitation in Γ-privacy. However, even with
this assumption, the algorithm is NP-hard in the number of
attributes of the module and the complexity is O(2kN2) where
k is the number of attributes and N is the assumed constant size
of the relation. If we try to avoid using the fixed domain size
assumption, the upper bound of N can be calculated as N = dj
where d is the maximum domain size out of input attributes
and j is the number of input attributes. When applied this value,
the complexity of the algorithm becomes O(2kd2j). Now if we
assume that the number of input attributes is roughly half of the
total number of attributes, this can be simplified as O(2kdk)
= O((2d)k). This shows that even without the fixed domain
size assumption, the algorithm still takes exponential time in
the number of attributes. Therefore, this assumption does not
make much difference to the complexity analysis. And also,
Davidson et al. argue that the exponential time algorithm is
not going to affect most workflows because the number of
attributes for most modules is fairly small. As that is a fair
assumption for most cases, we are not trying to address the
complexity issue in this paper.

Fig. 3. A Probabilistic Labelled Transition System

IV. EVALUATION OF SIMILAR TECHNIQUES

A. Quantitative Opacity

Opacity [13] has been identified as an important property
that can be used to measure security of a system. Bryans
et al. [14] applies opacity into transition systems following a
qualitative approach. Quantitative opacity [11] is an extension
of that work which quantifies opacity in probabilistic labelled
transition systems (PLTS). When applying opacity for transi-
tion systems, a single execution of the system is called a run
(denoted by λ) and the output is called the observation which is
given by an observation function obs. Certain secure properties
of the system which should not be determined by the observer
are called predicates. A predicate is said to be opaque if an
observer of the system cannot determine the satisfaction of the
predicate using the observations of a given run of the system.
When measuring the opacity of a predicate, a set φ of runs is
identified for which the predicate holds.
Qualitative Opacity. A set of runs φ is opaque w.r.t. obs if,
for every run λ ∈ φ, there is another run λ′ /∈ φ such that
obs(λ) = obs(λ′), i.e., λ′ covers λ.

The idea behind this definition of qualitative opacity from
[14] is that, for a single run to be opaque, there must be
another run which can produce the same observations (cover).
A sensitive predicate is associated with a set of runs φ and if
all runs in φ are covered, the predicate is opaque. According
to this definition, having a single covering run for each run in
φ is enough for the predicate to be opaque.

Quantitative opacity is defined for probabilistic labelled
transition systems and it extends the above definition by taking
probability of runs into account. Figure 3 shows a sample PLTS
adopted from [14]. A PLTS consists of a set of states and a
set of labels between states. Each state is associated with a
probability distribution which assigns probabilities for each
connected label. First two notions of quantitative opacity are
similar to qualitative opacity. A set of runs φ is said to be π-
opaque when the probability of having an uncovered run is zero
and πξ-opaque when the probability of having an uncovered
run is ξ.
πγ-opacity. A set of runs φ is said to be πγ-opaque if the
probability of φcov is γ times larger than the probability of φ
where φcov is the set of runs which cover at least one run in
φ and γ is much greater than one.

Quantitative opacity follows a similar idea to Γ-privacy.
Both techniques measures the level of uncertainty in publishing
sensitive data. Higher uncertainty leads to better privacy in
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both techniques. But Γ-privacy is a technique which is capable
of making a given workflow provenance relation Γ-private for
a given value of Γ by hiding attributes. But quantitative opacity
is only capable of measuring the level of privacy of a given
system. If π-opacity is used to find a value for Γ in Γ-privacy
for a single workflow module, π-opacity is equivalent to Γ
= 2 case. When considering a workflow, two models can be
compared by treating a module in a workflow as a state in a
PLTS. Even in that case, Γ-privacy is a much stronger notion
compared to π-opacity. To achieve π-opacity, the system needs
only one covering run for each sensitive run. A covering run
can be created by changing only one module in the original
run. But to achieve Γ-workflow-privacy, each module in the
workflow must be Γ-private. Therefore, Γ-privacy for even Γ
= 2 ensures much better privacy for a system compared to π-
opacity. However, πγ-opacity can provide better security for
higher γ values as it increases the number of covering runs
for a given sensitive run. Even in that case, if a similar value
is selected for Γ and γ, Γ-privacy provides much stronger
security. Here we highlight that selecting a suitable value for
γ in πγ-opacity is also not straightforward and depends on
the application like in selecting a value for Γ in Γ-privacy.
Therefore, we think it is hard to use the techniques from πγ-
opacity to address the limitations of Γ-privacy.

B. Differential Privacy

Differential privacy [3] is a technique used to preserve the
privacy of individuals involved in statistical databases. The
exact idea captured by differential privacy is that the risk of
breaching one’s privacy should not statistically increase as
a result of participating in a statistical database. Differential
privacy is an interactive privacy mechanism where the data
collector provides an interface through which the users can
execute queries about the data and get answers. Underlying
query processor adds noise to original answers to preserve
differential privacy. A noise function Kf is associated with
each query f and that decides the amount of noise to be added
in the result of query f. The noise function Kf depends on ∆f
which is the maximum difference between f (D1) and f (D2) for
all sub datasets D1, D2 in the dataset differing in at most one
element. The idea here is to add an amount of noise which
is proportional to the largest difference that can be made to
the answer by a single data entry. The query processor first
computes the correct answer and uses the noise function Kf
to add noise to it.

Like in Γ-privacy, the intention behind differential privacy
is also to increase the uncertainty to preserve data privacy.
To increase the amount of uncertainty, Γ-privacy uses the
technique of hiding attributes while differential privacy adds
noise. The idea of adding noise can also be used in Γ-
privacy to increase the value of Γ for a module. We use
this technique in our solution presented in the next section.
However, provenance information are mostly used for purposes
like reproducing and failure tracing in workflows. Excessive
noise can ruin the purpose of collecting provenance. Therefore,
the technique of adding noise must be used carefully only when
there is no better option.

C. Quantitative Information Flow Security
Information flow security [15] is a concept used to assess

the amount of private information leaked from a high security
variable to a low security variable during a process within a
system. Values of low security variables are always visible
to the users. The non-interference [16] property enforces a
system to have zero information leakage from high security
variables to low security variables. This property is too strict
to be practical for most programs. For example, a password
checker program reveals some information about the password
to an attacker when it rejects a wrong password. Therefore,
measuring the information leakage is important to enforce
bounds within programs. Quantitative information flow secu-
rity [12] is an attempt to automatically determine the leakage
of information from high security variables to low security
variables in a program using syntax-directed rules. In other
words, it measures the amount of information initially in high
security variables which an attacker can learn by observing a
run of a program.

Information flow security concept is mostly related to pro-
gramming languages. However, the idea behind it can be
applied to Γ-privacy as well. The Γ-privacy model identifies
a set of high security attributes H for a given Γ value and a
attribute cost vector. The set of other attributes in the workflow
provenance relation which is published to the users become the
low security attributes L. It completely hides all attributes in
H and exposes all attributes in L. If the user can learn some
information about attributes in H by observing the attributes
in L, Γ-privacy will not be preserved. There are two types
of workflows to be considered here. For workflows in which
all modules are private, no information leakage is possible.
However, for mixed workflows which contains both private
and public modules, values of high security attributes can be
leaked through low security attributes in public modules during
data sharing. To prevent that, Davidson et al. use a privatization
technique for public modules in [1]. In their latest work [9],
they propose a propagation technique to address information
leakage more precisely. Therefore, Γ-privacy always preserves
the non-interference property.

V. SOLUTION FOR THE LIMITATIONS OF Γ-PRIVACY

As discussed above, there are number of limitations in the
Γ-privacy model. Here we present a solution which addresses
three major limitations: (1) difficulty in selecting a suitable
value for Γ, (2) using the same Γ value for complex workflows
which consists of modules with varying domain sizes and (3)
inability to specify the attributes that must be hidden. The
power of Γ-privacy model is that it always guarantees that the
correct output for any input in any module in the workflow
cannot be guessed by an attacker with a probability more than
1
Γ . Therefore, the solution to address the above limitations must
always preserve this property.

A. Proposed Solution
From the provenance owners perspective, it is far more

easier to select a set of sensitive attributes in the workflow
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provenance relation than directly deciding a suitable Γ value
for the entire workflow. Therefore, in our solution, first we
allow the user to select the attributes that must be hidden in
the provenance relation to be published. The attributes selected
by the user can belong to different modules. Let the set of
modules on which the user selected at least one attribute to
be hidden be M. However, for most complex workflows which
consists of a large number of modules, there will be lot of
modules which do not belong to M. But still all the private
modules in the system must be secured using a suitable Γ
value. Therefore, the Γ values for modules in M are used to
select a suitable Γ value for other private modules which are
not in M.

Once the user selects the set of attributes to be hidden, sys-
tem internally calculates the Γ values for the modules in M. For
a given module relation R and a set of attributes to be hidden
H, Γ value can be calculated by first calculating Worlds(R, H)
and then finding the input with minimum number of unique
outputs in Worlds(R, H). As shown for Safe-View problem
in [1], this computation takes exponential time in the number of
attributes. However, following Γ-privacy analysis, we assume
that the number of attributes on a given module is fairly small
and the computation is feasible. For a simple example, again
consider the workflow in Figure 1 and its provenance relation
R in Table I. If the user selects attribute a2 to be hidden, M =
{m1} and H = {a2}. Now the system has to calculate Γ for m1.
Module relation R1 for m1 is given in Table II and Worlds(R1,
H) can be calculated by changing the value of a2 for all tuples.
Now the unique outputs in Worlds(R1, H) for each input x have
to be counted to find Γ. Set of unique outputs for x = (0,0)
is {(0,1,1), (1,1,0)}, for x = (0,1) is {(0,1,1), (1,1,0)}, for x
= (1,0) is {(1,1,0), (1,0,1)}, for x = (1,1) is {(1,1,0), (1,0,1)}.
Therefore, Γ = 2 for module m1 w.r.t. H = {a2}.

The calculated Γ values for modules in M are shown to the
user so that she can have an idea about the relationship between
the hidden attributes and related Γ values. User is given the
option to change the set of hidden attributes according to the
Γ value of each module in M. For example, some modules
may show Γ = 1 even though one attribute is already hidden.
In such cases, user may hide more attributes to increase Γ as
Γ = 1 does not indicate any uncertainty. If changed, the new
Γ values are calculated according to the changes. Once the
user agrees on the set of Γ values for modules in M, next step
is to assign a proper Γ value for the private modules which
are in M . The user is allowed to select a suitable Γ value
for those modules based on the values finalized for modules
in M. For example, if the user thinks that the most important
private modules are already covered by M, a sensible value for
other private modules would be the minimum Γ value out of
the values calculated for modules in M. However, the user is
allowed to select any value according to her requirements.

However, selecting a fixed Γ value for modules in M can
create problems in complex workflows which includes modules
with small domain sizes as well as large domain sizes. If the
attributes selected to be hidden by the user are having fairly
large domain sizes, the calculated Γ values for the modules in
M can also be large. And then if the user selects the minimum
of those values as the Γ value for modules in M , that can

TABLE IV. A SAMPLE RELATION FOR AN AND MODULE

a1 a2 a3

0 0 0

0 1 0

1 0 0

1 1 1

TABLE V. RELATION FOR THE AND MODULE WITH NOISE

a1 a2 a3 a4 a5

0 0 0 1 0

0 1 0 1 1

1 0 0 0 1

1 1 1 0 0

completely hide any modules in M with very small domain
sizes. As a simple example, consider the provenance relation
for an AND module m in Table IV. Suppose m ∈ M in a
workflow provenance relation and Γ = 4. Here, the domain
size of the output attribute a3 is only 2. So the maximum Γ
value that can be achieved by hiding only 2 attributes is 2.
Therefore, Γ = 4 cannot be achieved for m without hiding all
attributes a1, a2 and a3. If all attributes are hidden that can
be considered as the Γ = ∞ case as no information about the
module will be revealed. The Γ-privacy model quantifies the
cost of hiding all attributes of m as c(Q) = Σa∈Qc(a) where Q =
{a1, a2, a3}. But we argue that the cost of hiding all attributes
of a module is greater than the total cost of individual modules
because the provenance user will not know even the existence
of such a module.

To address this issue, we use the concept of adding noise to
increase uncertainty of exposed data from differential privacy
[3]. In case of the domain size of a particular module in
M is not enough to satisfy the selected Γ value, new noise
attributes are added to the provenance relation to increase the
size of the domain. Domain sizes of the noise attributes must
be carefully selected to sufficiently increase the domain size
of the relation to satisfy the given Γ value. Adding a noise
attribute is equal to hiding an actual attribute in Γ-privacy as
it increases the number of possible Worlds. However, the noise
attributes must be added to the set of visible attributes V in the
final solution. Values for noise attributes have to be randomly
generated for each tuple in the relation. Table V shows how
the scenario in the above example can be handled by adding
two noise attributes a4 and a5 into the provenance relation.
Here a domain size of 2 is selected for both noise attributes
a4 and a5 to match the other attributes in the module. Possible
Worlds for this new relation can be expanded by assigning all
possible values for a4 and a5. Now lets consider the set of
unique outputs in Worlds for each possible input x. For x =
(0,0), set of unique outputs is {(0,0,0), (0,0,1), (0,1,0), (0,1,1)}
where the noise attribute values are underlined. Likewise, it can
be shown that for each input, there are 4 unique outputs and
hence Γ = 4. Displaying this relation is far more useful than
completely hiding the entire relation.
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B. New-Secure-View Problem
The involvement of the user to select a set of attributes to be

hidden and to select Γ values for modules in M, introduces few
changes into the original Γ-privacy model. As the Γ value is no
longer constant for the entire workflow, new model maintains
an array of Γ values for each private module in the workflow
and γ(mi) returns the Γ value for module mi. To preserve Γ-
privacy of a workflow W, all modules in W must be Γ-private
w.r.t. their own Γ values. Now the system has a set of attributes
selected to be hidden even before applying the Secure-View
algorithm given in [1]. Each module in M already has a fixed
set of attributes to be hidden. There is no need to consider
the cost of hiding attributes for the modules in M as those
are selected by the user. So the Secure-View problem is
reduced to finding the minimum cost safe subsets of attributes
for modules which are not in M and combining them to find
the safe subset for the entire workflow. In formal terms, we
define the New-Secure-View problem for a workflow as
follows.
New-Secure-View Problem. Given a workflow W, an array
of Γ values for each private module in W, and a set of fixed
hidden attributes H, find the set of visible attributes V w.r.t.
which W is Γ-private, such that the cost c(U) = Σa∈Uc(a) is
minimized where U = V \H.

The Secure-View problem is solved in [1] by calculating
all safe subsets for each module in the workflow and then
selecting one such subset for each module to minimize the
cost of hidden attributes of the entire workflow. The solution
of the New-Secure-View problem is slightly different
because for the modules in M, the subset of attributes to
be hidden is fixed. We leave the analysis of the algorithm
for New-Secure-View problem for all-private and mixed
workflows as a future work. The complexity of this problem
should remain exponential in the number of attributes in the
workflow provenance relation.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a modified Γ-privacy model
to address the main limitations of the original Γ-privacy model.
First we discussed the techniques behind Γ-privacy and then
looked into all major limitations of the model. We highlighted
that some of the limitations can reduce the applicability of the
model in real world complex workflows. Then we evaluated
three similar techniques used to preserve data privacy and
discussed the applicability of those to address some limitations
of Γ-privacy. Finally we presented our modified Γ-privacy
model to address three main limitations of the original model
and defined the New-Secure-View problem. We used the
technique of adding noise to avoid completely hiding modules
with small domain sizes in complex workflows. This model is
far more easier to be used compared to the original Γ-privacy
model from the users perspective. And also the technique of
using noise to improve Γ for smaller modules is important to
reduce the amount of hidden provenance data while preserving
the strength of Γ-privacy.

Here we have only defined the New-Secure-View prob-
lem and have not evaluated the possible algorithms to solve it.

Even though it will be close to Secure-View algorithm, it
will be interesting to see the effect of fixed hidden attributes
specially in the propagation model [9]. Another future work
that we can think of is improving this model to address the
other limitations of Γ-privacy to increase the applicability.
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